小学六年级下册数学《反比例》课件PPT
合集下载
苏教版六年级下册数学《认识成正比例的量》正比例和反比例PPT教学课件
据国家统计局统计,全 国每月消耗26亿双一次 性筷子。
活动一:
20(下)100 1000 10000 100000 100000000 18(秒) 90 900 9000 90000 90000000
90000000÷60=1500000(分) 1500000 ÷60=25000(时)
25000 ÷24≈ 1042(天)
1042÷365≈ 2.9(天)
上海明珠电视塔的 高度为468米,一亿 枚硬币叠起来的高 度会有它高吗?
有的话有几个上海 明珠电视塔的高度?
活动一:
20(枚) 100 1000 10000 100000000
35(毫米1) 75 1750 17500 175000000 175000米
上海明珠电视塔的 高度为468米,一亿 枚硬币叠起来的高 度会有它高吗?有 的话有几个上海明 珠电视塔的高度.
上表中_米__数___和_时__间___是两种相关联的量,_米___数___随着 时间 的变
化而变化的, 每小时加工米数 —定,时间和米数是 成正比例 的量。
课堂练习
2.判断下面各题中的两种量是不是成正比例关系,并说理。 (1)长方形的长一定,宽和面积。
是,宽和面积的比值一定。
(2)总不是路,程它一们定的,比已值不经一行定了,的是路和程一定和。剩下的路程。
比例关系。
(2)如果用字母x和y分别表示两种相关联的量,用k表示它
=k(一定)
们的比值,正比例关系可以表示为(
)。
课后习题
3.判断下面每题中的两个量是否成正比例,成正比例的在括号
里画“√”。
(1)每天的用煤量一定,用煤的天数和用煤的总量。 ( √)
(2)圆的直径和周长。
小学数学正比例与反比例(第1课时)PPT课件(人教版数学六年级下册)
国家中小学课程资源
正比例和反比例(第1课时)
主讲人:XX 日期:XX年XX月XX日
国家中小学课程资源
颜色随着温度的变化而变化。
国家中小学课程资源
每过一年,年轮就增加一圈。 年轮的变化
一位同学的记录:
国家中小学课程资源
身高随着年龄的变化而变化。
国家中小学课程资源
一种量变化另一种量也随着变化
买同一种物品, 买的数量越多, 总价就越高。
汽车行驶的路程 会随着行驶时间 的增加而增加。
小红
小丽
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表:
⑴表中有哪两种量? 数量和总价。
⑵总价是怎样随着数量的变化而变化的? 总价随着数量的增加而增加。
小红
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表: +1 +1 +3.5 +3.5
总价与数量成 (10,35) 正比例关系。 (12,42)
小亮
小明
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表:
国家中小学课程资源
31.5
小明
小红
9
国家中小学课程资源
路程与时间是两种相关联的量,时间变化,路程也随着变化。
路程 时间 = 速度(一定)
路程与时间成正比例关系。
小红
彩带的数量每增加1米,总价就增加了3.5元。
小明
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表:
×4
÷3
×2
×2
×4
÷3
数量扩大到原来的多少倍,总价也随着扩大
到原来的多少倍;数量缩小到原来的几分之
正比例和反比例(第1课时)
主讲人:XX 日期:XX年XX月XX日
国家中小学课程资源
颜色随着温度的变化而变化。
国家中小学课程资源
每过一年,年轮就增加一圈。 年轮的变化
一位同学的记录:
国家中小学课程资源
身高随着年龄的变化而变化。
国家中小学课程资源
一种量变化另一种量也随着变化
买同一种物品, 买的数量越多, 总价就越高。
汽车行驶的路程 会随着行驶时间 的增加而增加。
小红
小丽
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表:
⑴表中有哪两种量? 数量和总价。
⑵总价是怎样随着数量的变化而变化的? 总价随着数量的增加而增加。
小红
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表: +1 +1 +3.5 +3.5
总价与数量成 (10,35) 正比例关系。 (12,42)
小亮
小明
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表:
国家中小学课程资源
31.5
小明
小红
9
国家中小学课程资源
路程与时间是两种相关联的量,时间变化,路程也随着变化。
路程 时间 = 速度(一定)
路程与时间成正比例关系。
小红
彩带的数量每增加1米,总价就增加了3.5元。
小明
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表:
×4
÷3
×2
×2
×4
÷3
数量扩大到原来的多少倍,总价也随着扩大
到原来的多少倍;数量缩小到原来的几分之
六年级数学下册《反比例》PPT课件人教版
题目1
一个直角三角形,两 多少厘米?
题目2
题目3
一个长方形的周长是20厘米,长是a厘米, 宽是b厘米。求a和b的关系式,并求出当 a=5厘米时,b是多少厘米?
一个圆柱体和一个圆锥体的底面积相等、 体积也相等。已知圆锥的高是18厘米,求 圆柱的高是多少厘米。
疑问3
反比例在生活中有哪些应用?
