高中数学复习题_三角函数章节测试题及答案

合集下载

高中数学(三角函数)练习题及答案

高中数学(三角函数)练习题及答案

第一章 三角函数一、选择题 1.已知为第三象限角,则2α所在的象限是(). A .第一或第二象限B .第二或第三象限 C .第一或第三象限D .第二或第四象限 2.若sin θcos θ>0,则θ在(). A .第一、二象限B .第一、三象限 C .第一、四象限D .第二、四象限 3.sin3π4cos 6π5tan ⎪⎭⎫ ⎝⎛3π4-=(). A .-433B .433C .-43D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于(). A .2B .2C .-2D .±2 5.已知sin x +cos x =51(0≤x <π),则tan x 的值等于(). A .-43B .-34C .43D .34 6.已知sin >sin ,那么下列命题成立的是(). A .若,是第一象限角,则cos >cos B .若,是第二象限角,则tan >tan C .若,是第三象限角,则cos >cos D .若,是第四象限角,则tan>tan7.已知集合A ={|=2k π±3π2,k ∈Z },B ={|=4k π±3π2,k ∈Z },C = {γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ). A .A ⊆B ⊆C B .B ⊆A ⊆C C .C ⊆A ⊆B D .B ⊆C ⊆A8.已知cos(+)=1,sin =31,则sin的值是().A .31B .-31C .322D .-3229.在(0,2π),使sin x >cos x 成立的x 取值围为(). A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫ ⎝⎛4π5 ,πB .⎪⎭⎫⎝⎛π ,4πC .⎪⎭⎫ ⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫ ⎝⎛23π ,4π510.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是(). A .y =sin ⎪⎭⎫ ⎝⎛3π - 2x ,x ∈R B .y =sin ⎪⎭⎫ ⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈RD .y =sin ⎪⎭⎫ ⎝⎛32π + 2x ,x ∈R二、填空题11.函数f (x )=sin 2x +3tan x 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是.12.已知sin =552,2π≤≤π,则tan =. 13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫⎝⎛α - 2π=.14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫ ⎝⎛6π + x ω的图象重合,则ω的最小值为.15.已知函数f (x )=21(sin x +cos x )-21|sin x -cos x |,则f (x )的值域是. 16.关于函数f (x )=4sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈R ,有下列命题:①函数 y = f (x )的表达式可改写为y =4cos ⎪⎭⎫ ⎝⎛6π - 2x ;②函数 y =f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-6π,0)对称; ④函数y =f (x )的图象关于直线x =-6π对称. 其中正确的是______________. 三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ;(2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xax sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2x +k (cos x -1)的最小值.参考答案一、选择题 1.D解析:2k π+π<<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z .2.B解析:∵sin θcos θ>0,∴sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限.3.A解析:原式=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin =-433. 4.D解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin cos =21. (sin θ+cos θ)2=1+2sin θcos θ=2.sin +cos =±2.5.B解析:由得25cos 2x -5cos x -12=0. 解得cos x =54或-53. 又0≤x <π,∴sin x >0. 若cos x =54,则sin x +cos x ≠51,∴cos x =-53,sin x =54,∴tan x =-34.6.D 解析:若,是第四象限角,且sin >sin ,如图,利用单位圆中的三角函数线确定,的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合.8.B解析:∵cos(+)=1, ∴+=2k π,k ∈Z . ∴=2k π-.∴sin =sin(2k π-)=sin(-)=-sin =-31.9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.⎩⎨⎧1=cos +sin 51=cos +sin 22x x x x (第6题`)10.C解析:第一步得到函数y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象.二、填空题 11.415. 解析:f (x )=sin 2 x +3tan x 在⎥⎦⎤⎢⎣⎡3π4π ,上是增函数,f (x )≤sin 23π+3tan 3π=415. 12.-2. 解析:由sin =552,2π≤≤π⇒cos =-55,所以tan =-2.13.53. 解析:sin ⎪⎭⎫ ⎝⎛α + 2π=53,即cos =53,∴sin ⎪⎭⎫⎝⎛α - 2π=cos =53.14.21.解析:函数y =tan ⎪⎭⎫ ⎝⎛4π+x ω(ω>0)的图象向右平移6π个单位长度后得到函数y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ), ω=6k +21,又ω>0,所以当k =0时,ωmin =21. 15.⎥⎦⎤⎢⎣⎡221 ,-. 解析:f (x )=21(sin x +cos x )-21|sin x -cos x |=⎩⎨⎧)<()(x x x x x x cos sinsin cos ≥sincos 即f (x )等价于min{sin x ,cos x },如图可知,f (x )max =f ⎪⎭⎫ ⎝⎛4π=22,f (x )min =f (π) =-1.16.①③.解析:①f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx=4cos ⎪⎭⎫ ⎝⎛+-6π2x=4cos ⎪⎭⎫ ⎝⎛-6π2x .②T =22π=π,最小正周期为π.③令 2x +3π=k π,则当 k =0时,x =-6π, ∴ 函数f (x )关于点⎪⎭⎫ ⎝⎛0 6π-,对称. ④令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾. ∴ ①③正确. 三、解答题17.{x |2k π<x ≤2k π+4π,k ∈Z }. 解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2①>0 sin x x先在[0,2π)考虑x 的取值,在单位圆中,做出三角函数线. 由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π]. 二者的公共部分为x ∈⎥⎦⎤⎝⎛4π0,.所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }. 18.(1)-1;(2)±αcos 2. (第15题)(第17题)解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1.(2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=α cos 2.②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sin k k k k αααα=-αcos 2.19.对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ). 解析:∵y =sin x 的对称中心是(k π,0),k ∈Z ,∴令2x -6π=k π,得x =2πk +12π. ∴所求的对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ,k ∈Z .又y =sin x 的图象的对称轴是x =k π+2π, ∴令2x -6π=k π+2π,得x =2πk +3π. ∴所求的对称轴方程为x =2πk +3π(k ∈Z ). 20.(1)有最小值无最大值,且最小值为1+a ;(2)0. 解析:(1) f (x )=x a x sin sin +=1+xa sin ,由0<x <π,得0<sin x ≤1,又a >0,所以当sin x =1时,f (x )取最小值1+a ;此函数没有最大值.(2)∵-1≤cos x ≤1,k <0, ∴k (cos x -1)≥0, 又 sin 2x ≥0,∴当 cos x =1,即x =2k (k ∈Z)时,f (x )=sin 2x +k (cos x -1)有最小值f (x )min =0.。

2023-2024学年高考数学三角函数专项练习题(附答案)

2023-2024学年高考数学三角函数专项练习题(附答案)

2023-2024学年高考数学三角函数小专题一、单选题1.函数的最小正周期为( )()2sin 222sin 4f x x xπ⎛⎫=-- ⎪⎝⎭A .B .C .D .π2ππ42π2.若,则等于( )sin tan 0x x ⋅<1cos2x +A .B .C .D .2cos x 2cos x -2sin x 2sin x-3.已知,均为锐角,则( )251cos ,tan()53ααβ=-=-,αββ=A .B .C .D .5π12π3π4π64.将函数的图象平移后所得的图象对应的函数为,则进行的平移πsin 23y x ⎛⎫=+ ⎪⎝⎭cos 2y x =是( )A .向左平移个单位B .向右平移个单位C .向右平移个单位π12π6π12D .向左平移个单位π65.若,则( )1cos 63πα⎛⎫-=⎪⎝⎭sin 26πα⎛⎫+= ⎪⎝⎭A .B .C .D .42979429-79-6.设函数,其图象的一条对称轴在区间内,且的()3sin cos (0)f x x x ωωω=+>ππ,63⎡⎤⎢⎥⎣⎦()f x 最小正周期大于,则的取值范围为( )πωA .B .C .D .1,12⎛⎫⎪⎝⎭()0,2[)1,2()1,27.已知,且,求( )π4sin 45α⎛⎫+= ⎪⎝⎭π3π44<<αcos α=A .B .C .D .2106222610A .函数的图像可由()f xB .函数在区间()f xC .函数的图像关于直线()f xC .D .o o2sin15sin 75o oo otan 30tan151tan 30tan15+-11.已知函数的图像关于直线对称,函数关于点对称,则下列说(21)f x +1x =(1)f x +(1,0)法不正确的是( )A .B .4为的周期(1)(1)f x f x -=+()f x C .D .(1)0f =()32f x f x ⎛⎫=- ⎪⎝⎭12.已知函数的图象关于直线对称,则( )ππ()sin(3)()22f x x ϕϕ=+-<<π4x =A .函数为奇函数π()12f x +B .函数在上单调递增()f x ππ[,]126C .若,则的最小值为12|()()|2f x f x -=12||x x -2π3D .将函数图象上所有点的横坐标缩小为原来的,得到函数的图象()f x 13sin()y x ϕ=+三、填空题13.计算:=.tan 73tan1933tan 73tan13︒︒︒︒--14.已知,,则 .1sin cos 5αα+=-()0,πα∈tan α=15.已知函数的最小正周期为,则.π()2sin()(0)3f x x ωω=+>4πω=16.已知函数,则函数的对称轴的方程为22()2cos 43sin cos 2sin f x x x x x =+-()f x .答案:1.B【分析】把函数化成的形式,利用公式求函数的最小正周期.()sin y A x ωϕ=+2πT ω=【详解】因为()2sin 222sin 4f x x x π⎛⎫=-- ⎪⎝⎭()22sin 2cos 221cos 222x x x =---.22sin 2cos 2222x x =+-πsin 224x ⎛⎫=+- ⎪⎝⎭所以,函数的最小正周期为.2ππ2T ==故选:B 2.B【分析】先由已知条件判断的符号,然后对配凑升幂公式即可.cos x 1cos2x +【详解】由题知:2sin sin tan 00cos 0cos xx x x x ⋅<⇒<⇒<.21cos21cos222cos 2cos 2cos 2xx x x x++=⨯===-故选:B.3.C【分析】由两角差的正切公式求解即可.【详解】因为,,,π02α<<25cos 5α=25sin 1cos 5αα=-=,sin 1tan cos 2ααα==,()()()11tan tan 23tan tan 1111tan tan 123ααββααβααβ⎛⎫-- ⎪--⎝⎭⎡⎤=--===⎣⎦+-⎛⎫+⋅- ⎪⎝⎭所以.π4β=故选:C.4.A【分析】分析各选项平移后的函数解析式,由此作出判断即可.【详解】对于A :向左平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π12,符合;πππsin 2sin 2cos 21232y x x x⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于B :向右平移个单位可得到,不πsin 23y x ⎛⎫=+ ⎪⎝⎭π6ππsin 2sin 2cos 263y x x x ⎡⎤⎛⎫=-+=≠ ⎪⎢⎥⎝⎭⎣⎦符合;对于C :向右平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π12,不符合;πππsin 2sin 2cos 21236y x x x⎡⎤⎛⎫⎛⎫=-+=+≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于D :向左平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π6,不符合;ππ2πsin 2sin 2cos 2633y x x x⎡⎤⎛⎫⎛⎫=++=+≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故选:A.5.D【分析】利用二倍角公式和诱导公式解题.【详解】因为2217cos(2)=cos22cos 121cos(2)366393ππππαααα⎛⎫⎛⎫⎛⎫--=--=⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以.7sin 2sin 2cos 262339ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=--=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:D 6.C【分析】根据题意,得到,取得对称轴的方程,由的()π2sin()6f x x ω=+ππ,Z 3k x k ωω=+∈k 取值,结合题意,即可求解.【详解】由函数,()π3sin cos 2sin()6f x x x x ωωω=+=+令,可得,πππ,Z 62x k k ω+=+∈ππ,Z3k x k ωω=+∈因为图象的一条对称轴在区间内,可得,可得,ππ,63⎡⎤⎢⎥⎣⎦ππππ633k ωω≤+≤131231k k ωω⎧≤+⎪⎨⎪≥+⎩又因为的最小正周期大于,可得,解得,()f x π2ππω>2ω<当且仅当时,解得.0k =ω1≤<2综上可得,实数的取值范围为.ω[1,2)故选:C.7.A【分析】利用平方关系和两角差的余弦公式计算.【详解】因为,所以,,π3π44<<απππ24α<+<2ππ3cos()1sin ()445αα+=--+=-,ππππππ3422cos cos ()cos()cos sin()sin ()44444455210αααα⎡⎤=+-=+++=-+⨯=⎢⎥⎣⎦故选:A.8.B【分析】根据给定的函数图象,结合“五点法”作图求出函数解析式,再根据正弦函数的单调性、对称性,结合三角函数图象的平移变换,逐项判断作答.【详解】由图象可知,,2A =由图,因为,所以,,()10=1sin =2f ϕ⇒π02ϕ<<π=6ϕ()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭由图,则,5π012f ⎛⎫= ⎪⎝⎭5ππ122π,=,12655k k k k ωω⨯+=∈⇒-∈Z Z由图可知,所以,所以,1π5π12002125T ωω=>-⇒<<=2ω()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭对于A ,的图像向左平移个单位得到的sin =2sin2y A x x ω=π6ππ2sin2+=2sin 2+63y x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭图象,选项A 不正确;对于B ,由,可得,πππ2π22π,262k x k k -+≤+≤+∈Z ππππ,36k x k k -+≤≤+∈Z则函数的单调递增区间为,则在区间上单调递增,()f x πππ,π,36k k k ⎡⎤-++∈⎢⎥⎣⎦Z ()f x ππ,36⎡⎤-⎢⎥⎣⎦所以在区间上单调递增,选项B 正确;()f x ππ,312⎡⎤-⎢⎥⎣⎦对于C ,由于,则直线不是函数图象的对称轴,选项π2ππ2sin 12336f ⎛⎫⎛⎫=+=≠± ⎪ ⎪⎝⎭⎝⎭π3x =()f x C 不正确;对于D ,由,可得,则函数的图象关于点π2π,6x k k +=∈Zππ,122k x k =-+∈Z ()f x 对称,选项D 不正确.ππ,0,122k k ⎛⎫-+∈ ⎪⎝⎭Z 故选:B .9.ABD【分析】令,求得,可判定A 不正确;令,求得5π12x =5π3()122f =π8x =-可判定B 不正确;由时,可得,可判定C 正π5π()sin()812f -=-π22π,π,0,π6x -=--()0f x =确;由,结合正弦函数的性质,可判定D 不正确.π7ππ2(,)666x -∈--【详解】对于函数,()sin 26πf x x ⎛⎫=- ⎪⎝⎭对于A 中,令,可得,5π12x =5π5ππ2π3()sin(2)sin 1212632f =⨯-==所以函数的图象不关于点中心对称,所以A 不正确;()f x 5π,012⎛⎫⎪⎝⎭对于B 中,令,可得不是最值,π8x =-πππ5π()sin(2)sin()88612f -=-⨯-=-所以函数的图象不关于直线对称,所以B 不正确;()f x π8x =-对于C 中,由,可得,()π,πx ∈-π13π11π2,666x ⎛⎫-∈- ⎪⎝⎭当时,可得,π22π,π,0,π6x -=--()0f x =所以在上有4个零点,所以C 正确;()f x ()π,π-对于D 中,由,可得,π[,0]2x ∈-π7ππ2(,)666x -∈--根据正弦函数的性质,此时先减后增,所以D 不正确.()f x故选:ABD.10.BC【分析】由诱导公式先求出的值,然后用三角恒等公式逐一验证即可.11sin(6-π)【详解】由题意有,11ππ1sin sin 662⎛⎫-== ⎪⎝⎭对于A 选项:因为,故A 选项不符合题意;2o o 312cos 151cos3022-==≠对于B 选项:因为,故B 选项符合()o o o o o o o 1cos18cos 42sin18sin 42cos 1842cos 602-=+==题意;对于C 选项:因为,故()()o o o o o o o o 12sin15sin 75cos 7515cos 7515cos 60cos902=--+=-=C 选项符合题意;对于D 选项:因为,故D 选项不符合题意;()o o o o o o otan 30tan151tan 3015tan 4511tan 30tan152+=+==≠-故选:BC.11.CD【分析】根据题意结合函数的对称性可推出函数的周期以及对称轴,从而判断A ,B ;举特例符合题意,验证C ,D 选项,即得答案.【详解】由函数的图像关于直线对称,可得,(21)f x +1x =(2(1)1)(2(1)1)f x f x ++=-+即,即,(32)(32)f x f x +=-(3)(3)f x f x +=-以代换x ,则;1x +(4)(2)f x f x +=-由函数关于点对称,可得,(1)f x +(1,0)(2)(2)0f x f x ++-=结合可得,(4)(2)f x f x +=-(4)(2)f x f x +=-+即,则,即4为的一个周期,B 正确;(2)()f x f x +=-(4)()f x f x +=()f x 又,结合,(2)(2)f x f x +=--(2)()f x f x +=-可得,故,A 正确;(2)()f x f x -=(1)(1)f x f x -=+由以上分析可知函数关于直线对称,且关于点成中心对称,()f x 1x =(2,0)其周期为4,则满足题意,π()sin2f x x=但是,故C 错误;π(1)sin 12f ==说明函数图象关于直线对称,3()2f x f x ⎛⎫=- ⎪⎝⎭34x =而,即直线不是对称轴,D 错误,33π()sin 148f =≠±34x =π()sin 2f x x =故选:CD 12.AB【分析】利用三角函数的图象与性质结合图象变换一一判定即可.【详解】由题意可知,又,()πππ3πZ π424k k k ϕϕ⨯+=+∈⇒=-+ππ22ϕ-<<故,()ππ,sin 344f x x ϕ⎛⎫=-=- ⎪⎝⎭对于A 项,,由诱导公式知,即函πππsin 3sin 312124f x x x⎡⎤⎛⎫⎛⎫+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 3sin 3x x -=-数为奇函数,故A 正确;π()12f x +对于B 项,,由正弦函数的图象及性质可知函数在上ππππ[,]30,12644x x ⎡⎤∈⇒-∈⎢⎥⎣⎦()f x ππ[,]126单调递增,故B 正确;对于C 项,易知,若,则与一个取得最大值,一个()max 1f x =12|()()|2f x f x -=()1f x ()2f x 取得最小值,即与相隔最近为半个周期,即的最小值为,故C 错误;1x 2x 12||x x -π23T =对于D 项,由三角函数的伸缩变换可知,函数图象上所有点的横坐标缩小为原来的,()f x 13得到函数的图象,故D 错误.sin(9)y x ϕ=+故选:AB.13.3【分析】由题意由两角差的正切公式即可得解.【详解】由题意.()()tan 73tan133tan 73tan13tan 73131tan 73tan133tan 73tan133︒︒︒︒︒︒︒︒︒︒--=-+-=故.314./34-0.75-【分析】根据同角平方和关系可得,进而根据齐次式即可求解.12sin cos 25αα-=【详解】由可得,故,1sin cos 5αα+=-112sin cos 25αα+=12sin cos 25αα-=又,解得或,222sin cos tan 12sin cos sin cos tan 125αααααααα-===++3tan 4α=-4tan 3α=-由于,,故,12sin cos 025αα-=<()0,πα∈sin 0,cos 0αα><又,故,因此,1sin cos 05αα+=-<sin cos αα<tan 1α<故,3tan 4α=-故34-15./120.5【分析】利用正弦函数的周期公式即可得解.【详解】因为的最小正周期为,π()2sin()(0)3f x x ωω=+>4π所以,则.2π2π4πT ωω===ω=12故答案为.1216.ππ(Z)62kx k =+∈【分析】先利用三角函数恒等变换公式对函数化简变形,然后由可求得ππ2π(Z)62x k k +=+∈答案.【详解】22()2cos 43sin cos 2sin 1cos 223sin 2cos 21f x x x x x x x x =+-=+++-,π23sin 22cos 24sin 26x x x ⎛⎫=+=+ ⎪⎝⎭令,解得:.ππ2π(Z)62x k k +=+∈ππ(Z)62k x k =+∈故ππ(Z)62kx k =+∈。

