精选-大学物理II练习册答案16
大学物理(二)练习册答案
1 大学物理(二)练习册参考解答第12章真空中的静电场一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B),二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aaò×==00d /(U 0=0). (2). ()042e /q q+,q 1、q 2、q 3、q 4 ;(3). 0,l / (2e 0);(4). s R / (2e 0) ;(5). 0 ;(6). ÷÷øöççèæ-p 00114r r qe ;(7). -2³103 V ;(8). ÷÷øöççèæ-p a br r q q 11400e (9). 0,pE sin a ;(10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为l =q / L ,在x 处取一电荷元d q = l d x = q d x / L ,它在P 点的场强:()204d d x d L qE -+p =e ()204d x d L L xq -+p =e 总场强为ò+p =Lx d L x Lq E 020)(d 4-e ()d L d q +p =04e 方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在q 处取微小电荷d q = l d l = 2Q d q / p 它在O 处产生场强Ldq P +Q-QROxyPLdd qx (L+d -x ) d ExOq e e d 24d d 20220RQRq E p =p =按q 角变化,将d E 分解成二个分量:分解成二个分量:q q e q d sin 2sin d d 202RQE E x p ==q q e q d cos 2cos d d 202RQE E y p -=-=对各分量分别积分,积分时考虑到一半是负电荷对各分量分别积分,积分时考虑到一半是负电荷úûùêëé-p =òòpp p q q q q e 2/2/0202d sin d sin 2R QE x =0 2022/2/0202d cos d cos 2R Q R QE y e q q q q e pp p p -=úûùêëé-p -=òò所以所以j R Q j E i E E y x202e p -=+=3. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为l ,试求轴线上一点的电场强度.,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为荷线密度为q l l l d d d p=p =l R取q 位置处的一条,它在轴线上一点产生的场强为位置处的一条,它在轴线上一点产生的场强为q e l e l d 22d d 020RR E p =p =如图所示. 它在x 、y 轴上的二个分量为:轴上的二个分量为:d E x =d E sin q , d E y =-d E cos q 对各分量分别积分对各分量分别积分 R R E x 02002d sin 2e lq q e l pp =p =ò 0d c o s 202=p -=òp q q e lRE y场强场强 i Rj E i E E y x02e lp =+=4. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;体密度;(2) 假设地表面内电场强度为零,假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0e =8.85³10-12 C 2²N -1²m -2) d qR Oxyqd qqq d E y y d l d q R q O d E xx d EOR’O'解:(1) 设电荷的平均体密度为r ,取圆柱形高斯面如图(1)(侧面垂直底面,底面D S 平行地面)上下底面处的上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:,则通过高斯面的电场强度通量为:òòE²S d =E 2D S -E 1D S =(E 2-E 1) D S 高斯面S 包围的电荷∑q i =h D S r由高斯定理(E 2-E 1) D S =h D S r /e∴ () E Eh121-=er =4.43³10-13 C/m 3(2) 设地面面电荷密度为s .由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理由高斯定理òòE ²S d =åi 01q e-E D S =SD se1∴ s=-e 0 E =-8.9³10-10 C/m 35. 一半径为R 的带电球体,其电荷体密度分布为的带电球体,其电荷体密度分布为r =Ar (r ≤R ) , r =0 (r >R ), A 为一常量.试求球体内外的场强分布.为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为的薄球壳,该壳内所包含的电荷为 r r Ar V q d 4d d 2p ×==r在半径为r 的球面内包含的总电荷为的球面内包含的总电荷为 403d 4Ar r Ar dV q rV p =p ==òòr (r ≤R) 以该球面为高斯面,按高斯定理有以该球面为高斯面,按高斯定理有 0421/4e Ar r E p =p ×得到得到 ()0214/e ArE =, (r ≤R ) 方向沿径向,A >0时向外, A <0时向里.时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有的同心高斯球面,按高斯定理有0422/4e AR r E p =p ×得到得到 ()20424/rAR E e =, (r >R ) 方向沿径向,A >0时向外,A <0时向里.时向里.6. 如图所示,一厚为b 的“无限大”带电平板的“无限大”带电平板 , 其电荷体密度分布为r =kx (0≤x ≤b ),式中,式中k 为一正的常量.求:为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;处的电场强度大小;(2) 平板内任一点P 处的电场强度;处的电场强度; (3) 场强为零的点在何处?场强为零的点在何处?解:解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.,如图所示.E(2)xbP 1 P 2Px OSE 2D SE 1(1) h按高斯定理åò=×0e /d q S E S ,即,即 020002d d 12e e r e kSbx x kSxS SEb b ===òò得到得到 E = k b kb 2 / (4e 0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ¢,如图所示.按高斯定理有定理有()022ee k S bx d x kSSE Ex==+¢ò得到得到 ÷÷øöççèæ-=¢22220b x k E e (0≤x ≤b ) (3) E ¢=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为s .如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为s 的大平面和面密度为-s 的圆盘叠加的的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为处产生的场强为 i xx E012e σ=圆盘在该处的场强为圆盘在该处的场强为i x R x x E÷÷øöççèæ+--=2202112e σ ∴ i xR xE E E 220212+=+=e σ 该点电势为该点电势为()22222d 2xRR xR xx U x+-=+=òe se s8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为r =Ar (r ≤R ),式中A 为常量.试求:求:(1) 圆柱体内、外各点场强大小分布;圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:面.则穿过该柱面的电场强度通量为:xS P SE ESSEd xb E ¢sOROxPòp =×SrhE S E2d 为求高斯面内的电荷,r <R 时,取一半径为r ¢,厚d r ¢、高h 的圆筒,其电荷为的圆筒,其电荷为r r Ah V ¢¢p =d 2d 2r则包围在高斯面内的总电荷为则包围在高斯面内的总电荷为3/2d 2d 32Ahrr r Ah V rVp =¢¢p =òòr由高斯定理得由高斯定理得 ()033/22e Ahr rhE p =p 解出解出 ()023/e Ar E = (r ≤R ) r >R 时,包围在高斯面内总电荷为:时,包围在高斯面内总电荷为:3/2d 2d 32AhRrrAh VRVp=¢¢p=òòr由高斯定理由高斯定理 ()033/22e A h R r h E p =p 解出解出 ()r AR E 033/e = (r >R ) (2) 计算电势分布计算电势分布r ≤R 时 òòò×+==lRRrlrrr AR r r A r E U d 3d 3d 0320e e()Rl AR rR A ln 3903330e e +-=r >R 时 rl AR rr AR rE Ulrl rln3d 3d 033e e =×==òò9.一真空二极管,其主要构件是一个半径R 1=5³10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 300 VV ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19 C) 解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为l .按高斯定理有.按高斯定理有 2p rE = l / e 0 得到得到 E = l / (2p e 0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差方向沿半径指向轴线.两极之间电势差òòp -=×=-21d 2d 0R R BAB A rr r E U U el120ln 2R R elp -=得到得到()120/ln 2R R UUAB-=p e l, 所以所以 ()rR R UUE AB1/ln 12×-=在阴极表面处电子受电场力的大小为在阴极表面处电子受电场力的大小为 ()()11211/c R RR UUeReE F AB×-===4.37³10-14 N 方向沿半径指向阳极.方向沿半径指向阳极.RrhABR 2 R 1四 研讨题1. 真空中点电荷q 的静电场场强大小为的静电场场强大小为 241rq E pe=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?何解释?参考解答:参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而同)而路径相等.因而d d d ¹×¢-×=×òòòc ba d l E l E l E 按静电场环路定理应有0d =×òl E , 此场不满足静电场环路定理,所以不可能是静电场.此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?能否求出该点的场强?为什么?参考解答:参考解答:由电势的定义:由电势的定义: ò×=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