答
反比例关系在现实生活中有着广泛的应用。例如,汽车行 驶时,如果速度一定,那么行驶的距离和所需的时间成反 比;一定体积的气体,如果压力一定,那么气体的温度和 体积成反比。
下节课预告
• 下节课我们将学习《圆柱与圆锥》,圆柱和圆锥是常见的几何 图形,它们在生活和数学中有着广泛的应用。通过学习圆柱和 圆锥的特性、面积和体积的计算方法,我们将更好地理解这两 种几何图形在现实世界中的作用。请大家做好预习工作。
杠杆原理
在杠杆两端挂上不同质量的物体,一端质量大,一端质量小,当杠杆平衡时,两端的距离相等,质量与距离成反 比关系。
数学问题中的反比例解析
面积固定时,长与宽的关系
当一个矩形的面积固定时,长与宽的乘积为定值,即长增大时,宽必须减小,反之亦然,这体现了反 比例关系。
速度固定时,距离与时间的关系
当一个物体的速度固定时,距离与时间的乘积为定值,即距离增大时,时间必须增大,反之亦然,这 体现了反比例关系。
02 反比例的图像表示
反比例图像的绘制
确定x和y的取值范围
在绘制反比例图像前,需要确定x和y的取值 范围,以便在坐标系中正确表示。
标出原点
在坐标系的中心位置标出原点。
绘制坐标轴
根据需要选择适当的坐标轴比例,并绘制坐 标轴线。
绘制双曲线
根据反比例函数的性质,在第一象限和第三 象限内绘制双曲线。
六年级数学课件正比例和反比例
正比例的意义
定义:两个量之间的比值相等 性质:当一个量增加时,另一个量也按相同的比例增加 举例:速度、路程和时间之间的关系 应用:在生活和生产中的实际应用
正比例的应用
定义:两个量之间 的比值保持不变, 即为正比例关系
应用场景:速度、 时间、距离等
Hale Waihona Puke 实例:汽车匀速行 驶,速度与时间成 正比
数学模型:y=kx ,其中k为比例系 数
题目:一辆汽车从甲地开往乙地,3小时行了150千米。照这样的速度,再行5小时到达乙地, 甲地到乙地相距多少千米?
反比例的练习题及解析
题目:一个工厂生产了200台机器,每台机器需要10个零件。如果该工厂决定生产更多的机器,但零件数量不变,那么每台新机器的 成本将会如何变化?
解析:这道题目考察了反比例的概念。当一个变量增加时,如果另一个变量保持不变,那么第一个变量与第二个变量之间 的比率将会保持不变。因此,如果该工厂生产的机器数量增加,但零件数量保持不变,那么每台新机器的成本将会降低。
生活中的反比例实例
汽车油箱:油箱容 量固定,行驶距离 与耗油量成反比
速度与时间:速度 越快,所需时间越 短,成反比关系
价格与需求量:价 格上涨,需求量减 少,成反比关系
杠杆原理:动力×动 力臂=阻力×阻力臂 ,当动力臂增加, 阻力臂减少时,动 力作用效果越不明 显
正比例和反比例在数学中的应用实例
化
反比例:两个 量之间的乘积 是一定的,当 一个量变化时, 另一个量也按 相反的比例变
化
区别:正比例 是比值一定, 反比例是乘积
一定
联系:正反比 例都是成比例 关系,当其中 一个量变化时, 另一个量也按 一定的比例变
化
应用上的区别与联系
2024(新插图)人教版六年级数学下册第3课时反比例-课件
随堂练习 1.给一间长9m、宽6m的教室铺地砖,每块地砖 的面积与所需地砖数量如下表。
所需地砖数量与每块地砖的面积是否成反 比例关系?为什么?
所需地砖数量与每块地砖的面积成反 比例,因为教室的面积一定,而每块地砖 的面积×所需地砖数量=教室的面积。
2.下表中x和y两个量成反比例关系,请把表格填
反比例
R·六年级下册
新课导入
(1)一辆车以同样的速度前行,行驶的路程 和时间如下表: 时间(时) 1 2 3 4 5 … 路程(km) 90 180 270 360 450 …
(2)把相同体积的水倒入底面积不同的容器,容 器的底面积与水的高度的变化情况如下表。
容器的底面积/cm2 水的高度/cm
(3)相对应的容器的底面积与水的高度的乘积 分别是多少?
容器的底面积/cm² 10 15 20 30 60 ...
水的高度/cm 30 20 15 10 5 ...
体积/cm3
300 300 300 300 300 …
底面积×高度=体积
倒入容器的水的体积一定。
归纳总结
两种相关联的量,一种量变化,另一种量 也随着变化,如果这两种量中相对应的两个数 的乘积一定,这两种量就叫作成反比例的量, 它们的关系叫作反比例关系。
(1)表中有哪两种量?它们是不是相关联的量?
这两种量是相关联的量。
每天运的质量/t 300 150 100 75 60 50
运货的天数/天
123456
(2)写出几组这两种量中相对应的两个数的乘积, 并比较乘积的大小,说一说这个乘积表示什么。
பைடு நூலகம்
300×1=300 150×2=300 100×3=300
根据上表,回答下面的问题。
《比例》正比例和反比例PPT课件 图文
是啊!人生的缘份就是如此奇妙,像一朵浮云与飞鸟的相逢,不期而至。眉间滑过的光阴,犹如那山涧流淌的溪泉,平缓而柔软。而你我,就如同飘飞的枫叶,相遇相逢,徐徐飘落,寂静悠美,直至泥土。如若有缘,此生你我注定会在光阴的渡口相见,如若离散,请在我筑起的幽梦里,互道一声“珍重”! 一旦进入到婚姻,就剩下为家庭奔波,为孩子操劳,再也不讲什么浪漫惊喜。
“十年生死两茫茫,不思量,自难忘。千里孤坟,无处话凄凉。纵使相逢应不识,尘满面,鬓如霜“。如若今生,你我遇到一个愿意为自己陪伴一生的人,那么,请握紧现在手中的幸福,珍惜彼此,别等失去,再话凄凉…… 可惜,世间不是所有的缘份都来得刚刚好,在合适的季节里你我相遇相逢。就如徐志摩遇到林徵因,写下“轻轻的我走了,正如我轻轻的来;我轻轻的招手,作别西天的云彩……”一首再别康桥道出无尽的思念,却因是一场三角之恋,不得不放手。还有张爱玲遇见文人汉奸胡兰成,在信里写道:“在你面前我变得很低很低,低到尘埃里。但我的心里是喜欢的,从尘埃里开出花来。” 多么卑微,往往当一个人遇到一份情缘,再怎么高傲,冷漠。也会变得很低很低,变得温柔而多情。虽然两年后,终究两人还是劳雁纷飞,各奔东西。像天空璀璨的烟花,绽放之后只剩薄凉。也许,他们彼此相遇,只是为了来世间为我们讲述一段故事,写下一段文字,弹奏一曲琴瑟之音!世间,不是所有的缘份与感情都能修得正果,厮守一生。但它们如同投在你心湖的一颗石子,荡起层层微光,即便短暂,仍也波光粼粼,晶莹闪烁!