人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)

人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)

一、选择题1.将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),再将所得的图像向左平移π6个单位,则所得图像对应的解析式为( ) A .sin 212y x π⎛⎫=+ ⎪⎝⎭B .sin 212y x π⎛⎫=- ⎪⎝⎭C .sin 26x y π⎛⎫=-⎪⎝⎭ D .sin 212x y π⎛⎫=-⎪⎝⎭ 2.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( )A .5-B .19-C .5 D .193.如图,为测塔高,在塔底所在的水平面内取一点C ,测得塔顶的仰角为θ,由C 向塔前进30米后到点D ,测得塔顶的仰角为2θ,再由D 向塔前进103米后到点E ,测得塔顶的仰角为4θ,则塔高为( )米.A .10B .2C .15D .1524.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43- C .53- D .45-5.若角α的终边过点(3,4)P -,则cos2=α( ) A .2425- B .725 C .2425D .725-6.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ).A .3B .12-C .32D .127.2cos 232cos()4θθθ=-,则sin 2θ=( )A .13B .23C .23-D .13-8.设31cos 29sin 2922a =-,1cos662b -=、22tan161tan 16c =+,则有( ) A .a b c >>B .b c a >>C .c a b >>D .c b a >>9.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若2sin 3α=,则()cos αβ-=( ) A .19B .459C .19-D .459-10.已知()1sin 2=-f x x x ,则()f x 的图象是( ). A . B .C .D .11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 12.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .35二、填空题13.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 14.已知()3sin 23cos sin 1f x x x x =-⋅+,若()32f a =,则()f a -=______.15.角θ的终边经过点(1,P ,则sin 6πθ⎛⎫+= ⎪⎝⎭____________. 16.已知函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π上有且仅有3个极大值点;②()f x 在(0,2)π上有且仅有2个极小值点:③()f x 在(0,2)π上单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭.其中结论正确的是______.(填写所有正确结论的序号).17.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______.18.将函数()cos 2f x x =图象上的所有的点向左平移4π个单位长度后,得到函数g (x )的图象,如果g (x )在区间[0]a ,上单调递减,那么实数a 的最大值为_________. 19.已知tan 34πα⎛⎫+= ⎪⎝⎭,则2sin sin 2αα+=______. 20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.22.已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min7x x π-=,求ϕ的值.23.若函数223sin cos 2cos y x x x =+. (1)求这个函数的单调递增区间.(2)求这个函数的最值及取得最值时的x 集合. 24.已知()()3sin f x x a ωϕ=++0,2πωϕ⎛⎫>< ⎪⎝⎭的图象过点,12a π⎛⎫⎪⎝⎭,且图象的相邻两条对称轴的距离为2π. (1)求函数()f x 的单调区间; (2)若()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为3,求实数a 的值. 25.已知函数()sin (sin 3cos )1f x x x x =+-. (1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间.26.如图,扇形ABC 是一块半径为2千米,圆心角为60的风景区,P 点在弧BC 上,现欲在风景区中规划三条商业街道,要求街道PQ 与AB 垂直,街道PR 与AC 垂直,线段RQ 表示第三条街道.(1)如果P 位于弧BC 的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ 、PR 、RQ 每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据正弦型函数的图像的变换规律进行求解即可. 【详解】 将函数sin 4y x π⎛⎫=-⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),所得到的函数的解析式为:sin 24x y π⎛⎫=- ⎪⎝⎭,将sin 24x y π⎛⎫=- ⎪⎝⎭的图像向左平移π6个单位,得到的函数的解析式为:1sin[]264y x ππ⎛⎫=+- ⎪⎝⎭,化简得:sin 26x y π⎛⎫=- ⎪⎝⎭. 故选:C2.D解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算.【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 3.C解析:C 【分析】由,2,4PCA PDA PEA θθθ∠=∠=∠=,得PDE △是等腰三角形,且可求得230θ=︒,在直角PEA 中易得塔高PA . 【详解】由题知,2CPD PCD DPE PDE θθ∠=∠=∠=∠=∴30PE DE PD CD ==== ∴等腰EPD △的230θ︒=,∴460θ︒= ∴Rt PAE 中,AE =15PA =.故选:C .4.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .5.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.6.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒2=. 故选:C.7.B解析:B 【分析】由二倍角公式和差的余弦公式化简得出()2cos sin 2θθθ-=,再平方即可求出. 【详解】)22cos sin2cos()cos cos sin sin444θθθπππθθθ-=-+()cos sin cos sin2cos sinθθθθθθ+-==-,()2cos sin2θθθ∴-=,两边平方得()241sin23sin2θθ-=,解得sin22θ=-(舍去)或2sin23θ=.故选:B.【点睛】关键点睛:本题考查三角恒等变换的化简问题,解题的关键是能正确利用二倍角公式和差的余弦公式将已知等式化简为()2cos sin2θθθ-=,再平方求解.8.B解析:B【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,ab c,然后由正弦函数的单调性得出结论.【详解】129si sin(6029)si3n29122na =︒-︒=︒=-,b=sin33==︒,2222sin162tan16cos162sin16sin161tan161ccos16sin32os16c===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b<<.故选:B.【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.9.C解析:C【分析】由对称写出两角的关系,然后利用诱导公式和二倍角公式计算. 【详解】由题意2,k k Z αβππ+=+∈,即2k βππα=+-,2221cos()cos(22)cos(2)cos 22sin 12139k αβαπππααα⎛⎫-=--=-=-=-=⨯-=-⎪⎝⎭.故选:C .10.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.11.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭.因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π 【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 14.【分析】令求出再由奇函数的性质求解【详解】令易证为奇函数所以所以故答案为: 解析:12【分析】令()3sin 23cos sin g x x x x =-⋅,求出()12g a =,再由奇函数的性质求解()f a -. 【详解】令()3sin 23cos sin g x x x x =-⋅,易证()g x 为奇函数.()()312f a g a =+=,所以()12g a =,所以()()()1112f ag a g a -=-+=-+=.故答案为:1215.【分析】利用正弦函数定义求得再由正弦函数两角和的公式计算【详解】由题意所以故答案为:解析:12-【分析】利用正弦函数定义求得sin θ,再由正弦函数两角和的公式计算 【详解】 由题意3sin 2θ=-,1cos 2θ=,所以,31sin sin cos 62πθθθ⎛⎫+=+ ⎪⎝⎭311442=-+=-, 故答案为:12-16.①④【分析】作出函数的图象根据在有且仅有5个零点再逐项判断【详解】如图所示:由图象可知在上有且仅有3个极大值点故①正确;在上可能有3个极小值点故②错误;因为函数在有且仅有5个零点所以解得故④正确;因解析:①④ 【分析】作出函数的图象,根据()f x 在[0,2]π有且仅有5个零点,再逐项判断. 【详解】 如图所示:由图象可知()f x 在(0,2)π上有且仅有3个极大值点,故①正确; ()f x 在(0,2)π上可能有3个极小值点,故②错误;因为函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点,所以2429255πππωω≤<,解得1229510ω≤<,故④正确;因为()0,2x π∈,所以,2555x πππωπω⎛⎫+∈+ ⎪⎝⎭,若()f x 在(0,2)π上单调递增,则252πππω+<,解得320ω<,不符合1229510ω≤<,故③错误;故答案为:①④ 【点睛】关键点点睛:本题的关键是作出函数的图象,根据零点的个数确定ω的范围.17.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35【分析】利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可 【详解】由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 18.【分析】求出的平移后的解析式再利用函数在区间上是单调递减函数从而得到的最大值【详解】由题意将函数的图象向左平移个单位长度得到函数的图象因为函数在区间上是单调递减所以解得所以实数的最大值为故答案为:解析:4π【分析】求出()y g x =的平移后的解析式,再利用函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递减函数,从而得到a 的最大值.【详解】由题意,将函数()cos 2f x x =的图象向左平移4x个单位长度,得到函数()cos 2+n 4si 2g x x x π⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦的图象,因为函数()g x 在区间[0]a ,上是单调递减,所以022a π<≤,解得04a π<≤,所以实数a 的最大值为4π. 故答案为:4π. 19.1【分析】首先根据已知条件求得再结合齐次方程求得【详解】由已知得解得所以故答案为:1解析:1 【分析】首先根据已知条件求得tan α,再结合齐次方程求得2sin sin 2αα+. 【详解】 由已知得1tan 31tan αα+=-,解得1tan 2α=.所以22222211sin 2sin cos tan 2tan 4sin sin 211sin cos tan 114αααααααααα++++====+++. 故答案为:120.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,此时cos 12a ≤≤2cos 2a ≤≤,则1122cos a ≤≤12k ⎡∈⎢⎣⎦;②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即2k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)周期为π,值域为]2,2⎡-⎣;(2)单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣.【分析】(1)利用二倍角公式和辅助角公式化简可得)(2sin 26f x x π⎛⎫=+⎪ ⎭⎝,则可求出周期和值域;(2)解不等式)(222262k x k k Z πππππ-≤+≤+∈可得单调递增区间,解不等式)(3222262k x k k Z πππππ+≤+≤+∈可得单调递减区间. 【详解】(1)∵)(cos 222sin 26f x x x x π⎛⎫==+⎪ ⎭⎝, 所以,函数)(y f x =的周期为22T ππ==,值域为]2,2⎡-⎣. (2)解不等式)(222262k x k k Z πππππ-≤+≤+∈,得)(36k k k Z ππππ-≤+∈, 所以,函数)(y f x =的单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,解不等式)(3222262k x k k Z πππππ+≤+≤+∈,得)(263k x k k Z ππππ+≤≤+∈, 因比,函数)(y f x =的单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 22.(1)37π;(2)14π. 【分析】(1)题意说明周期6T π≥,4x π=是最小值点,由最小值点得ω表达式,由6T π≥得ω的范围,从而得ω的值;(2)()()122f x g x -=∣∣说明()()12,f x g x 中一个对应最大值,一个对应最小值.对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π,由此可得. 【详解】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤.又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min314x x πϕ-+=. 即314714πππϕ=-=.【点睛】关键点点睛:本题考查三角函数的周期,解题关键是由足()()122f x g x -=得出12,x x 是函数的最值点,一个是最大值点,一个是最小值点,由此分析其其差的最小值与周期结合可得结论. 23.(1),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【分析】(1)根据二倍角公式和辅助角公式化简得2sin 216y x π⎛⎫=++ ⎪⎝⎭,再根据整体代换法求函数的单调递增区间即可;(2)根据三角函数的性质求解即可. 【详解】解:(1)2cos 2cos 2cos 212sin 216y x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭, 因为函数sin y x =在区间2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增, 所以222,262k x k k Z πππππ-≤+≤+∈,解得,36k x k k Z ππππ-≤≤+∈,所以函数2cos 2cos y x x x =+的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)由(1)得2sin 216y x π⎛⎫=++ ⎪⎝⎭, 所以函数的最大值为max 3y =,当且仅当22,62x k k Z πππ+=+∈,即:,6x k k Z ππ=+∈时取得;函数的最小值为min 1y =-,当且仅当22,62x k k Z πππ+=-+∈,即:,3x k k Z ππ=-+∈时取得;所以函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【点睛】关键点点睛:本题解题的关键在于根据题意,结合二倍角公式和辅助角公式将已知三角函数表达式化简整理得2sin 216y x π⎛⎫=++ ⎪⎝⎭,考查运算求解能力,是中档题. 24.(1)单调递增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,单调递减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)34. 【分析】(1)根据图象上相邻两条对称轴的距离为2π可知周期为π,可确定2ω=,然后将点,12a π⎛⎫⎪⎝⎭代入求解出ϕ的值,利用整体法求解原函数的单调区间即可. (2)由(1)中的结果可知()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上的单调性,确定出()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上,得到关于a 的方程求解即可. 【详解】(1)由函数()f x 图象的相邻两条对称轴间的距离为2π, 得函数()f x 的最小正周期T π=, ∴22πωπ==.又函数()f x 的图象过点,12a π⎛⎫⎪⎝⎭,∴21212f a a ππϕ⎛⎫⎛⎫=⨯++=⎪ ⎪⎝⎭⎝⎭, ∴sin 2012πϕ⎛⎫⨯+= ⎪⎝⎭,6k πϕπ+=.∵||2ϕπ<,∴6πϕ=-,则()26f x x a π⎛⎫=-+ ⎪⎝⎭.令222262k x k πππππ-≤-≤+,解得63x k πππ-≤≤+,()k ∈Z ,3222262k x k πππππ+≤-≤+, 解得536k x k ππππ+≤≤+,()k ∈Z ∴函数()f x 的单调递增区间为,()63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,单调递减区间为5,(k )36k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)由(1)知,函数()f x 在,123ππ⎡⎤-⎢⎥⎣⎦上单调递增,在,32ππ⎛⎤⎥⎝⎦上单调递减,又3122f a π⎛⎫-=-+ ⎪⎝⎭,3f a π⎛⎫= ⎪⎝⎭,22f a π⎛⎫=+ ⎪⎝⎭,∴()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为32a a -++=∴34a =. 【点睛】本题考查三角函数图象性质的综合应用,解答时只要方法如下:(1)求解三角函数单调区间时一般采用整体代换法,将自变量部分的代数式当做一个整体,利用正弦函数、余弦函数的单调性列出不等式求解即可;(2)求解三角函数在某固定区间上的最值或值域时,关键是分析清楚原函数在所给区间上的单调性,利用单调性确定取得最大值或最小值的点,确定最值;也可以采用换元法,将函数()sin y A ωx φ=+的最值转化为求sin y A t =的最值问题,只需根据格据正弦函数的图像性质确定即可. 25.(1)12;(2)T π=;调递增区间为[,]63k k ππππ-+,k Z ∈. 【分析】先把函数()f x 化简,(1)根据条件即可求出角α的大小,代入解析式即可求解.(2)根据周期定义即可求出周期,再利用整体代换思想代入正弦函数的递增区间求出x 的范围即可求解. 【详解】21()sin (sin )1sin cos 1sin(2)62f x x x x x x x x π=-=-=--,(1)由(0,)2πα∈,1sin 2α=,可得6πα=,所以1()sin(2)sin 66662f ππππ=⨯-==,(2)函数周期为22T ππ==, 令2[2,2]622x k k πππππ-∈-+,k Z ∈, 解得[,]63x k k ππππ∈-+,k Z ∈, 所以函数()f x 的单调递增区间为[,]63k k ππππ-+,k Z ∈.26.(1)2+(千米);(2). 【分析】(1)根据P 位于弧BC 的中点,则P 位于BAC ∠的角平分线上,然后分别在,,Rt APQ Rt APR 正AQR 中求解.(2)设PAB θ∠=,060θ<<︒,然后分别在,Rt APQ Rt APR 表示 PQ ,PR ,在AQR 中由余弦定理表RQ ,再由300200400W PQ PR RQ =⨯+⨯+⨯求解.【详解】(1)由P 位于弧BC 的中点,在P 位于BAC ∠的角平分线上, 则1||||||sin 2sin30212PQ PR PA PAB ==∠=⨯︒=⨯=,||cos 2AQ PA PAB =∠== 由60BAC ∠=︒,且AQ AR =,∴QAR 为等边三角形,则||RQ AQ ==三条街道的总长||||||112l PQ PR RQ =++=++ ; (2)设PAB θ∠=,060θ︒<<︒, 则sin 2sin PQ AP θθ==,PR AP =()()sin 602sin 603cos sin θθθθ-=-=-, cos 2cos AQ AP θθ==,||||cos(60)2cos(60)cos AR AP θθθθ=-=-=+,由余弦定理可知:2222cos60RQ AQ AR AQ AR =+-,22(2cos )(cos )22cos (cos )cos 603θθθθθθ=+-⨯+=,则|RQ =设三条街道每年能产生的经济总效益W ,300200400W PQ PR RQ =⨯+⨯+⨯,3002sin sin )200θθθ=⨯+-⨯+,400sin θθ=++200(2sin )θθ=++)θϕ=++tan ϕ=,当()sin 1θϕ+=时,W 取最大值,最大值为 【点睛】方法点睛:解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.。

人教版高中数学必修第一册第五单元《三角函数》测试(含答案解析)

人教版高中数学必修第一册第五单元《三角函数》测试(含答案解析)