大学物理(二)课程总复习题及参考解答(2020年8月整理).pdf
大学物理(二)B 课程总复习题及参考解答1. 若()f v 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则2121()d 2⎰v v v v v m Nf 的物理意义是( )。
A . 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之差B . 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之和C . 速率处在速率间隔1~2v v 之内的分子平动动能之和D . 速率处在速率间隔1~2v v 之内的分子的平均平动动能2. 在一容积不变的容器中贮有一定量的理想气体,温度为0T 时,气体分子的平均速率为0v ,平均碰撞频率为0Z ,平均自由程为0λ,当气体温度升高到04T 时,其分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为( )。
A . v =40v ,Z =40Z ,λ=40λB . v =20v ,Z =20Z ,λ=0λC . v =20v ,Z =20Z ,λ= 40λD . v =20v ,Z =20Z ,λ=0λ3. “气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功”对此结论,有如下几种评论中正确的是( )。
A . 不违反热力学第一定律,但违反热力学第二定律B . 不违反热力学第二定律,但违反热力学第一定律C . 不违反热力学第一定律,也不违反热力学第二定律D . 既违反热力学第一定律,也违反热力学第二定律4. 设有以下一些过程:(1)液体在等温下汽化;(2)理想气体在定体下降温;(3)两种不同气体在等温下互相混合;(4)理想气体在等温下压缩;(5)理想气体绝热自由膨胀。
在这些过程中,使系统的熵增加的过程是( )。
A . (1)、(2)、(3)B . (1)、(3)、(5)C . (3)、(4)、(5)D . (2)、(3)、(4)5. 热力学第二定律指出了热力学过程进行的方向性和条件,下列表述中正确的是( )。
A . 功可以全部转化为热量,但热量不能全部转化为功B . 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体C . 不可逆过程就是不能向相反方向进行的过程D . 一切自发过程都是不可逆的6. 设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,21/2()v 代表气体分子运动的方均根速率。
大学物理II练习册答案
大学物理练习 十五一.选择题:1.如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2 ,n 2>n 3,1λ为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的位相差为 [ C ](A) )/(2112λπn e n (B) πλπ+)/(4121n e n (C) πλπ+)/(4112n e n (D) )/(4112λπn e n解: n 1<n 2 ,n 2>n 3 有半波损失.2.在双缝干涉实验中,屏幕E 上的P 点处是明条纹。
若将缝S 2盖住,并在S 1S 2连线的垂直平分面处放一反射镜M ,如图所示,则此时 (A) P 点处仍为明条纹。
(B) P 点处为暗条纹。
(C) 不能确定P 点处是明条纹还是暗条纹。
(D) 无干涉条纹。
[B ]解: 反射镜M 有半波损失. (屏幕E 上的P 点处原是明条纹。
)3.如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢地向上移动时(只遮住S 2),屏C 上的干涉条纹 (A) 间隔变大,向下移动。
(B) 间隔变小,向上移动。
(C) 间隔不变,向下移动。
(D) 间隔不变,向上移动.。
[C ]解:当劈尖b 缓慢地向上移动时,改n 13λ1S屏λ4.如图,用单色光垂直照射在观察牛顿环的装置上。
当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹 [B ](A) 向右平移. (B) 向中心收缩. (C) 向外扩张. (D) 静止不动. (E) 向左平移.解: 当平凸透镜垂直向上缓慢平移,薄膜厚增加. 环状干涉条纹向中心收缩.5. 在迈克尔逊干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 [ D ] (A) 2λ (B) ()n 2λ (C) n λ (D) )1(2-n λ解: λ=-=-=∆d n d nd )1(2226.如图所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。
大物2练习册答案22页PPT
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
大学物理2课后习题答案.docx
解:回路磁通=BS = Bn r 2感应电动势大小:£— = — (B TI r 2) = B2n r — = 0A0 V At dr dr10-2^-Bcosa2同理,半圆形ddc 法向为7,则0”2鸟与亍夹角和另与7夹角相等,a = 45°①和=Bn R 2 cos a10-6解:0/z? =BS = 5—cos(^ + 久)叫一加&sin (血+久)dr _2Bit r~O) Bn r~2 _ 2 2 2Bf2n f =兀 2『BfR R 解:取半圆形"a 法向为Z ,dt — HR? ABcos a —— dt -8.89 xlO'2V方向与cbadc 相反,即顺时针方向. 题10-6图(1)在Ob 上取尸T 尸+ dr 一小段71 同理•• • r 1 9 % - 3 ca^BAr = 一 Bco, °"」) 18 1 2 1 , £ab - £aO +% =(一花' + 石)广=(2)・・・£ah >0即U a -U h <0 :.b 点电势高.10-11在金属杆上取dr 距左边直导线为r ,则(2) |nj 理, £dc = 碇・d7>0U d -U c v0即 / >U d10-15 设长直电流为/ ,其磁场通过正方形线圈的互感磁通为%蓄绘/警5210-16Q)见题10-16图Q),设长直电流为/,它产生的磁场通过矩形线圈的磁通为丛(丄+丄)d- I 2龙 r 2a-r •:实际上感应电动势方向从g T A , 即从图中从右向左,71 a-b10-14•d5 知, 此吋E 旋以。
为中心沿逆时针方向.(1) V ab 是直径,在〃上处处E 旋与ab m§E 旋• d7 = 0• • £亦也 U Q =Ub心 2n r 2TI 由样旋• M -/z 0/v a + b71 a-b(a (b12-4解:⑴由0 =—,务=£_知,各级条纹向棱边方 2/ 2向移动,条纹间距不变;(2)各级条纹向棱边方向移动,H.条纹变密. 12 5解:工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲・按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹2向棱边移动了一条,故相应的空气隙厚度差为Ae = -,这也是工件缺陷的程度.2 12-6 ・・・ A/ = ^^- = A^^ln2 = 2.8xlO~6 H1 2JI(b)・・•长直电流磁场通过矩形线圈的磁通*2 = 0,见题10-16图(b)・・・ M = O10-17如图10-17图所示,取dS = /dr①二U(如+ ^_炖=做 广「丄)做(In 厶-In 丄) 2〃r 2兀(d-r)2兀 “ r r-d 2K a d-a = ^Il_Xn d-a_7i a:.L / =如1门上£I TI a10-18•・•顺串时厶=厶+厶2 +2M反串联时//二厶+厶2-2M・•・ L_L f = 4MM = --------- = 0.15 H 412-1 y 不变,为波源的振动频率;A,n =— 变小;u = A n v 变小. n 12- 2由心=三久知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零 a级明纹向下移动.12- 3解:不同媒质若光程相等,则其儿何路程定不相冋其所需吋间相同,为&€・因为△中已经将光在介质中的路程折算为光在真空中所走的路程。
湖南大学大学物理二练习册答案
