精选2019高中数学单元测试《立体几何初步》专题完整题(含答案)

合集下载

最新版精编2019高中数学单元测试《立体几何初步》专题考核题完整版(含答案)

最新版精编2019高中数学单元测试《立体几何初步》专题考核题完整版(含答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,l A B A B αβαβαβ⊥=∈∈,,,,,到l 的距离分别是a 和b ,AB 与αβ,所成的角分别是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,若a b >,则( )A .m n θϕ>>,B .m n θϕ><,C .m n θϕ<<,D .m n θϕ<>,(2008陕西理)2.已知直线n m l 、、及平面α,下列命题中的假命题是( )D A .若//l m ,//m n ,则//l n . B .若l α⊥,//n α,则l n ⊥.(2005上海春季13)3.等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB 所处的二面角为300,则四棱锥A -MNCB 的体积为( ) (A )23(B )23 (C )3 (D )3(2004安徽春季理)(5)4.正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为 ( ) A.89 3 B .4 3 C.29 3 D .43或83 3 解析:分侧面矩形长、宽分别为6和4或4和6两种情况二、填空题5.线段AB 在平面α内,则直线AB 与平面α的位置关系是_________. 6.已知βα,是两个不同的平面,m ,n 是两条不同的直线,给出下列命题: (1),,m n m n n ααα⊂⊄如果、是异面直线,那么与相交.A Ba bl αβ(2)m ∥β,m ⊥n ,则n ⊥β.(3)如果点M 是两条异面直线外的一点,则过点M 且与a ,b 都平行的平面有且只有一个.(4)若,//,////.m n m n n n n αβαβαβ⋂=⊄⊄,且,则且其中正确的命题是 .7.用6根长度相同的火柴搭成正三角形,最多可搭___________个三角形。

最新版精编2019高中数学单元测试《立体几何初步》专题完整考题(含答案)

最新版精编2019高中数学单元测试《立体几何初步》专题完整考题(含答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个(2013年高考北京卷(文))2.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )A .6πB .43πC .46πD .63π(2012课标文)3.如图,l A B A B αβαβαβ⊥=∈∈,,,,,到l 的距离分别是a 和b ,AB 与αβ,所成的角分别是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,若a b >,则( )A .m n θϕ>>,B .m n θϕ><,C .m n θϕ<<,D .m n θϕ<>,(2008陕西理)A Ba bl αβ4.若l 为一条直线,α、β、γ为三个互不重合的平面,给出下面三个命题:①,;αγβγαβ⊥⊥⇒⊥ ②,;αγβγαβ⊥⇒⊥∥ ③.l αβαβ⊥⇒⊥∥,l其中正确的命题有(A )0个 (B )1个 (C )2个 (D )3个(2006天津文)5.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A. S 1<S 2 B. S 1>S 2 C. S 1=S 2 D. S 1,S 2的大小关系不能确定(2006江西理)C6.过空间任一点和两条异面直线都平行的平面有-----------------------------------------------( ) (A) 1个 (B) 无数个 (C)至多一个 (D)不存 二、填空题7.已知直线l ⊥平面α,直线m ⊂平面β.给出下列命题: ①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β. 其中正确的命题是 ▲ . (填序号)8.线段AB 、CD 所在直线是异面直线,M 、N 分别是AB 、CD 的中点,则MN __________1()2AC BD +.(>;<;=)9.已知βα,表示两个不同的平面,m 为平面α内的一条直线,则“βα⊥”是“β⊥m ”的______________条件(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选出一种填空.)10.如图,在正三棱柱111ABC A B C -中,D 为棱1AA 的中点.若截面1BC D ∆是面积为6的直角三角形,则此三棱柱的体积为________.(2010年南京调研)11.如图,在等腰梯形ABCD 中,22AB DC ==,060DAB ∠=,E 为AB 的中点.将ADE ∆与BEC ∆分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则三棱锥P DCE -的外接球的体积为________.12.侧棱长为cm 5、高为cm 4的正四棱锥的底面积为 2cm . 13.若棱台的体积为7632,6,18,cm cm cm 高为一个地面的面积为则另一个底面的面积为 14.已知矩形相邻两边的长分别为2(0),a a a >和用此矩形卷成圆柱,则所得的圆柱的体积为15.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面四边形ABCD 满足条件 时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种即可,不必考虑所有可能的情形).16.给出下列四种说法:①棱柱的侧棱都相互平行且相等,②用一个平面截一个圆锥得到的两个几何体一定是圆锥和圆台,③面数最少的多面体一定是三棱锥,④五面体一定是三棱柱或三棱台,其中正确的说法是 ▲ .(填序号)17.若直线l 上有两点到平面α的距离相等,则直线l 与平面α的位置关系为____ 18.直线a b 、不在平面α内,a b 、在平面α内的射影是两条平行直线,则a b 、的位置关系是________________________ 三、解答题19.如图,在三棱柱111ABC A B C -中.(1)若1BB BC =,11B C A B ⊥,证明:平面1AB C ⊥平面11A BC ; (2)设D 是BC 的中点,E 是11A C 上的点,且1//A B 平面1B DE ,求11A EEC 的值.20.(本小题满分14分)如图,在三棱锥P ABC -中,PA PC ⊥,AB PB =,,E F 分别是PA ,AC 的中点.求证:(1)EF ∥平面PBC ; (2)平面BEF ⊥平面PAB .21.在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , EF // AB ,∠BAF =90º, AD = 2,AB =AF =2EF =1,点P 在棱DF 上. (1)若P 是DF 的中点, 求异面直线BE 与CP 所成角的余弦值; (2)若二面角D -AP -C的余弦值为3,求PF 的长度.E ABCPFPFEDCAB22.如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1,AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长. (2013年普通高等学校招生统一考试天津数学(理)试题(含答案))23. 如图,平行四边形ABCD 中,1=CD ,60=∠BCD ,且CD BD ⊥,正方形A DE F 和平面A B CD成直二面角,H G ,是BE DF ,的中点.(Ⅰ)求证://GH 平面CDE ; (Ⅱ)求证:CDE BD 平面⊥; (Ⅲ)求三棱锥CEF D -的体积.24.已知四棱柱111A B C D A B C D -各棱长均为,a ABCD 为正方形,1160,A AD A AB E ∠=∠=︒ 为1C C 中点.(1)求证:1A D ⊥平面1AD C ;(2)在棱11C B 上是否存在一点F ,使得1A F ∥平 面1D AE ?请证明你的结论.25.如图,已知斜三棱柱111ABC A B C -的底面是直角三角形,90C ∠=︒,侧棱与底面所成的角为(090)αα︒<<︒,点1B 在底面上的射影D 落在BC 上. (1)求证:AC ⊥平面11BB C C ;(2)若点D 恰为BC 的中点,且11AB BC ⊥,求α的值.26.已知,m n 是两条不重合的直线,,,αβγ是三个两两不重合的平面,给出下列四个命题: ①若,,m m αβαβ⊥⊥则∥;②若;αγβαγβ⊥⊥,,则∥③若,,,m n m n αβαβ⊂⊂∥则∥④若,m n 是异面直线,,,,m m n αβααβ⊂∥∥则∥其中所有真命题的序号是27.如图,,,M N K 分别是正方体1111ABCD A B C D -的棱11,,AB CD C D 的中点. (1)求证:AN //平面1A MK ; (2)求证:平面11A B C ⊥平面1A MK .ABCDA 1B 1C 1D 1A1B1C1A BDC D 1A 1B 1C 1KNCBA M DNMPDCBA28.如图,PA ⊥矩形ABCD 所在的平面,,M N 分别是,AB PC 的中点, (1)求证://MN 平面PAD ; (2)求证:MN CD ⊥ (3)若4PDA π∠=,求证:MN ⊥平面PCD29.如图,已知矩形ABCD 中,AB=10,BC=6,将矩形沿对角线BD 把△ABD 折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上. (Ⅰ)求证:1BC A D ⊥;(Ⅱ)求证:平面1A BC ⊥平面1A BD .30.如图所示,在直四棱柱1111D C B A ABCD -中,BC DB =, DB AC ⊥,点M 是棱1BB 上一点.(Ⅰ)求证://11D B 面BD A 1;(5分) (Ⅱ)求证:MD AC ⊥;(5分)BA(Ⅲ)试确定点M 的位置,使得平面1DMC平面D D CC 11. (5分)。

精选最新版2019高中数学单元测试《立体几何初步》专题考核题(含标准答案)

精选最新版2019高中数学单元测试《立体几何初步》专题考核题(含标准答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行2.若3sin (0)52x x π=--<<,则tan x =_____________.二、填空题3.如图,有一圆柱形的开口容器(下表面密封),其轴截面是边长为2的正方形,P 是BC 中点,现有一只蚂蚁位于外壁A 处,内壁P 处有一米粒,则这只蚂蚁取得米粒所需经过的最短路程为 .4.把半径为3cm ,中心角为π32的扇形卷成一个圆锥形容器,这个容器的容积为:__________.5.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________(2013年高考上海卷(理))6.空间中可以确定一个平面的条件是 _.(填序号) ①两条直线; ②一点和一直线; ③一个三角形; ④三个点.7.设,,a b g 为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若,,//,//,m n m n ⊂⊂a a b b 则//a b ; ②//,,l ⊂a b a 若则//l b ; ③,,,//,l m n l m ===若ab bg ga 则 //m n ; ④若⊥⊥a gb g ,,则//a b ; 则其中所有正确命题的序号是 ▲ .8.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥D D BB A 11-的体积为 cm 3.9.设正四棱锥的侧棱长为1,则其体积的最大值为 ▲ .10.如图,在边长为a 的正方体ABCD-A 1B 1C 1D 1中,E 是棱AB 上一点,M 是棱D 1C 1上一点,则三棱锥M-DEC 的体积是 ▲11.给出下列命题:DABC1C1D 1A1BD C1A 1B 1C 1D .EBAM.(第6题图)(1)若直线a 在平面α外,则直线a 与平面α没有公共点;(2)两个平面平行的充分条件是其中一个平面内有无数条直线平行于另一个平面; (3)设a 、b 、c 是同一平面内三条不同的直线,若a ⊥b ,a ⊥c ,则b ∥c ; (4)垂直于同一平面的两个平面平行;(5)若,a b 为异面直线,则过不在,a b 上的任一点,可作一个平面与,a b 都平行. 上面命题中,真命题...的序号是 .12.己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于 . (2011年高考全国卷理科16)13.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,,AB BC PA AB BC ⊥==,则PB 与平面ABC 所成的角为_______,PC 与平面PAB 所成的角的正切值等于____________ CBAP14.在长方体1111ABCD A B C D -中,若13,4AB BC AA ===,求1A B 和1B C 所成角的余弦值。

精编2019高中数学单元测试《立体几何初步》专题考核题完整版(含答案)