一、选择题1.函数()2sin(2)33f x x π=-+的最小正周期为( )A .2π B .πC .2πD .4π2.函数()sin()(0)f x x ωϕω=+>的一段图象如图所示,则ω=( )A .14B .2π C .4π D .123.在ABC 中,tan sin cos A B B <,则ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定4.将函数()sin 2cos 2f x x x =+的图象向左平移12π个单位长度后,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .6x π=B .12x π=C .3x π=D .24x π=5.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 6.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( )A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭7.sin15cos15+=( ) A .12B .22C .3 D .6 8.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1B .2C .2.5D .49.已知sin()cos(2)()cos()tan x x f x x xπππ--=--,则313f π⎛⎫- ⎪⎝⎭的值为( ) A .12B .13 C .12-D .13-10.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A .4π B .6π C .2π D .94π 11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 12.已知2cos 432θπ⎛⎫=⎪⎝⎭-,则sin θ=( )A .79B .19C .-19D .-79二、填空题13.如图,在山脚A 测得山顶P 的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B ,在B 处测得山顶P 的仰角为75°,则山高h =______米.14.已知3sin 2cos()sin 2παπαα⎛⎫++-=⎪⎝⎭,则2sin sin cos ααα+=__________. 15.已知角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,则cos ϕ=__________________. 16.方程2sin 2cos 20x x ++=的解集为________.17.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭_________. 18.将函数sin(2)y x ϕ=+的图像向左平移12π个单位后所得函数图像关于原点中心对称,则sin 2ϕ=_________. 19.已知50sin 24ππαα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,,tan α=__________. 20.若πcos cos 24αα⎛⎫-= ⎪⎝⎭,则sin 2α=________. 三、解答题21.已知函数()sin 31f x x x =++. (Ⅰ)设[0,2π]α∈,且()1f α=,求α的值; (Ⅱ)将函数(2)y f x =的图像向左平移π6个单位长度,得到函数()y g x =的图像. 当ππ[,]22x ∈-时,求满足()2g x ≤的实数x 的集合.22.函数[)()()sin()0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示:(1)求()f x 的解析式; (2)若[]0,x π∈且6()2f x ≥,求x 的取值范围. 23.已知()()sin23cos2f x x x x R =∈(1)求56f π⎛⎫⎪⎝⎭的值; (2)若0,4x π⎡⎤∈⎢⎥⎣⎦,求函数()f x 的取值范围. 24.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值.25.已知()cos2cos 23f x x x π⎛⎫=+- ⎪⎝⎭. (1)求()f x 的单调递增区间; (2)若323f α⎛⎫=⎪⎝⎭,求12f πα⎛⎫- ⎪⎝⎭的值. 26.已知π0π2αβ<<<<,且5sin()13αβ+=,1tan 22α=. (1)求cos α的值; (2)求sin β.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用函数()sin y A ωx φ=+的周期公式2T ωπ=即可求解.【详解】22T ππ==, 故函数()2sin(2)33f x x π=-+的最小正周期为π,故选:B2.B解析:B 【分析】根据函数的图象,求得函数的最小正周期,结合三角函数周期的公式,即可求解. 【详解】由题意,函数()sin()(0)f x x ωϕω=+>的一段图象, 可得2114T=-=,所以4T =,又由24w π=,解得2w π=. 故选:B.3.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.4.D解析:D 【分析】由()24f x x π⎛⎫=+ ⎪⎝⎭,向左平移12π个单位长度得到()5212g x x π⎛⎫=+ ⎪⎝⎭,再令52122x k πππ+=+求解. 【详解】因为函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭,由题意得()5212g x x π⎛⎫=+ ⎪⎝⎭,所以52122x k πππ+=+, 解得1,224x k k Z ππ=+∈, 故选:D5.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断; 对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】 对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确;对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误;对于D ,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法: (1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 6.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .7.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 60+=+==. 故选:D.8.B解析:B 【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.9.C解析:C 【分析】利用诱导公式先化简整理函数()f x ,再利用诱导公式求值即可. 【详解】 由sin()cos(2)()cos()tan x x f x x xπππ--=--,利用诱导公式得:sin cos ()cos cos tan x xf x x x x==--,所以31311cos cos 103332f ππππ⎛⎫⎛⎫⎛⎫-=--=---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 故选:C.10.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 11.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】 因为2cos 432θπ⎛⎫=⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.【分析】求出在两个直角三角形中表示出再在直角梯形中建立等量关系解得【详解】首先山高为长度根据图可得∴解得故答案为:解析:150【分析】PQ h =,求出CQ ,在两个直角三角形中表示出,BC AQ ,再在直角梯形AQCB 中建立等量关系,解得h . 【详解】首先sin15sin(4530)sin 45cos30cos 45sin30︒=︒-︒=︒︒-︒︒2321622-=⨯-⨯=, cos15cos(4530)cos 45cos30sin 45sin30︒=︒-︒=︒︒+︒︒2321622+=⨯+⨯=, 31tan 45tan 303tan 75tan(4530)231tan 45tan 3031+︒+︒︒=︒+︒===+-︒︒-, 山高h 为PQ 长度,根据图可得,()200sin155062CQ =︒=-,3tan 603h AQ h ==︒,tan 75PCBC =︒()506223h --=+()()23503652h =---, ∴()()()323503652200cos1550623h h --+-=︒=+,解得()15062h =+.故答案为:()15062+.14.【分析】利用诱导公式化简得出根据的代换结合齐次式化简计算得出函数值【详解】由已知得:则故答案为:解析:35【分析】利用诱导公式化简得出tan 3α=-,根据”1”的代换结合齐次式化简计算得出函数值. 【详解】由已知得:cos 2cos 3cos sin αααα--=-=,则tan 3α=-222222sin sin cos tan tan 933sin sin cos sin cos tan 1915ααααααααααα++-+====+++故答案为:3515.【分析】由题意可得:利用已知条件可以求出利用即可求解【详解】因为角和角的始边均与轴正半轴重合终边互相垂直所以若角的终边与单位圆交于点所以则故答案为:解析:13±【分析】由题意可得:,2k k Z πϕθπ=++∈,利用已知条件可以求出1sin 3θ=,利用 cos sin ϕθ=±即可求解.【详解】因为角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直, 所以,2k k Z πϕθπ=++∈,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,所以1sin 3θ=, 则1cos sin 3ϕθ=±=±, 故答案为:13±16.【分析】原方程化为关于的一元二次方程求得即可求解【详解】由得即解得或(舍去)所以故答案为: 解析:{}2,x x k k Z ππ=+∈【分析】原方程化为关于cos x 的一元二次方程,求得cos 1x =-,即可求解. 【详解】由2sin 2cos 20x x ++= 得21cos 2cos 20x x -++=, 即2cos 2cos 30x x --=,解得cos 1x =-或cos 3x =(舍去), 所以2,x k k Z ππ=+∈故答案为:{}2,x x k k Z ππ=+∈17.【分析】由结合利用两角和的正切公式求解【详解】故答案为:解析:13-【分析】 由tan tan 3124πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合tan 212πα⎛⎫+=- ⎪⎝⎭,利用两角和的正切公式求解. 【详解】tan tan1124tan tan 312431tan tan 124ππαπππααππα⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭+=++==- ⎪ ⎪⎛⎫⎝⎭⎝⎭-+ ⎪⎝⎭,故答案为:13-18.【分析】先根据函数平移变换得平移后的解析式为再根据其图象关于原点中心对称得进而计算得【详解】解:根据题意得函数的图像向左平移个单位后得到的函数解析式为:由函数图象关于原点中心对称故即所以故答案为:【解析: 【分析】先根据函数平移变换得平移后的解析式为sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,再根据其图象关于原点中心对称得,6k k Z πϕπ=-+∈,进而计算得sin 2ϕ=. 【详解】解:根据题意得函数sin(2)y x ϕ=+的图像向左平移12π个单位后得到的函数解析式为:sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭图象关于原点中心对称, 故,6k k Z πϕπ+=∈,即,6k k Z πϕπ=-+∈所以sin 2sin 2sin 332k ππϕπ⎛⎫⎛⎫=-+=-=- ⎪ ⎪⎝⎭⎝⎭.故答案为: 【点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数()sin ,y A x x R ωϕ=+∈是奇函数()k k Z ϕπ⇔=∈ ; 函数()sin ,y A x x R ωϕ=+∈是偶函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是奇函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是偶函数()k k Z ϕπ⇔=∈.19.3【分析】由平方关系求出用两角和的正弦公式求得再得然后可得【详解】∵∴∴∴故答案为:3【点睛】关键点点睛:本题考查平方关系两角和的正弦公式三角函数求值问题需确定已知角和未知角的关系以确定先用的公式象解析:3 【分析】由平方关系求出cos 4πα⎛⎫-⎪⎝⎭,用两角和的正弦公式求得sin α,再得cos α,然后可得tan α.【详解】 ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴,444πππα⎛⎫-∈- ⎪⎝⎭,cos 4πα⎛⎫-==⎪⎝⎭, ∴sin sin sin cos cos sin 44444422ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-==⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∴cos 10α==, sin tan 3cos ααα==. 故答案为:3. 【点睛】 关键点点睛:本题考查平方关系,两角和的正弦公式.三角函数求值问题,需确定已知角和未知角的关系,以确定先用的公式.象本题观察得到44ππαα⎛⎫=-+ ⎪⎝⎭,需要用用两角和的正弦(余弦)公式求值,因此先用平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,这就要确定4πα-的范围.以确定余弦值的正负.20.或【分析】根据两角差的余弦公式和余弦的二倍角展开再进行平方再根据正弦的二倍角公式可答案得【详解】由得即所以或当时两边同时平方得所以解得;当时所以所以所以故答案为:或解析:1-或12【分析】根据两角差的余弦公式和余弦的二倍角展开,再进行平方,再根据正弦的二倍角公式可答案得. 【详解】由πcos cos 24αα⎛⎫-= ⎪⎝⎭,得)22cos +sin cos sin 2αααα=-,即)()()cos +sin cos sin cos +sin 2αααααα=-,所以cos sin =αα-或cos +sin 0αα=,当cos sin αα-时,两边同时平方得112sin cos =2αα-,所以11sin2=2α-.解得sin 2α=12; 当cos +sin 0αα=时,tan 1α=-,所以()+,4k k Z παπ=-∈所以()2+2,2k k Z παπ=-∈所以sin 21α=-,故答案为:1-或12. 三、解答题21.(Ⅰ)2=3απ或53π;(Ⅱ){|24x x ππ-≤≤-或}122x ππ≤≤.【分析】(Ⅰ)化简得()2sin()13f x x π=++,则可得sin(+)03πα=,即可求出;(Ⅱ)由题可得2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,不等式化为21sin(2)32x π+≤,利用正弦函数的性质即可求解. 【详解】解:(Ⅰ)由()sin 2sin()131f x x x x π=++=++,由()=2sin()113f παα++=,得sin(+)03πα=,又[0,2]απ∈, 得2=3απ或53π; (Ⅱ)由题知,2sin(23(2)1)x f x π+=+2()2sin 2++12sin 2+1633g x x x πππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()2g x ≤,得21sin(2)32x π+≤, ∴72+22+2,636k x k k Z πππππ-≤+≤∈, 22x ππ-≤≤,252333x πππ-≤+≤, ∴22336x πππ-≤+≤,或5252633x πππ≤+≤, ∴24x ππ-≤≤-,或122x ππ≤≤, 即所求x 的集合为{|24x x ππ-≤≤-或}122x ππ≤≤. 【点睛】关键点睛:本题考查三角函数的性质,解题的关键是根据图象变换得出2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,将不等式化为21sin(2)32x π+≤,即可根据正弦函数的性质求解.22.(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2){}0,6ππ⎡⎤⋃⎢⎥⎣⎦.【分析】(1)由图可得:A =724123T πππω=-=可求ω的值,再令2(21)3k πϕπ⨯+=+()k Z ∈结合[)0,2ϕπ∈可求ϕ的值,进而可求()f x 的解析式;(2232x π⎛⎫+≥ ⎪⎝⎭,可得sin 232x π⎛⎫+≥ ⎪⎝⎭,所以结合正弦函数的图象和[]0,x π∈即可求解.【详解】(1)由题意知:A =741234T πππ=-=, 所以2T ππω==即=2ω,所以2(21)3k πϕπ⨯+=+,02ϕπ≤<,所以=3πϕ,所以()23f x x π⎛⎫=+ ⎪⎝⎭,(2232x π⎛⎫+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭ 所以()2222333k x k k Z πππππ+≤+≤+∈, 令0k =可得22333x πππ≤+≤,解得06x π≤≤,令1k =可得2222333x πππππ+≤+≤+,解得:76x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或x π=,即{}0,6x ππ⎡⎤∈⋃⎢⎥⎣⎦ 【点睛】关键点点睛:利用五点法求函数解析式,关键是3x π=是下降零点,所以2(21)3k πϕπ⨯+=+,结合[)0,2ϕπ∈即可求ϕ232x π⎛⎫+≥ ⎪⎝⎭可得()2222333k x k k Z πππππ+≤+≤+∈对k 取值,再与[]0,x π∈求交集即可. 23.(1)0;(2)[]1,2. 【分析】(1)本题可直接将56x π=代入函数()f x 中,通过计算即可得出结果; (2)本题首先可根据两角和的正弦公式将函数()f x 转化为()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,然后根据0,4x π⎡⎤∈⎢⎥⎣⎦得出52,336x πππ⎡⎤+∈⎢⎥⎣⎦,最后根据正弦函数的性质即可得出结果. 【详解】(1)555sin 063322f πππ⎛⎫==-+=⎪⎝⎭,(2)()sin 222sin 23f x x x x π⎛⎫=+=+⎪⎝⎭,当0,4x π⎡⎤∈⎢⎥⎣⎦时,52,336x πππ⎡⎤+∈⎢⎥⎣⎦, 则1sin 2,132x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,函数()f x 的取值范围为[]1,2.24.(1)1ω=;(2)最大值为1;最小值为. 【分析】(1)根据三角函数的倍角公式以及辅助角公式将函数进行化简即可. (2)求出角的取值范围,结合三角函数的最值性质进行判断求解即可. 【详解】解:(1)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+12cos22x x ωω=+ πsin(2)6x ω=+,所以()f x 的最小正周期2ππ2T ω==,0>ω, 解得1ω=.(2)由(1)得π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;当π4π263x +=,即7π12x =时,()f x 取得最小值为.25.(1)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2). 【分析】(1)利用三角恒等变换化简()23f x x π⎛⎫=+ ⎪⎝⎭,再整体代入求单调递增区间;(2)由已知得233f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,求出sin 3πα⎛⎫+ ⎪⎝⎭的值,再利用倍角公式求12f πα⎛⎫-⎪⎝⎭的值;【详解】(1)1()cos2cos 2cos2cos22322f x x x x x x π⎛⎫=+-=++ ⎪⎝⎭3cos22223x x x π⎛⎫=+=+ ⎪⎝⎭ 当22,2,322x k k k Z πππππ⎡⎤+∈-+∈⎢⎥⎣⎦,函数()f x 单调递增, 所以()f x 的单调递增区间5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2)由已知得23f απα⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以1sin 33πα⎛⎫+= ⎪⎝⎭,而2221263f πππααα⎛⎫⎛⎫⎛⎫-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭212sin 3πα⎤⎛⎫=-+= ⎪⎥⎝⎭⎦.【点睛】求正弦型三角函数的单调区间,常用整体代入法,但要注意保证x 的系数为正,才比较不容易出错;求三角函数值时,要注意整体观察角. 26.(1)3cos 5α=;(2)6365. 【分析】(1)根据二倍角的正切公式以及同角三角函数的关系,可求得结果; (2)由3cos 5α=求出4sin 5α,由5sin()13αβ+=求出12cos()13αβ+=-,再根据[]sin sin ()βαβα=+-以及两角差的正弦公式可得结果.【详解】(1)因为1tan22α=,所以22tan42tan 31tan 2ααα==-, 所以22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,0,2πα⎛⎫∈ ⎪⎝⎭,解得3cos 5α=.(2)由已知得322ππαβ<+<,又5sin()13αβ+=,所以12cos()13αβ+==-,又24sin 1cos 5αα, sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+531246313515565⎛⎫=⨯--⨯= ⎪⎝⎭. 【点睛】本题考查了同角三角函数间的关系,二倍角的公式,两角差的正弦公式,关键在于观察,用已知角表示待求的角,属于中档题.。

高中数学必修一第五章三角函数单元测试(1)(含答案解析)

高中数学必修一第五章三角函数单元测试(1)(含答案解析)