湖南大学物理二练习册 参考解答第12章 真空中的静电场 一、选择题1A ;2C;3C;4A;5C ;6B;7C;8D;9D ;10B; 二、填空题1. 电场强度和电势;0/q F E=;l E q W U aa⎰⋅==00d /U 0=0.2. ()042ε/q q +; q 1、q 2、q 3、q 4 ;3. 0; / 2 0 ;4. R / 2 0 ;5. 0 ;6.⎪⎪⎭⎫ ⎝⎛-π00114r r q ε ;7. -2×103 V ; 8.⎪⎪⎭⎫ ⎝⎛-πb ar r q q 11400ε9. 0;pE sin ; 10. ()()j y x i xy 40122482+-+-- SI ;三、计算题1. 将一“无限长”带电细线弯成图示形状;设电荷均匀分布;电荷线密度为 ;四分之一圆弧AB 的半径为R ;试求圆心O 点的场强.解:在O 点建立坐标系如图所示. 半无限长直线A ∞在O 点产生的场强:()j i RE -π=014ελ半无限长直线B ∞在O 点产生的场强:()j i RE +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i RE +π=034ελ由场强叠加原理;O 点合场强为:()j i RE E E E +π=++=03214ελ2. 一“无限长”圆柱面;其电荷面密度为: = 0cos ;式中 为半径R 与x 轴所夹的角;试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条;每条可视为“无限长”均匀带电直线;其电荷线密度为= 0cos R d ; 它在O 点产生的场强为:它沿x 、y 轴上的二个分量为: d E x =-d E cos =φφεσd s co 220π-OBA∞∞d E y =-d E sin =φφφεσd s co sin 200π 积分:⎰ππ-=2020d s co 2φφεσx E =002εσ ∴ i i E E x02εσ-== 3. 如图所示;一厚为b 的“无限大”带电平板 ; 其电荷体密度分布为 =kx 0≤x ≤b ;式中k 为一正的常量.求:1 平板外两侧任一点P 1和P 2处的电场强度大小;2 平板内任一点P 处的电场强度;3 场强为零的点在何处解: 1 由对称分析知;平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ;如图所示.按高斯定理∑⎰=⋅0ε/d q S E S;即得到 E = kb 2 / 4 0 板外两侧2 过P 点垂直平板作一柱形高斯面;底面为S .设该处场强为E ';如图所示.按高斯定理有()022εεkSb xdx kSS E E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε 0≤x ≤b 3 E '=0;必须是0222=-b x ; 可得2/b x = 4.在靠近地面处有相当强的电场;电场强度E垂直于地面向下;大小约为100 N/C ;在离地面1.5km 高的地方;E也是垂直于地面向下的;大小约为25 N/C .1 假设地面上各处E都是垂直于地面向下;试计算从地面到此高度大气中电荷的平均体密度;2 假设地表面内电场强度为零;且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生;求地面上的电荷面密度.已知:真空介电常量0ε=8.85×10-12 C 2·N -1·m -2∴解:1 设电荷的平均体密度为 ;取圆柱形高斯面如图1侧面垂直底面;S 平行地面上下底面处的场强分别为E 1和E 2;则通过高斯面的电场强度通量为:⎰⎰E·S d =E 2 S -E 1 S =E 2-E 1 S 高斯面S 包围的电荷∑q i =h S由高斯定理E 2-E 1 S =h S / 0() E E h 1201-=ερ=4.43×10-13 C/m 32 设地面面电荷密度为 .由于电荷只分布在地表面;所以电力线终止于地面;取高斯面如图2由高斯定理⎰⎰E·S d =∑i 01q ε -E S =S ∆σε01(1)∴ =- 0 E =-8.9×10-10 C/m 35. 带电细线弯成半径为R 的半圆形;电荷线密度为 = 0sin ;式中 0为一常数; 为半径R 与x 轴所成的夹角;如图所示.试求环心O 处的电场强度. 解:在 处取电荷元;其电荷为d q = d l = 0R sin d 它在O 点产生的场强为R Rq E 00204d sin 4d d εφφλεπ=π=在x 、y 轴上的二个分量d E x =-d E cos ; d E y =-d E sin 对各分量分别求和⎰ππ=000d cos sin 4φφφελRE x =0 ∴ j Rj E i E E y x008ελ-=+= 6. 一半径为R 的带电球体;其电荷体密度分布为4πRqr=ρ r ≤R q 为一正的常量 = 0 r >R试求:1 带电球体的总电荷;2 球内、外各点的电场强度;3 球内、外各点的电势. 解:1 在球内取半径为r 、厚为d r 的薄球壳;该壳内所包含的电荷为 d q = d V = qr 4 r 2d r / R 4 = 4qr 3d r/R 4 则球体所带的总电荷为 ()q r r R q V Q r V===⎰⎰34d /4d ρ2 在球内作一半径为r 1的高斯球面;按高斯定理有得 402114Rqr E επ= r 1≤R;1E 方向沿半径向外. 在球体外作半径为r 2的高斯球面;按高斯定理有 0222/4εq E r =π得 22024r qE επ= r 2 >R ;2E 方向沿半径向外.3 球内电势 球外电势7. 一“无限大”平面;中部有一半径为R 的圆孔;设平面上均匀带电;电荷面密度为 .如图所示;试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势选O 点的电势为零. 解:将题中的电荷分布看作为面密度为 的大平面和面密度为- 的圆盘叠加的 结果.选x 轴垂直于平面;坐标原点O在圆盘中心;大平面在x 处产生的场强为ixx E 012εσ=圆盘在该处的场强为i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i x R x E E E 220212+=+=εσ该点电势为8.一真空二极管;其主要构件是一个半径R 1=5×10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5×10-3 m 的同轴圆筒形阳极B ;如图所示.阳极电势比阴极高300 V;忽略边缘效应. 求电子刚从阴极射出时所受的电场力.基本电荷e =1.6×10-19 C解:与阴极同轴作半径为r R 1<r <R 2 的单位长度的圆柱形高斯面;设阴极上电荷线密度为 .按高斯定理有 2 rE = / 0得到 E = / 2 0r R 1<r <R 2 方向沿半径指向轴线.两极之间电势差 得到()120/ln 2R R U U A B -=πελ; 所以 ()rR R U U E A B 1/ln 12⋅-= 在阴极表面处电子受电场力的大小为=4.37×10-14 N 方向沿半径指向阳极. 四 研讨题1. 真空中点电荷q 的静电场场强大小为式中r 为场点离点电荷的距离.当r →0时;E →∞;这一推论显然是没有物理意义的;应如何解释 参考解答:点电荷的场强公式仅适用于点电荷;当r →0时;任何带电体都不能视为点电荷;所以点电荷场强公式已不适用.若仍用此式求场强E ;其结论必然是错误的.当r →0时;需要具体考虑带电体的大小和电荷分布;这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场. 参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等电力线疏密程度不同而路径相等.因而按静电场环路定理应有0d =⋅⎰l E;此场不满足静电场环路定理;所以不可能是静电场.3. 如果只知道电场中某点的场强;能否求出该点的电势 如果只知道电场中某点的电势;能否求出该点的场强 为什么参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强;所以;如果只知道电场中某点的场强;而不知道路径上各点的场强表达式;不能求出该点的电势.. 由场强与电势的关系: U E grad -=场中某点的电场强度是该点电势梯度的负值..如果只知道电场中某点的电势值;而不知道其表达式;就无法求出电势的空间变化率;也就不能求出该点的场强..4. 从工厂的烟囱中冒出的滚滚浓烟中含有大量颗粒状粉尘;它们严重污染了环境;影响到作物的生长和人类的健康..静电除尘是被人们公认的高效可靠的除尘技术..先在实验室内模拟一下管式静电除尘器除尘的全过程;在模拟烟囱内;可以看到;有烟尘从“烟囱”上飘出..加上电源;烟囱上面的烟尘不见了..如果撤去电源;烟尘又出现在我们眼前..请考虑如何计算出实验室管式静电除尘器的工作电压;即当工作电压达到什么数量级时;可以实现良好的静电除尘效果.. 参考解答:先来看看静电除尘装置的结构:在烟囱的轴线上;悬置了一根导线;称之谓电晕线;在烟囱的四周设置了一个金属线圈;我们称它为集电极..直流高压电源的正极接在线圈上;负极接在电晕线上;如右上图所示..可以看出;接通电源以后;集电极与电晕线之间就建立了一个非均匀电场;电晕线周围电场最大.. 改变直流高压电源的电压值;就可以改变电晕线周围的电场强度..当实际电场强度与空气的击穿电场13Vmm 103-⨯相近时空气发生电离;形成大量的正离子和自由电子.. 自由电子随电场向正极飘移;在飘移的过程中和尘埃中的中性分子或颗粒发生碰撞;这些粉尘颗粒吸附电子以后就成了荷电粒子;这样就使原来中性的尘埃带上了负电.. 在电场的作用下;这些带负电的尘埃颗粒继续向正极运动;并最后附着在集电极上.. 集电极可以是金属线圈;也可以是金属圆桶壁当尘埃积聚到一定程度时;通过振动装置;尘埃颗粒就落入灰斗中.. 这种结构也称管式静电除尘器.. 如右中图所示..对管式静电除尘器中的电压设置;我们可以等价于同轴电缆来计算..如右下图所示;r a 与r b 分别表示电晕极与集电极的半径;L 及D 分别表示圆筒高度及直径..一般L 为3-5m;D 为200-300mm;故L >>D ;此时电晕线外的电场可以认为是无限长带电圆柱面的电场.. 设单位长度的圆柱面带电荷为 .. 用静电场高斯定理求出距轴线任意距离r 处点P 的场强为:)1(ˆ20-----=r rE πελ式中rˆ为沿径矢的单位矢量.. 内外两极间电压U 与电场强度E 之关系为⎰----⋅=bar r lE U )2(d;将式1代入式2;积分后得: abr r U ln20πελ-=; 故 a b r r r UE ln =.由于电晕线附近的电场强度最大;使它达到空气电离的最大电场强度m E 时;就可获得高压电源必须具备的电压代入空气的击穿电场;并取一组实测参数如下:m 15.0m,105.0,m V 103216=⨯==⋅⨯=--b a m r r r E ;计算结果V 101.54⨯=U .若施加电压U 低于临界值;则没有击穿电流;实现不了除尘的目的..也就是说;在这样尺寸的除尘器中;通常当电压达到105V 的数量级时;就可以实现良好的静电除尘效果..静电除尘器除了上述的管式结构外还有其它的结构形式;如板式结构等..可以参阅有关资料;仿上计算;也可以自行独立设计一种新型结构的静电除尘器.. 第13章 静电场中的导体和电解质 一、选择题1D;2A;3C;4C;5C;6B;7C;8B;9C;10B 二、填空题 1. 4.55×105 C ;2. x ;y ;z / 0;与导体表面垂直朝外 > 0 或 与导体表面垂直朝里 < 0.3. r ;1; r ;4. 1/ r ;1/ r ;5. ; 0 r ;6.Rq 04επ ;7. P ;-P ;0; 8 1- r / r ; 9. 452; 10. r ; r 三、计算题1.如图所示;一内半径为a 、外半径为b 的金属球壳;带有电荷Q ;在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点;试求:1 球壳内外表面上的电荷.2 球心O 点处;由球壳内表面上电荷产生的电势.3 球心O 点处的总电势.解:1 由静电感应;金属球壳的内表面上有感生电荷-q ;外表面上带电荷q +Q . 