精编2019高中数学单元测试《立体几何初步》专题考核题完整版(含答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若点E F G H 、、、顺次为空间四边形ABCD 四边AB BC CD DA 、、、的中点,且3,4EG FH ==,则22AC BD +等于---------------------------------------------------------------( )(A) 25 (B) 50 (C) 100 (D) 20 二、填空题2.已知正四棱锥的底面边长是6,这个正四棱锥的侧面积是 ▲ .3. 设m 、n 是异面直线,则(1)一定存在平面α,使α⊂m 且n ∥α;(2)一定存在平面α,使α⊂m 且α⊥n ;(3)一定存在平面γ,使m ,n 到γ的距离相等;(4)一定存在无数对平面α与β,使α⊂m ,β⊂n ,且α∥β;上述4个命题中正确命题的序号为 .4.已知两条直线n m ,和两个平面βα,;给出下列四个命题①αα⊥⇒⊥n m n m ,//,②n m n m //,,//⇒⊂⊂βαβα,③βαβα⊥⇒⊥n m n m ,//,//,④αα////,//n m n m ⇒,其中正确命题的序号是______▲______。

5.两条异面直线在一个平面内的射影可能是____________________6.已知两条直线n m ,和两个平面βα,;给出下列四个命题 ①αα⊥⇒⊥n m n m ,//; ②n m n m //,,//⇒⊂⊂βαβα; ③βαβα⊥⇒⊥n m n m ,//,//;④αα////,//n m n m ⇒,其中正确命题的序号是_____________;7.已知m 、n是两条不同直线,α、β是两个不同平面,有下列4个命题:① 若//,m n n α⊂,则m ∥α; ② 若,,m n m n αα⊥⊥⊄,则//n α; ③ 若,,m n αβαβ⊥⊥⊥,则m n ⊥;④ 若m n 、是异面直线,,,//m n m αββ⊂⊂,则//n α. 其中正确的命题序号是8.将一个半圆面围成圆锥的侧面,则其任意两条母线间夹角的最大值为_________.9.将圆锥的侧面展开恰为一个半径为2的半圆,则圆锥的体积是10.已知正三棱锥S —ABC 的侧棱长为2,侧面等腰三角形的顶角为300,过底面顶点A 作截面△AMN 交侧棱SB 、SC 分别于M 、N ,则△AMN11.在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两命题中,逆命题为真命题的是________(把符合要求的命题序号都填上). 解析:①的逆命题不正确,如平行四边形,②的逆命题显然是正确的,故逆命题是真命 题的是②.12.已知α,β是不重合的两个平面,则下列条件中,可推出α∥β的是_______(填序号) .①,l m 是α内的两条直线且∥β,m ∥β; ②α内有不共线的三点到β的距离相等; ③α,β都与直线成等角; ④,l m 是异面直线且∥α,m ∥α,∥β,m ∥β. 13.正方体1111ABCD A B C D -中,异面直线11A B DC 和所成角的大小为 ▲ . 14.已知n m ,是两条不重合的直线,βα,是两个不重合的平面,给出下列命题: ①若βαβ//,⊂m ,则α//m ; ②若βαβ//,//m ,则α//m ;③若n m m //,,αβα⊥⊥,则β//n ; ④若βαβα//,,⊥⊥n m ,则n m //。

精选最新2019高中数学单元测试《立体几何初步》专题完整考试题(含参考答案)

精选最新2019高中数学单元测试《立体几何初步》专题完整考试题(含参考答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设有直线m 、n 和平面α、β。

下列四个命题中,正确的是 A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α(2008湖南理)(D )2.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形, 且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、 三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h = ( ).2:22:23.的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为(2011年高考重庆卷理科9)(A )4 (B )2(C )1 (D4.线a 、b 和平面α,下面推论错误的是 A.b a ⊥⇒⎭⎬⎫⊆⊥ααb a B αα⊥⇒⎭⎬⎫⊥b b // a aCααα⊆⇒⎭⎬⎫⊥⊥a //a b b a 或 D b //a b //a ⇒⎭⎬⎫⊆αα二、填空题5.若正三棱锥的底面边长为1,则此三棱锥的体积为 .6.正方体1111ABCD A B C D -中,EF 是异面直线1,AC A D 的公垂线,则1,EF BD 的关系为7. 已知圆锥的底面半径为2cm ,高为1cm ,则圆锥的侧面积是 ▲ 2cm . 8. 用长、宽分别是12与8的矩形硬纸卷成圆柱的侧面,则圆柱的体积为 . 9.如图,在直三棱柱111ABC A B C -中,1AC BC CC ==, AC BC ⊥,点D 是AB 的中点.(1)求证:11CD A ABB ⊥平面; (2)求证:11//AC CDB 平面; (3)线段AB 上是否存在点M ,使得1A M ⊥平面1CDB ?10.四棱锥P ABCD -的底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,则二面角B DE C --的平面角为 .11.设b a ,是两条不同直线,,αβ是两个不同平面,给出下列四个命题: ①若,,a b a α⊥⊥b α⊄,则//b α; ②若//,a ααβ⊥,则a β⊥; ③若,a βαβ⊥⊥,则//a α或a α⊂; ④若,,a b a b αβ⊥⊥⊥则αβ⊥.其中正确的命题是 ▲ (请把所有正确命题的序号都填上).12.正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为________. 解析:如右图所示,正棱锥S -ABCD 中高OS =3,侧棱SA =SB =SC =SD =7,在Rt △SOA 中,OA =SA 2-OS 2=2,∴AC =4. ∴AB =BC =CD =DA =2 2.作OE ⊥AB 于E ,则E 为AB 中点.连接SE ,则SE 即为斜高,则 SO ⊥OE .在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即侧面上的斜高为 5.13.已知在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为直 角梯形,且满足AD ⊥AB ,BC ∥AD ,AD =16,AB =8, BB 1=8.E ,F 分别是线段A 1A ,BC 上的点. (1)若A 1E =5,BF =10,求证:BE ∥平面A 1FD .(2)若BD ⊥A 1F ,求三棱锥A1-AB 1F 的体积.14.如图,已知球O 点面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3,则球O 的体积等于___________.15.在长方体1111D C B A ABCD -中,经过其对角线1BD 的平面分别与棱1AA 、1CC 相交于F E ,两点,则四边形1EBFD 的形状为 .16.一个圆锥有三条母线两两垂直,则它的侧面展开图的圆心角为 .17.设,αβ为互不重合的平面,m ,n 为互不重合的直线,给出下列四个命题:①若,,m n m n αα⊥⊂⊥则;②若,,m n m αα⊂⊂∥,n β∥β,则α∥β;③若(第16题图)ABCDA 1B 1C 1D 1F E ABCD,,,,m n n m n αβαβαβ⊥=⊂⊥⊥则;④若,,//,//m m n n ααββ⊥⊥则,其中所有正确命题的序号是 .18.一个正方体表面展开图中,五个正方形位置如图阴影 所示.第六个正方形在编号1到5的位置,则所有可能位 置的编号是 .三、解答题19. (本小题16分)如图,四边形PDCE 为矩形,四边形ABCD 为梯形,平面PDCE ⊥平面ABCD , 90=∠=∠ADC BAD ,12AB AD CD a ===,PD =.(1)若M 为PA 中点,求证://AC 平面MDE ; (2)求平面PAD 与PBC 所成锐二面角的大小.20.如图,在四棱锥P ABCD -中,AB ∥DC ,2DC AB =,AP AD =,PB ⊥AC ,BD ⊥AC ,E 为PD 的中点. 求证:(1)AE ∥平面PBC ; (2)PD ⊥平面ACE .ABCEPDM21.(本小题满分14分)一个圆柱形圆木的底面半径为1m ,长为10m ,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD (如图所示,其中O 为圆心,,C D 在半圆上),设BOC q ∠=,木梁的体积为V (单位:m 3),表面积为S (单位:m 2). (1)求V 关于θ的函数表达式; (2)求q 的值,使体积V 最大;(3)问当木梁的体积V 最大时,其表面积S 是否也最大?请说明理由.22.如图,在四面体ABCD 中,CD CB =,BD AD ⊥,点E ,F 分别是AB ,BD 的中点.(1) EF ∥平面ACD ;(2)求证:平面EFC ⊥平面BCD ;(3)若平面ABD ⊥平面BCD ,且1===BC BD AD ,求三棱锥ADC B -的体积.DCBA E P (第16题θD CBAO(第1711111233BCD B ACD A BCD BCD S V V s AD ∆--∆=⨯===⨯∙==考点:1、直线和平面平行的判定定理;2、面面垂直的判定和性质定理;3、几何体的体积.23.如图,圆锥顶点为p .底面圆心为o ,其母线与底面所成的角为22.5°.AB 和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60°. (2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))(Ⅰ)证明:平面PAB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠. 24.设,,αβγ表示不同的平面,,a b 表示不同的直线,给出下列四个命题:(1)若,,αβαγ⊥⊥则β∥γ;(2)若α∥β,且β与γ无公共点,则α与γ无公共点;(3)若,,αβγ两两相交,则有三条交线;(4),,,a b αγβαβγ⊥⋂=⋂=则a b ⊥。

最新精选2019高中数学单元测试《立体几何初步》专题完整题(含参考答案)

最新精选2019高中数学单元测试《立体几何初步》专题完整题(含参考答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个(2013年高考北京卷(文))2.如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。

过A 、B 分别作两平面交线的垂线,垂足为'A 、',B 若AB=12,则''A B =( A )A'B'A B βα(A )4 (B )6 (C )8 (D )9(2006全国2文)3.将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 (A (B )(C )(D (2005全国2理)4.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )A .60倍B .6030倍C .120倍D .12030倍(2005湖北文)5.直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于A .30°B .45°C .60°D .90°(2010全国1文) 6.线n m ,和平面βα、,能得出βα⊥的一个条件是A βα//n ,//m ,n m ⊥ Bαβα⊆=⊥n ,m ,n mC αβ⊆⊥m n n m ,,//D βα⊥⊥n m n m ,,//7.空间四边形ABCD 的两条对角线AC 和BD 的长分别为6和4,它们所成的角为60,则这四边形两组对边中点的距离等于----------------------------------------------------------------------( )以上都不 二、填空题8.已知A,B,C,D 四点,其中任意三点不在一条直线上,从中取出两点作直线,共能作出 ______条直线9.设,αβ是互不重合的平面,,m n 是互不重合的直线,给出下列四个命题: ①//,,//m n n m αα⊂若则②,,//////m n m n ααββαβ⊂⊂若,,则 ③//,,//m n m n αβαβ⊂⊂若,则④若,,,,m n n m n αβαβαβ⊥⋂=⊂⊥⊥则; 其中真命题的序号为 .10. 长方体1111D C B A ABCD -中,底面ABCD 是边长为2的正方形,高为4,则顶点1A 到截面11D AB 的距离为 ▲ .11.已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 ______.(2013年高考天津卷(文))12.要做一个圆锥形漏斗,其母线长为20cm ,要使体积为最大,则其高应为____________. 13.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线.给出四个论断: ①m ⊥n ②α⊥β ③n ⊥β ④m ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题: . (1999全国18)14.如图,在透明塑料制成的长方体ABCD - A 1B 1C 1D 1容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列三个说法:①水的形状始终呈棱柱形状;②水面四边形EFGH 的面积不改变;③当E ∈AA 1时,AE + BF 是定值.其中正确说法是 .15.设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列命题:(1)若βα//,β⊂m ,α⊂n ,则n m //; (2)若βα//,β⊥m ,α//n ,则n m ⊥; (3)若βα⊥,α⊥m ,β//n ,则n m //; (4)若βα⊥,α⊥m ,β⊥n ,则n m ⊥. 上面命题中,所有真命题的序号为 .16.已知长方体的长,宽,高为5,4,3,若用一个平面将此长方体截成两个三棱柱,则这两个三棱柱表面积之和的最大为 ▲17.角α和角β的两边分别平行,则当72α=时,β=_______________18.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)。