⾼中数学必修⼀第五章三⾓函数单元测试(1)(含答案解析)⾼中数学必修⼀第五章三⾓函数单元测试 (1)⼀、选择题(本⼤题共9⼩题,共45.0分)1.以罗尔中值定理、拉格朗⽇中值定理、柯西中值定理为主体的“中值定理”反映了函数与导数之间的重要联系,是微积分学重要的理论基础,其中拉格朗⽇中值定理是“中值定理”的核⼼内容,其定理陈述如下:如果函数y=f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在区间(a,b)内⾄少存在⼀个点x0∈(a,b),使得f(b)?f(a)=f?(x0)(b?a),x=x0称为函数y= f(x)在闭区间[a,b]上的中值点,则函数f(x)=sinx+√3cosx在区间[0,π]上的“中值点”的个数为参考数据:√2≈1.41,√3≈1.73,π≈3.14.A. 1B. 2C. 3D. 42.若α∈(π2,π),cos?2α=?13,则tan?α=()A. ?√33B. ?√3 C. ?√2 D. ?√223.cos20o cos40°?sin20°sin40°=()A. 1B. 12C. ?12D. √324.为了得到函数f(x)=sin(2x+3π4)的图象,可以将函数g(x)=cos2x的图象()A. 向右平移π4个单位 B. 向左平移π4个单位5.在△ABC中,⾓A,B,C的对边分别为a,b,c,若2c?ba =cosBcosA,a=2√3,则△ABC⾯积的最⼤值为()A. √3B. 2√3C. 3√3D. 4√36.已知sinα?cosα=13,则cos2(π4α)=()A. 1718B. 19C. √29D. 1187.若将函数f(x)=sin(2x+φ)+√3cos(2x+φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点(π2,0)对称,则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值()A. ?12B. ?√3228.若函数f(cos x)=cos2x+1,则f(cos30°)的值为()A. 12B. 32C. 72D. 49.3?sin110°8?4cos210°=()A. 2B. √22C. 12D. √32⼆、填空题(本⼤题共5⼩题,共25.0分)10.已知cos?(α+π4)=13,α∈(0,π4),则cos2α=________.11.已知△ABC的内⾓A,B,C所对的边分别为a,b,c,B=π4,tan(π4A)=12,且△ABC的⾯积为25,则a+b=_________.12.函数y=√3sin2x?cos2x的图象向右平移φ(0<φ<π)个长度单位后,得到函数g(x)的图象,若函数g(x)为偶函数,则φ的值为___________.13.在ΔABC中,cosB+√3sinB=2,且cosBb +cosCc=2√3sinA3sinC,则a+c的取值范围是________.14.已知函数f(x)=sinxcos(x+π3)+√34,x∈[?π3,π6],则函数的单调减区间为___________,函数的值域为____________.三、解答题(本⼤题共6⼩题,共72.0分)15.如图,在四边形ABCD中,已知∠DAB=π3,AD︰AB=2︰3,BD=√7,AB⊥BC.(1)求sin∠ABD的值;(2)若∠BCD=2π3,求CD的长.16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的最⼩值为?3,若f(x)图象相邻的最⾼点与最低点的横坐标之差为2π,且f(x)的图象经过点(0,32).(2)若⽅程f(x)?k=0在x∈[0,11π3]上有两个零点x1,x2,求k的取值范围,并求出x1+x2的值.17.在△ABC中,⾓A,B,C的对边分别为a,b,c.已知向量m =(b,a?2c),n?=(cosA?2cosC,cosB),且n?⊥m .(1)求sinCsinA的值;(2)若a=2,|m |=3√5,求△ABC的⾯积S.18.化简,求值:(1)已知tanα=34,求tan(α+π4)的值;(2)sin20°sin40°?cos20°cos40°.19.在△ABC中,内⾓A,B,C对边的边长分别是a、b、c,△ABC的⾯积为S⑴若c=2,C=π3,S=√3,求a+b;)=a,求⾓A;⑴若√3(bsinC?ccosBtanC20.如图,某住宅⼩区的平⾯图呈圆⼼⾓为120°的扇形AOB,⼩区的两个出⼊⼝设置在点A及点C处,且⼩区⾥有⼀条平⾏于BO的⼩路CD.(1)已知某⼈从C沿CD⾛到D⽤了10分钟,从D沿DA⾛到A⽤了6分钟,若此⼈步⾏的速度为每分钟50⽶,求该扇形的半径OA的长(精确到1⽶);(2)若该扇形的半径为OA=a,已知某⽼⼈散步,从C沿CD⾛到D,再从D沿DO⾛到O,试确定C的位置,使⽼⼈散步路线最长.-------- 答案与解析 --------本题考查导数运算、余弦函数性质,属于中档题.求出f(x)的导数,利⽤f′(x0)=f(b)?f(a)b?a,可得结合余弦函数性质易知⽅程在区间(0,π)内有2解,【解答】解:由知由拉格朗⽇中值定理:令f′(x0)=f(b)?f(a)b?a,即,由?√3π∈(?1,?12),结合余弦函数性质易知⽅程在区间(0,π)内有2解,故在区间[0,π]上的“中值点”有2个,故选B.2.答案:C解析:【分析】本题考查三⾓函数的化简求值,考查同⾓三⾓函数基本关系式和⼆倍⾓公式,是基础题.由已知可得tanα<0,再由⼆倍⾓公式和同⾓三⾓函数基本关系可得tanα的⽅程,解之可得答案.【解答】解:∵α∈(π2,π),且cos2α=?13,∴tanα<0,且cos2α=cos2α?sin2α=cos2α?sin2αcos2α+sin2α=1?tan2α1+tan2α=?13,解得tanα=?√2.故选C.3.答案:B本题考查两⾓和与差的三⾓函数公式,属于基础题.由题直接计算求解即可得到答案.【解答】解:cos20o cos40°?sin20°sin40°=cos(20°+40°) =cos60°=12.故选B . 4.答案:D解析:【分析】本题考查三⾓函数的图象变换规律,是基础题.根据题意,进⾏求解即可.【解答】解:,,⼜,∴只需将函数g(x)=cos2x 的图象向左平移π8个单位即可得到函数f(x)=sin?(2x +3π4)的图象.故选D . 5.答案:C解析:【分析】本题考查正余弦定理、三⾓形⾯积公式,两⾓和的正弦公式和基本不等式,属于中档题.先由正弦定理和两⾓和的正弦公式得出cosA =12,再由余弦定理和基本不等式解得bc ≤12,最后由三⾓形⾯积公式求得△ABC ⾯积的最⼤值.【解答】解:由已知可得(2c ?b)cosA =acosB ,由正弦定理可得(2sinC ?sinB)cosA =sinAcosB ,所以2sinCcosA =sinBcosA +sinAcosB =sin(A +B)=sinC ,由sinC ≠0可得cosA =12,则,由余弦定理可得12=b 2+c 2?2bc ×12=b 2+c 2?bc ,由基本不等式可得12=b 2+c 2?bc ≥2bc ?bc =bc ,解得bc ≤12,当且仅当b =c =2√3时,取等号,故△ABC ⾯积S =12bcsinA =√34bc ≤√34×12=3√3.故选C .6.答案:A解析:【分析】本题主要考查⼆倍⾓公式、诱导公式以及同⾓三⾓函数基本关系的应⽤,属于基础题.由条件利⽤⼆倍⾓公式可得sin2α=81+cos(π22α)2=12+sin2α2,计算求得结果.【解答】解:∵sinα?cosα=13,∴1?2sinαcosα=1?sin2α=19,∴sin2α=89,则cos2(π4?α)=1+cos(π22α)2=12+sin2α2=1718,故选A.7.答案:D解析:【分析】本题主要考查函数y=Asin(ωx+φ)的图像变换规律、诱导公式和三⾓函数的性质.3]=2cos(2x+φ+π3),再根据图像关于点(π2,0)对称,得到φ=π6,得到g(x)=cos(x+π6),进⽽求出g(x)的最⼩值.【解答】解:∵f(x)=sin?(2x+φ)+√3cos?(2x+φ)=2sin?(2x+φ+π3),∴将函数f(x)的图像向左平移π4个单位长度后,得到图像的函数解析式为y=2sin?[2(x+π4)+φ+π3]=2cos?(2x+φ+π3).∵函数y=2cos(2x+φ+π3)的图像关于点(π2,0)对称,∴2cos(2×π2+φ+π3)=0,所以π+φ+π3=kπ+π2解得φ=kπ?5π6,k∈Z.∵0<φ<π,∴φ=π6,∴g(x)=cos(x+π6).∵x∈[?π2,π6],∴x+π6∈[?π3,π3],∴cos(x+π6)∈[12,1],则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值是12.故选D.8.答案:B解析:【分析】本题主要考查⼆倍⾓公式的应⽤,属于基础题.利⽤⼆倍⾓公式,然后求出函数值即可.【解答】解:∵f(cos x)=cos 2x +1=2cos 2x ,∴f(cos?30°)=2cos 230°32)2=32.故选B . 9.答案:C解析:【分析】本题考查三⾓函数的化简求值问题,属于基础题.根据诱导公式与⼆倍⾓的余弦公式即可求出结果.【解答】解:原式=3?sin110°8?4cos 210°=3?cos20°8?2(1+cos20°)=3?cos20°6?2cos20°=12.故选C .10.答案:4√29解析:解:因为cos(α+π4)=13,α∈(0,π4),所以sin(α+π4)=2√23,所以cos2α=cos[2(α+π4)?π2]=sin2(α+π4) =2sin(α+π4)cos(α+π4)=2×2√23×13=4√29.答案:4√29由诱导公式可知cos2α=cos[2(α+π4)?π2]=sin2(α+π4),然后结合⼆倍⾓的正弦公式展开可求.本题主要考查函数值的计算,利⽤三⾓函数的倍⾓公式是解决本题的关键. 11.答案:5+5√5解析:【分析】本题考查两⾓和与差的三⾓公式的应⽤,考查正弦定理及三⾓形⾯积公式的应⽤,属中档题.依题意,根据两⾓和与差的三⾓公式求得tanA =13,进⽽得sin?A ,cos?A .⼜B =π4,求得sinC ,再结合三⾓形⾯积及正弦定理求解即可.【解答】解:因为tan?(π4?A)=12,所以1?tan?A1+tan?A =12,则tan?A =13,因此sinA =√1010,cosA =3√1010.所以sinC =sin (A +B )=sinAcosB +cosAsinB =√1010×√22+3√1010×√22=2√55,根据△ABC 的⾯积为25,得12absinC =12ab ×2√55=25,得ab =25√5,⼜由正弦定理得a sinA =bsinB ,得b =√5a ,联⽴{ab =25√5b =√5ab =5√5,所以a +b =5+5√5.故答案为5+5√5.12.答案:π6解析:【分析】先将y =√3sin2x ?cos2x 化为y =2sin(2x ?π6),然后再利⽤图象平移知识,求出g(x),根据g(x)是偶函数,则g(0)取得最值,求出φ.本题考查三⾓函数图象变换的⽅法以及性质,将奇偶性、对称性与函数的最值联系起来,是此类问题的常规思路,属于中档题.【解答】解:由已知得y =√3sin2x ?cos2x =2(sin2x ?√32cos2x 12)=2sin(2x π6).所以g(x)=2sin[2(x ?φ)?π6],由g(x)是偶函数得g(0)=2sin(?2φ?π6)=±2,∴?2φ?π6=π2+kπ,k ∈Z ,∴φ=?π3kπ2,k ∈Z ,当k =?1时,φ=π6即为所求.故答案为:π6.13.答案:(√32,√3]解析:【分析】本题考查正、余弦定理,三⾓函数恒等变换的应⽤,正弦函数的性质,考查了计算能⼒和转化思想,属于中档题.由题意可得⾓B和边b,然后利⽤正弦定理,三⾓函数恒等变换的应⽤可求a+c=√3sin(A+π6),66<5π6,利⽤正弦函数的性质可求其取值范围.【解答】解:∵在ΔABC中,cosB+√3sinB=2,∴2(12cos?B+√32sin?B)=2,即2sin(B+π6)=2,所以B+π6=π2,B=π3,⼜cosBb +cosCc=2√3sinA3sinC=2√3a3c,所以ccosB+bcosC=2√33ab,故c?a2+c2?b22ac +b?a2+b2?c22ab=2√3即a=2√33ab,解得b=√32,∴由正弦定理可得bsinB =√32√32=1=asinA=csinC,故a=sinA,c=sinC,所以a+c=sinA+sinC=sinA+sin(2π3A)=sinA+√32cosA+12sinA=32sinA+√32cosA=√3sin(A+π63,π66<5π6,所以sin(A+π6)∈(12,1]∴a+c=√3sin(A+π6)∈(√32,√3].故答案为(√32,√3].14.答案:;[?√34,12]解析:【分析】本题主要考查了两⾓和与差的三⾓函数公式、⼆倍⾓公式、函数的单调区间以及函数的值域,属于基础题.由题意化简可得,且,,由此即可得到函数的单调减区间以及值域.【解答】解:=sinx (12cosx ?√32sinx)+√34=14sin2x ?√32sin 2x +√34 =14sin2x +√34cos2x ,令,解得,,令k =0,可得,即函数的单调减区间为,此时,,即函数的值域为[?√34,12],故答案为;[?√34,12].15.答案:解:(1)由题意可设AD =2k ,AB =3k(k >0).∵BD =√7,∠DAB =π3,∴由余弦定理,得(√7)2=(3k)2+(2k)2?2×3k ×2kcos π3,解得k =1,∴AD =2,AB =3..(2)∵AB ⊥BC ,,,,∴CD =√7×2√77√32=4√33.解析:本题主要考查了余弦定理,⽐例的性质,正弦定理,同⾓三⾓函数之间的关系以及特殊⾓的三⾓函数值在解三⾓形中的综合应⽤,考查了计算能⼒和转化思想,属于中档题.(1)在△ABC 中,由已知及余弦定理,⽐例的性质即可解得AD =2,AB =3,由正弦定理即可解得sin∠ABD 的值;(2)由(1)可求cos∠DBC ,利⽤同⾓三⾓函数关系式可求sin∠DBC 的值,利⽤正弦定理即可计算得解.16.答案:解:(1)由题意得:A =3,T2=2π,则T =4π,即ω=2πT=12,所以f(x)=3sin(12x +φ),⼜f(x)的图象经过点(0,32),则32=3sinφ,由|φ|<π2得φ=π6,所以f(x)=3sin(12x +π6); (2)由题意得,f(x)?k =0在x ∈[0,11π3]有且仅有两个解x 1,x 2,即函数y =f(x)与y =k 在x ∈[0,11π3]且仅有两个交点,由x ∈[0,11π3]得,12x +π6∈[π6,2π],则f(x)=3sin(12x +π6)∈[?3,3],设t =12x +π6,则函数为y =3sint ,且t ∈[π6,2π],画出函数y =3sint 在t ∈[π6,2π]上的图象,如图所⽰:由图可知,k 的取值范围为:k ∈(?3,0]∪[3 2,3),当k ∈(?3,0]时,由图可知t 1,t 2关于t =3π2对称,即x =83π对称,所以x 1+x 2=16π3当k ∈[32,3)时,由图可知t 1,t 2关于t =π2对称,即x =23π对称,所以x 1+x 2=4π3,综上可得,x 1+x 2的值是16π3或4π3.解析:(1)由题意求出A 和周期T ,由周期公式求出ω的值,将点(0,32)代⼊化简后,由φ的范围和特殊⾓的三⾓函数值求出φ的值,可得函数f(x)的解析式;(2)将⽅程的根转化为函数图象交点问题,由x 的范围求出12x +π6的范围,由正弦函数的性质求出f(x)的值域,设设t =12x +π6,函数画出y =3sint ,由正弦函数的图象画出y =3sint 的图象,由图象和条件求出k 的范围,由图和正弦函数的对称性分别求出x 1+x 2的值.本题考查了形如f(x)=Asin(ωx +φ)的解析式的确定,正弦函数的性质与图象,以及⽅程根转化为函数图象的交点问题,考查分类讨论思想,数形结合思想,以及化简、变形能⼒.17.答案:解:(1)由m⊥n ? ,可得b(cosA ?2cosC)+(a ?2c)cosB =0,根据正弦定理可得,sinBcosA ?2sinBcosC +sinAcosB ?2sinCcosB =0∴(sinBcosA +sinAcosB)?2(sinBcosC +sinCcosB)=0∴sin(A +B)?2sin(B +C)=0,∵A +B +C =π,∴sinC ?2sinA =0,所以(2)由(1)得:c =2a ,因为a =2,|m |=3√5,所以c =4,b =3,所以cosA =32+42?222×3×4=78,因为A ∈(0,π),所以sinA =√1?(78)2=√158,所以△ABC 的⾯积为=12bcsinA =12×3×4×√158=3√154解析:本题考查平⾯向量的数量积、垂直的应⽤、考查两⾓和与差的三⾓函数、正弦定理、余弦定理以及三⾓形⾯积公式的运⽤,考查计算能⼒和转化能⼒,属于中档题.(1)由⊥m n?,可得b(cosA?2cosC)+(a?2c)cosB=0,根据正弦定理可得,sinBcosA?2sinBcosC+sinAcosB?2sinCcosB=0,化简即可;(2)由(1)c=2a可求c,由|m |=3√5可求b,结合余弦定理可求cos A,利⽤同⾓平⽅关系可求sin A,代⼊三⾓形的⾯积公式S=12bcsinA可求.18.答案:解:(1)∵tan?α=34,∴tan?(α+π4)=tanα+tanπ41?tanα·tanπ4=34+11?34×1=7.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°)=?cos(?20°+?40°)=?cos60°=?12.解析:本题主要考查了两⾓和差公式,三⾓函数的化简与求值,属于较易题.(1)利⽤两⾓和的正切公式直接代值求解.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°),利⽤两⾓和的余弦公式求解.19.答案:解:,∴ab=4 ①,⼜c2=a2+b2?2abcosC,c=2,∴a2+b2?2ab=4 ②,由①②得a+b=4;(2)∵√3(bsinC?ccosBtanC)=a,∴∵√3(sinBsinC?sinCcosBcosCsinC)=sinA,∴?√3cos(B+C)=sinA,∴tanA=√3,⼜,.解析:本题考查解三⾓形和三⾓恒等变换,考查推理能⼒和计算能⼒,属于⼀般题.(1)利⽤三⾓形的⾯积公式和余弦定理即可求解;(2)由正弦定理和三⾓恒等变换公式得tanA=√3,结合范围即可求出A.20.答案:解:(1)设该扇形的半径为r⽶,连接CO.由题意,得CD=500(⽶),DA=300(⽶),∠CDO=60°,在△CDO中,CD2?+OD2?2CD?OD?cos60°=OC2,即,5002+(r?300)2??2×500×(r?300)×1 2=r?2,解得r=490011≈445(⽶).(2)连接OC,设∠DOC=θ,θ∈(0,2π3),在△DOC中,由正弦定理得:CDsinθ=DOsin(2π3θ)=OCsinπ3=√3,于是CD=3,DO=3sin(2π3θ),则DC+DO=√3+sin(2π3θ)]=2asin(θ+π6),θ∈(0,2π3),所以当θ=π3时,DC+DO最⼤为 2a,此时C在弧AB的中点处.解析:本题主要考查解三⾓形在实际问题中的运⽤,属于中档题.(1)连接OC,由CD//OB知∠CDO=60°,可由余弦定理得到OC的长度.(2)连接OC,设∠DOC=θ,θ∈(0,2π3),由正弦定理,三⾓恒等变换可求DC+DO=2asin(θ+π6),θ∈(0,2π3),利⽤正弦函数的性质可求最⼤值,即可得解.。

高中数学三角函数专题复习(内附类型题以及历年高考真题含答案免费)

高中数学三角函数专题复习(内附类型题以及历年高考真题含答案免费)

1.已知 tanx=2,求 sinx , cosx 的值.解: 因为 tan x = Sin X =2,又 sin 2x + cos 2x=1 , cosxsin x = 2cosx联立得丿2 2 ,sin x +cos x =1sin x -cosx _2 sin x cosx所以 sinx — cosx=2(sinx + cosx),22得到sinx= — 3cosx ,又sin x + cos x=1,联立方程组,解得3+10sin,COSX = -〒0- C ——3 所以 sin xcosx — 10法二:因为叱叱=2,sin x cosx所以 sinx — cosx=2(sinx + cosx),所以(sinx — cosx)2=4(sinx + cosx)2, 所以 1 — 2sin xcosx=4 + 8sin xcosx ,3所以有 sinxcosx — ■10求证:tan 2x sin 2x=tan 2x — sin 2x . I.F , [ ]22 2 22 2 2 22证明:法一:右边=tan' x — sin x=tan x — (tan x cos x)=tan x(1 — cos x)=tan x sin x , 法二:左边 =ta n 2x sin 2x=ta n 2x(1 — cos 2x)=ta n 2x — ta n 2x cos 2 x=ta n 2x — si n 2x ,问题得证.sinx =2.5解这个方程组得cosx =245sin x = --------- i 靠 cosx I 5tan(-120)cos(210)sin(-480)2 .求——tan(-690 ') sin(-150 丨 cos(330 )的值.解:原式tan( -120 180 )cos(18030 )sin( -360 -120 )o~tan(-720 30o )sin(-150 )cos(360 -30 )tan 60 (-cos30 )(-sin 120) 弋 3 tan30(—sin150 )cos303.卄 sin x - cosx右sin x cosx=2,,求 sinxcosx 的值. 解:法一:因为 3110 sinx 10- 尿,cosx4.问题得证.3 x =84[0 2兀]0x2 f(x)x1如sin(2 ■ 6)[-?,1], y [1 2]2(1)y sin x cosx+2(1)y=si n 2x t=cosx t(2)y 2sin xcosx[- 2, 2]cosx 2 [-1,1],2 cos x cosx (2)y 2sin xcosx (sinx2= (cos 2x cosx) 3 cosx)一 (t 2t) 3-(t 丄)2213 +— 4(sinx cosx)=(s in xy =t 2 -t -1,y=As in( + )( (6 0)(2, 2) 匚=4T=164、2 = . 2 sin(- 2)84f(x)=cos x f(x) 一 sinxcosx)20)© =一842sinxcosx sin x(si nx cosx) t=sinxcosx= 42 sin((2「2)..y _2 sin(_ x ).48 4()xwy f(x)42222f(x)=cos x 2sinxcosx sin4x (cos x sin x)(cos x sin x)_ 2= (cos x -sin x) -sin 2x =cos2x -sin 2xsin2x-2x) - - 2 sin(2x -;))x 可Og](2x--)%-丄]4 4 4x=0 f(x)tan - 21 cos 日 +sin 日cos : -sin -2 si n 2°—si n B . cos 日+2cos 2 &1 + si n 日 (1)cos ,Sinn _ cos^ cos 日 +si ne . sin 日1 ------ cos :-1十¥ =」—2逅;1 - tan v 1_22 2sinsin rcos v 2cos r2 2sin sin vcos v 2 cos 二2 2sin cos 二2 si nr sin 二 22=COS d COSdsin -彳1cos 二说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到) 程简化。