2 不论球壳内表面上的感生电荷是如何分布的;因为任一电荷元离O 点的 距离都是a ;所以由这些电荷在O 点产生的电势为3 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点 产生的电势的代数和2. 一圆柱形电容器;外柱的直径为4 cm;内柱的直径可以适当选择;若其间充满各向同性的均匀电介质;该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. 自然对数的底e = 2.7183解:设圆柱形电容器单位长度上带有电荷为 ;则电容器两极板之间的场强分布 为 )2/(r E ελπ=设电容器内外两极板半径分别为r 0;R ;则极板间电压为电介质中场强最大处在内柱面上;当这里场强达到E 0时电容器击穿;这时应有002E r ελπ=;000lnr R E r U = 适当选择r 0的值;可使U 有极大值;即令0)/ln(/d d 0000=-=E r R E r U ;得 e R r /0=;显然有22d d r U < 0;故当 e R r /0= 时电容器可承受最高的电压 e RE U /0max = = 147 kV.3. 如图所示;一圆柱形电容器;内筒半径为R 1;外筒半径为R 2 R 2<2 R 1;其间充有相对介电常量分别为 r 1和 r 2= r 1 / 2的两层各向同性均匀电介质;其界面半径为R .若两种介质的击穿电场强度相同;问:1 当电压升高时;哪层介质先击穿2 该电容器能承受多高的电压解:1 设内、外筒单位长度带电荷为+ 和- .两筒间电位移的大小为 D = / 2 r 在两层介质中的场强大小分别为E 1 = / 2 0 r 1r ; E 2 = / 2 0 r 2r 在两层介质中的场强最大处是各层介质的内表面处;即E 1M = / 2 0 r 1R 1; E 2M = / 2 0 r 2R 可得 E 1M / E 2M = r 2R / r 1R 1 = R / 2R 1已知 R 1<2 R 1; 可见 E 1M <E 2M ;因此外层介质先击穿. 2 当内筒上电量达到 M ;使E 2M =E M 时;即被击穿;M = 2 0 r 2RE M 此时.两筒间电压即最高电压为:4. 一空气平行板电容器;两极板面积均为S ;板间距离为d d 远小于极板线度;在两极板间平行地插入一面积也是S 、厚度为t <d 的金属片;如图所示. 试求: 1 电容C 于多少2 金属片放在两极板间的位置对电容值有无影响解:设极板上分别带电荷+q 和-q ;金属片与A 板距离为d 1;与B 板距离为d 2;金属片与A 板间场强为 )/(01S q E ε=金属板与B 板间场强为 )/(02S q E ε= 金属片内部场强为 0='E 则两极板间的电势差为由此得 )/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关;与d 1、d 2无关;故金属片的安放位置对电容值无影响. 5. 如图所示;一电容器由两个同轴圆筒组成;内筒半径为a ;外筒半径为b ;筒长都是L ;中间充满相对介电常量为 r 的各向同性均匀电介质.内、外筒分别带有等量异号电荷+Q 和-Q .设 b - a << a ;L >> b ;可以忽略边缘效应;求: 1 圆柱形电容器的电容;2 电容器贮存的能量.解:由题给条件 a a b <<-)和b L >>;忽略边缘效应; 应用高斯定理可求出两 筒之间的场强为: )2/(0Lr Q E r εεπ=两筒间的电势差=π=⎰r drL QU bar εε02a b L Q r ln 20εεπ 电容器的电容 )]//[ln()2(/0a b L U Q C r εεπ== 电容器贮存的能量221CU W =)/ln()]4/([02a b L Q r εεπ= 6. 如图所示;一平板电容器;极板面积为S ;两极板之间距离为d ;其间填有两层厚度相同的各向同性均匀电介质;其介电常量分别为 1和 2.当电容器带电荷±Q 时;在维持电荷不变下;将其中介电常量为 1的介质板抽出;试求外力所作的功.解:可将上下两部分看作两个单独的电容器串联;两电容分别为d S C 112ε=;d SC 222ε= 串联后的等效电容为 ()21212εεεε+=d SC带电荷±Q 时;电容器的电场能量为 ()S d Q C Q W 21212242εεεε+== 将 1的介质板抽去后;电容器的能量为 ()S d Q W 202024εεεε+='外力作功等于电势能增加;即 ⎪⎪⎭⎫⎝⎛-=-'=∆=102114εεS d Q W W W A 7. 如图所示;将两极板间距离为d 的平行板电容器垂直地插入到密度为 、相对介电常量为 r 的液体电介质中.如维持两极板之间的电势差U 不变;试求液体上升的高度h . 解:设极板宽度为L ;液体未上升时的电容为 C 0 = 0HL / d 液体上升到h 高度时的电容为在U 不变下;液体上升后极板上增加的电荷为电源作功 ()d hLU QU A r /120-==∆εε液体上升后增加的电能液体上升后增加的重力势能 2221gdh L W ρ=∆因 A = W 1+ W 2;可解出()2201gd U h r ρεε-=思考题1. 无限大均匀带电平面面电荷密度为σ两侧场强为)2/(0εσ=E ;而在静电平衡状态下;导体表面该处表面面电荷密度为σ附近场强为0/εσ=E ;为什么前者比后者小一半参考解答:关键是题目中两个式中的σ不是一回事..下面为了讨论方便;我们把导体表面的面电荷密度改为σ′;其附近的场强则写为./0εσ'=E对于无限大均匀带电平面面电荷密度为σ;两侧场强为)2/(0εσ=E .这里的 σ 是指带电平面单位面积上所带的电荷..对于静电平衡状态下的导体;其表面附近的场强为./0εσ'=E 这里的 σ′是指带电导体表面某处单位面积上所带的电荷..如果无限大均匀带电平面是一个静电平衡状态下的无限大均匀带电导体板;则σ是此导体板的单位面积上包括导体板的两个表面所带的电荷;而σ′仅是导体板的一个表面单位面积上所带的电荷..在空间仅有此导体板即导体板旁没有其他电荷和其他电场的情形下;导体板的表面上电荷分布均匀;且有两表面上的面电荷密度相等..在此情况下两个面电荷密度间的关系为σ =2σ′..这样;题目中两个E 式就统一了..思考题2:由极性分子组成的液态电介质;其相对介电常量在温度升高时是增大还是减小 参考解答:由极性分子组成的电介质极性电介质放在外电场中时;极性分子的固有电矩将沿外电场的方向取向而使电介质极化..由于极性分子还有无规则热运动存在;这种取向不可能完全整齐..当电介质的温度升高时;极性分子的无规则热运动更加剧烈;取向更加不整齐;极化的效果更差..此情形下;电极化强度Vp P i∆=∑ 将会比温度升高前减小..在电介质中的电场E 不太强时;各向同性电介质的P 和E间的关系为E P r )1(0-=εε.很明显;在同样的电场下;当温度升高后;相对介电常量εr 要减小..思考题3:有一上下极板成θ角的非平行板电容器长为a ;宽为b ;其电容如何计算 参考解答:设一平行板电容器是由长为a ;宽为b 的两导体板构成;板间距为d ;则电容为,0dabC ε=若该电容器沿两极板的长度同一方向有dx 的长度增量;则电容为,d )d (0dxa C dx b a C εε+=+=' 在此基础上推广到如图所示的电容器;可以认为是在0C 的基础上;上极板沿与长度方向成θ角度连续增加到b ;下极板沿长度方向连续增加到b cos θ构成;把该电容器看成是由两个电容器并联时;该电容器的电容为 即非平行板电容器的电容;思考题4:为了实时检测纺织品、纸张等材料的厚度待测材料可视作相对电容率为 r 的电介质;通常在生产流水线上设置如图所示的传感装置;其中A 、B 为平板电容器的导体极板;S 为极板面积;d 0为两极板间的距离..试说明检测原理;并推出直接测量电容C 与间接测量厚度d 之间的函数关系..如果要检测钢板等金属材料的厚度;结果又将如何参考解答:设极板带电S q 0σ=;两板电势差:d E d d E U 有电介质无电介质+-=∆)(0 则 )(00d d d sU q C r r -+=∆=εεε 介质的厚度为:CSd C S C d d r rr r r r r )1(1)1(0000---=--=εεεεεεεεε 实时地测量A 、B 间的电容量C ;根据上述关系式就可以间接地测出材料的厚度、通常智能化的仪表可以实时地显示出待测材料的厚度..如果待测材料是金属导体;其A 、B 间等效电容与导体材料的厚度分别为:dd SC -=00ε; CSd d 00ε-=.第14章 稳恒电流的磁场 一、选择题1B;2D;3D;4B;5B;6D;7B;8C;9D;10A 二、填空题1. 最大磁力矩;磁矩 ;2. R 2c ;3. )4/(0a I μ;4.RIπ40μ ;5. 0i ;沿轴线方向朝右. ;6. )2/(210R rI πμ; 0 ;7. 4 ;8.)/(lB mg ;9. aIB ; 10. 正;负. 三 计算题1.一无限长圆柱形铜导体磁导率 0;半径为R ;通有均匀分布的电流I .今取一矩形平面S 长为1 m;宽为2 R ;位置如右图中画斜线部分所示;求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小;由安培环路定 律可得:)(220R r r RIB ≤π=μ因而;穿过导体内画斜线部分平面的磁通 1为 在圆形导体外;与导体中心轴线相距r 处的磁感强度大小为 因而;穿过导体外画斜线部分平面的磁通 2为 穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40Iμ2ln 20π+Iμ2. 横截面为矩形的环形螺线管;圆环内外半径分别为R 1和R 2;芯子材料的磁导率为 ;导线总匝数为N ;绕得很密;若线圈通电流I ;求. 1 芯子中的B 值和芯子截面的磁通量.2 在r < R 1和r > R 2处的B 值.解:1 在环内作半径为r 的圆形回路; 由安培环路定理得NI r B μ=π⋅2; )2/(r NI B π=μ 在r 处取微小截面d S = b d r ; 通过此小截面的磁通量 穿过截面的磁通量2 同样在环外 r < R 1 和r > R 2 作圆形回路; 由于0=∑iI∴ B = 03. 一根很长的圆柱形铜导线均匀载有10 A 电流;在导线内部作一平面S ;S 的一个边是导线的中心轴线;另一边是S 平面与导线表面的交线;如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.真空的磁导率 0 =4 ×10-7 T ·m/A;铜的相对磁导率 r ≈1 解:在距离导线中心轴线为x 与x x d +处;作一个单位长窄条; 其面积为 x S d 1d ⋅=.窄条处的磁感强度 所以通过d S 的磁通量为 x RIxS B r d 2d d 20π==μμΦ通过1m 长的一段S 平面的磁通量为⎰π=Rr x R Ix20d 2μμΦ60104-=π=Ir μμ Wb4. 