精选2019高中数学单元测试《立体几何初步》专题完整题(含答案)

精选2019高中数学单元测试《立体几何初步》专题完整题(含答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为,m n ,那么m n +=( )A .8B .9C .10D .11(2013年高考江西卷(理))2.设三棱柱ABC-A 1B 1C 1的体积是V ,P .Q 分别是侧棱AA 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为( )A.V 61 B.V 41 C.V 31 D.V 21 (2005全国3理)3.对于平面α和共面的直线m 、,n 下列命题中真命题是 ( )C (A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n (2006福建)4.若一条直线上有一点在已知平面外,则下列命题正确的是__________;①直线上上所有点都在平面外;②直线上有无穷多个点在平面外; ③直线上有有限个点在平面外;④平面内至少有一个点在直线。

5.过空间任一点和两条异面直线都平行的平面有-----------------------------------------------( ) (A) 1个 (B) 无数个 (C)至多一个 (D)不存 二、填空题6.已知直线m 、n ,平面α、β,给出下列命题:①若,m n αβ⊥⊥,且m n ⊥,则αβ⊥ ②若//,//m n αβ,且//m n ,则//αβ ③若,//m n αβ⊥,且m n ⊥,则αβ⊥ ④若,//m n αβ⊥,且//m n ,则//αβ 其中正确的命题的个数为 _▲_.7.有一个四棱锥,底面是一个等腰梯形,并且腰长和较短的底长都是1,有一个底角是60,又侧棱与底面所成的角都是45,则这个棱锥的体积是48.角α和角β的两边分别平行,则当72α=时,β=_______________9.在长方体1111ABCD A B C D -中,若13,4AB BC AA ===,求1A B 和1B C 所成角的余弦值。

精编新版2019高中数学单元测试《立体几何初步》专题完整版考核题(含答案)

精编新版2019高中数学单元测试《立体几何初步》专题完整版考核题(含答案)

D 1 C 12019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.1.一条直线和直线外的三点所能确定的平面的个数是-------------------------------------------( )(A) 1或3个 (B) 1或4个 (C) 1个、3个或4个 (D) 1个、2个或4 二、填空题2.已知在正三棱锥P ABC -中,侧棱与底面边长相等,,,D E F 分别是,,AB BC CA 的中点,有下列四个结论:①//BC 平面PDF ;②DF ⊥平面PAE ;③平面PDF ⊥平面ABC ;④平面PAE ⊥平面ABC ,其中正确的结论有__________.3.在立体几何中,下列结论一定正确的是: ▲ (请填所有正确结论的序号) ①一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱;②用一个平面去截棱锥,得到两个几何体,一个仍然是棱锥,另一个我们称之为棱台; ③将直角三角形绕着它的一边所在的直线旋转一周,形成的几何体叫做圆锥; ④将直角梯形绕着它的垂直于底边的腰所在的直线旋转一周,形成的几何体叫做圆台. 4.如图,四棱锥P —ABCD 中, PA ⊥平面ABCD ,底面ABCD 是直角梯形, AB ⊥AD ,CD ⊥AD ,CD =2AB ,E 为PC 中点.(1)求证:平面PDC ⊥平面PAD ; (2)求证:BE //平面PAD .5.已知直线,m n 与平面,αβ,给出下列四个命题:①若//,//m n αα,则//m n ;②若//,m n αα⊥,则n m ⊥;③若n m m ⊥⊥,α,则α//n ;若,,//α⊥n n m 则α⊥m ,其中正确..命题的个数..是__________; 6.用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题,正确的有 . ①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ; ③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b .7.如图,三棱柱111ABC A B C -的所有棱长均等于1,且1160A AB A AC ∠=∠=,则该三棱柱的体积是 ▲ .(江苏省徐州市2011届高三第一次调研考试)A B CDEP8.如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O,剪去AOB ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A 、(B )、C 、D 、O为顶点的四面体的体积为39.下列四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出//AB MNP 平面的图形的序号是.10.边长为2的正方形ABCD 中,E 是AB 的中点,现将,AED BEC 沿,EC ED 折起,使,EA EB 重合,组成一个四面体,则此四面体的体积是____________三、解答题11.如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA == ABCA 1B 1C 1(第11题)1A(Ⅰ) 证明: A1BD // 平面CD1B1;(Ⅱ) 求三棱柱ABD-A1B1D1的体积. (2013年高考陕西卷(文))12.如图,在四棱锥P ABCD-中,侧面PAD⊥底面ABCD,侧棱PA PD⊥,底面ABCD 是直角梯形,其中//BC AD,090BAD∠=,3AD BC=,O是AD上一点.(Ⅰ)若//CD PBO平面,试指出点O的位置;(Ⅱ)求证:PAB PCD⊥平面平面.13.在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为CC1的中点.求证:(1)AC1∥平面BDE;(2)A1E⊥平面BDE.14.如图,P ,Q ,R 分别是三棱椎A —BCD 的棱AC ,BC ,BD 的中点,过三点P ,Q ,R 的平面交AD 于S . 求证:四边形PQRS 是平行四边形.15.如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB ‖CD,AD =CD =24B,E 、F 分别为PC 、CD 的中点.(Ⅰ)试证:CD ⊥平面BEF;(Ⅱ)设PA =k ·AB ,且二面角E -BD -C 的平面角大于︒30,求k 的取值范围.21. 解法一:(Ⅰ)证:由已知DF∥AB 且∠DAD 为直角,故ABFD 是矩形,从而CD ⊥BF . 又PA ⊥底面ABCD,CD ⊥AD ,故由三垂线定理知CD ⊥PD .在△PDC 中,E 、F 分别PC 、CD 的中点,故EF ∥PD ,从而CD ⊥EF ,由此得CD ⊥面BEF . 第(41)图1 (Ⅱ)连结AC 交BF 于G .易知G 为AC 的中点.连接EG ,则在△PAC 中易知EC ∥PA .又因 PA ⊥底面ABCD ,故BC ⊥底面ABCD .在底面ABCD 中,过C 作GH ⊥BD ,垂足为H ,连接EH .由三垂线定理知EH ⊥BD .从而∠EHG 为二面角E -BD -C 的平面角. 设AB=a ,则在△PAC 中,有BG =21PA =21ka . 以下计算GH ,考察底面的平面图(如图).连结GD .因S △CBD =21BD ·GH=21GB ·OF. 故GH =BDDF GB ∙.在△ABD中,因为AB =a ,AD =2A ,得BD =5a第(41)图2 而GB =21FB =21AD -a .DF-AB ,从而得 GH =BD DF GB ∙= aaa 5∙=.55a因此tan EHG=GH EG =.255521k a ka=由k >0知EHG ∠是锐角,故要使EHG ∠>︒30,必须k 25>tan ︒30=,33 解之得,k 的取值范围为k >.15152 解法二:(Ⅰ)如图,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为:轴建立空间直角坐标系,设AB=a ,则易知点A,B,C,D,F 的坐标分别为 A (0,0,0),B (a ,0,0),C (2a ,2a ,0),D (0,2a ,0), F (a ,2a ,0).从而=(2a ,0,0), =(0,2a ,0),·=0,故⊥ .设PA=b,则P(0,0,b),而E 为PC 中点.故 E ⎪⎭⎫ ⎝⎛2,,b a a .从而=⎪⎭⎫ ⎝⎛2,,0b a . DC ·BE =0,故DC ⊥BE .由此得CD ⊥面BEF .(Ⅱ)设E 在xOy 平面上的投影为G ,过G 作GH ⊥BD 垂足为H,由三垂线定理知EH ⊥BD. 从而∠EHG 为二面角E-BD-C 的平面角. 由PA =k ·AB 得P(0,0,k a ),E ⎪⎭⎫⎝⎛2,,ka a a ,G(a ,a ,0). 设H(x,y,0),则GH =(x-a ,y-a ,0), =(-a ,2a ,0), 由GH ·BD =0得=a (x-a)+2a (y-a )=0,即 x -2y =-a ①又因=(x,a,y,0),且与的方向相同,故a a x -=ay2,即 2x+y=2a ②由①②解得x =53a ,y=54a ,从而GH =⎪⎭⎫⎝⎛--0,51,52a a ,|GH |=55a .tan EHG=a Ka552=k 25. 由k >0知,EHC 是锐角,由∠EHC >,30︒得tanEHG >tan ,30︒即k 25>.33 故k 的取值范围为k >15152.16.如图,点P 为菱形ABCD 外一点,面PDC 是边长为2的正三角形,且与面ABCD 垂直,∠ADC=60,M 为PB 的中点,求证: (1)PA ⊥CD;(2)平面CDM ⊥平面PAB.MPDCBA17.斜四棱柱1111ABCD A B C D -的底面1111A B C D 为正方形,平面11A D DA ⊥平面1111A B C D ,11AA D ∆为等边三角形。

新版精编2019高中数学单元测试《立体几何初步》专题测试题(含答案)

新版精编2019高中数学单元测试《立体几何初步》专题测试题(含答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是 A .16π B .20π C .24π D .32π(2006全国1理)2.在正方体1111ABCD A B C D -中,,E F 分别为棱11,AA CC 的中点,则在空间中与三条直线11,,A D EF CD 都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条(2008辽宁理) 3.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是(A)BC∥平面PDF (B)DF ⊥平面PAE(C)平面PDF ⊥平面ABC (D)平面PAE ⊥平面ABC(2005北京理)4.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A. 直线B. 椭圆C. 抛物线D. 双曲线(2010重庆理数)(10)5.到两互相垂直的异面的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 (A ) 直线 (B ) 椭圆 (C ) 抛物线 (D ) 双曲线(2010重庆理)6.过两异面直线外一定点,作直线与两条异面直线分别成60角,这样的直线最多能作( )(A) 4条 (B) 3条 (C) 2条 (D)无数7.如图1,已知正方体1111ABCD A B C D -中,E F 、分别是1AB AA 、的中点,则平面1CEB 与平面11D FB 所成二面角的平面角的正弦值为( )EF D 1C 1B 1A 1ACBDA .12BCD .1二、填空题8.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为 ▲ . 9.在棱长为4的正方体1111ABCD A B C D -中,,E F 分别为棱111,AA D C 上的动点,点G 为正方形11B BCC 的中心,则空间四边形AEFG 在该正方体各个面上的正投影所构成的图形中,面积的最大值为______________10.正方体1111ABCD A B C D -中选出两条棱和两条面对角线,使这四条线段所在的直线两两都是异面直线,若我们选定一条面对角线1AB ,那么另外三条线段可以是__________(只需写出一种情况即可)11. 已知三条不重合的直线两个不重合的平面,有下列命题:①若||,m n n α⊂,则||m α;②若,l m αβ⊥⊥,且||l m ,则||αβ;③若,,||,||m n m n ααββ⊂⊂则||αβ;④若,,,m n n m αβαββ⊥=⊂⊥,则n α⊥。

精选新版2019高中数学单元测试《立体几何初步》专题完整版考核题(含答案)