高中数学三角函数练习题及答案解析(附答案)

高中数学三角函数练习题及答案解析(附答案)

高中数学三角函数练习题及答案解析(附答案)一、选择题1.探索如图所呈现的规律,判断2 013至2 014箭头的方向是()图1-2-3【解析】观察题图可知0到3为一个周期,则从2 013到2 014对应着1到2到3.【答案】 B2.-330是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角【解析】-330=30+(-1)360,则-330是第一象限角.【答案】 A3.把-1 485转化为+k360,kZ)的形式是()A.45-4360 B.-45-4360C.-45-5360 D.315-5360【解析】-1 485=-5360+315,故选D.【答案】 D4.(2019济南高一检测)若是第四象限的角,则180-是() A.第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角【解析】∵是第四象限的角,k360-90k360,kZ,-k360+180180--k360+270,kZ,180-是第三象限的角.【答案】 C5.在直角坐标系中,若与的终边互相垂直,则与的关系为()A.=+90B.=90C.=+90-k360D.=90+k360【解析】∵与的终边互相垂直,故-=90+k360,kZ,=90+k360,kZ.【答案】 D二、填空题6.,两角的终边互为反向延长线,且=-120,则=________. 【解析】依题意知,的终边与60角终边相同,=k360+60,kZ.【答案】k360+60,kZ7.是第三象限角,则2是第________象限角.【解析】∵k360+180k360+270,kZk180+90k180+135,kZ当k=2n(nZ)时,n360+90n360+135,kZ,2是第二象限角,当k=2n+1(nZ)时,n360+270n360+315,nZ2是第四象限角.【答案】二或四8.与610角终边相同的角表示为________.【解析】与610角终边相同的角为n360+610=n360+360+250=(n+1)360+250=k360+250(kZ,nZ).【答案】k360+250(kZ)三、解答题9.若一弹簧振子相对平衡位置的位移x(cm)与时间t(s)的函数关系如图所示,图1-2-4(1)求该函数的周期;(2)求t=10.5 s时该弹簧振子相对平衡位置的位移.【解】(1)由题图可知,该函数的周期为4 s.(2)设本题中位移与时间的函数关系为x=f(t),由函数的周期为4 s,可知f(10.5)=f(2.5+24)=f(2.5)=-8(cm),故t=10.5 s时弹簧振子相对平衡位置的位移为-8 cm.图1-2-510.如图所示,试表示终边落在阴影区域的角.【解】在0~360范围中,终边落在指定区域的角是0或315360,转化为-360~360范围内,终边落在指定区域的角是-4545,故满足条件的角的集合为{|-45+k36045+k360,kZ}.11.在与530终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720到-360的角.【解】与530终边相同的角为k360+530,kZ.(1)由-360<k360+530<0,且kZ可得k=-2,故所求的最大负角为-190.(2)由0<k360+530<360且kZ可得k=-1,故所求的最小正角为170(3)由-720k360+530-360且kZ得k=-3,故所求的角为-550.。

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)

1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

试卷第 4 页,共 4 页
1.C
参考答案:
【解析】运用诱导公式,结合特殊角的三角函数值即可化简求解..
【详解】 cos
150
cos150 cos(1800 300 ) cos 300
3, 2
故选:C.
【点睛】关键点点睛:该题考查的是有关三角函数化简求值问题,正确解题的关键是熟练应 用诱导公式以及熟记特殊角三角函数值. 2.A
答案第 2 页,共 12 页
【详解】 f (x) sin x cos
2
sin( x
π 4
)
,因为
x
a
,
b
,所以
x
π 4
a
π 4
,
b
π 4
,因
为 1
2
sin( x
π 4
)
2 ,所以
2 2
sin( x
π 4
)
1.
正弦函数
y
sin
x
在一个周期
π 2
,
3π 2
内,要满足上式,则
x
π 4
π 4
f
x
sin x
的图象过点
1 3
,1
,若
f
x 在2, a 内有
5

零点,则 a 的取值范围为______.
四、解答题
17.在① sin
6 3
,②
tan 2
2 tan 4 0 这两个条件中任选一个,补充到下面的
问题中,并解答.
已知角 a 是第一象限角,且___________.
(1)求 tan 的值;
S1 S2
2
1 2
可求得

(压轴题)高中数学必修四第一章《三角函数》测试(答案解析)

(压轴题)高中数学必修四第一章《三角函数》测试(答案解析)