比是表示两个数相除,只有两 个项。比例表示两个比相等的式 子,有四个项。
填数游戏
在下面的括号中你能填什么 数?你能发现什么?
1 = 2 ︰()=() ︰
1 2
例2:把下面四个比例两个内项和两个 外项相乘,你发现了什么?
2 ︰3=4 ︰6 6 ︰ 8=15 ︰20
“十年生死两茫茫,不思量,自难忘。千里孤坟,无处话凄凉。纵使相逢应不识,尘满面,鬓如霜“。如若今生,你我遇到一个愿意为自己陪伴一生的人,那么,请握紧现在手中的幸福,珍惜彼此,别等失去,再话凄凉…… 可惜,世间不是所有的缘份都来得刚刚好,在合适的季节里你我相遇相逢。就如徐志摩遇到林徵因,写下“轻轻的我走了,正如我轻轻的来;我轻轻的招手,作别西天的云彩……”一首再别康桥道出无尽的思念,却因是一场三角之恋,不得不放手。还有张爱玲遇见文人汉奸胡兰成,在信里写道:“在你面前我变得很低很低,低到尘埃里。但我的心里是喜欢的,从尘埃里开出花来。” 多么卑微,往往当一个人遇到一份情缘,再怎么高傲,冷漠。也会变得很低很低,变得温柔而多情。虽然两年后,终究两人还是劳雁纷飞,各奔东西。像天空璀璨的烟花,绽放之后只剩薄凉。也许,他们彼此相遇,只是为了来世间为我们讲述一段故事,写下一段文字,弹奏一曲琴瑟之音!世间,不是所有的缘份与感情都能修得正果,厮守一生。但它们如同投在你心湖的一颗石子,荡起层层微光,即便短暂,仍也波光粼粼,晶莹闪烁!
比是表示两个数相除,只有两 个项。比例表示两个比相等的式 子,有四个项。
填数游戏
在下面的括号中你能填什么 数?你能发现什么?
1 = 2 ︰()=() ︰
1 2
例2:把下面四个比例两个内项和两个 外项相乘,你发现了什么?
2 ︰3=4 ︰6 6 ︰ 8=15 ︰20
人教版六年级数学下册《成反比例的量》课件PPT
思考
方砖的块数一定时,方砖边长与铺地面积成不成 比例?为什么?
因为 铺地面积 =所需块数(一定)
方砖边长 2 所以
方砖边长与铺地面积不成比例.
方砖边长的平方与铺地面积成正比例.
为什么呢?
表中有每天运的吨数和需要的天数两种量。
它们是相关联的量。
(2)写出几组这两种量中相对应的两个数的积,并比
较积的大小. (积相等)
300 ×1 =300 150 × 2=300 100 × 3=300 75 ×4 =300 60 × 5=300 50 × 6=300
做一做
因为
所以
判断下面每题中 的两种量是不是 成反比例,并
说明理由.
煤的总量一定, 每天的烧煤量和 能够烧的天数.
每天的烧煤量和 能够烧的天数是 两种相关联的量,
每天的烧煤量和 能够烧的天数成 反比例.
做一做
因为
所以
判断下面每题中 的两种量是不是 成反比例,并
说明理由.
种子的总量一定, 每公顷的播种量 和播种的公顷 数.
每公顷的播种量 和播种的公顷数 是两种相关联的 量,
每公顷的播种量 和播种的公顷数 成反比例.
因为
所以
判断下面每题中 的两种量是不是 成反比例,并
说明理由.
李叔叔从家到工 厂,骑自行车的 速度和所需的时 间.
骑自行车的速度 和所需的时间是 两种相关联的量,
自行车的速度× 所需的时间=路 程(一定)
骑自行车的速度 和所需的时间成 反比例.
做一做
判断下面每题中的两种量是不是成反比例,并 说明理由.
相关联的量吗?为什么?
是两种相关联的量,每小时加工的数量变 化,加工时间也随着变化.
六年级数学下册正比例和反比例(复习课)(19张PPT)人教版
人教版 六年级数学下册 第4单元 比例
4.2 正比例和反比例
复习课
学习目标
1.理解正、反比例的意义 2.会判断两种量是否成正、反比例关系 3.会利用正、反比例的关系解决实际问题
一、正比例
判断下面每组题中的两种量是否成正比例关系,并说出理由。
1.长方形的宽一定,它的面积和长。 ( 成正比例 )
长方形的面积 长方形的长
正比例和反比例的异同点
正比例
反比例
相同点 都是两种相关联的量,一种量随着另一种量变化。
变 化 不规 同律 点 关 系 式
变化的方向相同,一种 量扩大(或缩小),另一 种量也扩大(或缩小)。
y k(一定) x
变化的方向相反,一种 量扩大(或缩小),另 一种量反而缩小(或扩 大)。
xy k(一定)
针对训练
时,一共可以打字多少页?