精选新版2019高中数学单元测试《立体几何初步》专题完整版考核题(含答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A B .C .132D . (2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))2.设四面体的六条棱的长分别为a ,且长为a ,则a 的取值范围是( )A .B .C .D .(2012重庆理)3.棱长为2的正四面体的四个顶点都在同一个球面上, 若过该球球心的一个截面如图1,则图中三角形(正四面体的截面)的面积是 图1A . 22B .23 C .2 D .3 (2006湖南理)4.设P 是60的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为:( )A (2004重庆理)5.正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为 ( ) A.89 3 B .4 3 C.29 3 D .43或833解析:分侧面矩形长、宽分别为6和4或4和6两种情况6.空间两直线平行是指它们--------------------------------------------------( )(A)无交点 (B)共面且无交点 (C)和同一直线垂直 (D)以上都不对 二、填空题7.如图,已知四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是矩形,AB =4,AA 1=3, ∠BAA 1=60︒,E 为棱C 1D 1的中点,则→AB ⋅→AE = ▲ .8.三棱锥O ABC -的侧棱,,OA OB OC 两两垂直且长度分别为2cm ,3cm ,1cm ,则该三棱锥的体积是 ▲ cm 3.9. 已知直线⊥a 平面α,直线//b 平面α,则直线b a ,的位置关系是______________; 10.若一条直线上有一点在已知平面外,则下列命题正确的是( ) (A)直线上所有点都在平面外 (B)直线上有无穷多个点在平面外 (C)直线上有有限个点在平面外 (D)平面内至少有一个点在直线 11.如图,在正方体ABCD -A 1B 1C 1D 1中,M 是DD 1的中点, 则下列结论正确的是 ▲ (填序号) ①线段A 1M 与B 1C 所在直线为异面直线; ②对角线BD 1⊥平面AB 1C ; ③平面AMC ⊥平面AB 1C ; ④直线A 1M//平面AB 1C.12.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||; ③若βα||,α⊂l ,则β||l ;④若l =βα ,m =γβ ,n =αγ ,γ||l ,则m ||其中真命题的个数是 ( )A .1B .2C .3D .4(2005江苏)13.设,αβ为互不重合的平面,,m n 为互不重合的直线,给出下列四个命题: ①若,,m n m n αα⊥⊂⊥则;CA BDA 1B 1C 1D 1E(第8题A1②若,,m n m αα⊂⊂∥,n β∥β,则α∥β; ③若,,,,m n n m n αβαβαβ⊥⋂=⊂⊥⊥则; ④若,,//,//m m n n ααββ⊥⊥则. 其中正确命题的序号为14.已知三棱锥S -ABC 中,SA =SB =SC =AB =AC =2,则三棱锥S -ABC 体积的最大值为 .15.在长方体1111ABCD A B C D -中,若13,4AB BC AA ===,求1A B 和1B C 所成角的余弦值。

最新版精编2019高中数学单元测试《立体几何初步》专题考核题(含答案)

最新版精编2019高中数学单元测试《立体几何初步》专题考核题(含答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若空间三条直线a 、b 、c 满足,//a b b c ⊥,则直线a c 与 ( ) A .一定平行 B .一定相交C .一定是异面直线D .一定垂直二、填空题2.(文科做)已知一个圆锥的母线长为3,则它的体积 的最大值为 ▲ .3.正方体1111ABCD A B C D -中,EF 是异面直线1,AC A D 的公垂线,则1,EF BD 的关系为4.已知a 、b 是不同的直线,α、β、γ是不同的平面,给出下列命题: ①若α∥β,a ⊂α,则a ∥β ; ②若a 、b 与α所成角相等,则a ∥b ; ③若α⊥β、β⊥γ,则α∥γ; ④若a ⊥α, a ⊥β,则α∥β 其中正确的命题的序号是 .5.如图:E ,H 分别是空间四边形ABCD 的边AB ,AD 的中点,平面α过EH 分别交BC ,CD 于F ,G求证:EH ∥FG6.两个平面最多可以将空间分成 部分.7.线段AB 在平面α内,则直线AB 与平面α的位置关系是_________.8.已知长方体从同一顶点出发的三条棱的长分别为1、2、3,则这个长方体的外接球的表面积为 .9. 已知三棱台111ABC A B C -中,三棱锥111B A B C -、1A ABC -的体积分别为2、18,则此三棱台的体积的值等于______________.10.设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: (1)若βα//,β⊂m ,α⊂n ,则n m //; (2)若βα//,β⊥m ,α//n ,则n m ⊥; (3)若βα⊥,α⊥m ,β//n ,则n m //; (4)若βα⊥,α⊥m ,β⊥n ,则n m ⊥. 上面命题中,所有真命题的序号为 . 11.如图,将正方形ABCD 沿对角线BD 折起,使平面ABD ⊥平面CBD ,E 是CD 的中点,那么异面直线AE、BC 所成的角的正切值为 。