一、选择题1.已知函数()sin()(f x A x A ωϕ=+,ω,ϕ是常数,0A >,0>ω,0)2πϕ<<的部分图象如图所示.为了得到函数()f x 的图象,可以将函数2sin y x =的图象( )A .先向右平移6π个单位长度,再将所得图象的横坐标缩短为原来的12,纵坐标不变 B .先向左平移6π个单位长度,再将所得图象的横坐标伸长为原来的2倍,纵坐标不变 C .先向左平移3π个单位长度,再将所得图象的横坐标伸长为原来的2倍,纵坐标不变 D .先向左平移3π个单位长度,再将所得图象的横坐标缩短为原来的12,纵坐标不变2.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=--D .()sin(2)13g x x π=-+3.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞ B .(4,)+∞ C .(0,2)D .(0,4)4.已知函数()sin 26f x x π⎛⎫=- ⎪⎝⎭,若方程()35f x =的解为1x ,2x (120x x π<<<),则()12sin x x -=( ) A .35B .45-C .23-D .3-5.如图,一个质点在半径为1的圆O 上以点P 为起始点,沿逆时针方向旋转,每2s 转一圈,由该质点到x 轴的距离y 关于时间t 的函数解析式是( )A .2sin()3y t ππ=+ B .2sin()3y t ππ=- C .2sin()3y t ππ=-D .2sin()3y t ππ=+6.将函数sin()y x ϕ=+的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图像向左平移12π个单位后得到的函数图像关于原点中心对称,则sin 2ϕ=( )A .12-B .12C .3D 37.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π 8.函数()3sin 22xf x x =-的部分图象大致为( )A .B .C .D .9.已知奇函数()f x 满足()(2)f x f x =+,当(0,1)x ∈时,函数()2x f x =,则12log 23f ⎛⎫= ⎪⎝⎭( ) A .1623-B .2316-C .1623D .231610.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( ) A .1B 151+C .1916D .3411.有以下四种变换方式: ①向左平移12π个单位长度,再将每个点的横坐标伸长为原来的2倍;②向左平移6π个单位长度,再将每个点的横坐标伸长为原来的2倍; ③再将每个点的横坐标伸长为原来的2倍,再向左平移6π个单位长度; ④再将每个点的横坐标伸长为原来的2倍,再向右平移6π个单位长度; 其中能将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象变为函数sin y x =图象的是( ) A .①③B .②③C .①④D .②④12.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( )A .6π B .6π-C .3π D .3π-二、填空题13.将函数()sin 24f x x π⎛⎫=-⎪⎝⎭的图像先向右平移8π个单位,再将横坐标缩短到原来的一半(纵坐标不变)后,得到函数()g x 的图像,则函数()g x 的解析式为_________. 14.已知函数()22cos f x x ω=-(0>ω)的图象关于点3,04π⎛⎫⎪⎝⎭对称,且()f x 在区间20,3π⎛⎫⎪⎝⎭上单调,则ω的值为______. 15.已知sin 78a =︒,cos10b =︒,tan55c =︒,则a ,b ,c 的大小关系为______. 16.函数y =的定义域为________.17.若函数()cos()(0)4f x wx w π=+>在[]0,π的值域为21⎡⎤-⎢⎥⎣⎦,,则w 的取值范围是______18.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ=---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__.19.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 时,()21x f x =-,则()2log 11f =______.20.函数()()0,0,2(f x Asin x A πωϕωϕ=+>><)的部分图像如图所示.则()f x 的解析式是_____.三、解答题21.已知函数()()1sin 226f x x x R π⎛⎫=+∈ ⎪⎝⎭. (1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;26x π+6π 136πxπ ()f x(2)将()y f x =的图象向上平移1个单位,横坐标缩短为原来的2,再将得到的图象上所有点向右平移4π个单位后,得到()g x 的图象,求()g x 的对称轴方程. 22.某同学用“五点法”画函数()() sin ωϕ=++f x A x B (其中A >0,0>0,||)2πϕ<在某一个周期内的图象时,列表并填入部分数据,如表: ωx +φπ2 π3π22π xπ35π6A sin(ωx +φ)+B3-1f (x )的解析式; (2)若定义在区间,44ππ⎡⎤-⎢⎥⎣⎦上的函数g (x )=af (x )+b 的最大值为7,最小值为1,求实数a ,b 的值.23.把()cos()(0,||)2f x x πωϕωϕ=+><的图象纵坐标保持不变,横坐标变为原来的2倍得()g x 的图象,已知()g x 图象如图所示(1)求函数()f x 的解析式; (2)若()()2()6h x f x g x π=-+,求()h x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 24.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x 的解析式;(2)将()f x 的图象上所有的点横坐标缩短到原来的12,纵坐标不变,得到函数()g x 的图象求方程()12g x =在[]0,π的实数解. 25.已知函数()2sin(2)(0)6f x x πωω=+>.(1)若点5(,0)8π是函数()f x 图像的一个对称中心,且(0,1)ω∈,求函数()f x 在3[0,]4π上的值域; (2)若函数()f x 在(,)33π2π上单调递增,求实数ω的取值范围.26.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: 时刻 0:00 1:00 2:00 3:00 4:00 5:00 水深 5.000 6.250 7.165 7.500 7.165 6.250 时刻6:007:008:009:0010:0011:00(1)这个港口的水深与时间的关系可用函数(,)近似描述,试求出这个函数解析式;(2)一条货船的吃水深度(船底与水面的距离)为5米,安全条例规定至少要有1.25米的安全间隙(船底与洋底的距离),利用(1)中的函数计算,该船何时能进入港口?在港口最多能呆多久?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先根据函数图象求出函数()f x 的解析式,由三角函数图象的变换即可求解. 【详解】 由图可知,1741234A T πππ==-=,, 所以T π=,即2ππω=,解得2ω=.当712x π=时,73π22π,122k k Z πϕ⨯+=+∈, 所以 2,3k k Z πϕπ=+∈又2πϕ<,所以3πϕ=.所以()23f x x π⎛⎫=+ ⎪⎝⎭.将y x =的图象先向左平移3π个单位长度,得到)3y x π=+,.再将所得图象的横坐标缩短为原来的12,纵坐标不变,得到())3f x x π=+.故选:D 【点睛】易错点点睛:图象变换的两种方法的区别,由sin y x =的图象,利用图象变换作函数()()()sin 0,0y A x A x R ωϕω=+>>∈的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x 轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是|φ|个单位,而先周期变换(伸缩变换)再平移变换,平移的量是ϕω个单位. 2.D解析:D 【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数sin()y A x ωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=. 再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x x π=+.将函数()f x 的图象先向右平移3π个单位长度,可得sin(2)3y x π=-的图象.然后向上平移1个单位长度,得到函数()g x 的解析式为()sin(2)13g x x π=-+,故选:D 【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A x ωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A 的值,根据最值点求出ϕ的值.3.D解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数, (0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a , 则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解4.B解析:B 【分析】求出函数()f x 在(0,)π上的对称轴,然后由正弦函数性质得1223x x π+=,这样12sin()x x -化为2222sin(2)sin 2cos(2)336x x x πππ⎛⎫-=+=- ⎪⎝⎭,而已知条件为23sin(2)65x π-=,再由正弦函数性质确定226x π-的范围,从而由平方关系求得结论.【详解】函数()sin 26f x x π⎛⎫=-⎪⎝⎭的对称轴满足:()262x k k Z πππ-=+∈,即()23k x k Z ππ=+∈,令0k =可得函数在区间()0,π上的一条对称轴为3x π=,结合三角函数的对称性可知1223x x π+=,则:1223x x π=-,()122222sin sin 2sin 2cos 2336x x x x x πππ⎛⎫⎛⎫⎛⎫-=-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由题意:0πx <<,则112666x πππ-<-<,23sin 265x π⎛⎫-= ⎪⎝⎭,120x x π<<<,则2226x πππ<-<,由同角三角函数基本关系可知:24cos 265x π⎛⎫-=- ⎪⎝⎭, 故选:B . 【点睛】关键点点睛:本题考查正弦函数的性质,考查平方关系.解题时根据自变量的范围求得此范围内函数的对称轴,从而得出两个变量12,x x 的关系,可化双变量为单变量,再根据函数值及函数性质确定出单变量的范围,从而求得结论.注意其中诱导公式的应用,目的是把求值式与已知条件中的角化为一致.5.A解析:A 【分析】首先根据图象理解t 秒后23POx t ππ∠=+,再根据三角函数的定义求点P 的纵坐标和该质点到x 轴的距离y 关于时间t 的函数解析式. 【详解】由题意可知点P 运动的角速度是22ππ=(弧度/秒) 那么点P 运动t 秒后23POx t ππ∠=+, 又三角函数的定义可知,点P 的纵坐标是2sin 3t ππ⎛⎫+ ⎪⎝⎭,因此该质点到x 轴的距离y 关于时间t 的函数解析式是2sin 3y t ππ⎛⎫=+ ⎪⎝⎭. 故选:A 【点睛】关键点点睛:本题的关键是理解三角函数的定义,并正确表示点23POx t ππ∠=+,即可表示函数的解析式.6.C解析:C 【分析】先根据条件写出图像变换后的函数解析式,然后根据图像关于原点中心对称可知函数为奇函数,由此得到ϕ的表示并计算出sin 2ϕ的结果. 【详解】因为变换平移后得到函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由条件可知sin 26y x πϕ⎛⎫=++ ⎪⎝⎭为奇函数,所以6k πϕπ+=,3sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.故选C . 【点睛】本题考查三角函数的图像变换以及根据函数奇偶性判断参数值,难度一般.正弦型函数()()sin f x A x =+ωϕ为奇函数时,k k Z ϕπ=∈,为偶函数时,2k k Z πϕπ=+∈.7.C解析:C 【分析】作出函数1sin3y x =-的图像,利用割补法,补成长方形,计算面积即可. 【详解】作出函数1sin3y x =-的图象,如图所示,利用割补法,将23π到π部分的图象与x 轴围成的图形补到图中3π到23π处阴影部分,凑成一个长为3π,宽为2的长方形,后面π到53π,同理;∴1sin3y x =-的图象与直线3x π=,53x π=及x 轴所围成的面积为24233ππ⨯=,故选:C. 【点睛】用“五点法”作()sin y A ωx φ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 8.A解析:A 【分析】求得函数()y f x =的定义域,分析函数()y f x =的奇偶性,结合2f π⎛⎫⎪⎝⎭的值以及排除法可得出合适的选项. 【详解】对于函数()3sin 22xf x x =-,20x -≠,得2x ≠±,所以,函数()y f x =的定义域为{}2x x ≠±.()()()sin 2sin 222x xf x f x x x --==-=----,函数()y f x =为奇函数,图象关于原点对称,排除B 、D 选项;又02f ⎛⎫= ⎪⎝⎭π,排除C 选项. 故选:A. 【点睛】本题考查利用函数的解析式选择图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.9.B解析:B 【分析】由已知得到(2)()f x f x +=,即得函数的周期是2,把12(log 23)f 进行变形得到223()16f log -, 由223(0,1)16log ∈满足()2x f x =,求出即可. 【详解】(2)()f x f x +=,所以函数的周期是2.根据对数函数的图象可知12log 230<,且122log 23log 23=-;奇函数()f x 满足(2)()f x f x +=和()()f x f x -=-则2312222223(log 23)(log )(log 23)(log 234)()16f f f f f log =-=-=--=-, 因为223(0,1)16log ∈ 2231622323()21616log f log ∴-=-=-,故选:B . 【点睛】考查学生应用函数奇偶性的能力,函数的周期性的掌握能力,以及运用对数的运算性质能力.10.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.11.A解析:A 【分析】直接利用三角函数图像的平移变换和伸缩变换求出结果. 【详解】对于①:sin 26y x π⎛⎫=-⎪⎝⎭向左平移12π个单位长度得到sin 2+=sin2126y x x ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin y x =;故①正确;对于②:sin 26y x π⎛⎫=-⎪⎝⎭向左平移6π个单位长度得到sin 2+=sin 2+666y x x πππ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=+ ⎪⎝⎭;故②错误;对于③:sin 26y x π⎛⎫=-⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向左平移6π个单位长度,得到sin sin 66y x x ππ⎛⎫=+-= ⎪⎝⎭;故③正确; 对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向右平移6π个单位长度,得到sin sin()663y x x πππ⎛⎫=--=- ⎪⎝⎭;故④错误; 故选:A 【点睛】关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .12.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-= ⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭,由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 二、填空题13.【分析】利用函数的图象变换规律即可得到的解析式【详解】函数的图像先向右平移个单位后解析式变为:再将横坐标缩短到原来的一半(纵坐标不变)后解析式变为:所以故答案为:【点睛】方法点睛:函数的图像与函数的 解析:cos4x -【分析】利用函数()()sin f x A x =+ωϕ的图象变换规律,即可得到()g x 的解析式. 【详解】函数()sin 24f x x π⎛⎫=-⎪⎝⎭的图像先向右平移8π个单位后解析式变为: sin 2sin 2co 288s 2y x x x πππ⎡⎤⎛⎫⎛⎫=--=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将横坐标缩短到原来的一半(纵坐标不变)后解析式变为:()cos 22x y -=⨯,所以()cos 4g x x =-. 故答案为:cos4x -. 【点睛】方法点睛:函数sin ωφf xA xB 的图像与函数sin y x =的图像两者之间可以通过变化A ,ω,φ,B 来相互转化,A 、ω影响图像的形状,φ、B 影响图像与x 轴交点的位置,由A 引起的变换称为振幅变换,由ω引起的变换称为周期变换,它们都是伸缩变换;由φ引起的变换称为相位变换,由B 引起的变换称为上下平移变换,它们都是平移变换.三角函数图像变换的两种方法为先平移后伸缩和先伸缩后平移.14.【分析】根据函数图像的对称点得到的表达式根据在区间上单调得到的范围从而得到的范围再得到的值【详解】函数的图像关于点对称所以即得到在区间上单调所以即所以所以而所以故答案为:【点睛】本题考查根据余弦型函解析:23【分析】根据函数图像的对称点,得到ω的表达式,根据()f x 在区间20,3π⎛⎫⎪⎝⎭上单调,得到T 的范围,从而得到ω的范围,再得到ω的值. 【详解】函数()f x x ω=-的图像关于点3,04π⎛⎫⎪⎝⎭对称,所以304πω⎛⎫-= ⎪⎝⎭,即342k ππωπ=+,k ∈Z ,得到4233k ω=+,k ∈Z , ()f x 在区间20,3π⎛⎫⎪⎝⎭上单调, 所以223T π≥,即43T π≥, 所以243ππω≥,所以32ω≤,而0>ω,所以0k =,23ω=.故答案为:23.【点睛】本题考查根据余弦型函数的对称中心求参数的值,根据余弦型函数的周期求参数的值,属于中档题.15.【分析】同角三角函数关系知又由的区间单调性知根据的区间单调性知即可知的大小关系【详解】而∴故答案为:【点睛】本题考查了比较三角函数值的大小根据正弦函数正切函数的区间单调性及正弦函数的值域范围比较函数 解析:c b a >>【分析】同角三角函数关系知sin80b =︒,又由sin y x =的区间单调性知b a >,根据tan y x =的区间单调性知1c>,即可知a,b,c的大小关系【详解】cos10cos(9080)sin80sin78b a=︒=︒-︒=︒>=︒,而tan55tan451c=︒>︒=∴c b a>>故答案为:c b a>>【点睛】本题考查了比较三角函数值的大小,根据正弦函数、正切函数的区间单调性及正弦函数的值域范围,比较函数值的大小16.(k∈Z)【分析】解不等式2cosx-1≥0即得函数的定义域【详解】∵2cosx-1≥0∴cosx≥由三角函数线画出x满足条件的终边的范围(如图阴影所示)∴x∈(k∈Z)故答案为(k∈Z)【点睛】(解析: (k∈Z)【分析】解不等式2cos x-1≥0即得函数的定义域.【详解】∵2cos x-1≥0,∴cos x≥.由三角函数线画出x满足条件的终边的范围(如图阴影所示).∴x∈ (k∈Z).故答案为 (k∈Z)【点睛】(1)本题主要考查三角函数线和解三角不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2)三角函数线是解三角不等式较好的工具,要理解掌握并灵活运用. 17.【分析】先根据题意计算出的范围再根据函数的单调性结合值域列出不等式即可求得【详解】因为且故可得因为在区间单调递减在单调递增且故要满足题意只需解得故答案为:【点睛】本题考查由余弦型函数在区间上的值域求解析:33 42⎡⎤⎢⎥⎣⎦,【分析】先根据题意计算出4wx π+的范围,再根据函数的单调性,结合值域,列出不等式,即可求得. 【详解】因为[]0,x π∈,且0w >, 故可得1,444wx w πππ⎡⎤⎛⎫+∈+ ⎪⎢⎥⎝⎭⎣⎦, 因为y cosx =在区间,4ππ⎡⎤⎢⎥⎣⎦单调递减,在7,4ππ⎡⎤⎢⎥⎣⎦单调递增,且7coscos424ππ==,1cos π=-, 故要满足题意,只需1744w πππ⎛⎫≤+≤ ⎪⎝⎭ 解得33,42w ⎡⎤∈⎢⎥⎣⎦. 故答案为:3342⎡⎤⎢⎥⎣⎦,.【点睛】本题考查由余弦型函数在区间上的值域,求参数范围的问题,属中档题.18.【分析】利用辅助角公式化简可得再根据图象关于轴对称可求得再结合余弦函数的图像求出最值即可【详解】因为函数的图象关于轴对称所以即又则即又因为所以则当即时取得最大值故答案为:【点睛】判定三角函数的奇偶性【分析】利用辅助角公式化简可得()2sin(2)6f x x πϕ=--,再根据图象关于y 轴对称可求得()2cos2f x x =-,再结合余弦函数的图像求出最值即可.【详解】因为函数()()()2cos 2f x x x ϕϕ=---2sin(2)6x πϕ=--的图象关于y 轴对称,所以πππ62k ϕ--=+,即()2ππ,3k k Z ϕ=--∈. 又2πϕ<,则π3ϕ=,即()2sin(2)2cos22f x x x π=-=-.又因为π5π612x -≤≤,所以π5π236x -≤≤,则当5π26x =,即5π12x =时,()f x 取得最大值5π2cos6-=.【点睛】判定三角函数的奇偶性时,往往与诱导公式进行结合,如: 若()sin y x ωϕ=+为奇函数,则π,Z k k ϕ=∈;若()sin y x ωϕ=+为偶函数,则ππ+,Z 2k k ϕ=∈; 若()cos y x ωϕ=+为偶函数,则π,Z k k ϕ=∈;若()cos y x ωϕ=+为奇函数,则ππ+,Z 2k k ϕ=∈. 19.【分析】易得函数周期为4则结合函数为奇函数可得再由时即可求解【详解】则又则故答案为:【点睛】本题考查函数奇偶性与周期性的综合应用具体函数值的求法属于中档题 解析:511-【分析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 时,()21xf x =-即可求解 【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈, 则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题20.【分析】由图像对应横坐标可求再将代入可进一步求解由图像过点可求进而求解【详解】由解得又函数过所以解得又图像过可得解得故故答案为:【点睛】本题考查由三角函数图像求解析式属于中档题解析:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【分析】由34T 图像对应横坐标可求ω,再将6x π=代入可进一步求解ϕ,由图像过()0,1点可求A ,进而求解 【详解】由1132312644T πππω-==⋅,解得2ω=,又函数过()max ,6f x π⎛⎫⎪⎝⎭, 所以63A f Asin ππϕ⎛⎫⎛⎫=⎪ ⎪⎝⎝⎭+⎭=,解得6π=ϕ,又图像过()0,1可得()106f Asin π==,解得2A =,故()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭故答案为:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【点睛】本题考查由三角函数图像求解析式,属于中档题三、解答题21.(1)答案见解析;(2)34k x ππ=+,k Z ∈. 【分析】(1)分别令x 等于0、6π、512π、23π、1112π、π,求得对应的纵坐标,确定点的坐标,列表、描点、作图即可;(2)利用放缩变换与平移变换法则可得到()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭,再令5462x k k Z πππ-=+∈,可得答案. 【详解】(1)由题意可得表格如下:()f x141212- 014(2)将()y f x =的图象向上平移1个单位得到1sin 2126y x π⎛⎫=++ ⎪⎝⎭的图象,再横坐标缩短为原来的12可得到1sin 4126y x π⎛⎫=++ ⎪⎝⎭的图象,再向右平移4π个单位可得115sin 41sin 412626y x x πππ⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎝⎭⎝⎭的图象, 即()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭, 令5462x k πππ-=+,解得34k x k Z ππ=+∈,, 所以()g x 的对称轴方程是34k x ππ=+,k Z ∈. 【点睛】方法点睛:“五点法”作一个周期上的图象,主要把握三处主要位置点:1、区间端点;2、最值点;3、零点.22.(1)()2sin 213f x x π⎛⎫=++ ⎪⎝⎭;(2)2,1a b ==或2,7a b =-=.【分析】(1)由表中数据可得周期及A 、B 、ϕ的值; (2)()2sin 23g x a x a b π⎛⎫=+++ ⎪⎝⎭,讨论a 的正负,根据()g x 的最大值、最小值可得答案. 【详解】(1)由题,函数()f x 的周期5263T πππ⎛⎫=⨯-= ⎪⎝⎭, 所以22Tπω==, 由31A B A B +=⎧⎨-+=-⎩,得21A B =⎧⎨=⎩,故()2sin(2)1f x x ϕ=++,由表可知,23πϕπ⨯+=,得3πϕ=,所以()2sin 213f x x π⎛⎫=++ ⎪⎝⎭. (2)由(1)可知()2sin 23g x a x a b π⎛⎫=+++ ⎪⎝⎭, 由44x ππ-≤≤,得52636x πππ-≤+≤,所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭;当0a >时,()g x 的最大值是37a b +=,最小值是1b =, 解得2,1a b ==;当0a <时,()g x 的最大值是7b =,最小值是31a b +=, 解得2,7a b =-=,综上,2,1a b ==;或2,7a b =-=. 【点睛】本题考查了由三角函数图象上的点求解析式及利用单调性参数的问题,要正确分析表中数据,熟练掌握三角函数的性质是解题的关键,考查了学生的计算能力. 23.(1)1()cos(2)3f x x π=-;(2)3,12⎡⎤--⎢⎥⎣⎦. 【分析】(1)由伸缩变换得1()cos()2g x x ωϕ=+,由()g x 的图像的周期为54()263T πππ=-=,解得2ω=,由()g x 图像过点(,1)3π,求得ϕ,进而得到()g x ,()f x 的解析式.(2)易得()22cos ()2cos()166h x x x ππ=----,令cos()6t x π=-,利用二次函数的性质求解. 【详解】(1)由题意1()cos()2g x x ωϕ=+, 由()g x 的图像可得:函数()g x 的周期为54()263T πππ=-=, 解得2ω=,∴()cos )(g x x ϕ=+, 由图知()g x 图像过点(,1)3π,所以cos()13πϕ+=,则23k πϕπ=-+,k Z ∈,因为||2ϕπ<,取0k =得3πϕ=-,所以()cos()3g x x π=-,从而函数()f x 的解析式为()cos(2)3f x x π=-.(2)()()2()cos(2)2cos()636h x f x g x x x πππ=-+=---, 22cos ()2cos()166x x ππ=----,令cos()6t x π=-,由0,2x π⎡⎤∈⎢⎥⎣⎦,得,663x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1,12t ⎡⎤∈⎢⎥⎣⎦,则22132212()22y t t t =--=--,1,12t ⎡⎤∈⎢⎥⎣⎦, 当12t =时,y 有最小值32-,此时,1cos()62x π-=,63x ππ-=,即2x π=,当1t =时有最大值1-,此时cos()16x π-=,06x π-=,即6x π=.所以函数()h x 的值域为3,12⎡⎤--⎢⎥⎣⎦. 【点睛】方法点睛:求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值). 24.(1)()sin 6f x x π⎛⎫=+ ⎪⎝⎭;(2)0或3π或π. 【分析】(1)先根据函数图象确定出()f x 的最小正周期,再根据最小正周期的计算公式2T ωπ=求解出ω的值,然后代入点,13π⎛⎫⎪⎝⎭结合ϕ的范围求解出ϕ的值,从而()f x 的解析式可求;(2)先根据图象变换求解出()g x 的解析式,然后根据()12g x =得到关于x 的方程,结合[]0,x π∈,求解出x 的值即为方程的实数解. 【详解】(1)因为由图象可知4362T πππ⎛⎫=--= ⎪⎝⎭,所以22T ππω==且0>ω,所以1ω=, 所以()()sin f x x ϕ=+,代入点,13π⎛⎫⎪⎝⎭,所以sin 13πϕ⎛⎫+= ⎪⎝⎭且2πϕ<,所以6π=ϕ,所以()sin 6f x x π⎛⎫=+ ⎪⎝⎭;(2)()f x 的图象上所有的点横坐标缩短到原来的12后得到的函数解析式为:()sin 26g x x π⎛⎫=+ ⎪⎝⎭,因为[]0,x π∈,所以132,666x πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,又因为()12g x =,所以1sin 262x π⎛⎫+= ⎪⎝⎭,所以266x ππ+=或56π或136π,所以0x =或3π或π, 所以方程()12g x =在[]0,π的实数解为:0或3π或π. 【点睛】思路点睛:根据()sin y A ωx φ=+的图象求解函数解析式的步骤: (1)根据图象的最高点可直接确定出A 的值;(2)根据图象的对称轴、对称中心确定出函数的最小正周期,再利用最小正周期的计算公式求解出ω的值;(3)代入图象中非平衡位置的点,结合ϕ的范围求解出ϕ,则函数解析式可求. 25.(1)[1,2]-; (2)1(0,]4. 【分析】(1)由5·,46k k Z ππωπ+=∈,可得4156k ω⎛⎫=- ⎪⎝⎭,k Z ∈,结合()0,1ω∈,得23ω=,所以()42sin 22sin 636f x x x ππω⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,由30,4x π⎡⎤∈⎢⎥⎣⎦,利用正弦定理的单调性可得函数()f x 在30,4π⎡⎤⎢⎥⎣⎦上的值域;(2)令222,262k x k k Z ππππωπ-+≤+≤+∈,解得36k k x ππππωωωω-≤≤+, 由函数()f x 在2,33ππ⎛⎫ ⎪⎝⎭上单调递增,可得002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+ ⎪ ⎪⎝⎭⎝⎭,列不等式求解即可. 【详解】(1)由题意得:5·,46k k Z ππωπ+=∈,∴4156k ω⎛⎫=- ⎪⎝⎭,k Z ∈,∵()0,1ω∈,∴23ω=,∴()42sin 22sin 636f x x x ππω⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∵30,4x π⎡⎤∈⎢⎥⎣⎦,∴47,3666x πππ⎡⎤+∈⎢⎥⎣⎦,∴41sin ,1362x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 故函数()f x 在30,4π⎡⎤⎢⎥⎣⎦上的值域为[]1,2-. (2)令222,262k x k k Z ππππωπ-+≤+≤+∈,解得36k k x ππππωωωω-≤≤+,∵函数()f x 在2,33ππ⎛⎫ ⎪⎝⎭上单调递增,∴002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+ ⎪⎪⎝⎭⎝⎭,0k Z ∈,∴0033263k k πππωωπππωω⎧-≤⎪⎪⎨⎪+≥⎪⎩,即0031614k k ωω≤+⎧⎨+≥⎩,又212·3322πππω-≤,∴302ω<≤,∴01566k -<≤,∴00k =, ∴104ω<≤,即ω的取值范围为10,4⎛⎤⎥⎝⎦. 【点睛】本题主要考查三角函数的单调性、三角函数的图象对称性,属于中档题.函数sin()y A x ωϕ=+的单调区间的求法:(1) 代换法:①若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间;②若0,0A ω><,则利用诱导公式先将ω的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调区间. 26.(1) 2.5sin()56y x π=+;(2)该船1:00至5:00和13:00至17:00期间可以进港,在港口最多能呆4个小时. 【分析】(1)由表格中数据可得, 2.5,5,12A B T ===,26T ππω==,取3x =代入可得2,k k Z ϕπ=∈,则解析式可得;(2)由(1)得计算2.5sin()5 6.256x π+≥解x 范围即可得结果.【详解】解:(1)由表格中数据可得, 2.5,5,12A B T ===. 因为0>ω,所以22126T πππω===. 因为3x =时y 取得最大值,所以32,62k k Z ππϕπ⨯+=+∈,解得2,k k Z ϕπ=∈.所以这个函数解析式为 2.5sin()56y x π=+(2)因为货船的吃水深度为5米,安全间隙至少要有1.25米, 所以2.5sin()5 6.256x π+≥,即1sin()562x π+≥, 所以522,666m x m m N πππππ+≤≤+∈,解得112512,m x m m N +≤≤+∈.取0,1,m m ==得15,1317x x ≤≤≤≤.答:该船1:00至5:00和13:00至17:00期间可以进港,在港口最多能呆4个小时. 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2T即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.。