工作总量
方法一
工作时间
=工作效率(一定) 方法二
解:设一共可以打字x页。
由题意得 x 36 64 6 6x 36 (6 4)
6x 360
解:设4小时可以打字x页。
由题意得 x 36 46
6x 36 4
6x 144
x 60
答:一共可以打字60页。
x 24
36+24=60(页) 答:一共可以打字60页。
正比例和反比例
找关系
设未知数
反比例 xy k(一定)
两种相关 联的量
相同点
概念
不同点
一种量变化另一 种量也随着变化
变化规律
列比例
判断方法
解比例 答
比值一定 成正比例
关系式
积一定 成反比例
家庭作业 一、选择 1.表示X和y成正比例关系的是( )。
4.2 正比例和反比例
复习课
学习目标
1.理解正、反比例的意义 2.会判断两种量是否成正、反比例关系 3.会利用正、反比例的关系解决实际问题
一、正比例
判断下面每组题中的两种量是否成正比例关系,并说出理由。
1.长方形的宽一定,它的面积和长。 ( 成正比例 )
长方形的面积 长方形的长
正比例和反比例的异同点
正比例
反比例
相同点 都是两种相关联的量,一种量随着另一种量变化。
变 化 不规 同律 点 关 系 式
变化的方向相同,一种 量扩大(或缩小),另一 种量也扩大(或缩小)。
y k(一定) x
变化的方向相反,一种 量扩大(或缩小),另 一种量反而缩小(或扩 大)。
xy k(一定)
针对训练
时,一共可以打字多少页?
工作总量
方法一
工作时间
=工作效率(一定) 方法二
解:设一共可以打字x页。
由题意得 x 36 64 6 6x 36 (6 4)
6x 360
解:设4小时可以打字x页。
由题意得 x 36 46
6x 36 4
6x 144
x 60
答:一共可以打字60页。
x 24
36+24=60(页) 答:一共可以打字60页。
正比例和反比例
找关系
设未知数
反比例 xy k(一定)
两种相关 联的量
相同点
概念
不同点
一种量变化另一 种量也随着变化
变化规律
列比例
判断方法
解比例 答
比值一定 成正比例
关系式
积一定 成反比例
家庭作业 一、选择 1.表示X和y成正比例关系的是( )。
六年级下册数学第四单元 反比例优秀PPT 北师大版
40
60
80
速度/(字/分)
80
60
40 30
(1)不同的的人在打同一份稿件的过程中,哪个量没有变? 打字总量。
(2)打字的速度和所用的时间有什么关系?
速度快,时间少,速度慢,时间多。打字总量一定,速度和 时间的乘积一定,速度和时间成反比例。
(3)李老师打这份稿件用了24分,你知道她平均每分打多少字吗?
乘积一样,成反比例。
苹果总钱数=苹果单价×数量 买苹果的总钱数一定,苹果的单价与数量成反比例。
探索新知
奇思读一本书,已读的页数与剩下的页数的情况如下。
已读的页数
1
2
3
4
5…
剩下的页数 79 78 77 76 75 …
已读的页数与剩下的页数成反比例吗?为什么?
1+79=2+78=3+77=4+76=5+75=…=80
30×80÷24=100(字/分)
六年级下册数学第四单元 反比例优秀PPT 北师大版
练一练
3.判断下面各题中的两种量是否成反比例,并说明理由。
⑴行驶的路程一定,车轮的周长与车轮需要转动的圈数。
积一定,周长和转动圈数成反比例。行驶路程=车轮周长×转动圈数
⑵一个人跑步的速度和他的体重。
跑步速度与体重不成比例。
齿轮和小齿轮转动的总齿数是相同的。尝试回答下面的问题。
⑵转过的总齿数一定时,每个齿轮的齿数和转 过的圈数是什么关系?
转动总齿数=每个齿轮的齿数×轮动圈数
⑶大齿轮有40个齿,小齿轮有24个齿。如果大齿轮每分 转90圈,小齿轮每分转多少圈?