计算如图所示的平面载流线圈在P 点产生的磁感强度;设线圈中的电流强度为I . 解:如图;CD 、AF 在P 点产生的 B = 0EF DE BC AB B B B B B+++=)sin (sin 4120ββμ-π=aIB AB ; 方向其中 2/1)2/(sin 2==a a β;0sin 1=β∴ a I B AB π=240μ; 同理; aIB BC π=240μ;方向 .同样)28/(0a I B B EF DE π==μ;方向⊙.∴ aI B π=2420μaIπ-240μaIπ=820μ 方向 .5. 如图所示线框;铜线横截面积S = 2.0 mm 2;其中OA 和DO '两段保持水平不动;ABCD 段是边长为a 的正方形的三边;它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中;B的方向竖直向上.已知铜的密度 = 8.9×103 kg/m 3;当铜线中的电流I =10 A 时;导线处于平衡状态;AB 段和CD 段与竖直方向的夹角 =15°.求磁感强度B的大小.解:在平衡的情况下;必须满足线框的重力矩与线框所受的磁力矩平衡对OO '轴而言.重力矩αραρsin sin 2121gSa a a gS a M +⋅=磁力矩 ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M =所以 αρsin 22g Sa αcos 2B Ia =31035.9/tg 2-⨯≈=I g S B αρ T6. 如图两共轴线圈;半径分别为R 1、R 2;电流为I 1、I 2.电流的方向相反;求轴线上相距中点O 为x 处的P 点的磁感强度.解:取x 轴向右;那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向若B > 0;则B 方向为沿x 轴正方向.若B < 0;则B 的方向为沿x 轴负方向.7. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ;沿厚度a 边方向加有均匀外磁场B B 的方向和样品中电流密度方向垂直.实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c=1.0 cm 、I =1.0 mA 、B =3.0×10-1 T;沿b 边两侧的电势差U =6.65 mV;上表面电势高.1 问这半导体是p 型正电荷导电还是n 型负电荷导电2 求载流子浓度n 0 即单位体积内参加导电的带电粒子数.解:1 根椐洛伦兹力公式:若为正电荷导电;则正电荷堆积在上表面;霍耳电场的方向由上指向下;故上表面电势高;可知是p 型半导体..2 由霍耳效应知;在磁场不太强时;霍耳电势差U 与电流强度I ;磁感强度B 成正比;而与样品厚度a 成反比;即:aIB K U = 而 q n K 01= ∴ 根椐题给条件;载流子浓度为: 2001082.2⨯==aqUIB n m -3 四 研讨题1. 将磁场的高斯定理与电场的高斯定理相比;两者有着本质上的区别..从类比的角度可作何联想参考解答:磁场的高斯定理与电场的高斯定理:作为类比;反映自然界中没有与电荷相对应“磁荷”或叫单独的磁极的存在..但是狄拉克1931年在理论上指出;允许有磁单极子的存在;提出:式中q 是电荷、qm 是磁荷..电荷量子化已被实验证明了..然而迄今为止;人们还没有发现可以确定磁单极子存在可重复的直接实验证据..如果实验上找到了磁单极子;那么磁场的高斯定理以至整个电磁理论都将作重大修改..1982年;美国斯坦福大学曾报告;用直径为5cm 的超导线圈放入直径20cm 的超导铅筒;由于迈斯纳效应屏蔽外磁场干扰;只有磁单极子进入才会引起磁通变化..运行151天;记录到一次磁通变化;但此结果未能重复..据查阅科学出版社1994年出版的;由美国引力、宇宙学和宇宙线物理专门小组撰写的90年代物理学有关分册;目前已经用超导线圈;游离探测器和闪烁探测器来寻找磁单极子..在前一种情况;一个磁单极子通过线圈会感应出一个阶跃电流;它能被一个复杂装置探测出来;但这种方法的探测面积受到线圈大小的限制..游离探测器和闪烁探测器能做成大面积的;但对磁单极子不敏感..现在物理学家们仍坚持扩大对磁单极子的研究;建造闪烁体或正比计数器探测器;相应面积至少为1000m 2..并建造较大的;面积为100m 2量级的环状流强探测器;同时加强寻找陷落在陨石或磁铁矿中的磁单极子的工作..2. 当带电粒子由弱磁场区向强磁场区做螺旋运动时;平行于磁场方向的速度分量如何变化动能如何变化 垂直于磁场方向的速度分量如何变化参考解答:当带电粒子由弱磁场区向强磁场区做螺旋运动时;它所受到的磁场力有一个和前进方向相反的分量;这个分量将使平行于磁场方向的速度分量减小;甚至可使此速度分量减小到零;然后使粒子向相反方向运动这就是磁镜的原理..当带电粒子由弱磁场区向强磁场区做螺旋运动时;由于平行于磁场方向的速度分量减小;因而与这个速度分量相关的动能也减小..然而磁力对带电粒子是不做功的;粒子的总动能不会改变;因此;与垂直于磁场方向的速度分量相关的动能在此运动过程中将会增大;垂直于磁场方向的速度分量也相应地增大..3. 电磁流量计是一种场效应型传感器;如图所示:截面矩形的非磁性管;其宽度为d 、高度为h;管内有导电液体自左向右流动; 在垂直液面流动的方向加一指向纸面内的匀强磁场;当磁感应强度为B 时;测得液体上表面的a 与下表面的b 两点间的电势差为U ;求管内导电液体的流量..参考解答:导电液体自左向右在非磁性管道内流动时; 在洛仑兹力作用下; 其中的正离子积累于上表面;负离子积累于下表面; 于是在管道中又形成了从上到下方向的匀强霍尔电场E ;它同匀强磁场B 一起构成了速度选择器..因此在稳定平衡的条件下;对于以速度v 匀速流动的导电液体; 无论是对其中的正离子还是负离子;都有 ∴流速,Bd U =v 液体流量.BUh hd Q ==v 如果截面园形的非磁性管; B -磁感应强度;D -测量管内径;U -流量信号电动势;v -液体平均轴向流速; L 测量电极之间距离..霍尔电势U e(1) v kBL U e = k 无量纲的常数;在圆形管道中;体积流量是:把方程1、2 合并得:液体流量 B U kL D Q ⋅=42π 或者BU K Q =;K 校准系数;通常是靠湿式校准来得到.. 第15章 磁介质的磁化一、选择题1C;2B;3B;4C;5D二、填空题1. -8.88×10-6 ;抗 .2. 铁磁质;顺磁质;抗磁质.3. 7.96×105 A/m; 2.42×102 A/m.4. 各磁畴的磁化方向的指向各不相同;杂乱无章.全部磁畴的磁化方向的指向都转向外磁场方向.5. 矫顽力大;剩磁也大;例如永久磁铁.6. 磁导率大;矫顽力小;磁滞损耗低. 变压器;交流电机的铁芯等.三 计算题1. 一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为 的各向同性均匀非铁磁绝缘材料;如图.传导电流I 沿导线向上流去;由圆筒向下流回;在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.。
大学物理练习册习题及答案
习题及参考答案第2章 质点动力学参考答案一 思考题2-1如图,滑轮绳子质量忽略不计,忽略一切摩擦力,物体A 的质量m A 大于物体B 的质量m B ,在A 、B 运动过程中弹簧秤的读数是(A )()12m m g + (B )()12m m g -(C )12122m m g m m ⎛⎫⎪+⎝⎭ (D )12124m m g m m ⎛⎫⎪+⎝⎭2-2用水平压力F 把一个物体压着靠在竖直的墙面上保持静止,当F 逐渐增大时,物体所受的静摩擦力f(A )恒为零 (B )不为零,但保持不变(C )随成F 正比增大 (D )开始随F 增大,达到某一值后,就保持不变 2-3如图,物体A 、B 的质量分别为M 、m ,两物体间摩擦系数为μ,接触面为竖直面,为使B 不下滑,则需要A 的加速度为(A )a g μ≥ (B )a g μ≥ (C )a g ≥ (D )M ma g M +≥2-4质量分别为m 和M 的滑块A 和B ,叠放在光滑的水平面上,如图,A 、B 间的静摩擦系数为μs ,滑动摩擦系数为μk ,系统原先处于静止状态,今将水平力F 作用于B 上,要使A 、B 间不轰生相对滑动,应有(A )s F mgμ≤ (B )(1)s F m M mgμ≤+(C )()s F m M mg μ≤+(D )s m MF mgM μ+≤AmBBm A 思考题2-1图思考题2-3图 思考题2-4图m(a )(b )Bm mm 21m 21思考题2-7图2-5 在光滑的水平面上,放有两个相互接触的物体A 和B ,质量分别为m 1和m 2,且m 1> m 2。
设有一水平恒力F ,第一次作用在A 上如图(a )所示,第二次作用在B 上如图(b )所示,问在这两次作用中A 与B 之间的作用力哪次大?2-6 图(a )中小球用轻弹簧o 1A 与o 2A 轻绳系住,图(b )中小球用轻绳o'1B 与o'2B 系住,今剪断o 2A 绳和o'2B 绳;试求在刚剪断的瞬时,A 球与B 球的加速度量值和方向。
《大学物理》习题册题目及答案第16单元 机械波
第16单元 机械波(一)学号 姓名 专业、班级 课程班序号一 选择题[ C ]1.在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的 (B) 波源振动的速度与波速相同 (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后 (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前[ A ]2. 一横波沿绳子传播时的波动方程为)104cos(05.0t x y ππ-= (SI),则(A) 其波长为0.5 m (B) 波速为5 m ⋅s -1(C) 波速为25 m ⋅s -1 (D)频率为2 Hz[ C ]3. 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。
设t = T /4时刻的波形如图所示,则该波的表达式为: (A) )/(cos u x t A y -=ω (B) ]2/)/([cos πω+-=u x t A y (C) )/(cos u x t A y +=ω (D) ])/([cos πω++=u x t A y[ D ]4. 一平面简谐波沿x 轴正向传播,t = T/4时的波形曲线如图所示。
若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 (A) 0点的初位相为00=ϕ(B) 1点的初位相为 21πϕ-=(C) 2点的初位相为 πϕ=2(D) 3点的初位相为 23πϕ-=[ D ]5. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能。