高中数学人教a版(2019)必修第二册《 立体几何初步》测试卷

高中数学人教a版(2019)必修第二册《 立体几何初步》测试卷

人教A 版(2019)必修第二册《第八章 立体几何初步》2022年最热同步卷一.选择题(共15小题)1.如图,在四面体A B C D ,2A BC D ==,2A CB D ==,B CA D ==E ,F 分别是A D ,B C中点.若用一个与直线E F 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A B 2C .3D .322.下列说法正确的是( )A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台3.已知直角三角形的两直角边分别为1则该几何体的体积为( )A .4πB .3πC .2πD .π4.如图,某粮仓(粮仓的底部位于地面上)是由圆柱和圆锥构成的,若圆柱的高是圆锥高的2倍,且圆锥的母线长是4,侧面积是4π,则制作这样一个粮仓的用料面积为()A .(4)π+ B .(4)π+ C .(4)πD .(4)π+5.如图,一个水平放置的平面图形的直观图是一个底角为45︒的等腰梯形,已知直观图O A B C '''的面积为4,则该平面图形的面积为()A B .C .D .6.如图所示是水平放置的三角形的直观图,点D 是B C 的中点,且2A BB C ==,A B ,B C分别与y '轴、x '轴平行,则A C D ∆在原图中的对应三角形的面积为()A .2B .1C .2D .87.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中2B C A B ==,则原平面图形的面积为()A 2B .C .1D .8.用斜二测画法画水平放置的边长为2的正方形所得的直观图的面积是( )A 2B C .D .9.已知正四棱锥PA B C D-的高为,且2A B=,则正四棱锥P A B C D-的侧面积为()A .B .4C .D .10.已知圆锥的母线长为5,高为4,则这个圆锥的表面积为( )A .21πB .24πC .33πD .39π11.已知一个球的半径为3.则该球内接正六棱锥的体积的最大值为( )A .1B 2C .1D 212.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为()A .38092mB .34046mC .324276mD .312138m13.蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A,B ,C ,D ,满足5A B C D ==,6B D AC ==,7A DB C ==,则该鞠的表面积为( )A .55πB .60πC .63πD .68π14.已知四棱锥SA B C D-的所有顶点都在半径为(R R 为常数)的一个球面上,底面A B C D是正方形且球心O 到平面A B C D 的距离为1,若此四棱锥体积的最大值为6,则球O 的体积等于( )A .323πB .8πC .16πD .163π15.如图:正三棱锥A B C D-中,30B A D ∠=︒,侧棱2A B=,B D 平行于过点C 的截面11C BD ,则截面11C B D 与正三棱锥AB C D-侧面交线的周长的最小值为()A .2B .C .4D .二.填空题(共10小题)16.若把圆心角为120︒,半径为6的扇形卷成圆锥,则该圆锥的底面半径是 ,侧面积是 .17.如图为A B O ∆水平放置的直观图,其中2O D B D A D ''=''='',且//B D y''轴由图判断原三角形中A B ,O B ,B D ,O D 由小到大的顺序是 .18.某水平放置的平面图形的斜二测直观图是等腰梯形,它是底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的周长为 .19.已知正四面体SA B C-的棱长为16转动,则该长方体的长和宽形成的长方形的面积的最大值为 . 20.如图,在四棱锥PA B C D-中,P A⊥平面A B C D ,底面A B C D 是直角梯形,//A BC D,A B A D⊥,2C DA DB ===,3P A =,若动点Q 在P A D∆内及边上运动,使得C QD B Q A∠=∠,则三棱锥QA B C-的体积最大值为 .21.如图,在三棱锥P A B C-中,P A⊥平面A B C ,A CB C⊥,2A B=,A P=,则三棱锥PA B C-的外接球的体积为 .22.如图,圆锥的底面直径2A B=,母线长3V A=,点C 在母线V B 上,且1V C=,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是 .23.在棱长为4的正方体1111A B C DA B C D -中,E ,F 分别是B C 和11C D 的中点,经过点A ,E,F 的平面把正方体1111A B C DA B C D -截成两部分,则截面与11B C C B 的交线段长为 . 24.棱长为2的正方体1111A B C DA B C D -中,异面直线1B D 与C D 所成的角的正切值是 ,点D 到平面1A C D 的距离为 . 25.在三棱锥PA B C-中,P A⊥平面A B C ,45P B A∠=︒,60P B C∠=︒,则A B C ∠为 .三.解答题(共5小题)26.如图所示,在边长为6的正三角形A B C 中,E ,F 依次是A B ,A C 的中点,A DB C⊥,E H B C⊥,F GB C⊥,D ,H ,G 为垂足,若将A B D ∆绕A D 旋转一周,求阴影部分形成的几何体的表面积.27.如图,已知P A⊥平面A B C D ,A B C D 为矩形,M 、N 分别为A B 、P C 的中点,P A A D=,2A B =,A D=.(1)求证:平面M P C ⊥平面P C D ; (2)求三棱锥BM N C-的高.28.已知长方体1111A B C D A B C D -,1A A =,22A BB C ==,E 为棱A B 的中点,F 为线段1D C 的中点.(1)求异面直线E F 与1A D 所成角的余弦值; (2)求直线1A D 与平面D E F 所成角的正弦值.29.已知A B C ∆,直线mA C⊥,mB C⊥,求证:mA B⊥.30.如图所示,正方形A B C D 与直角梯形A D E F 所在平面互相垂直,90A D E ∠=︒,//A F D E,22D E D A A F ===.(1)求证:A C ⊥平面B D E ; (2)求证://A C平面B E F ;(3)若A C 与B D 相交于点O ,求四面体B O E F 的体积.人教A 版(2019)必修第二册《第八章 立体几何初步》2022年最热同步卷参考答案与试题解析一.选择题(共15小题)1.如图,在四面体A B C D ,2A BC D ==,2A CB D ==,B CA D ==E ,F 分别是A D ,B C中点.若用一个与直线E F 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )AB 2C .3D .32【分析】证明E FB C⊥,E FA D⊥,得出截面四边形与A D ,B C 都平行,从而截面为矩形,设Q 为截面与A C 的交点,A Q A Cλ=,用λ表示出截面的面积,根据二次函数性质求出最大值.【解答】解:连接A F ,D F ,2A B A C B D C D ====,F 是B C 的中点,B C A F∴⊥,B CD F⊥,又A FD F F=,B C ∴⊥平面A D F ,又E F⊂平面A D F ,A D ⊂平面A D F ,B C E F∴⊥,B CA D⊥,又B CA D ==2A F D F ∴==,F是A D 的中点,E F A D∴⊥,E F ⊥平面α,//B C α∴,//A D α,设α与棱锥的截面多边形为M N P Q , 则////B C P Q M N ,////A DM Q P N,又B CA D⊥,故P QM Q⊥,∴截面四边形M N P Q 是矩形,设(01)A Q A Cλλ=<<,则P Q B Cλ=,1M Q C Q A DA Cλ==-,P Q ∴=,)Q Mλ=-,∴截面矩形M N P Q 的面积为2136(1)6()22λλλ-=--+,∴当12λ=时,截面面积取得最大值32.故选:D .【点评】本题考查了平面的性质,考查线面平行与垂直的性质,属于中档题. 2.下列说法正确的是()A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台 【分析】举反例判断A ,B ,D 错误,根据棱锥侧棱交于一点判断C .【解答】解:对于A ,棱台的上下底面互相平行,侧面都是四边形,但棱台不是棱柱,故A 错误;对于B ,当旋转轴为直角边时,所得几何体为圆锥,当旋转轴为斜边时,所得几何体为两个圆锥的组合体,故B 错误;对于C ,由于棱锥的所有侧棱都交于一点,故棱锥的侧面都是三角形,故C 正确; 对于D ,当平面与棱锥的底面不平行时,截面与棱锥底面间的几何体不是棱台,故D 错误. 故选:C .【点评】本题考查了空间几何体的结构特征,属于基础题.3.已知直角三角形的两直角边分别为1则该几何体的体积为()A .4πB .3πC .2πD .π【分析】几何体的体积是由上下两个圆锥的体积组成的,它们的底面半径相同,都是直角三角形斜边上的高,利用圆锥体积公式,即可求得结论.【解答】解:如图,1A C =,BC =2A B=,斜边的高为:122⨯÷=,以A C 为母线的圆锥体积213()32A Oπ=, 以B C 为母线的圆锥体积213()32B Oπ=,∴绕斜边旋转一周形成的几何体的体积等于213()322A B ππ=.故选:C .【点评】本小题主要考查圆锥的体积公式以及几何旋转体的知识等基础知识,考查运算求解能力,考查空间想象力,得到这个立体图形是由两个圆锥组成,以及圆锥体积公式求出是解决问题的关键.4.如图,某粮仓(粮仓的底部位于地面上)是由圆柱和圆锥构成的,若圆柱的高是圆锥高的2倍,且圆锥的母线长是4,侧面积是4π,则制作这样一个粮仓的用料面积为()A .(4)π+ B .(4)π+ C .(4)πD .(4)π+【分析】设圆锥的母线为l ,底面半径为r ,高为h ;根据题意列方程求出r 的值,再计算圆柱和圆锥的侧面积之和.【解答】解:设圆锥的母线为l ,底面半径为r ,高为h ;所以4r lππ=,解得1r =,h ==又圆柱的侧面积为22r hπ⋅=,所以制作这样一个粮仓的用料面积为(4)π+.故选:D .【点评】本题考查了圆柱与圆锥的侧面积计算问题,也考查了空间想象能力,是基础题. 5.如图,一个水平放置的平面图形的直观图是一个底角为45︒的等腰梯形,已知直观图O A B C '''的面积为4,则该平面图形的面积为()A B .C .D .【分析】结合S =原图直观图,可得答案.【解答】解:由已知直观图O A B C '''的面积为4,∴原来图形的面积4S=⨯=,故选:C .【点评】本题考查的知识点是斜二测画法,熟练掌握水平放置的图象S =原图观图,是解答的关键.6.如图所示是水平放置的三角形的直观图,点D 是B C 的中点,且2A BB C ==,A B ,B C分别与y '轴、x '轴平行,则A C D ∆在原图中的对应三角形的面积为()A 2B .1C .2D .8【分析】求出直观图面积后,根据S S =原图直观图可得答案.【解答】解:三角形的直观图中点D 是B C 的中点,且2A B B C ==,A B ,B C 分别与y '轴、x '轴平行,122452A B C S s in ∴=⨯⨯⨯︒=直观图,又4S S ===原图直观图,A C D∴∆在原图中的对应三角形的面积为:122S =原图.故选:C .【点评】本题考查的知识点是平面图形的直观图,其中熟练掌握原图面积与直观图面积关系公式S S =原图直观图是解答本题的关键.7.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中2B C A B ==,则原平面图形的面积为()A 2B .C .1D .【分析】先确定直观图中的线段长,再确定平面图形中的线段长,从而求得平面图形的面积. 【解答】解:直观图中,45A D C∠=︒,2A BB C ==,D CB C⊥,A D ∴=4D C=,∴原来的平面图形上底长为2,下底为4,高为∴该平面图形的面积为1(24)12+⨯=.故选:C .【点评】本题考查了斜二测画法直观图与平面图形的面积计算问题,是基础题. 8.用斜二测画法画水平放置的边长为2的正方形所得的直观图的面积是( )A 2B C .D .【分析】根据斜二测画法所得的直观图是平面图形,原面积与直观图的面积比为1,由此求出直观图的面积.【解答】解:水平放置的正方形的面积与斜二测画法所得的直观图是一个四边形,两者面积之比为1,由边长为2的正方形的面积为4,所以这个四边形的直观图面积为4÷=.故选:B .【点评】本题考查了斜二测画法中水平放置的平面图形与原图形面积比问题,是基础题.9.已知正四棱锥PA B C D-的高为,且2A B=,则正四棱锥PA B C D-的侧面积为()A .B .4C .D .【分析】利用勾股定理计算侧面三角形的高,再计算侧面积.【解答】解:设P 在底面A B C D 上的射影为O ,则O 为底面正方形A B C D 的中心, 取C D 的中点E ,连接O E ,则112O EA B ==,P E ∴==,P C P D=,P E C D∴⊥,∴正四棱锥PA B C D-的侧面积为14422P C DS ∆=⨯⨯⨯=,故选:D .【点评】本题考查棱锥的结构特征与侧面积计算,属于基础题. 10.已知圆锥的母线长为5,高为4,则这个圆锥的表面积为( )A .21πB .24πC .33πD .39π【分析】首先根据勾股定理求得底面半径,则可以得到底面周长,然后利用扇形的面积公式即可求解.【解答】解:圆锥的母线长为5,高为4,底面半径是:3,则底面周长是6π, 则圆锥的侧面积是:165152ππ⨯⨯=,底面积为9π,则表面积为15924πππ+=.故选:B .【点评】考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 11.已知一个球的半径为3.则该球内接正六棱锥的体积的最大值为( )A .1B 2C .1D 2【分析】过P 作P M ⊥底面A B C D E F ,取O 为球心,设A B a=,P Mh=,求解直角三角形可得226a h h=-,求出正六棱锥的底面积,代入棱锥体积公式,再由基本不等式求最值.【解答】解:如图,过P 作P M⊥底面A B C D E F ,取O 为球心,设A Ba=,P Mh=,在R t D O M ∆中,222(3)3ha-+=,226a h h∴=-,(06)h <<,∴正六棱锥的体积为2116322Vh=⨯⨯⨯23122(6)(122)()12443h h hh h h h ++-=-=⋅-=…当且仅当122hh=-,即4h=时上式等号成立.故该球名为如果获得六棱锥的体积的最大值为1.故选:C .【点评】本题考查球内接多面体体积最值的求法,考查空间中线线、线面、面面间的位置关系、训练利用基本不等式求最值等基础知识,是中档题.12.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为()A .38092mB .34046mC .324276mD .312138m【分析】由题意可得正四棱锥的底面边长与高,代入棱锥体积公式求解. 【解答】解:如图, 四棱锥P A B C D-,P O⊥底面A B C D ,21P Om=,34A Bm=,则3134342180923P A B C DV m-=⨯⨯⨯=,故选:A .【点评】本题考查棱锥体积的求法,是基础的计算题.13.蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A,B ,C ,D ,满足5A B C D ==,6B D AC ==,7A DB C ==,则该鞠的表面积为( )A .55πB .60πC .63πD .68π【分析】扩展几何体为长方体,求解外接球的半径,然后求解该“鞠”的表面积. 【解答】解:因为A BC D=,B DA C=,A DB C=,所以可以把A ,B ,C ,D 四点放到长方体的四个顶点上,则该长方体的体对角线就是“鞠”的直径.设该长方体的长、宽、高分别为x ,y ,z , “鞠”的半径为R ,则2222(2)R x y z=++. 因为2225x y+=,2236x z+=,2249y z+=,所以21105584R ==,所以2455SR ππ==.故选:A .【点评】本题考查空间几何体的外接球的表面积的求法,考查转化思想以及计算能力. 14.已知四棱锥SA B C D-的所有顶点都在半径为(R R 为常数)的一个球面上,底面A B C D是正方形且球心O 到平面A B C D 的距离为1,若此四棱锥体积的最大值为6,则球O 的体积等于( )A .323πB .8πC .16πD .163π【分析】当此四棱锥体积取得最大值时,四棱锥为正四棱锥,根据该四棱锥的最大体积为6,确定球的半径为R ,从而可求球的体积.【解答】解:如图,可得A C =2A BA C ==,此四棱锥的体积最大值212(1)(1)(1)633A B C D V S R RR =+=-+= 整理可得:3219R RR +--=,即可得2(2)(35)0RRR -++=.解得2R=.则球O 的体积等于343233Rππ=,故选:A .【点评】本题考查球内接多面体,球的表面积,解题的关键是确定球的半径,再利用公式求解.15.如图:正三棱锥AB C D-中,30B A D ∠=︒,侧棱2A B=,B D 平行于过点C 的截面11C BD ,则截面11C B D 与正三棱锥AB C D-侧面交线的周长的最小值为()A .2B .C .4D .【分析】首先,展开三棱锥,然后,两点间的连接线C C '即是截面周长的最小值,然后,求解其距离即可.【解答】解:把正三棱锥AB C D-的侧面展开,两点间的连接线C C '即是截面周长的最小值. 