新高考一轮复习特训-三角函数-(含答案)高中数学-高考专区-一轮复习

新高考一轮复习特训-三角函数-(含答案)高中数学-高考专区-一轮复习

2025届新高考一轮复习特训 三角函数一、选择题1.函数()sin 2f x =到()g x 的图象,则()g x =( )A.cos 4xB.cos x- C.cos 4x- D.sin x-2.已知()1sin ,tan 5tan 2αβαβ+==,则()sin αβ-=( )3.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭,若()f x 在2π0,3⎡⎤⎢⎥⎣⎦上有两个零点,则ω的取值范围是( )A.5,42⎡⎫⎪⎢⎣⎭B.5,2⎡⎫+∞⎪⎢⎣⎭C.511,22⎡⎫⎪⎢⎣⎭D.5,42⎡⎤⎢⎥⎣⎦4.已知角α的始边与x 轴非负半轴重合,终边过点()1,2P -,则cos 2α=( )355.与1990-︒终边相同的最小正角是( )A.80︒B.150︒C.170︒D.290︒6.已知tan α==( )7.下列区间中,函数π()7sin 6f x x ⎛⎫=- ⎪⎝⎭单调递增的区间是( )A.π0,2⎛⎫⎪⎝⎭B.π,π2⎛⎫ ⎪⎝⎭C.3ππ,2⎛⎫ ⎪⎝⎭D.3π,2π2⎛⎫ ⎪⎝⎭8.记函数π()sin (0)4f x x b ωω⎛⎫=++> ⎪⎝⎭πT <<,且()y f x =的图象关于点3π,22⎛⎫⎪⎝⎭中心对称,则π2f ⎛⎫= ⎪⎝⎭( )D.3二、多项选择题9.设x ∈R ,用[]x 表示不超过x 的最大整数,则函数[]y x =被称为高斯函数;例如[]2.13-=-,[]2.12=,已知()sin sin f x x =+()()x f x =⎡⎤⎣⎦,则下列说法正确的是( )A.函数()g x 是偶函数B.函数()g x 是周期函数C.函数()g x 的图像关于直线x =()g x x =只有1个实数根10.已知()π23f x x ⎛⎫=+ ⎪⎝⎭,则( )A.()()πf x f x += B.()f x 的图象关于直线x =C.()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称D.()f x 在5ππ,1212⎛⎫-⎪⎝⎭单调递增11.已知函数ππ()sin(3)22f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线x =A.函数π12f x ⎛⎫+ ⎪⎝⎭为奇函数B.函数()f x 在ππ,123⎡⎤⎢⎥⎣⎦上单调递增)()12x f x -=-D.函数()f x 的图象关于5π,012⎛⎫ ⎪⎝⎭中心对称三、填空题12.若tan θ==____________.13.如图是古希腊数学家希波克拉底研究的几何图形,此图由三个半圆构成,直径分别是直角三角形ABC 的斜边AB ,直角边AC ,BC ,点E 在以AC 为直径的半圆上,延长AE ,BC 交于点D .若5AB =,sin CAB ∠=DCE ∠=ABE 的面积是______.14.如图所示,终边落在阴影部分(含边界)的角的集合是__________.四、解答题15.如图,弹簧挂着的小球做上下振动,它在t (单位:s )时相对于平衡位置(静止时的位置)的高度h (单位:cm )由关系式πsin 4h A t ω⎛⎫=+ ⎪⎝⎭确定,其中0A >,0ω>,[0,)t ∈+∞.在一次振动中,小球从最高点运动至最低点所用时间为1s ,且最高点与最低点间的距离为10cm .(1)求小球相对于平衡位置的高度h (单位:cm )和时间t (单位:s )之间的函数关系式;(2)小球在0t s 内经过最高点的次数恰为50次,求0t 的取值范围.16.已知α=(1)写出与角α终边相同的角的集合;(2)写出在()4π,2π-内与角α终边相同的角.17.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,||πϕ<)图象的最高点为π,16⎛⎫⎪⎝⎭,距离该最高点最近的一个对称中心为5π,012⎛⎫⎪⎝⎭.(1)求()f x 的解析式及单调递减区间;(2)若函数()(0)2a g x f x a ⎛⎫=>⎪⎝⎭,()g x 的图象关于直线x =()g x 在π0,15⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的值.18.已知函数(1)化简;(2)若的值.19.如图,锐角α和钝角β的终边分别与单位圆交于A ,B 两点,且OA OB ⊥.cos αβ的值.()f x =()f x ()0f x =00π2π2cos(2)63x x ⎛⎫-+- ⎪⎝⎭参考答案1.答案:A解析:()sin 2f x=ππsin 2sin 2cos 242y x x x ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭的图象,再把横坐标缩短为原来的一半,得到()cos 4g x x =的图象故选:A.2.答案:A解析:因为()sin sincos +cos sin αβαβαβ+===cos 5cos sin αβαβ=,所以11sin cos cos sin 6cos sin ,cos sin ,sin cos 212αβαβαβαβαβ+====所以()5141sin sin cos cos sin .1212123αβαβαβ-=-=-==故选:A.3.答案:A解析:因为2π0,3x ⎡⎤∈⎢⎥⎣⎦,0ω>,所以ππ2ππ,3333x ωω⎡+∈+⎢⎣π[2π,3π)3+∈,所以5,42ω⎡⎫∈⎪⎢⎣⎭.4.答案:D解析:因为角α的始边与x 轴非负半轴重合,终边过点()1,2P -,所以cos α==所以2cos 22cos 1αα=-=故选:D.5.答案:C解析:因为199********-=-⨯-︒︒︒,199********-=-⨯+︒︒︒,所以与1990-︒终边相同的最小正角是170︒.故选C.6.答案:B,故选:B.7.答案:A解析:方法一:令πππ2π2π262k x k -+-≤+≤,k ∈Z ,得π2π2π2π33k x k -+≤≤+,k ∈Z .取0k =,则π3x -≤≤ππ2π0,,233⎫⎡⎤-⎪⎢⎥⎭⎣⎦Ü,所以区间π0,2⎛⎫⎪⎝⎭是函数()f x 的单调递增区间.方法二:当π02x <<时,,所以在π0,2⎛⎫⎪⎝⎭上单调递增,故A 正πx <<π6x <-<()f x 在π,π2⎛⎫⎪⎝⎭上不单调,故B 错误;当πx <<π6x <-<()f x 在3ππ,2⎛⎫ ⎪⎝⎭上单调递减,故C 错误;当3π2π2x <<π6x <-<()f x 在3π,2π2⎛⎫⎪⎝⎭上不单调,故D 错误.8.答案:A T <<2ππω<<,解得23ω<<.因为()y f x =的图象关于点3π,22⎛⎫ ⎪⎝⎭中心对称,所以2b =,且,即,所以,又π4π4+=,解得ω=5π()sin 224f x x ⎛⎫=++ ⎪⎝⎭,所以π5ππ3πsin 2sin 2122242f ⎛⎫⎛⎫=⨯++=+= ⎪ ⎪⎝⎭⎝⎭.故选A.9.答案:AD解析:选项A ,函数()f x 的定义域为R ,2tan 313tan 2αα+==-πππ663x -<-<()f x 3ππsin 224b ω⎛⎫++= ⎪⎝⎭3ππsin 024ω⎛⎫+= ⎪⎝⎭3πππ()24k k ω+=∈Z 2ω<<3ππ24ω<+<因为()()()sin sin sin sin f x x x x x f x -=-+-=+=,所以()f x 为偶函数,当0πx <≤时,()sin sin 2sin f x x x x =+=,当π2πx <≤时,()sin sin 0f x x x =-=,当2π3πx <≤时,()sin sin 2sin f x x x x =+=,…因为()f x 为偶函数,所以函数()f x 的图象如下图所示由()()g x f x =⎡⎤⎣⎦可知,在0x ≥内,当2πx k =+∈Z 时,()2g x =,当π2π2π6k x k +≤≤+2πx k ≠+∈Z 时,()1g x =,当2π2πk x k ≤<5ππ2π2π6k x k +<≤+,k ∈Z 时,()0g x =,因为()()()()g x f x f x g x -=-==⎡⎤⎡⎤⎣⎦⎣⎦,所以()g x 为偶函数,则函数()g x 的图象如下图所示显然()g x 不是周期函数,故选项A 正确,B 错误,C 错误;()g x x =,当()0g x =时,0x =方程有一个实数根,当()1g x =时,x =π212⎛⎫=≠ ⎪⎝⎭,方程没有实数根,当()2g x =时,πx =,此时()π02g =≠,方程没有实数根,()g x x =只有1个实数根,故D 正确;故选:AD.10.答案:AD解析:对于A,函数()π23f x x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==,()()πf x f x +=,A正确;对于B,由πππ2π3266332f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭()f x 的图象不关于直线x =对于C,由πππ2π32066332f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,得函数()f x 的图象不关于点π,06⎛⎫⎪⎝⎭对称,C 错误;对于D,当5ππ,1212x ⎛⎫∈- ⎪⎝⎭时,πππ2,322x ⎛⎫+∈- ⎪⎝⎭,而正弦函数sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增,因此函数()f x 在区间5ππ,1212⎛⎫- ⎪⎝⎭上单调递增,D 正确.故选:AD.11.答案:ACD解析: 函数ππ()sin(3)22f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线x =ππ3π42k ϕ∴⨯+=+,k ∈Z ,ππ4k ϕ∴=-+,k ∈Z因为ππ22ϕ-<<,所以ϕ=π()sin(3)4f x x =-.函数πππ()sin 3sin 312124f x x x ⎡⎤⎛⎫+=+-= ⎪⎢⎥⎝⎭⎣⎦为奇函数,故A 正确;当[,123ππx ∈,π3π0,434x ⎡-∈⎤⎢⎥⎣⎦,函数()f x 没有单调性,故B 错误;若12|()()|2f x f x -=,因为[]()1,1f x ∈-,所以()()1211f x f x =⎧⎪⎨=-⎪⎩或()()1211f x f x =-⎧⎪⎨=⎪⎩,则12|x x -2π3=5π5ππsin 3sin 012124f π⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 图象关于5π,012⎛⎫⎪⎝⎭中心对称,故D 正确故选:ACD ..解析:由题意得:DCE ACE ∠+∠=π2CAE ACE +∠=所以DCE CAE ∠=∠,故sin sin DCE CAE ∠=∠=cos CAE ∠==因为sin CAB ∠=45CAB ∠=故()sin sin sin cos cos sin EAB CAE CAB CAE CAB CAE CAB∠=∠+∠=∠∠+∠∠343455=⨯=因为5AB =,ACB ∠=CAB ∠=3BC =,4AC =又因为AEC ∠=CAE ∠=,所以cos 4AE AC CAE =∠==的cos 11cos sin cos tan 131cos cos θθθθθθθ====+++所以ABE △的面积是11sin 522S AB AE EAB =⋅⋅∠=⨯=14.答案:36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z 解析:终边落在阴影部分第二象限最左边的角为360120k ⋅︒+︒,k ∈Z ,终边落在阴影部分第四象限最左边的角为,k ∈Z .所以终边落在阴影部分(含边界)的角的集合是.故答案为:36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z .15.答案:(1)π5sin π([0,))4h t t ⎛⎫=+∈+∞ ⎪⎝⎭(2)1198,10044⎡⎫⎪⎢⎣⎭解析:(1)由题意得1052A ==.因为在一次振动中,小球从最高点运动至最低点所用时间为1s ,所以最小正周期为2s ,即2T ==π=,所以π5sin π([0,))4h t t ⎛⎫=+∈+∞ ⎪⎝⎭.(2)由(1)知,当t =最高点.因为小球在0s t 0149504T tT +≤<+.因为2T =,所以01984t ≤<所以0t 的取值范围为1198,10044⎡⎫⎪⎢⎣⎭.16.答案:(1)π2π,3k k θθ⎧⎫=+∈⎨⎬⎩⎭Z (2)36045k ⋅︒-︒36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z解析:(1)与角α终边相同的角的集合为π2π,3k k θθ⎧⎫=+∈⎨⎬⎩⎭Z .(2)令π4π2π2π3k -<+<,得136k -<<又k ∈Z ,2k ∴=-,-1,0,∴在()4π,2π-内与角α终边相同的角是17.答案:(1)π()sin 26f x x ⎛⎫=+ ⎪⎝⎭;单调递减区间为π2π[π,π]()63k k k ++∈Z(2)a =5=解析:(1)由题意解题思路知A =5ππ126=-=所以πT =,2π2πω==,所以()sin(2)f x x ϕ=+.将π,16⎛⎫ ⎪⎝⎭代入()sin(2)f x x ϕ=+,得πsin 13ϕ⎛⎫+= ⎪⎝⎭,π2π2k ϕ+=+,k ∈Z ,即π2π6k ϕ=+,k ∈Z ,又||πϕ<,所以ϕ=π()sin 26f x x ⎛⎫=+ ⎪⎝⎭.π3π2π22π62k x k +≤+≤+,k ∈Z 2πππ3k x k +≤≤+,k ∈Z ,即()f x 的单调递减区间为π2π[π,π]()63k k k ++∈Z .(2)由(1)可得π()sin (0)6g x ax a ⎛⎫=+> ⎪⎝⎭,由()g x 的图象关于直线x =πππ62k =+,k ∈Z ,即51544a k =+,k ∈Z ,当π0,15x ⎡⎤∈⎢⎥⎣⎦时,ππππ,66156a ax ⎡⎤+∈+⎢⎥⎣⎦,由()g x 在[π0,15ππ62+≤,即5a ≤.又0a >且51544a k =+,k ∈Z ,所以a =5=.18.答案:(1)π()cos 23f x x ⎛⎫=+ ⎪⎝⎭(2)35-解析:(1)ππππcos 2cos 2π2tan 22333()ππtan 2πsin π233x x x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+-++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎛⎫⎛⎫-++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦πππsin 2cos 2tan 2π333cos 2ππ3tan 2sin 233x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭==+ ⎪⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭.(2)因为()00πcos 23f x x ⎛⎫=+= ⎪⎝⎭所以000ππππsin 2sin 2cos(2)6323x x x ⎡⎤⎛⎫⎛⎫-=+-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦0002πππcos 2cos 2πcos 2333x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=+-=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故00π2π33sin 2cos 2631010x x ⎛⎫⎛⎫-+-=--=⎪ ⎪⎝⎭⎝⎭19.答案:(1)1-(2)3225-解析:(1)由题意得π2βα=+sin sin cos cos αβαβ=πsin sin sin cos 21πcos sin cos cos 2αααααααα⎛⎫+⎪⎝⎭==-=-⎛⎫+ ⎪⎝⎭.35α=,sin α=则πcos cos sin 2βαα⎛⎫=+=-= ⎪⎝⎭所以442sin cos 255αβ⎛⎫=⨯⨯-= ⎪⎝⎭。

高中数学三角函数测试卷(答案解析版)

高中数学三角函数测试卷(答案解析版)

高中数学三角函数测试卷(答案解析版)高中数学三角函数测试卷(答案解析版)一、选择题1. 假设α是锐角,sinα=0.6,那么sin(90°-α)的值是多少?解析:根据三角函数的互余关系,sin(90°-α) = cosα = √(1 - sin²α) = √(1 - 0.6²) = 0.8。

答案:0.82. 已知tanα = 3/4,sinα的值为多少?解析:由tanα = sinα/cosα可得sinα = tanα × cosα = 3/4 × 4/5 = 3/5。

答案:3/53. 已知sinα = 1/2,cosβ = 3/5,α和β都是锐角,则sin(α+β)的值是多少?解析:根据两角和的公式,sin(α+β) = sinα × cosβ + cosα × sinβ = (1/2) × (3/5) + √(1 - (1/2)²) × √(1 - (3/5)²) = 3/10 + √(3/10 × 7/10) = 3/10 + √(21/100) = 3/10 + 3√21/10√10 = (3 + 3√21)/10。

答案:(3 + 3√21)/10二、填空题4. 在锐角三角形ABC中,已知∠A=30°,BC=6,AC=10,则AB 等于多少?解析:根据正弦定理,AB/AC = sin∠B/sin∠A,代入已知条件得到AB/10 = sin∠B/sin30°,即AB = 10×sin∠B/sin30°。

由∠B + ∠C = 90°可得∠B = 90° - ∠A - ∠C = 90° - 30° - 60° = 0°。

因此,AB =10×sin0°/sin30° = 0/0 = 0。

(必考题)高中数学必修四第一章《三角函数》测试(有答案解析)

(必考题)高中数学必修四第一章《三角函数》测试(有答案解析)

一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞B .(4,)+∞C .(0,2)D .(0,4)3.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .454.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积12=(弦⨯矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有弧AB 长为83π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )3 1.73≈)A .6平方米B .9平方米C .12平方米D .15平方米5.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π 6.已知奇函数()f x 满足()(2)f x f x =+,当(0,1)x ∈时,函数()2x f x =,则12log 23f ⎛⎫= ⎪⎝⎭( ) A .1623-B .2316-C .1623D .23167.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .591698.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于09.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x10.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④11.若函数()22()sin 23cos sin f x x x x =+-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 12.函数22y cos x sinx =- 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.15.sin 75=______.16.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .17.如图,游乐场所的摩天轮匀速旋转,每转一周需要l2min ,其中心O 离地面45米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请问:当你第六次距离地面65米时,用了________分钟?18.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 19.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________. 20.给出下列命题: ①函数()4cos 23f x x π⎛⎫=+⎪⎝⎭的一个对称中心为5,012π⎛⎫-⎪⎝⎭; ②若α,β为第一象限角,且αβ>,则tan tan αβ>;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,则ABC ∆必有两解.④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是 _________(把你认为正确的序号都填上).三、解答题21.已知函数()()1sin 226f x x x R π⎛⎫=+∈ ⎪⎝⎭. (1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;26x π+6π 136πxπ ()f x(2)将()y f x =的图象向上平移1个单位,横坐标缩短为原来的2,再将得到的图象上所有点向右平移4π个单位后,得到()g x 的图象,求()g x 的对称轴方程. 22.现给出以下三个条件:①()f x 的图象与x 轴的交点中,相邻两个交点之间的距离为2π;②()f x 的图象上的一个最低点为2,23A π⎛⎫- ⎪⎝⎭; ③()01f =.请从上述三个条件中任选两个,补充到下面试题中的横线上,并解答该试题. 已知函数()()2sin 05,02f x x πωϕωϕ⎛⎫=+<<<< ⎪⎝⎭,满足________,________. (1)根据你所选的条件,求()f x 的解析式; (2)将()f x 的图象向左平移6π个单位长度,得到()g x 的图象求函数()()1y f x g x =-的单调递增区间.23.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.24.已知函数π()3sin 26f x x ⎛⎫=+⎪⎝⎭. (1)用“五点法”画出函数()y f x =在一个周期内的简图;(2)说明函数()y f x =的图像可以通过sin y x =的图像经过怎样的变换得到?(3)若003()[2π3π]2f x x =∈,,,写出0x 的值. 25.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,28M π⎛⎫⎪⎝⎭、5,28N π⎛⎫- ⎪⎝⎭分别为其图象上相邻的最高点、最低点. (1)求函数()f x 的解析式; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间和值域. 26.已知函数()2sin(2)(0)6f x x πωω=+>.(1)若点5(,0)8π是函数()f x 图像的一个对称中心,且(0,1)ω∈,求函数()f x 在3[0,]4π上的值域; (2)若函数()f x 在(,)33π2π上单调递增,求实数ω的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】 本题首先可根据33π44T 求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值. 【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值, 所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=-⎪⎝⎭, 代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.D解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数,(0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a , 则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解3.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值. 【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 4.B解析:B 【分析】根据已知求出矢2=,弦2AD ==. 【详解】由题意可得:823=43AOB ππ∠=,4OA =,在Rt AOD 中,可得:3AOD π∠=,6DAO π∠=,114222OD AO ==⨯=, 可得:矢422=-=, 由3sin4233AD AO π==⨯=, 可得:弦243AD ==, 所以:弧田面积12=(弦⨯矢+矢221)(4322)43292=⨯+=+≈平方米.故选:B 【点睛】方法点睛:有关扇形的计算,一般是利用弧长公式l r α=、扇形面积公式12S lr =及直角三角函数求解.5.C解析:C 【分析】作出函数1sin3y x =-的图像,利用割补法,补成长方形,计算面积即可. 【详解】作出函数1sin3y x =-的图象,如图所示,利用割补法,将23π到π部分的图象与x 轴围成的图形补到图中3π到23π处阴影部分,凑成一个长为3π,宽为2的长方形,后面π到53π,同理;∴1sin3y x =-的图象与直线3x π=,53x π=及x 轴所围成的面积为24233ππ⨯=,故选:C. 【点睛】用“五点法”作()sin y A ωx φ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 6.B解析:B【分析】由已知得到(2)()f x f x +=,即得函数的周期是2,把12(log 23)f 进行变形得到223()16f log -, 由223(0,1)16log ∈满足()2x f x =,求出即可. 【详解】(2)()f x f x +=,所以函数的周期是2.根据对数函数的图象可知12log 230<,且122log 23log 23=-;奇函数()f x 满足(2)()f x f x +=和()()f x f x -=-则2312222223(log 23)(log )(log 23)(log 234)()16f f f f f log =-=-=--=-, 因为223(0,1)16log ∈ 2231622323()21616log f log ∴-=-=-,故选:B . 【点睛】考查学生应用函数奇偶性的能力,函数的周期性的掌握能力,以及运用对数的运算性质能力.7.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.8.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。