(B) 它的势能转换成动能。
(C) 它从相邻的一段质元获得能量其能量逐渐增大。
(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小。
二 填空题1.频率为100Hz 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的相位差为52π. 2. 一简谐波沿x 轴正向传播。
1x 和2x 两点处的振动曲线分别如图(a)和(b)所示。
智慧树答案大学物理II知到课后答案章节测试2022年
第一章1.如图所示,两个同心均匀带电球面,内球面半径为R1、带电量Q1,外球面半径为R2,带电量Q2,则在外球面外面、距离球心为r处的P点的场强大小E为:()答案:2.如图所示,两个同心的均匀带电球面,内球面半径为R1,带电量Q1,外球面半径为R2,带电量Q2。
设无穷远处为电势零点,则在两个球面之间,距离球心为r处的P的点电势为:()答案:3.空间某区域静电场的电场线分布如图、所示,现将电量为-q的点电荷由a点经任意路径移到b点,则在下列说法中,正确的是()答案:电势能Wa<Wb,电场力作负功4.如图所示,A、B两点与O点分别相距5cm和20cm,场源电荷位于O点且Q=10-9C。
若选无限远处为电势零点,则B点的电势VB为()答案:45V5.在点电荷+q的电场中,若取图中P点处电势为零点,则M点的电势为()答案:6.边长为a的正六边形每个顶点处有一个点电荷,取无限远处作为参考点,则O点电势和场强为()答案:电势为零,场强为零7.两个均匀带电的同心球面,半径分别为R1、R2(R1<R2),小球带电Q,大球带电-Q,下列各图中哪一个正确表示了电场的分布:()答案:8.真空中静电场的高斯定理告诉我们答案:穿过高斯面的电场强度通量,仅与面内自然电荷有关9.静电场的环路定理表明静电场是:答案:保守场10.下列几个说法中哪一个是正确的答案:E=1/4πε0•Q/r2er适用于点电荷及非点电荷电场第二章1.如图所示,一个不带电的空腔导体球壳,内半径为R,在腔内离球心的距离为d处(d<R),固定一电量为+q的点电荷,用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O处的电势为:()答案:2.一导体外充满相对电容率为εr的均匀介质,若测得导体表面附近的电场强度为E,则导体表面上的自由电荷密度为σ为()答案:3.一片二氧化钛晶片(εr=173),其面积为1.0 cm2,厚度为0.10 mm。
把平行平板电容器的两极板紧贴在晶片两侧。
大学物理II练习册答案16
大学物理I I练习册答案16-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN大学物理练习 十六一、选择题1.一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图,在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 [A ](A) λ (B)λ/2 (C) 3λ/2 (D) 2λ解: P 是中央亮纹一侧第一个暗纹所在的位置,λθk a C B ==sin (k=1)2.单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为a=4λ的单缝上,对应于衍射角为300的方向,单缝处波阵面可分成的半波带数目为 (A) 2个 (B) 4个 (C) 6个 (D) 8个 [B ]解: 0304sin ===θλλθa k a 可得k=2, 可分成的半波带数目为4个.3.根据惠更斯—菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 (A ) 振动振幅之和。
(B )光强之和。
(B ) 振动振幅之和的平方。
(D )振动的相干叠加。
[D ]解: 所有面积元发出的子波各自传到P 点的振动的相干叠加.4.在如图所示的单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小。
若C屏fD LABλ使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3/4,则屏幕C 上单缝衍射条纹中央明纹的宽度x ∆将变为原来的 (A) 3/4倍。
(B) 2/3倍。
(C) 9/8倍。
(D) 1/2倍。
(E )2倍。
[ D ]解5.在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a 稍稍变宽,同时使单缝沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 [C ](A) 变窄,同时向上移; (B) 变窄,同时向下移; (C) 变窄,不移动;(D) 变宽,同时向上移; (E) 变宽,不移动。
大学物理2课后习题答案.docx
解:回路磁通=BS = Bn r 2感应电动势大小:£— = — (B TI r 2) = B2n r — = 0A0 V At dr dr10-2^-Bcosa2同理,半圆形ddc 法向为7,则0”2鸟与亍夹角和另与7夹角相等,a = 45°①和=Bn R 2 cos a10-6解:0/z? =BS = 5—cos(^ + 久)叫一加&sin (血+久)dr _2Bit r~O) Bn r~2 _ 2 2 2Bf2n f =兀 2『BfR R 解:取半圆形"a 法向为Z ,dt — HR? ABcos a —— dt -8.89 xlO'2V方向与cbadc 相反,即顺时针方向. 题10-6图(1)在Ob 上取尸T 尸+ dr 一小段71 同理•• • r 1 9 % - 3 ca^BAr = 一 Bco, °"」) 18 1 2 1 , £ab - £aO +% =(一花' + 石)广=(2)・・・£ah >0即U a -U h <0 :.b 点电势高.10-11在金属杆上取dr 距左边直导线为r ,则(2) |nj 理, £dc = 碇・d7>0U d -U c v0即 / >U d10-15 设长直电流为/ ,其磁场通过正方形线圈的互感磁通为%蓄绘/警5210-16Q)见题10-16图Q),设长直电流为/,它产生的磁场通过矩形线圈的磁通为丛(丄+丄)d- I 2龙 r 2a-r •:实际上感应电动势方向从g T A , 即从图中从右向左,71 a-b10-14•d5 知, 此吋E 旋以。
为中心沿逆时针方向.(1) V ab 是直径,在〃上处处E 旋与ab m§E 旋• d7 = 0• • £亦也 U Q =Ub心 2n r 2TI 由样旋• M -/z 0/v a + b71 a-b(a (b12-4解:⑴由0 =—,务=£_知,各级条纹向棱边方 2/ 2向移动,条纹间距不变;(2)各级条纹向棱边方向移动,H.条纹变密. 12 5解:工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲・按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹2向棱边移动了一条,故相应的空气隙厚度差为Ae = -,这也是工件缺陷的程度.2 12-6 ・・・ A/ = ^^- = A^^ln2 = 2.8xlO~6 H1 2JI(b)・・•长直电流磁场通过矩形线圈的磁通*2 = 0,见题10-16图(b)・・・ M = O10-17如图10-17图所示,取dS = /dr①二U(如+ ^_炖=做 广「丄)做(In 厶-In 丄) 2〃r 2兀(d-r)2兀 “ r r-d 2K a d-a = ^Il_Xn d-a_7i a:.L / =如1门上£I TI a10-18•・•顺串时厶=厶+厶2 +2M反串联时//二厶+厶2-2M・•・ L_L f = 4MM = --------- = 0.15 H 412-1 y 不变,为波源的振动频率;A,n =— 变小;u = A n v 变小. n 12- 2由心=三久知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零 a级明纹向下移动.12- 3解:不同媒质若光程相等,则其儿何路程定不相冋其所需吋间相同,为&€・因为△中已经将光在介质中的路程折算为光在真空中所走的路程。
大学物理2习题答案
一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。
已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C )(A) eL P π; (B)eL P π4; (C) eLP π2; (D) 0。
2. 在磁感应强度为B 的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。
3.半径为R 的长直圆柱体载流为I , 电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B )(A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202r I B πμ=; (D) 202RI B πμ=。
4.单色光从空气射入水中,下面哪种说法是正确的 ( A )(A) 频率不变,光速变小; (B) 波长不变,频率变大;(C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变;(C) 通过S 面的电通量和P 点的电场强度都不变;(D) 通过S 面的电通量不变,但P 点的电场强度改变。
6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂A C直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动;(B) 干涉条纹间距减小,并向B 方向移动;(C) 干涉条纹间距减小,并向O 方向移动;(D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q 的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E ,其大小和方向为 ( D )(A) E = B ,E 沿z 轴正向; (B) E =v B ,E 沿y 轴正向;(C) E =B ν,E 沿z 轴正向; (D) E =B ν,E 沿z 轴负向。
大学物理第二册习题答案详解
2= -3
答:场强与电势的微分关系是, .场强的大小为电势沿等势面法线方向的变化率,方向为电势降落的方向。场强与电势的积分关系,
因此,
(1)说法不正确.