正三棱锥AB C D-中,30B A D∠=︒,所以A CA C ⊥',2A B=,C C ∴'=∴截面周长最小值是C C '=.故选:D .【点评】本题重点考查了空间中的距离最值问题,属于中档题.注意等价转化思想的灵活运用.二.填空题(共10小题)16.若把圆心角为120︒,半径为6的扇形卷成圆锥,则该圆锥的底面半径是 2 ,侧面积是 .【分析】根据圆锥底面的周长等于扇形的弧长,列方程求出圆锥的底面半径. 利用扇形的面积求出圆锥的侧面积. 【解答】解:设圆锥底面的半径为r ,则120226360r ππ=⨯⨯,解得2r=,所以该圆锥的底面半径是2. 圆锥的侧面积是2120612360S ππ=⋅⋅=圆锥侧.故答案为:2,12π.【点评】本题考查了圆锥的侧面展开图是扇形的应用问题,是基础题. 17.如图为A B O ∆水平放置的直观图,其中2O D B D A D ''=''='',且//B D y''轴由图判断原三角形中A B ,O B ,B D ,O D 由小到大的顺序是O D B D A B B O<<< .【分析】利用直观图,求出原图对应的边长,写出结果即可. 【解答】解:设22A D ''=,则直观图的平面图形为:A B =B O=4B D=,2O D=.原三角形中A B ,B O ,B D ,O D 由小到大的顺序O D B D A B B O<<<.故答案为:O DB D A B B O<<<.【点评】本题考查斜二测平面图形的直观图的画法,以及数据关系,基本知识的考查. 18.某水平放置的平面图形的斜二测直观图是等腰梯形,它是底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的周长为4+【分析】根据题意画出图形,结合图形得出原来的平面图形的上底与下底、高和腰长,即可求出它的周长. 【解答】解:根据题意画出图形,如图所示;原来的平面图形是直角梯形,上底是1,下底是1+2=,所以它的周长是1214+++=++.故答案为:4+【点评】本题考查了平面图形的直观图的画法与应用问题,是基础题19.已知正四面体SA B C-的棱长为1,如果一个高为6的长方体能在该正四面体内任意转动,则该长方体的长和宽形成的长方形的面积的最大值为 124.【分析】计算棱锥内切球的半径,令长方体体对角线长小于或等于内切球的直径,根据基本不等式求出长方体底面积的最大值.【解答】解:设S 在平面A B C 上的射影为O ,则O 为A B C ∆的中心,延长A O 交B C 于D ,则D 为B C 的中点,正四面体棱长为1,2A D ∴=,233A OA D ==,3S O ∴==,∴正四面体的体积为11113322312S A B C A B C V S S O -∆==⨯⨯⨯=,表面积为144122A B C S S ∆==⨯⨯⨯=表,设正四面体SA B C-的内切球半径为R ,则1312R ⨯=,解得12R=设长方体的长和宽分别为x ,y ,=626R =,22112xy ∴+…,221224xy x y +∴剟,当且仅当12xy ==时取等号.故答案为:124【点评】本题考查棱锥与球的位置关系,考查基本不等式的应用,属于中档题. 20.如图,在四棱锥PA B C D-中,P A⊥平面A B C D ,底面A B C D 是直角梯形,//A BC D,A B A D⊥,2C DA DB ===,3P A =,若动点Q 在P A D∆内及边上运动,使得C QD B Q A∠=∠,则三棱锥QA B C-的体积最大值为 3 .【分析】证明A BQ A⊥,C DQ D⊥,由C Q DB Q A∠=∠,结合C DB=,可得Q DA=,由平面解析几何知识求得Q 到A D 建立的最大值,再由棱锥体积公式求解. 【解答】解:底面A B C D 是直角梯形,//A B C D,A BA D⊥,C DA B∴⊥,又P A ⊥平面A B C D ,P A ⊂平面P A D ,∴平面P A D ⊥平面A B C D ,则A B⊥平面P A D ,C D⊥平面P A D , 连接Q A ,Q D ,则A B Q A⊥,C DQ D⊥,由C Q DB Q A∠=∠,得tan tan C Q DB Q A∠=∠,则A B C D Q AQ D=,2C D B=,Q D A=,2A D =,在平面P A D 内,以D A 所在直线为x 轴,D A 的垂直平分线为y 轴建立平面直角坐标系,则(1,0)D -,(1,0)A ,设(,)Q x y ,由Q DA=,得222Q D Q A=,即2222(1)2(1)2xyx y++=-+,整理得:22610x y x +-+=,取1x =,可得2y=,得Q 在P A D ∆内距离A D 的最大值为2,此时Q 在P A 上,11222A B C S A B A D ∆=⨯⨯=⨯⨯=,∴三棱锥QA B C -的体积最大值为1233V =⨯=.3【点评】本题考查多面体体积最值的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.21.如图,在三棱锥P A B C-中,P A⊥平面A B C ,A CB C⊥,2A B=,A P=,则三棱锥PA B C-的外接球的体积为 92π .【分析】以A C ,B C ,P A 为长宽高构建长方体,则长方体的外接球就是三棱锥P A B C-的外接球,由此能求出三棱锥PA B C-的外接球的体积.【解答】解:在三棱锥PA B C-中,P A⊥平面A B C ,A CB C⊥,∴以A C ,B C ,P A 为长宽高构建长方体,则长方体的外接球就是三棱锥PA B C-的外接球,∴三棱锥P A B C-的外接球的半径1322R=⋅=,∴三棱锥PA B C-的外接球的体积为:334439()3322S Rπππ==⨯=.故答案为:92π.【点评】本题考查三棱锥的外接球的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是基础题. 22.如图,圆锥的底面直径2A B=,母线长3V A=,点C 在母线V B 上,且1V C=,有一只蚂蚁沿圆锥的侧面从点A 到达点C【分析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:由题意知,底面圆的直径为2,故底面周长等于2π, 设圆锥的侧面展开后的扇形圆心角为α, 根据底面周长等于展开后扇形的弧长得,23πα=,解得:23πα=, 23A V A π∴∠'=,则13π∠=,过C 作C FV A⊥,C为V B 的三等分点,3B V =,1V C ∴=, 160∠=︒,30V C F ∴∠=︒,12F V ∴=,22234C FC V V F∴=-=,3A V =,12F V =,52A F ∴=,在R t A F C ∆中,利用勾股定理得:2227A C A FF C=+=,则A C=【点评】考查了平面展开-最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决. 23.在棱长为4的正方体1111A B C DA B C D -中,E ,F 分别是B C 和11C D 的中点,经过点A ,E,F 的平面把正方体1111A B C D A B C D -截成两部分,则截面与11B C C B 的交线段长为103.【分析】首先利用平行线的相交的应用和成比例问题的应用,求出C P 的长,进一步利用勾股定理的应用求出结果. 【解答】解:如图所示:过点F 作//F H A E交11A D 于H ,易知11D H=,所以点H 为11A D 的四等分点, 所以11114D H A D =过点E 作//E PA H交1C C 于点P ,则△1A A H P C E ∆∽, 所以11A A C P A HC E=,解得83C P=.所以截面与11B C C B的交线段长为103P E ==.故答案为:103.【点评】本题考查的知识要点:截面的交线,平行线成比例,主要考查学生的运算能力和转换能力及思维能力,属于基础题, 24.棱长为2的正方体1111A B C DA B C D -中,异面直线1B D 与C D点D 到平面1A C D 的距离为 .【分析】以D 为原点,D A 为x 轴,D C 为y 轴,1D D 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1B D 与C D 所成的角的正切值和点D 到平面1A C D 的距离.【解答】解:以D 为原点,D A 为x 轴,D C 为y 轴,1D D 为z 轴,建立空间直角坐标系, 则(2B ,2,0),1(0D ,0,2),(0C ,2,0),(0D ,0,0),1(2B D =-,2-,2),(0C D=,2-,0),设异面直线1B D 与C D 所成角为θ, 则11||c o s ||||1243B D CD B D C D θ===,sin θ∴==,s in ta n c o s θθθ==∴异面直线1B D 与C D(2A ,0,0),(2A C=-,2,0),1(2A D =-,0,2),(2A D=-,0,0),设平面1A C D 的法向量(n x=,y ,)z ,则1220220n A C x y n A D x z ⎧=-+=⎪⎨=-+=⎪⎩,取1x=,得(1n =,1,1),∴点D 到平面1A C D的距离为||2||33n A D dn ===.3【点评】本题考查异面直线所成角的正切值、点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 25.在三棱锥P A B C-中,P A ⊥平面A B C ,45P B A ∠=︒,60P B C ∠=︒,则A B C ∠为4π.【分析】作P M B C⊥于点M ,连接A M ,设A Bx=,由已知可求P A x=,利用勾股定理可求P B =,利用三角函数的定义可求2B M =,由已知利用线面垂直的判定和性质可得B M A M⊥,进而可求c o s 2B M A B CA B∠==,结合A B C ∠为三角形内角,可求A B C∠的值.【解答】解:如图,作P M B C⊥于点M ,连接A M ,设A B x=,因为在三棱锥P A B C-中,P A⊥平面A B C ,45P B A∠=︒,60P B C ∠=︒,所以P Ax=,P B==,因为60P B C ∠=︒,P MB C⊥,所以12c o s 22B M P B P B C x=∠==,因为P A ⊥平面A B C ,B M⊂平面A B C ,所以B M A P⊥,又P MB C⊥,P MA P P=,所以B M ⊥平面P A M ,又AM⊂平面P A M,所以B M A M⊥,所以2c o s 2x B M A B CA Bx∠===,由于A B C ∠为三角形内角, 所以4A B C π∠=.故答案为:4π.【点评】本题主要考查了勾股定理,三角函数的定义,线面垂直的判定和性质在解三角形中的应用,考查了数形结合思想和转化思想,作辅助线P M B C⊥于点M 是解题的关键,属于中档题.三.解答题(共5小题)26.如图所示,在边长为6的正三角形A B C 中,E ,F 依次是A B ,A C 的中点,A DB C⊥,E H B C⊥,F GB C⊥,D ,H ,G 为垂足,若将A B D ∆绕A D 旋转一周,求阴影部分形成的几何体的表面积.【分析】所得几何体为圆锥中挖去一个圆柱,然后利用公式求出即可. 【解答】解:所形成几何体是一个圆锥挖去一个圆柱,由题意可知圆柱的底面半径为322,圆锥底面半径为3,母线为6,所以32222S π=⨯⨯=圆柱侧,233627S πππ=⨯+⨯⨯=圆锥表,所以所求几何体的表面积为272SS S π=+=+圆锥表圆柱侧.【点评】本题主要考查旋转体的表面积计算,属于基础题. 27.如图,已知P A⊥平面A B C D ,A B C D 为矩形,M 、N 分别为A B 、P C 的中点,P A A D=,2A B =,A D=.(1)求证:平面M P C ⊥平面P C D ; (2)求三棱锥BM N C-的高.【分析】(1)取P D 中点为G ,连接N G ,A G ,M 、N 分别为A B 、P C 的中点,证明A M N G是平行四边形,//M N A G,推出//M N平面P A D ,得到//M NA G,证明A GP C⊥,A G P D⊥,推出A G⊥平面P D C ,得到M N⊥平面P D C ,然后证明平面M P C ⊥平面P C D ,(2)利用B M N CN M B CV V --=,转化求解点B 到平面M N C 的距离.【解答】(1)证明:取P D 中点为G ,连接N G ,A G ,M 、N 分别为A B 、P C 的中点,//N G C D∴,12N GC D=,//A MC D,12A MC D=,A M N G ∴是平行四边形,//M NA G,A G ⊂平面P A D ,M N ⊂/平面P A D ,//M N ∴平面P A D//M N A G∴,P M M C ==,N 为P C 中点,M N P C∴⊥,即A GP C⊥, G为P D 的中点,A P A D=,A G P D∴⊥,且P DPC P=,A G ⊥平面P D C ,M N ∴⊥平面P D C ,M N ⊂平面M P C ,∴平面M P C⊥平面P C D ,(2)解:1132B M N CN M B C M B CV V S P A--∆==,1222M B C S B C B M ∆==1222M N CS M N N C ∆==,则点B 到平面M N C 的距离为122hP A ==.【点评】本题考查平面与平面垂直以及直线与平面平行的判断定理的应用,空间点线面距离的求法,等体积法的应用,是中档题. 28.已知长方体1111A B C D A B C D -,1A A =,22A BB C ==,E 为棱A B 的中点,F 为线段1D C 的中点.(1)求异面直线E F 与1A D 所成角的余弦值; (2)求直线1A D 与平面D E F 所成角的正弦值.【分析】(1)以D 为原点,以D A 、D C 、1D D 分别为x 轴,y 轴,z 轴建立空间直角坐标系.利用向量法能求出异面直线E F 与1A D 所成角的余弦值.(2)求出面D E F 的法向量,利用向量法能求出直线1A D 与平面D E F 所成角的正弦值. 【解答】解:(1)以D 为原点,以D A 、D C 、1D D 分别为x 轴,y 轴,z 轴建立空间直角坐标系.则(1E ,1,0),(0F ,12,(1A ,0,0),1(0D ,0则(1E F=-,0,)2,1(1A D =-,0,直线E F 与1A D 所成角为θ,则115||c o s 14||||744EF A D E F A D θ===.故异面直线E F 与1A D 14.(2)(1D E=,1,0),(0D F=,12,1(1A D =-,0,设面D E F 的法向量为(nx=,y ,)z ,则0302D E n x y D F n y ⎧=+=⎪⎨=+=⎪⎩,令2z=,可得(3,2)n=-,设直线1A D与平面D E F 所成角为θ,则11||3s in 20||||410A D n A D n θ===,所以直线1A D 与平面D E F 20.【点评】本题考查异面直线所成角的余弦值、线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 29.已知A B C ∆,直线mA C⊥,mB C⊥,求证:mA B⊥.【分析】根据线面垂直的判定定理证明m ⊥平面A B C ,再得出m A B⊥.【解答】证明:m A C⊥,mB C⊥,A C ⊂平面A B C ,B C⊂平面A B C ,且A C B CC =,m ∴⊥平面A B C ,又A B ⊂平面A B C , m A B∴⊥.【点评】本题考查了线面垂直的判定定理,线面垂直的性质,属于基础题.30.如图所示,正方形A B C D 与直角梯形A D E F 所在平面互相垂直,90A D E ∠=︒,//A F D E,22D E D A A F ===.(1)求证:A C ⊥平面B D E ; (2)求证://A C平面B E F ;(3)若A C 与B D 相交于点O ,求四面体B O E F 的体积.【分析】(1)由已知利用平面与平面垂直的性质可得E D A C⊥,再由四边形A B C D 是正方形,得A CB D⊥,利用直线与平面垂直的判定可得A C⊥平面B D E ;(2)取E B 中点G ,连接O G ,F G ,证明A O G F 为平行四边形,可得//A C F G,再由直线与平面平行的判定可得//A C 面E FB ;(3)证明A B⊥平面A D E F ,求出三棱锥B D E F-的体积,结合O 为B D 的中点,可得四面体B O E F 的体积.【解答】证明:(1)平面A B C D⊥平面A D E F ,平面A B C D ⋂平面A D E FA D=E D A D ⊥,E D⊂平面A D E F ,E D ∴⊥面A B C D ,得E D A C⊥,又四边形A B C D 是正方形,A C B D∴⊥,又B DE D D=,A C ∴⊥平面B D E ;证明:(2)取E B 中点G ,连接O G ,F G ,O,G 分别为B D ,B E 的中点,//O GD E∴,12O GD E=,又//A F D E,12A F D E=,//A F O G ∴且A FO G=,则四边形A O G F 为平行四边形,得//A CF G,A C ⊂/平面E F B ,F G ⊂平面E F B ,//A C ∴面E FB ;解:(3)平面A B C D⊥平面A D E F ,A B A D⊥,A B ∴⊥平面A D E F .//A F D E,90A D E ∠=︒,22D ED A A F ===,D E F∴∆的面积为122D E FS E D A D ∆=⨯⨯=,∴四面体B D E F 的体积11422333D E F VS A B ∆=⨯=⨯⨯=,又O 是B D 中点,∴12O D E F B D E FV V --=,则1223B O E FB D E F V V -==.【点评】本题考查直线与平面平行、直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用等体积法求多面体的体积,是中档题.。