先求总齿数:40×90=3600(齿) 再求小齿轮圈数:3600÷24=150(圈)
北师大版小学六年级下册数学《反比例》课件
北师大版小学六年级下册 数学《反比例》课件PPT
《反比例》课件PPT旨在帮助小学六年级学生全面了解反比例的定义、特点、 性质,学习解决反比例关系的问题,并应用于实际场景中。
什么是反比例
反比例是一种数学关系,当一项变量增大时,另一项变量会以相反的比例减小。
反比例的定义及符号表示
反比例指的是两个变量之间的关系,可以用等式 y = k/x 表示,其中 k 是常数。
图像上的坐标点不会聚集在一 条直线上,而是呈现出分散状。
反比例关系的图像关于y轴对称。
反比例中常见的问题类型
查找k值
已知一个变量与另一个变 量成反比例关系,求出常 数k。
求未知变量
已知一个变量与另一个变 量成反比例关系,并已知 常数k,求解未知变量。
应用题
根据生活实际问题,运用 反比例关系解决实际应用 问题。
比例倒数
如果两个变量成反比例关系, 它们的倒数呈正比例关系。
如何判断两个数是反比例关系
1 观察法
通过观察二者的变化趋势以及是否满足反比例的特点来判断。
2 计算法
将两组数据代入反比例关系的定义进行计算,如果结果相等,则二者成反比例关系。
反比例的图像特征
曲线图
坐标点
关于y轴对称
反比例关系的图像是一条曲线, 而不是直线。
反比例的特点
1 反向关系
当一个变量增大时,另一个变量减小。
2 不存在零值
当一个变量等于零时,另一个变量不存在。
3 非线性关系
反比例定理
如果两个变量成反比例关系, 它们的乘积始终等于一个常 数。
比例平方
如果两个变量成反比例关系, 它们的平方呈正比例关系。
反比例练习题的解法步骤
理解题意
《反比例》课件PPT旨在帮助小学六年级学生全面了解反比例的定义、特点、 性质,学习解决反比例关系的问题,并应用于实际场景中。
什么是反比例
反比例是一种数学关系,当一项变量增大时,另一项变量会以相反的比例减小。
反比例的定义及符号表示
反比例指的是两个变量之间的关系,可以用等式 y = k/x 表示,其中 k 是常数。
图像上的坐标点不会聚集在一 条直线上,而是呈现出分散状。
反比例关系的图像关于y轴对称。
反比例中常见的问题类型
查找k值
已知一个变量与另一个变 量成反比例关系,求出常 数k。
求未知变量
已知一个变量与另一个变 量成反比例关系,并已知 常数k,求解未知变量。
应用题
根据生活实际问题,运用 反比例关系解决实际应用 问题。
比例倒数
如果两个变量成反比例关系, 它们的倒数呈正比例关系。
如何判断两个数是反比例关系
1 观察法
通过观察二者的变化趋势以及是否满足反比例的特点来判断。
2 计算法
将两组数据代入反比例关系的定义进行计算,如果结果相等,则二者成反比例关系。
反比例的图像特征
曲线图
坐标点
关于y轴对称
反比例关系的图像是一条曲线, 而不是直线。
反比例的特点
1 反向关系
当一个变量增大时,另一个变量减小。
2 不存在零值
当一个变量等于零时,另一个变量不存在。
3 非线性关系
反比例定理
如果两个变量成反比例关系, 它们的乘积始终等于一个常 数。
比例平方
如果两个变量成反比例关系, 它们的平方呈正比例关系。
反比例练习题的解法步骤
理解题意
人教版小学六年级下册数学精品上课课件 第4单元比例 反比例
数学六年级下册(人教版)
第4单元 比例
2.正比例和反比例
第4节 反比例
同样的面包单价为2元。
数量(个) 1
2
3
总价(元) 2
4
6
45 … 8 10 …
面包的总价与数量之间有什么关系呢?为什么?
面包的总价与数量成正比例关系。因为它们是两种相关联 的量,面包数量扩大或缩小,总价也随着扩大或缩小,并且它 们的比值(单价)一定。
300
150
100
75
60
50
运货的天
数/天
12
3
45
6
(3)运货的天数与每天运的吨数成反比例关系吗? 为什么?
运货的天数与每天运的吨数成反比例关系,因为 它们的乘积一定。
四、全课小结
这节课我们学习了什么知识,你有什么收获? 这节课我们认识了反比例。从问题引入,在与 正比例关系的对比中初步感受反比例关系中两种相 关联的量。然后通过解决实际问题,理解了反比例 关系的意义,知道了如何判断两种量是否成反比例 关系,并了解了反比例关系的图象,最后通过练习 巩固了所学知识。
小兰 6
小刚 24
10×12÷6=20(页) 10×12÷24=5(天) 10×12=120(页) 15×8=120(页)
答:小兰每天看20页,小刚看了5天。每天看的页数 和看的天数成反比例关系,因为它们的乘积都是120。
2.
每天运的 吨数/t
300
150
100
75
60
50
运货的天 数/天
1
2
3
45
来的?
大约7.5 cm
大约6 cm 大约5.5 cm
三、巩固知识,判别反比例关系
第4单元 比例
2.正比例和反比例
第4节 反比例
同样的面包单价为2元。
数量(个) 1
2
3
总价(元) 2
4
6
45 … 8 10 …
面包的总价与数量之间有什么关系呢?为什么?
面包的总价与数量成正比例关系。因为它们是两种相关联 的量,面包数量扩大或缩小,总价也随着扩大或缩小,并且它 们的比值(单价)一定。
300
150
100
75
60
50
运货的天
数/天
12
3
45
6
(3)运货的天数与每天运的吨数成反比例关系吗? 为什么?
运货的天数与每天运的吨数成反比例关系,因为 它们的乘积一定。
四、全课小结
这节课我们学习了什么知识,你有什么收获? 这节课我们认识了反比例。从问题引入,在与 正比例关系的对比中初步感受反比例关系中两种相 关联的量。然后通过解决实际问题,理解了反比例 关系的意义,知道了如何判断两种量是否成反比例 关系,并了解了反比例关系的图象,最后通过练习 巩固了所学知识。
小兰 6
小刚 24
10×12÷6=20(页) 10×12÷24=5(天) 10×12=120(页) 15×8=120(页)
答:小兰每天看20页,小刚看了5天。每天看的页数 和看的天数成反比例关系,因为它们的乘积都是120。
2.
每天运的 吨数/t
300
150
100
75
60
50
运货的天 数/天
1
2
3
45
来的?