(2)说法正确.
(3)说法不正确.
(4)说法不正确
(5)说法不正确
(6)说法不正确.
8-5如图所示,在直角三角形ABC的A点处,有点电荷q1=1.8×10-9C,B点处有点电荷q2=-4.8×10-9C,试求C点处的场强.
(1)电通量不变,1=q1/0,高斯面上各点的场强E改变
(2)电通量改变,由1变为2=(q1+q2)/0,高斯面上各点的场强E也变
(3)电通量不变,仍为1.但高斯面上的场强E会变。
(4)电通量变为0,高斯面上的场强E会变.
8-4以下各种说法是否正确,并说明理由.
(1)场强为零的地方,电势一定为零;电势为零的地方,场强也一定为零.
9-6在一个平行板电容器的两极板间,先后分别放入一块电介质板与一块金属板,设两板厚度均为两极板间距离的一半,问它们对电容的影响是否相同?
解:平行插入 厚的金属板,相当于原来电容器极板间距由d减小为 ,则
插入同样厚度的介质板,相当于一个极板间距为 的空气平行板电容器与另一个极板间距为 ,充满介电常量为0r的的电介质的电容器串联,则
答:(1)电容器两极板间距减小时:电荷不变,场强不变,电势差变小,电容变大,电容器储能减少。
(2)电荷增加,场强变大,电势差不变,电容变大,电容器储能增加。
9-4电容分别为C1,C2的两个电容器,将它们并联后用电压U充电与将它们串联后用电压2U充电的两种情况下,哪一种电容器组合储存的电量多?哪一种储存的电能大?
9-7如题9-7图所示,在平行板电容器的一半容积内充入相对介电常数为 的电介质.试分析充电后在有电介质和无电介质的两部分极板上的自由电荷面密度是否相同?如不相同它们的比值等于多少?
大学物理课后习题答案 第十六章
大学物理下习题册八
1、 某黑体在某一温度时,辐射本领为 5.7W/cm2,试求这一辐射本领具有的峰值的 波长λ m?
解:根据斯忒藩定律 E(T) T4 ( 5.67108 J s m2 K3 ) 得
E(T) T4
再由维恩位移定律 Tm b (b 2.898103 m K)
10- 34 3? 108
sin2
90 2
=
0.00742nm
(2)由于光子散射角为 , 由动量守恒: 2
P0 P Pe
Pe P0 P
Pe
P02 P2
h 0
2
h
2
h
1 0
2
1
2
6.62 1034
1
2
0.05
10 1 0
1 0.07456 10
6、一实验用光电管的阴极是铜的(铜的逸出功为 4.47eV)。现以波长 0. 2m 的光照射此 阴极,若要使其不再产生光电流,所需加的截止电压为多大?
解:由爱因斯坦方程
hc
EK
A 及 EK
eU 0 得
U0
1 hc e
A
6.631034 3108 0.2106 1.61019
4.47
m
b T
b 2.898103 2.89 106 m
E(T)
5.7 104
4
5.67 108
2、在天文学中,常用斯特藩—玻尔兹曼定律确定恒星半径。已知某恒星到达地球的每单
位面积上的辐射能为1.2108 W / m2 ,恒星离地球距离为 4.31017 m ,表面温度为 5200
K。若恒星辐射与黑体相似,求恒星的半径。
四川大学大学物理练习册答案16电磁感应一解答
L 0 ln d a a
证:
B
BL
BR
0I 2r
0I
2 d r
r I
d 2a
O
I r
d
d a
BdS
a
0I 2
d a 1 a r
1 ldr d r
0Il ln
d a a
L F 0 ln d a
Il Il
a
旧版电磁感应二 计算题 3
(D) 变大,但与电流不成反比关系.
旧版电磁感应二 选择题 4
电磁感应(一)
第八章
7.将一块铜板垂直于磁场方向放在磁感应强度正在增 大的磁场中时,铜板中出现的涡流(感应电流)将
(A) 加速铜板中磁场的增加.
(B) 减缓铜板中磁场的增加.
(C) 对磁场不起作用.
(D) 使铜板中磁场反向.
B
i
电磁感应(一)
b
(D) 线圈中感应电流方向不确定. x
c
直导线产生的磁场 B 0I 2x
B
0I
2 x
l
l ab
B ds
0I
l a b
1
1 cdx 0cI ln a b ln l a b
la
2 la x l x
2 a
la
向外增加
电磁感应(一)
第八章
3.一导体圆线圈在均匀磁场中运动,能使其产生感 应电流的一种情况是
u×B
ei
(v
B)
dl
L
e AB
d l
uBdx
d
d l
u
d
0I 2x
dx
0 Iu 2
ln
d l d
大学物理习题二
(3)
1 P cos ( r 1)
; 2 P cos 0 ( r 1) 2 r R1 2 r R2
12、厚度为 b 的无限大平板内分布有均匀电荷密度(>0)的自由电荷,在板外两侧 分别充有介电常数为 1、2 的电介质,如图所示。求(1)板内 外的电场分布;(2)板外的 A 点与 B 点分别距左右两板壁为 l, 求电势差 UAB 解:板内存在一平面 E 为零,以此面为原点建立图示坐标,设 d1、d2,d1+d2=b,作高斯面 1、2、3,见图示 板内
C
C1
C 2 C3
C
1
C
C1 (C 2 C3 ) 25F C1 C 2 C3
C
2
C
3
(2)设 AB 两端的电压为 U
Q1 CU 25 10 6 100 2.5 10 3 C
B
U1
Q1 2.5 10 3 50V C1 50 10 6
r R1 U q内 q内 q Q 内 4 0 r 40 R 2 4 0 R 3 U q内 Q R2 r R3 4 0 R 3 q Q 内 r R3 40 r
R1 r R 2
注上式采用带电球壳的电势叠加,也可用 u E d l 获得 2、半径为 R1 和 R2 (R1<R2 )的相互绝缘的两同心导体球壳,现使内球壳带上+q 电量时 求: (1) 外球的电荷与电势;(2) 若把外球接地后再重新绝缘,外球的电势与电荷; (3) 然后把内球壳再接地,这时内球的电荷为多少?这时外球的电势又为多少? 解: (1)
q1 d1 0S
1.0 10 7 4.0 10 3 2.3 10 3 V 8.85 10 12 0.2
大学物理二练习册答案
3. 如图所示,一电容器由两个同轴圆筒组成,内筒半径为 a,外筒半径为 b,筒长都是 L,中间充满相对介电常量为r 的各向同性均匀电介质. 内、 外筒分别带有等量异号电荷+Q 和-Q.设 (b- a) << a,L >> b,可以忽略边缘效应,求: (1) 圆柱形电容器的电容; (2) 电容器贮存的能量.
思考题 3:有一上下极板成 θ 角的非平行板电容器(长为 a ,宽为 b) ,其电 容如何计算?