最新版精编2019高中数学单元测试《立体几何初步》专题完整考题(含参考答案)

最新版精编2019高中数学单元测试《立体几何初步》专题完整考题(含参考答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.在正方体1111ABCD A B C D -中,,E F 分别为棱11,AA CC 的中点,则在空间中与三条直线11,,A D EF CD 都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条(2008辽宁理) 2.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为( ) A.3 B .13π C .23π D.3(2006安徽理)3.如图,在三棱柱C B A ABC '''-中,点E 、F 、H 、K 分别为C A '、B C '、B A '、C B '' 的中点,G 为ΔABC 的重心从K 、H 、G 、B '中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为A .KB .HC .GD .B '(2005湖北理)4.设γβα,,为两两不重合的平面,n m,l,为两两不重合的直线,给出下列四个命题: ①若γβγα⊥⊥,,则βα//;②若ββαα//,//,,n m n m ⊂⊂,则βα//; ③若βα//,α⊂l ,则β//l ;④若γαγγββα//,,,l n m l === ,则n m //。

其中正命题的个数为( )B A .1B .2C .3D .4(2005江苏8)5.正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为A.3B.3C .23D.3全国I )文 6.ABC ∆的顶点在平面α内,A 、C 在α的同一侧,AB 、BC 与α所成的角分别是30和45.若AB =3,BC=AC =5,则AC 与α所成的角为( )(A )60(B )45(C )30(D )15(2005全国2文)7.如图,四棱锥S-ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确...的是( )(2011年高考辽宁卷理科8)(A) AC ⊥SB (B) AB ∥平面SCD(C) SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 (D)AB 与SC 所成的角等于DC 与SA 所成的角8.A 、B 是直线l 外的两点,过A 、B 且和l 平行的平面的个数是( ) (A )0个(B )1个 (C )无数个 (D )以上都有可能9.如图所示的直观图,其平面图形的面积是_______________10.如图,已知正方体1111ABCD A B C D -中,点E F 、分别在11AB BC 、上(不与线段的端点重合),且AE BF =。

最新2019高中数学单元测试《立体几何初步》专题完整考题(含参考答案)

最新2019高中数学单元测试《立体几何初步》专题完整考题(含参考答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5 ④MN 的最小值为l 其中真命题的个数为A .1个B .2个C .3个D .4个(2008江西理)2.棱长为2的正四面体的四个顶点都在同一个球面上, 若过该球球心的一个截面如图1,则图中三角形(正四面体的截面)的面积是 图1A . 22B .23 C .2 D .3 (2006湖南理)3.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( ) (A)33π100cm (B) 33π208cm (C) 33π500cm (D) 33π3416cm (2004江苏) 4.没有公共点的两条直线的位置关系是-------------------------------------------------------------( ) (A)异面 (B)平行 (C)异面或平行 (D)不确5.若一条直线上有一点在已知平面外,则下列命题正确的是__________;①直线上上所有点都在平面外;②直线上有无穷多个点在平面外; ③直线上有有限个点在平面外;④平面内至少有一个点在直线。

二、填空题6.(文科做)已知一个圆锥的母线长为3,则它的体积 的最大值为 ▲ .7.下列说法是正确的是__________;(填序号)○1平面α外的一条直线a 与平面α内的无数条直线平行,则直线a 和平面α平行; ○2平面α外的两条平行直线,a b ,若//a α,则//b α; ○3直线a 和平面α平行,则直线a 平行于平面α内任意一条直线; ○4直线a 和平面α平行,则平面α中必定存在直线与直线a 平行,8.线段AB 的两个端点A ,B 到平面α的距离分别为6cm, 9cm, P 在线段AB 上,AP :PB = 1:2,则P 到平面α的距离为 .9. 在正三棱锥S ABC -中,1,30SA ASB =∠=︒,过A 作三棱锥的截面AMN ,则截面三角形 AMN 的 周长的最小值为 ▲ .10. 直线a ∥b ,b α⊂,则a 与α的位置关系是 ▲ .11.设a b 、是两条不同的直线,α、β是两个不同的平面,则下列四个命题 ①若,a b a α⊥⊥,则//b α, ②若,a βαβ⊥⊥,则//a α, ③若βαβα⊥⊥则,,//a a ④若,,a b a b αβ⊥⊥⊥,则αβ⊥,其中正确的命题序号是 ▲ .12.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥D D BB A 11-的体积为 cm 3.13.如图,在边长为a 的正方体ABCD-A 1B 1C 1D 1中,E 是棱AB 上一点,M 是棱D 1C 1上一点,则三棱锥M-DEC 的体积是 ▲DABC1C 1D 1A1BD C1A 1B 1C 1D .BAM.(第6题图)14.已知矩形ABCD 的顶点都在半径为4的球O的球面上,且6,AB BC ==则棱锥O ABCD -的体积为 。

精编新版2019高中数学单元测试《立体几何初步》专题完整题(含答案)

精编新版2019高中数学单元测试《立体几何初步》专题完整题(含答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC 分别沿ED、EC向上折起,使A、B重合于点P,则P-DCE三棱锥的外接球的体积为( C )(A)2734π(B)26π(C)86π(D)246π(2006山东理)2.已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为ABC.D全国I文3.已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若βαβα//,,则⊥⊥mm;②若βααβγα//,,则⊥⊥;③若βαβα//,//,,则nmnm⊂⊂;④若m、n是异面直线,βααββα//,//,,//,则nnmm⊂⊂其中真命题是()A .①和②B .①和③C .③和④D .①和④(2005辽宁)4.若3sin (0)52x x π=--<<,则tan x =_____________.二、填空题5.棱长为1的正方体外接球的表面积为 .6.异面直线a , b 所成的角为︒60,过空间一定点P ,作直线L ,使L 与a ,b 所成的角均为︒60,这样的直线L 有 条。