大约7.5 cm
大约6 cm 大约5.5 cm
三、巩固知识,判别反比例关系
北师大版六年级下册数学《正比例、反比例》 (共19张PPT)
不同点 小)。
而缩小(扩大)。
2、相对应的两个数的 2、相对应的两个 比值(商)一定。 数的积一定。
一辆汽车在高速路上行驶,速 度保持在100千米/时,说一说汽车行 驶的路程随时间变化的情况,并用多 种方式表示两个量之间的关系。
方式一:列表
时间/时 1 2 3 4 5 ……
路程/千米 100 200 300 400 500 ……
14、抱最大的希望,作最大的努力。2021年6月30日 星期三 上午8时6分32秒08:06:3221.6.30
15、一个人炫耀什么,说明他内心缺 少什么 。。2021年6月 上午8时6分21.6.3008:06June 30, 2021
16、业余生活要有意义,不要越轨。2021年6月30日 星期三 8时6分 32秒08:06:3230 June 2021
17、一个人即使已登上顶峰,也仍要 自强不 息。上 午8时6分32秒 上午8时 6分08: 06:3221.6.30
谢谢大家
9、 人的价值,在招收诱惑的一瞬间被决定 。21.6.3021.6.30Wednesday, June 30, 2021
10、低头要有勇气,抬头要有低气。08:06:3208:06: 3208:066/30/ 2021 8:06:32 AM
表2 速度(千米∕时) 100 50 20 10 5
时间 (小时) 1 2 5 10 20
在表2中相关联的量是( 速度 ) 和( 时间 ),( 速度 )随着( 时间 )变 化,( 路程 )是一定的。因此,时间和速 度成( 反 )比例关系。 问题:从表2中,你是怎样发现路程是一定的? 又根据什么判断出时间和速度成反比例?
17、一个人即使已登上顶峰,也仍要 自强不 息。上 午8时6分32秒 上午8时 6分08: 06:3221.6.30
人教版六年级下册数学《反比例》(课件)
人教版
反比例
六年级下册
学习目标
能正确理解反比例的意义。
能准确判断成反比例的量。
知道正比例和反比例的区别。
复习导入
1、成正比例的量有什么特征呢?
(1)两种相关联的量,一种量变化,另一种量也随着变化。
(2)两种量中相对应的两个量的比值(商)一定。
2、正比例关系式是什么?
正比例关系式:
y
x
=k(一定)
把相同体积的水倒入
底面积不同的杯子。
杯子的底面积与水的高度的变化情况如下表。
杯子的底面积
10 15 20 30 60 …
/cm²
水的高度/cm 30 20 15 10
(2)水的高度是怎样随着杯子底面积的大小变化
而变化?
水的高度随着杯子的底面积的变大而不
断变小,这两种量是相关联的两种量。
5
…
新课讲解
你会算出水的体积吗?
杯子的底面积/cm²
10
15
20
30
60
…
水的高度/cm
30
20
15
10
5
…
水的体积/cm³
300
300
300
300
300
…
高度和底面积的变化有什么规律?
从上往下看,底
面积增加,水的
高度反而减少。
10×30=300
15×20=300
20×15=300
30×10=300
...
从下往上看,底
课堂练习
3. 看一本180页的书,需用的时间和平均每天看的数量如下
表:
时间/天
1
2
3
4
5
数量/页
反比例
六年级下册
学习目标
能正确理解反比例的意义。
能准确判断成反比例的量。
知道正比例和反比例的区别。
复习导入
1、成正比例的量有什么特征呢?
(1)两种相关联的量,一种量变化,另一种量也随着变化。
(2)两种量中相对应的两个量的比值(商)一定。
2、正比例关系式是什么?
正比例关系式:
y
x
=k(一定)
把相同体积的水倒入
底面积不同的杯子。
杯子的底面积与水的高度的变化情况如下表。
杯子的底面积
10 15 20 30 60 …
/cm²
水的高度/cm 30 20 15 10
(2)水的高度是怎样随着杯子底面积的大小变化
而变化?
水的高度随着杯子的底面积的变大而不
断变小,这两种量是相关联的两种量。
5
…
新课讲解
你会算出水的体积吗?
杯子的底面积/cm²
10
15
20
30
60
…
水的高度/cm
30
20
15
10
5
…
水的体积/cm³
300
300
300
300
300
…
高度和底面积的变化有什么规律?
从上往下看,底
面积增加,水的
高度反而减少。
10×30=300
15×20=300
20×15=300
30×10=300
...
从下往上看,底
课堂练习
3. 看一本180页的书,需用的时间和平均每天看的数量如下
表:
时间/天
1
2
3
4
5
数量/页
北师大版小学六年级下册数学《反比例》课件PPT
有600毫升果汁,可平均分成若干杯。请把下表填 完整。
5 6 每杯的果汁量/mL 100 120 果汁总量/mL 600 600
分的杯数/杯 从表中你发现了什么?
4 150 600
3
2
200 300 600 600
1、每杯的果汁量随分的杯数的变化而变化。分的杯 数多,每杯的果汁量就少;分的杯数少,每杯的 果汁量就多。 2、分的杯数和每杯的果汁量的积(果汁总量)一定。
王叔叔要去游长城.不同的交通工具所需时间 如下,请把下表填完整。
速度/(千米/时)
时间/时
10
12 120
40 3
0
80 1.5 120
路程/(千米)
从表中你发现了什么? 1、时间随速度的变化而变化。速度快的交通工具所 需的时间少;速度慢的交通工具所需的时间多。 2、速度和时间的积(路程)一定。
打字所用的时间随打字速度的变化而变化(打字速度快, 所用的时间就少),并且它们的积(总字数)一定,所以 成反比例。
(3)李老师打这份稿件用了24分,你知道她平均1分打多少个字吗?
2400÷24=100(个)
2
3
4
5
虽然宽随长的变化而变化(长增加,宽就减少),但是 长和宽的积不是一定的,所以长方形的周长一定时,长 方形的长和宽不成反比例。
因为看完全书所需天数随平均每天看的页数的变化而变化 (平均每天看的页数多,看完全书所需天数就少),并且 它们的积(总页数)一定,所以成反比例。
60
请把上表补充完整,再回答下列问题。
40
30
(总字数) (1)不同的人在打同一份稿件的过程中,哪个量没有变? (成反比例) (2)打字的速度和所用的时间有什么关系?