参考解答: 设 一 平 行 板 电 容 器 是 由 长 为 a , 宽 为 b 的 两 导 体板 构 成 , 板 间 距 为 d , 则 电 容 为
ab , 若该电容器沿两极板的长度同一方向有 d x的长度增 d a (b d x ) a d x 量,则电容为 C C0 , 在此基础上推广到 d d
L b a
解:由题给条件 ( b a) a 和 L b ,忽略边缘效应, 应用高斯定理可求出两 筒之间的场强为: 两筒间的电势差 电容器的电容 电容器贮存的能量
E Q /(2 0 r Lr )
b
U
Q dr Q b ln 2 0 r L r 2 0 r L a a
3
参考解答: 由极性分子组成的电介质(极性电介质)放在外电场中时,极性分子的固有电矩将沿外 电场的方向取向而使电介质极化。 由于极性分子还有无规则热运动存在, 这种取向不可能完 全整齐。 当电介质的温度升高时,极性分子的无规则热运动更加剧烈,取向更加不整齐,极化的 pi 效果更差。此情形下,电极化强度 P 将会比温度升高前减小。 V 在电介质中的电场 E 不太强时,各向同性电介质的 P 和 E 间的关系为 P 0 ( r 1) E . 很明显,在同样的电场下,当温度升高后,相对介电常量 εr 要减小。
大学物理II练习册答案16
大学物理练习 十六一、选择题1.一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图,在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 [A ](A) λ (B)λ/2(C) 3λ/2 (D) 2λ解: P 是中央亮纹一侧第一个暗纹所在的位置2.单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为a=4λ的单缝上,对应于衍射角为300的方向,单缝处波阵面可分成的半波带数目为 (A) 2个 (B) 4个 (C) 6个 (D) 8个 [B ]解:304sin ===θλλθa k a 可得k=2, 可分成的半波带数目为4个.3.根据惠更斯—菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 (A ) 振动振幅之和。
(B )光强之和。
(B ) 振动振幅之和的平方。
(D )振动的相干叠加。
[D ]解: 所有面积元发出的子波各自传到P 点的振动的相干叠加.4.在如图所示的单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小。
若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3/4,则屏幕C 上单缝衍射条纹中央明纹的宽度x ∆将变为原来的 (A) 3/4倍。
(B) 2/3倍。
(C) 9/8倍。
(D) 1/2倍。
(E )2倍。
[ D ]解屏5.在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a 稍稍变宽,同时使单缝沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 [ C ](A) 变窄,同时向上移; (B) 变窄,同时向下移; (C) 变窄,不移动;(D) 变宽,同时向上移; (E) 变宽,不移动。
解:↑a↓∆x6.某元素的特征光谱中含有波长分别为λ1=450nm 和λ2=750nm (1nm=10-9m )的光谱线。
在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是 [D ](A) 2,3,4,5……… (B) 2,5,8,11…….. (C) 2,4,6,8……… (D) 3,6,9,12……..解:2211sin λλθk k d ==6,103,52121====k k k k 当.....)3,2,1( 32==n n k7.设星光的有效波长为55000A ,用一台物镜直径为1.20m 的望远镜观察双星时,能分辨的双星的最小角间隔δθ是 [ D ](A) rad 3102.3-⨯ (B) rad 5104.5-⨯ (C) rad 5108.1-⨯ (D) rad 7106.5-⨯λ解:8.孔径相同的微波望远镜和光学望远镜相比较,前者的分辨本领较小的原因是(A)星体发出的微波能量比可见光能量小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理练习 十六
一、选择题
1.一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图,在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则
BC 的长度为 [A
]
(A) λ (B)λ/2
(C) 3λ/2 (D) 2λ
解: P 是中央亮纹一侧第一个暗纹所在的位置,λθk a C B ==sin (k=1)
2.单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为a=4λ的单缝
上,对应于衍射角为300的方向,单缝处波阵面可分成的半波带数目为 (A) 2个 (B) 4个 (C) 6个 (D) 8个 [ B
]
解: 0
304sin ===θλλθa k a 可得k=2, 可分成的半波带数目为4个.
3.根据惠更斯—菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 (A ) 振动振幅之和。
(B )光强之和。
(B ) 振动振幅之和的平方。
(D )振动的相干叠加。
[D
]
解: 所有面积元发出的子波各自传到P 点的振动的相干叠加.
4.在如图所示的单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小。
若使单缝宽度a 变为原来的
2
3,同时使入射的单色光的波长λ变为原来的3/4,则
屏幕C 上单缝衍射条纹中央明纹的宽度x ∆将变为原来的
(A) 3/4倍。
(B) 2/3倍。
(C) 9/8倍。
(D) 1/2倍。
(E )2倍。
[ D
] 解:a
f
x
λ
2=∆
C
屏
f
D L
A
B
λ
5.在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a 稍稍变宽,同时使单
缝沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 [ C
] (A) 变窄,同时向上移; (B) 变窄,同时向下移; (C) 变窄,不移动;
(D) 变宽,同时向上移; (E) 变宽,不移动。
解
↑a
↓
∆x
6.某元素的特征光谱中含有波长分别为λ1=450nm 和λ2=750nm (1nm=10-9m )的光谱线。
在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是 [D
] (A) 2,3,4,5……… (B) 2,5,8,11…….. (C) 2,4,6,8……… (D) 3,6,9,12……..
解:
2211sin λλθk k d ==
6,103
,521
21====k k
k k 当.....)3,2,1( 32==n n k
7.设星光的有效波长为55000
A ,用一台物镜直径为1.20m 的望远镜观察双星时,能分辨的双星的最小角间隔δθ是 [ D
] (A) rad 3102.3-⨯ (B) rad 5104.5-⨯ (C) rad 5108.1-⨯ (D) rad
7106.5-⨯ λ
解
8.孔径相同的微波望远镜和光学望远镜相比较,前者的分辨本领较小的原因是 (A) 星体发出的微波能量比可见光能量小。
[D
] (B) 微波更易被大气所吸收。
(C) 大气对微波的折射率较小。
(D) 微波波长比可见光波长大。
解:
分辨本领
9.X 射线射到晶体上,对于间隔为d 的平行点阵平面,能产生衍射主极大的最大波长为 [D
] (A) d/4 (B) d/2 (C) d. (D) 2d.
解: λθk d =sin
2
二、填空题:
1.在单缝夫琅和费衍射示意图中,所画出的各条正入射光线间距相等,那么光线1与3在屏幕上P 点相遇时的位相
差为 ,P 点应为 点(填“亮”或“暗”)。
解: π
4 (λ2=∆); 暗
(可分成的半波带数目为4个.)
2.若光栅的光栅常数d 、缝宽a 和入射光波长λ都保持不变,而使其缝数N 增加,则光栅光谱的同级光谱线将变得 。
解:
更窄更亮.
P
3.在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的2倍,则中央
明条纹边缘对应的衍射角=______________________。
6
/π_
4.一束平行单色光垂直入射在光栅上,若光栅的透明缝宽度a 与不透明部分宽
度b 相等,则可能看到的衍射光谱的级次为 。
解:
,...5,3,1,0±±± (因为b a =)
5.汽车两盏前灯相距l ,与观察者相距S = 10 km .夜间人眼瞳孔直径d = 5.0
mm .人眼敏感波长为 = 550 nm (1 nm = 10-9
m),若只考虑人眼的圆孔衍射, 则人眼可分辨出汽车两前灯的最小间距l = __________________m .
解: rad D
4391034.1105/1055022.122
.1---⨯=⨯⨯⨯==λ
δθ
最小间距 m s l 34.11034.110104
3=⨯⨯⨯==-θ
δ 三、计算题:
1.(1)在单缝夫琅和费衍射实验中,垂直入射的光有两种波长,0
14000A =λ,
27600A =λ。
已知单缝宽度为cm a 2100.1-⨯=,透镜焦距f=50cm 。
求两种光第一级衍射明纹中心之间的距离。
(2)若用光栅常数cm d 3100.1-⨯=的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离。
解: 11123
)12(21sin λλϕ=+=k a 22223)12(21sin λλϕ=+=k a
a f f ftg x 23sin 1
111λϕϕ=≈=
a
f f ft
g x 23sin 2
222λϕϕ=≈=
cm a
f
x x x 27.0)(231212=-=-=∆λλ
(2)111sin λλϕ==k d 222sin λλϕ==k d
cm d
f
f t
g tg f x x x 8.1)()sin (sin )(12121212=-=-≈-=-=∆λλϕϕϕϕ
2.波长0
6000A =λ的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为300,且第三级是缺级。
(1)光栅常数d 等于多少? (2)透光缝的宽度a 等于多少?
(3)在选定了上述d 和a 之后,求在屏幕上可能呈现的全部主极大的级次。
解:
(1)由光栅方程得:
m k b a d 67104.230sin 1062sin --⨯=⨯⨯==+=οϕλ (2)由缺级条件知:m d a 6
108.03
-⨯== (3)由光栅方程知可能看到的最大级次为:
4max =≤
λ
d
k ;又由缺级条件知k=3,6,…缺级,
所以实际呈现2,1,0±±=k 级明纹 (4±=k
在2π
±处看不到)。
3.用波长为546.1 nm(1 nm =109 m)的平行单色光垂直照射在一透射光栅上,在分光计上测得第一级光谱线的衍射角为φ=30°.则该光栅每一毫米上有几条刻痕.
解: 由题目得第一级光谱线对应
30,1k θ==代入 光栅方程λθk d =sin ,得光栅常数
9
6
546.110 1.092210sin sin 301/2
k d m λλθ--⨯====⨯光栅每一毫米的刻痕数
3
6
11109161.092210
mm m d --⨯===⨯
4. 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察钠黄光()589nm =λ的光谱线。
(1)当光线垂直入射到光栅上时,能看到的光谱线的最高级数k m 是多少?
(2)当光线以300的入射角(入射线与光栅平面的法线的夹角)斜入射到光
栅上时,能看到的光谱线的最高级数k’m 是多少?(1nm=10-9m)
解:
光栅常数:m cm cm d 6
41021025000
1--⨯=⨯== (1) 由λϕk d =sin 得:
3=∴m k
(2)由λϕθk d =+)sin (sin 得:
5='∴m
k
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。