7.如果一个角的两边分别垂直于另一个角的两边,那么两个角的关系是____________(相等、互补或不确定)8.长方体1111ABCD A B C D -中,已知111130BAB B A C ∠=∠=,则AB 和11A C 所成的角是_____;1AA 和1B C 所成的角是___________;1AB 和1A C 所成的角的余弦值是_____________9.一个平面图形的水平放置的斜二测直观图是一个等腰梯形,它的底角为45o,两腰和上底边长均为1,则这个平面图形的面积为 .10.从一个底面半径和高都是R 的圆柱中,挖去一个以圆柱的上底为底,下底面的中心为顶点的圆锥,得到一个如图(1)所示的几何体,那么这个几何体的体积是____332R π____.11.如图,三个半径都是10cm 的小球放在一个半球面的碗中,小球的顶端恰好与碗的上沿处于同一个水平面,则这碗的半径R 是______________图12.如图,在四面体P -ABC 中,P A =PB =PC =2,∠APB =∠BPC = ∠APC =30°,一只蚂蚁从A 点出发沿着四面体的表面绕一周,再回到 A 点,问:蚂蚁沿着怎样的路径爬行时 路程最短,最短路径是________.解析:如右图,将四面体沿P A 剪开,并将其侧面展开平铺在一个平面上,连接AA ′分别交PB ,PC 于E ,F 两点,则当蚂蚁沿 着A 刘E 刘F 刘A ′路径爬行时,路程最短.在△AP A ′中,∠A P A ′=90°,P A =P A ′=2,∴AA ′=22,即最短路程AA ′的长 为2 2.13.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为 ▲ . 14.正方体1111ABCD A B C D -中,与对角线1AC 异面的棱有 条.15.已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 ______.(2013年高考天津卷(文))16.已知正四棱柱1111ABCD A B C D -中,12AA AB =,E 为1AA 的中点,则异面直线BE 与1CD 所成角的正切值为 .17.给出下列关于互不相同的直线,,m l n 和平面,αβ的四个命题: ①若,,m lA A m αα⊂=∉,则l 与m 不共面②若,m l 是异面直线, //,//,,,l m n l n m n ααα⊥⊥⊥且则 ③若//,//,//,//l m l m αβαβ则 ④若,,,//,//,l m lm A l m ααββαβ⊂⊂=则//其中为真命题的是18.设,,,P A B C 是球O 表面上的四点,满足,,PA PB PC 两两相互垂直,且1,PA PB ==2PC =,则球O 的表面积极是 ▲19.【题文】四棱锥ABCD P -的五个顶点都在一个球面上,且底面ABCD 是边长为1的正方形,ABCD PA ⊥,2=PA ,则该球的体积为 .【结束】20.圆台的上、下底面面积分别为4和16,中截面把圆台分成两部分,试求这两部分的体积之比为________.解析:设这两部分的体积分别为V 1,V 2,圆台的高为2h ,上、下底面的面积之比为14,∴上、下底面的半径之比为12,∴截得圆台的大圆锥的高为4h ,设截得圆台的大圆锥被圆台上底面截下的小圆锥的体积为V ,则VV +V 1=⎝⎛⎭⎫2h 3h 3=827,∴V 1=198V .又V +V 1V +V 1+V 2=⎝⎛⎭⎫3h 4h 3=2764.∴V +V 1V 2=2737.∴V 2=378V .∴V 1V 2=1937.三、解答题21.(本小题满分14分)如图,在三棱柱111ABC A B C -中,侧面11AA B B 为菱形, 且160A AB ∠=︒,AC BC =,D 是AB 的中点.(1)求证:平面1A DC ⊥平面ABC ; (2)求证:1BC ∥平面1A DC .22.如图,在直三棱柱111ABC A B C -中,,E F 分别是111DC B AC BA (第1611,A B A C 的中点,点D 在11B C 上,11A D B C ⊥.求证:(1)EF ∥平面ABC ; (2)平面1A FD ⊥平面11BB C C .23.如图,四棱锥ABCD P -中,底面ABCD 为矩形,⊥PA 平面PDC , ⑵求证:平面PAD ⊥平面ABCD ;⑵ 在棱PD 上是否存在一点E ,使得PB // 平面EAC ?如果存在,请找出点E 并加以证明;如果不存在,请说明理由.(本题满分14分)24.如图,在四棱锥P A B C D -中,底面ABCD 为菱形,60B A D ︒∠=,Q 为A D 的中点.(1)若P A P D=,求证:平面PQB ⊥平面PAD ; (2)点M 在线段P C 上,P M t P C =,试确定的值,使//P A 平面M Q B .(本小题满分16分)25.如图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱AB 、BC 的中点. (1)试判截面MNC 1A 1的形状,并说明理由; (2)证明:平面MNB 1⊥平面BDD 1B 1.C 1B 1A 1DF ECB ADPABC26.如图,在三棱锥P - ABC 中,PC ⊥平面ABC ,△ABC 为正三角形,D ,E ,F 分别是BC ,PB ,CA 的中点.(1)证明平面PBF ⊥平面PAC ;(2)判断AE 是否平行平面PFD ?并说明理由; (3)若PC = AB = 2,求三棱锥P - DEF 的体积.27.如图,四棱锥P ABCD -,底面ABCD 是矩形,PA ABCD ⊥平面,E F 、分别是AB PD、的中点. (1)求证: BC PAB ⊥平面; (2)求证://AF PEC 平面;ABCDEFP(3)若2AD CD ==,PD 与底面ABCD 所成的角为45︒,求点F 到平面PEC 的距离.28.如图,α∩β=BC ,A ∈α,D ∈β,E 、F 、G 、H分别是AB 、AC 、DB 、CD 上的点,求证:若EF ∩GH =P ,则P 点必在直线BC 上. 证明:∵α∩β=BC ,A ∈α, 又∵E 、F 分别是AB 和AC 上的点, ∴E ∈α,F ∈α.∴EF ⊂α.又∵EF ∩GH =P , ∴P ∈EF ,∴P ∈α.同理,P ∈β,又∵α∩β=BC ,∴P ∈BC ,即P 点必在BC 上. 29.已知:如图,,,,,a b a b M P b PQ a αα⊂⊂=∈∥,求证:PQ α⊂30.如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点, 且BF ⊥平面ACE .(1)求证:AE⊥BE;(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.(第19题图)EDBFC A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设m.n是两条不同的直线,α.β是两个不同的平面,()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β(2013年高考浙江卷(文))2.若两个球的表面积之比为1:4,则这两个球的体积之比为()A.1:2B.1:4C.1:8D.1:16(2013年上海市春季高考数学试卷(含答案))3.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为()A.6πB.43πC.46πD.63π(2012课标文)30角的直线有且只有:( D )4.设直线l⊂平面α,过平面α外一点A与,lα都成0(A)1条(B)2条(C)3条(D)4条(2008四川理)5.对于任意的直线l与平面α,在平面α内必有直线m,使m与l()(A)平行(B)相交(C)垂直(D)互为异面直线(2006年高考重庆理)6.两个完全相同的长方体的长、宽、高分别为5cm,4cm,3cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是()A. 77cmB. 72cmC. 55cmD.102cm(2004北京春季理)(8)7.在正三棱柱111C B A ABC -中,若AB=2,11AA =则点A 到平面BC A 1的距离为( )A .43 B .23C .433D .3(2005江苏)8.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形, 且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、 三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h = ( ).2:22:29.高为4的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为(2011年高考重庆卷理科9)(A )4 (B )2(C )1 (D10.把两半径为2的铁球熔化成一个球,则这个大球的半径应为 A 4 B 22 C 322 D 34二、填空题11. 四棱锥P - ABCD 的底面ABCD 是边长为2的正方形,PA ⊥底面ABCD 且PA = 4,则PC 与底面ABCD 所成角的正切值为 ▲ .12.一个正三棱台的两个底面的边长分别等于8cm 和18cm ,侧棱长等于13cm ,则它的侧面积为______13.下列命题中正确命题的个数是①一条直线和另一条直线平行,那么它和经过另一条直线的任何平面平行;②一条直线平行于一个平面,则这条直线与这个平面内所有直线都没有公共点,因此这条直线与这个平面内的所有直线都平行;③若直线与平面不平行,则直线与平面内任一直线都不平行;④与一平面内无数条直线都平行的直线必与此平面平行。

14.侧棱长为cm 5、高为cm 4的正四棱锥的底面积为 2cm .15.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是__________(写出所有正确命题的编号). (2013年高考安徽(文))①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S的面积为16. 已知三棱锥P ABC -的所有棱长都相等,现沿PA ,PB ,PC 三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为P ABC -的体积为 ▲ .17.已知圆锥的母线长为5,侧面积为π15,则此圆锥的体积为___12π_______. 18.已知矩形相邻两边的长分别为2(0),a a a >和用此矩形卷成圆柱,则所得的圆柱的体积为19.若直线l 上有两点到平面α的距离相等,则直线l 与平面α的位置关系为____ 20.右图表示一个正方体表面的一种展开图,图中的四条线段,,,AB CD EF GH 在原正方体中相互异面的有_________对ABCDGFEH21.直观图的斜二测画法规则:(1)在已知图形中取水平平面,取________的轴O x O y、,再取Oz 轴,使xOz ∠=______,且yOz ∠=________.(2)画直观图时,把它们画成对应的轴''''''O x O y O z 、、,使'''x O y ∠=________或________,'''x O z ∠=________.'''x O y 所确定的平面表示水平平面。

(3)已知图形中平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于_______轴、'y 轴,或_____轴的线段。

(4)已知图形中_______于x 轴和z 轴的线段,其长度在直观图中为____________;_________于y 轴的线段,长度为__________________ 三、解答题22.如图,四棱锥P ABCD -的底面为平行四边形,PD ⊥平面ABCD ,M 为PC 中点.(1)求证://AP 平面MBD ;(2)若AD PB ⊥,求证:BD ⊥平面PAD.23.(本小题满分14分)在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证: (1)直线//EF 面ACD ; (2)平面EFC ⊥面BCD .24.如图,四棱锥S ABCD -中,ABCD 为矩形,SD AD ⊥,且SD AB ⊥,AD a =(0a >),2AB AD =,SD =.E 为CD 上一点,且3CE DE =. (1)求证:AE ⊥平面SBD ; (2)求二面角A SB D --的余弦值.DBCE25.如图,在直三棱柱111ABC A B C -中,1111A B A C =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE . 【答案及解析】【点评】本题主要考查空间中点、线、面的位置关系,考查线面垂直、面面垂直的性质与判定,线面平行的判定.解题过程中注意中点这一条件的应用,做题规律就是“无中点、取中点,相连得到中位线”.本题属于中档题,难度不大,考查基础为主,注意问题的等价转化.26.如图,正四棱柱1111ABCD A B C D -中,设1AD =,1 (0)D D λλ=>, 若棱1C C 上存在点P 满足1A P ⊥平面PBD ,求实数λ的取值范围.PABCD 1A 1B 1C 1D (第22题27.如图,三棱柱111ABC A B C -中,侧棱与底面垂直,AB=AC=1AA =2,D 为1AB 上的点,且BD ⊥平面111,,AB C BC B C 交于点E 。

(1)求证:AC ∥平面1BC D ; (2)求证:AC ⊥平面1;AB B (3)求三棱锥1B BDE -的体积。

28.如图,已知M 、N 、P 、Q 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点. 求证:(1)线段MP 和NQ 相交且互相平分;(2)AC ∥平面MNP ,BD ∥平面MNP .证明:(1) ∵M 、N 是AB 、BC 的中点,∴MN ∥AC ,MN =21AC .∵P 、Q 是CD 、DA 的中点,∴PQ ∥CA ,PQ =21CA .∴MN ∥QP ,MN =QP ,MNPQ 是平行四边形. ∴□MNPQ 的对角线MP 、NQ 相交且互相平分.(2)由(1),AC ∥MN .记平面MNP (即平面MNPQ )为α.显然AC ⊄α. 否则,若AC ⊂α,由A ∈α,M ∈α,得B ∈α;由A ∈α,Q ∈α,得D ∈α,则A 、B 、C 、D ∈α, 与已知四边形ABCD 是空间四边形矛盾. 又∵MN ⊂α,∴AC ∥α,又AC ⊄α,∴AC ∥α,即AC ∥平面MNP .BADC PNQM同理可证BD ∥平面MNP .29.如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点, 且BF ⊥平面ACE . (1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N , 使得MN ∥平面DAE .(第19题图)30.如图所示,在直四棱柱1111D C B A ABCD -中,BC DB =, DB AC ⊥,点M 是棱1BB 上一点.(Ⅰ)求证://11D B 面BD A 1;(5分) (Ⅱ)求证:MD AC ⊥;(5分)(Ⅲ)试确定点M 的位置,使得平面1DMC⊥平面D D CC 11. (5分)EDB FCA。

相关文档
最新文档