小学六年级数学下册反比例课件
2种子的总量一定,每公顷的播种量和播种的公顷数.
因为 每公顷的播种量×播种的公顷数=种子总量一定 所以 每公顷的播种量和播种的公顷数成反比例.
3叔叔从家到工厂,骑自行车的速度和所需的时间. 因为
自行车的速度×所需的时间=路程一定 所以
骑自行车的速度和所需的时间成反比例.
练习九
3
8
15
5
xy=k
你能举出生活中反比 例关系的例子吗
如果总价一定,单 价与数量成反比例 关系。
如果长方形的面积 一定,长与宽成反 比例关系。
做一做
每天运的吨数 300 150 100 75 60 50 运货的天数 1 2 3 4 5 6
1表中有哪两种量它们是不是相关联的量
2写出几组这两种量中相对应的两个数的
10×30=300 15×20=300 2×15=300…… 两种量中相对应的两个数的乘积都是300,
表中的高度和底面积是两种相关联的量, 因为水的体积一定,所以水的高度随着 底面积的变化而变化:
• 底面积增加,高度反而降低, • 底面积减少,高度反而升高, • 高度和底面积的乘积一定,
想一想: 怎样用式子表示底面积、高和体积之间的关系
新课导入
1.一辆汽车行驶的时间和所行路程如下表, 时间(时) 1 2 3 4 5 6 7 8 路程(千米)90 180 270 360 450 540 630 720
两种量是否成正比例为什么
2、成正比例的量有什么特征
⑴两种相关联的量, ⑵一种量变化,另一种量也随着变化, ⑶两种量中相对应的两个数的比值一定,
12.5
25
50
1
1
25
3
1
2
100
六年级下册数学第四单元 反比例优秀PPT 北师大版
六年级下册数学第四单元 反比例优秀PPT 北师大版
10×12=120 40× 3 =120 80×1.5=120
对应的速度和所需时间的积总是一定的:
速度×时间=路程(一定)
六年级下册数学第四单元 反比例优秀PPT 北师大版
六年级下册数学第四单元 反比例优秀PPT 北师大版
有600毫升果汁,可平均分成若干杯。请把下表填完整
六年级下册数学第四单元 反比例优秀PPT 北师大版
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
六年级下册数学第四单元 反比例优秀PPT 北师大版
成反比例
不成反比例
六年级下册数学第四单元 反比例优秀PPT 北师大版
六年级下册数学第四单元 反比例优秀PPT 北师大版
2.运一批货物,每天运的吨数和需要的天数如下表。根据表回答下面的问 题.
每天运的吨数 300 150 100 75 60 50 需要的天数 1 2 3 4 5 6
(1)表中有哪两种量?它们是不是相关联的量? (2)写出几组这两种量中相对应的两个数的积,
速度×时间=路程
(一定)
每杯的果汁量×分的杯数=果汁总量(一定)
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相 对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比 例关系。
六年级下册数学第四单元 反比例优秀PPT 北师大版
六年级下册数学第四单元 反比例优秀PPT 北师大版
四 正比例与反比例
反比例(1)
北师大版 六年级下册
新课导入
用x、y表示长方形相邻两边的边长,表1是面积为24cm2的长方形相邻两边 边长的变化关系,表2是周长为24cm的长方形相邻两边边长的变化关系。请 把表格填写完整,并说说你分别发现了什么?
正比例的意义正比例和反比例PPT课件
时间
答:生产零件的数量和时间成正比例,因为它们的比值是一定的。
做同一种服装, 做的套数和用布的米数如下表:
服装数量/套 1
2
3
4
5
…
用数量/米 2.2
4.4 6.6
8.8
11
…
做的套数和用布的米数成正比例吗?为什么?
做的套数和用布的米数成正比例吗?为什么?
4.4 << 2.2 2
6.6 << 2.2 3
(2)写出几组相对应的总价和数量的比,并比较比值的大小。
0.4 << 0.4 1
1.6 << 0.4 4
0.8 << 0.4 2 2 << 0.4 5
1.2 << 0.4 3
2.4 << 0.4 6
…… 比值相等
购买一种铅笔的数量和总价如下表:
数量/支 1
2
3
4
5
总价/元 0.4
0.8
1.2
1.6
时间/时 1
2
3
4
5
6
7
……
路程/千米 80
160
240
320
400
480
560
80÷1 = 80 160÷2= 80 ……行驶的速度不变。
观察表中的数据,你有什么发现?
你能写出几组相对应的路程和时间的比,并求出比值吗?
80 << 80 1
160 << 80 2
240 << 80 3
320 << 80 4
8.8 << 2.2 4
11 << 2.2 5
答:生产零件的数量和时间成正比例,因为它们的比值是一定的。
做同一种服装, 做的套数和用布的米数如下表:
服装数量/套 1
2
3
4
5
…
用数量/米 2.2
4.4 6.6
8.8
11
…
做的套数和用布的米数成正比例吗?为什么?
做的套数和用布的米数成正比例吗?为什么?
4.4 << 2.2 2
6.6 << 2.2 3
(2)写出几组相对应的总价和数量的比,并比较比值的大小。
0.4 << 0.4 1
1.6 << 0.4 4
0.8 << 0.4 2 2 << 0.4 5
1.2 << 0.4 3
2.4 << 0.4 6
…… 比值相等
购买一种铅笔的数量和总价如下表:
数量/支 1
2
3
4
5
总价/元 0.4
0.8
1.2
1.6
时间/时 1
2
3
4
5
6
7
……
路程/千米 80
160
240
320
400
480
560
80÷1 = 80 160÷2= 80 ……行驶的速度不变。
观察表中的数据,你有什么发现?
你能写出几组相对应的路程和时间的比,并求出比值吗?
80 << 80 1
160 << 80 2
240 << 80 3
320 << 80 4
8.8 << 2.2 4
11 << 2.2 5
北师大版六年级下册数学《反比例》正比例与反比例PPT课件(第1课时)
请把上表补充完整,再回答下列问题。
⑴不同的人在打同一份稿件的过程中,哪个量 没有变? 不同的人在打同一份稿件的过程中,总字 数没有变。
⑵打字的速度和所用的时间有什么关系?
打字的速度随打字所用的时间的变化而变 化,并且它们的乘积一定(总字数为2400个),所 以它们成反比例。
⑶李老师打这份稿件用了24分,你知道她平均 每分打多少字吗? 平均1分钟打100个字。
返回作业设计
作业2
思维创新 提升培优 基础巩固
返回作业设计
1.(基础题)想一想,填一填。
(1)从甲城到乙城,不同车辆行驶的速度和所需时
间有如下关系。
速度/(千米/时) 6 15 20 30 60
时间/时
10 4 3 2 1
由表可知( 速度 )和( 时间 )是两种相关联的
量,( 时间 )随着( 速度 )的变化而变化,它们的
长方形的一条边长增加,相邻的边长减少。
表2 56 7 8
98 76 54 (1)在表2中,有哪几个变量? 长方形的相邻两边边长(即长和宽)这两个变量。
(2)这两个变量之间有什么关系呢?请完成表2。
长方形的一条边长增加,相邻的边长减少。
通过表1和表2我们发现,问题中的两个长方 形的相邻两边边长有着相同的变化规律。
题数成反比例。
(×)
3.(易错题)我是聪明的小法官。
(4)完成一项工程,工作效率和工作时间成反比例。 (√)
(5)将绳子剪成同样长的小段,剪成的段数和每
段的长度成正比例。
(× )
返回作业2
4.(变式题)a,b,c三种量的关系是 b×c=a。(a,b,c非零)
(1)如果a一定,那么b,c成( 反 )比例关系。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤的总量一定,每天的烧 煤量和能够烧的天数。
绿色圃中小学教育网
判断下面每题中的两种量是不是成反比例,并说明理由 。
铺地面积一定,方砖 边长与所需块数。
绿色圃中小学教育网
今天,我们 收获了:
绿色圃中小学教育网
有600毫升果汁,可平均分成若干杯。请把下表填完整
分的杯数/杯
6
5
4
3
2
…
每杯的果汁量/ml 100 120 15 200 300 …
(3)它们的关系是什么? 每杯的果汁量和分的杯数的积是一定的
每杯的果汁量× 分的杯数= 果汁总量(一定)
绿色圃中小学教育网
绿色圃中小学教育网
10×12=120
40×3=120 80×1.5=120
对应的速度和所需时间的积总是一定的:
速度×时间=路程 (一定)
绿色圃中小学教育网
有600毫升果汁,可平均分成若干杯。请把下表填完整 分的杯数/杯
速度×时间=路程
(一定)
每杯的果汁量× 分的杯数= 果汁总量(一定)
两种相关联的量,一种量变化,另一 种量也随着变化,如果这两种量中相对 应的两个数的积一定,这两种量就叫做 成反比例的量,它们的关系叫做反比例 关系。
绿色圃中小学教育网
判定方法:
判定两个量是不是成反比例,主
要是看它们的积是不是一定的。
绿色圃中小学教育网
判断下面每题中的两种量是不是成反比例,并说明理由 。
张伯伯骑自行车从家到县城, 骑自行车的速度和所需的时间。
绿色圃中小学教育网
判断下面每题中的两种量是不是成反比例,并说明理由 。
6
5
4
3
2
…
每杯的果汁量/ml 100 120 150 200 300 …
(1)表中有哪两种量? 表中有每杯的果汁量和分的杯数两种量 (2)分的杯数是怎样随着每杯的果汁量变化的? 每杯的果汁量扩大,分的杯数反而缩小; 每杯的果汁量缩小,分的杯数反而扩大;
绿色圃中小学教育网
反比例
绿色圃中小学教育网
说一说正比例的两个量的变化情况。
• 1、两个相关联的量。 • 2、一个量增加,另一个量也随着增加,一个量减少,另一 个量也随着减少。 • 3、两个量的比值相同。
绿色圃中小学教育网
你能行!
教学目标
自行车 公共汽车 小汽车
速度/千米
时间/时
10 12
40
3
80 1.5
… …
绿色圃中小学教育网
你能行!
速度扩大, 所需时间缩 小。
速度是10,时间是12;
速度是40,时间是3;
速度缩小, 所需时间扩 大。
速度是80,时间是1.5;
速度和所需时间是两种相关联的量,所需时 间是随着速度的变化而变化的。
1. 理解反比例的意义,掌握成反比例的量 的变化规律及其特征,会判断两种量成 不成反比例关系。 2. 掌握和判断两种相关联的量成不成反比 例的方法,进一步培养同学们的观察、 分析和判断推理的能力。
绿色圃中小学教育网
你能行!
王叔叔要去游长城,不同的交通工具所需时间如 下,请把表填完整。
生产电视机的总台数一定,每天 生产的台数和所用的天数。
绿色圃中小学教育网
判断下面每题中的两种量是不是成反比例,并说明理由 。
长方形的面积一定, 它的长和宽。
绿色圃中小学教育网
判断下面每题中的两种量是不是成反比例,并说明理由 。