高中数学复习题_三角函数章节测试题及答案

高中数学复习题_三角函数章节测试题及答案

三角函数章节测试题一、选择题1. 已知sinθ=53,sin2θ<0,则tanθ等于 ( )A .-43B .43 C .-43或43 D .542. 若20π<<x ,则2x 与3sinx 的大小关系是 ( )A .x x sin 32>B .x x sin 32<C .x x sin 32=D .与x 的取值有关3. 已知α、β均为锐角,若P :sinα<sin(α+β),q :α+β<2π,则P 是q 的( ) A .充分而不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4. 函数y =sinx·|cotx |(0<x<π)的大致图象是 ( )A B C D 5. 若f(sinx)=3-cos2x ,则f(cosx)=( ) A .3-cos2x B .3-sin2x C .3+cos2x D .3+sin2x 6. 设a>0,对于函数)0(sin sin )(π<<+=x xax x f ,下列结论正确的是 ( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值 7. 函数f(x)=x xcos 2cos 1-( )A .在[0,2π]、⎥⎦⎤ ⎝⎛ππ,2上递增,在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤ ⎝⎛ππ2,23上递减 B .⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ,上递增,在⎥⎦⎤ ⎝⎛ππ,2、⎥⎦⎤⎝⎛ππ223,上递减 C .在⎪⎭⎫⎢⎣⎡ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛23ππ, 上递减D .在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤ ⎝⎛ππ2,23上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛ππ,2上递减 8. y =sin(x -12π)·cos(x -12π),正确的是 ( )A .T =2π,对称中心为(12π,0)B .T =π,对称中心为(12π,0) C .T =2π,对称中心为(6π,0) D .T =π,对称中心为(6π,0) 9. 把曲线y cosx +2y -1=0先沿x 轴向右平移2π,再沿y 轴向下平移1个单位,得到的曲线方程为xxxx( )A .(1-y)sinx +2y -3=0B .(y -1)sinx +2y -3=0C .(y +1)sinx +2y +1=0D .-(y +1)sinx +2y +1=010.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则 ( ) A .ω=2,θ=2π B .ω=21,θ=2πC .ω=21,θ=4π D .ω=2,θ=4π二、填空题11.f (x)=A sin(ωx +ϕ)(A>0, ω>0)的部分如图,则f (1) +f (2)+…+f (11)= .12.已sin(4π-x)=53,则sin2x 的值为 。

高中数学三角函数应用复习 题集附答案

高中数学三角函数应用复习 题集附答案

高中数学三角函数应用复习题集附答案高中数学三角函数应用复习题集附答案1. 问题描述:已知角A是第一象限角,sinA = 2/3,并且cosB = -1/2,角B是第三象限角,求sin(A+B)和cos(A-B)的值。

解答:由已知条件sinA = 2/3,cosB = -1/2,可以得到以下信息:sinA的值为正,故sinA = 2/3,由此可得cosA的值。

sinA = 2/3cos^2A+sin^2A=1 (三角函数的基本关系式)cos^2A+(2/3)^2=1cos^2A+4/9=1cos^2A=5/9cosA=±√(5/9) (cosA的值可以是正或负,在第一象限cos值为正数)由cosA = ±√(5/9),可得cosB = -1/2时,sinB的值为负。

cosB = -1/2sin^2B+cos^2B=1 (三角函数的基本关系式)sin^2B+1/4=1sin^2B=3/4sinB=±√(3/4) (sinB的值可以是正或负,在第三象限sin值为负数)知道sinA、cosA和sinB的正负后,我们可以进一步求解sin(A+B)和cos(A-B)的值。

sin(A+B) = sinA*cosB + cosA*sinB= (2/3)*(-1/2) + (√(5/9))*(√(3/4))= -1/3 + (√15/18)= (√15-6)/18cos(A-B) = cosA*cosB + sinA*sinB= (√(5/9))*(-1/2) + (√(3/4))*(√(2/3))= -√(5/36) + √(6/12)= -√5/6 + √2/2= (√2-√5)/6综上所述,sin(A+B) = (√15-6)/18,cos(A-B) = (√2-√5)/6。

2. 问题描述:已知在直角三角形ABC中,∠B = 90°,sinA = 3/5,求角C的正弦值。

高中数学三角函数专题练习题及答案

高中数学三角函数专题练习题及答案

高中数学三角函数专题练习题及答案1. 试计算下列各函数值:(1)tan(π/4)(2)csc(3π/2)(3)sec(0)(4)cot(5π/3)解答:(1)tan(π/4) = sin(π/4) / cos(π/4) = 1 / 1 = 1(2)csc(3π/2) = 1 / sin(3π/2) = 1 / -1 = -1(3)sec(0) = 1 / cos(0) = 1 / 1 = 1(4)cot(5π/3) = cos(5π/3) / sin(5π/3) = -1/2 / (-√3/2) = 1 / √32. 已知直角三角形中,一锐角的正弦值为1/2,则该锐角的值是多少?解答:设该锐角为θ,则sinθ = 1/2。

根据反正弦函数的定义,θ = arcsin(1/2) = π/6。

3. 在锐角三角函数中,sinx和cosx经过哪个变换可以得到cosx和sinx的值?sinx和cosx经过变换x → x + π/2可以得到cosx和sinx的值。

4. 给定cosx = -1/3,且x在第四象限,求sinx的值。

解答:根据余弦函数的定义可知,sinx = √(1 - cos²x) = √(1 - (-1/3)²) = √(1 - 1/9) = √(9/9 - 1/9) = √8/3 = (2√2)/3。

5. 已知tanx = -√3,且x在第三象限,求secx和cotx的值。

解答:根据正切函数的定义可知,secx = 1/cosx,cotx = 1/tanx。

又由于sin²x + cos²x = 1,可以得到cosx = 1/√(1 + tan²x) = 1/√(1 + (-√3)²) = 1/√(1 + 3) = 1/2。

因此,secx = 1/(1/2) = 2,cotx = 1/(-√3) = -√3/3。

6. 已知sinx + 3cosx = 0,求tanx的值。

高三三角函数习题及答案

高三三角函数习题及答案

高三数学(理)一轮复习第五章三角函数 第一节 角的概念的推广与弧度制A 组1.点P 从(-1,0)出发,沿单位圆x 2+y 2=1顺时针方向运动π3弧长到达Q 点,则Q 点的坐标为________.2.设α为第四象限角,则下列函数值一定是负值的是________.①tan α2 ②sin α2 ③cos α2④cos2α3.若sin α<0且tan α>0,则α是第_______象限的角.4.函数y =|sin x |sin x +cos x |cos x |+|tan x |tan x的值域为________.5.若一个α角的终边上有一点P (-4,a ),且sin α·cos α=34,则a 的值为________.6.已知角α的终边上的一点P 的坐标为(-3,y )(y ≠0),且sin α=24y ,求cos α,tan α的值.B 组1.已知角α的终边过点P (a ,|a |),且a ≠0,则sin α的值为________.2.已知扇形的周长为6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是_____. 3.如果一扇形的圆心角为120°,半径等于 10 cm ,则扇形的面积为________.4.若角θ的终边与168°角的终边相同,则在0°~360°内终边与θ3角的终边相同的角的集合为__________.5.若α=k ·180°+45°(k ∈Z ),则α是第________象限.6.设角α的终边经过点P (-6a ,-8a )(a ≠0),则sin α-cos α的值是________.7.若点A (x ,y )是300°角终边上异于原点的一点,则yx的值为________.8.已知点P (sin 3π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ的值为________.9.已知角α的始边在x 轴的非负半轴上,终边在直线y =kx 上,若sin α=25,且cos α<0,则k 的值为________.10.已知一扇形的中心角是α,所在圆的半径是R .若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积.11.扇形AOB 的周长为8 cm.(1)若这个扇形的面积为3 cm 2,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .12.(1)角α的终边上一点P (4t ,-3t )(t ≠0),求2sin α+cos α的值;(2)已知角β的终边在直线y =3x 上,用三角函数定义求sin β的值.第二节 正弦函数和余弦函数的定义及诱导公式A 组1.若cos α=-35,α∈(π2,π),则tan α=________.2.若sin θ=-45,tan θ>0,则cos θ=________.3.若sin(π6+α)=35,则cos(π3-α)=________.4.已知sin x =2cos x ,则5sin x -cos x2sin x +cos x=______.5.(原创题)若cos2θ+cos θ=0,则sin2θ+sin θ=________.6.已知sin(π-α)cos(-8π-α)=60169,且α∈(π4,π2),求cos α,sin α的值.B 组1.已知sin x =2cos x ,则sin 2x +1=________.2. cos 10π3=________.3.已知sin α=35,且α∈(π2,π),那么sin2αcos 2α的值等于________.4.若tan α=2,则sin α+cos αsin α-cos α+cos 2α=_________________.5.已知tan x =sin(x +π2),则sin x =___________________.6.若θ∈[0,π),且cos θ(sin θ+cos θ)=1,则θ=________.7.已知sin(α+π12)=13,则cos(α+7π12)的值等于________.8.若cos α+2sin α=-5,则tan α=________.9.已知f (α)=sin(π-α)cos(2π-α)tan(-α+3π2)cos(-π-α),则f (-31π3)的值为________.10.求sin(2n π+2π3)·cos(n π+4π3)(n ∈Z )的值.11.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三内角.12.已知向量a =(3,1),向量b =(sin α-m ,cos α).(1)若a ∥b ,且α∈[0,2π),将m 表示为α的函数,并求m 的最小值及相应的α值;(2)若a ⊥b ,且m =0,求cos(π2-α)·sin(π+2α)cos(π-α)的值.第三节 正弦函数与余弦函数的图像与性质A 组1.已知函数f (x )=sin(x -π2)(x ∈R ),下面结论错误的是.①函数f (x )的最小正周期为2π②函数f (x )在区间[0,π2]上是增函数③函数f (x )的图象关于直线x =0对称④函数f (x )是奇函数2.函数y =2cos 2(x -π4)-1是________.①最小正周期为π的奇函数 ②最小正周期为π的偶函数 ③最小正周期为π2的奇函数④最小正周期为π2的偶函数3.若函数f (x )=(1+3tan x )cos x ,0≤x <π2,则f (x )的最大值为________.4.已知函数f (x )=a sin2x +cos2x (a ∈R )图象的一条对称轴方程为x =π12,则a 的值为________.5.设f (x )=A sin(ωx +φ)(A >0,ω>0)的图象关于直线x =π3对称,它的最小正周期是π,则f (x )图象上的一个对称中心是________(写出一个即可).6.设函数f (x )=3cos 2x +sin x cos x -32.(1)求函数f (x )的最小正周期T ,并求出函数f (x )的单调递增区间; (2)求在[0,3π)内使f (x )取到最大值的所有x 的和.B 组1.函数f (x )=sin(23x +π2)+sin 23x 的图象相邻的两条对称轴之间的距离是________..答案:3π22.给定性质:a 最小正周期为π;b 图象关于直线x =π3对称.则下列四个函数中,同时具有性质ab 的是________.①y =sin(x 2+π6) ②y =sin(2x +π6) ③y =sin|x | ④y =sin(2x -π6)3.若π4<x <π2,则函数y =tan2x tan 3x 的最大值为__.4.(函数f (x )=sin 2x +2cos x 在区间[-23π,θ]上的最大值为1,则θ的值是________.5.若函数f (x )=2sin ωx (ω>0)在[-2π3,2π3]上单调递增,则ω的最大值为________.6.设函数y =2sin(2x +π3)的图象关于点P (x 0,0)成中心对称,若x 0∈[-π2,0],则x 0=________.7.已知函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式是________.①y =4sin(4x +π6)②y =2sin(2x +π3)+2③y =2sin(4x +π3)+2 ④y =2sin(4x +π6)+28.有一种波,其波形为函数y =sin π2x 的图象,若在区间[0,t ]上至少有2个波峰(图象的最高点),则正整数t 的最小值是________.9.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是________.10.已知向量a =(2sin ωx ,cos 2ωx ),向量b =(cos ωx,23),其中ω>0,函数f (x )=a ·b ,若f (x )图象的相邻两对称轴间的距离为π.(1)求f (x )的解析式;(2)若对任意实数x ∈[π6,π3],恒有|f (x )-m |<2成立,求实数m 的取值范围.11.设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin2x +m ).(1)求函数f (x )的最小正周期和在[0,π]上的单调递增区间;(2)当x ∈[0,π6]时,f (x )的最大值为4,求m 的值.12.已知函数f (x )=3sin ωx -2sin 2ωx2+m (ω>0)的最小正周期为3π,且当x ∈[0,π]时,函数 f (x )的最小值为0.(1)求函数f (x )的表达式;(2)在△ABC 中,若f (C )=1,且2sin 2B =cos B +cos(A -C ),求sin A 的值.第四节 函数f (x )=A sin(ωx +φ)的图像A 组1.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是________.2.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位后,得到函数y =sin(x -π6)的图象,则φ等于________.3.将函数f (x )=3sin x -cos x 的图象向右平移φ(φ>0)个单位,所得图象对应的函数为奇函数,则φ的最小值为________.4.如图是函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π),x ∈R 的部分图象,则下列命题中,正确命题的序号为________.①函数f (x )的最小正周期为π2;②函数f (x )的振幅为23;③函数f (x )的一条对称轴方程为x =712π;④函数f (x )的单调递增区间为[π12,712π];⑤函数的解析式为f (x )=3sin(2x -23π).5.已知函数f (x )=sin ωx +cos ωx ,如果存在实数x 1,使得对任意的实数x ,都有f (x 1)≤f (x )≤f (x 1+2010)成立,则ω的最小值为________.6.已知函数f (x )=sin 2ωx +3sin ωx ·sin(ωx +π2)+2cos 2ωx ,x ∈R (ω>0),在y 轴右侧的第一个最高点的横坐标为π6.(1)求ω;(2)若将函数f (x )的图象向右平移π6个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )的最大值及单调递减区间.B 组1.已知函数y =sin(ωx +φ)(ω>0,-π≤φ<π)的图象如图所示,则φ=________.2.已知函数y =sin(ωx +φ)(ω>0,|φ|<π)的图象如图所示,则φ=________.3.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象________.4.已知函数f (x )=A cos(ωx +φ) 的图象如图所示,f (π2)=-23,则f (0)=________.5.将函数y =sin(2x +π3)的图象向________平移________个单位长度后所得的图象关于点(-π12,0)中心对称.6.定义行列式运算:⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3,将函数f (x )=⎪⎪⎪⎪⎪⎪3 cos x 1 sin x 的图象向左平移m 个单位(m >0),若所得图象对应的函数为偶函数,则m 的最小值是________.7.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为________.8.给出三个命题:①函数y =|sin(2x +π3)|的最小正周期是π2;②函数y =sin(x -3π2)在区间[π,3π2]上单调递增;③x =5π4是函数y =sin(2x +5π6)的图象的一条对称轴.其中真命题的个数是________.9.当0≤x ≤1时,不等式sin πx2≥kx 恒成立,则实数k 的取值范围是________.10.设函数f (x )=(sin ωx +cos ωx )2+2cos 2ωx (ω>0)的最小正周期为2π3.(1)求ω的值;(2)若函数y =g (x )的图象是由y =f (x )的图象向右平移π2个单位长度得到,求y =g (x )的单调增区间.11.已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M (2π3,-2).(1)求f (x )的解析式;(2)当x ∈[0,π12]时,求f (x )的最值.12.已知函数f (x )=sin(ωx +φ),其中ω>0,|φ|<π2.(1)若cos π4cos φ-sin 3π4sin φ=0,求φ的值;(2)在(1)的条件下,若函数f (x )的图象的相邻两条对称轴之间的距离等于π3,求函数f (x )的解析式;并求最小正实数m ,使得函数f (x )的图象向左平移m 个单位后所对应的函数是偶函数.1.解析:由于点P 从(-1,0)出发,顺时针方向运动π3弧长到达Q 点,如图,因此Q 点的坐标为(cos 2π3,sin 2π3),即Q (-12,32).答案:(-12,32)2.α为第四象限角,则α2为第二、四象限角,因此tan α2<0恒成立,应填①,其余三个符号可正可负.答案:①3.答案:三4.解析:当x 为第一象限角时,sin x >0,cos x >0,tan x >0,y =3;当x 为第二象限角时,sin x >0,cos x <0,tan x <0,y =-1; 当x 为第三象限角时,sin x <0,cos x <0,tan x >0,y =-1;当x 为第四象限角时,sin x <0,cos x >0,tan x <0,y =-1.答案:{-1,3}5.解析:依题意可知α角的终边在第三象限,点P (-4,a )在其终边上且sin α·cos α=34,易得tan α=3或33,则a =-43或-43 3.答案:-43或-433 6.解:因为sin α=24y =y(-3)2+y 2,所以y 2=5,当y =5时,cos α=-64,tan α=-153;当y =-5时,cos α=-64,tan α=153. 7.解析:当a >0时,点P (a ,a )在第一象限,sin α=22; 当a <0时,点P (a ,-a )在第二象限,sin α=22.答案:228.解析:设扇形的圆心角为α rad ,半径为R ,则 ⎩⎪⎨⎪⎧2R +α·R =612R 2·α=2,解得α=1或α=4.答案:1或49.解析:S =12|α|r 2=12×23π×100=1003π(cm 2).答案:1003π cm 2答案:{56°,176°,296°}10.解析:当k =2m +1(m ∈Z )时,α=2m ·180°+225°=m ·360°+225°,故α为第三象限角;当k =2m (m ∈Z )时,α=m ·360°+45°,故α为第一象限角.答案:一或三11.解析:∵x =-6a ,y =-8a ,∴r =(-6a )2+(-8a )2=10|a |,∴sin α-cos α=y r -x r =-8a +6a 10|a |=-a 5|a |=±15.答案:±1512.解析:yx=tan300°=-tan60°=- 3.答案:- 313.解析:由sin 3π4>0,cos 3π4<0知角θ在第四象限,∵tan θ=cos3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4.答案:7π414.解析:设α终边上任一点P (x ,y ),且|OP |≠0,∴y =kx ,∴r =x 2+(kx )2=1+k 2|x |.又sin α>0,cos α<0.∴x <0,y >0,∴r =-1+k 2x ,且k <0.∴sin α=y r =kx -1+k 2x =-k 1+k 2,又sin α=25.∴-k 1+k 2=25,∴k =-2.答案:-215.解:设弧长为l ,弓形面积为S 弓,∵α=60°=π3,R =10,∴l =103π(cm),S 弓=S 扇-S △=12·103π·10-12·102sin60°=50(π3-32)(cm 2).15.解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧ r =3,l =2,或⎩⎪⎨⎪⎧r =1l =6,∴α=l r =23或α=lr=6.(2)∵2r +l =2r +αr =8,∴r =82+α.∴S 扇=12αr 2=12α·64(2+α)2=32α+4α+4≤4,当且仅当α=4α,即α=2时,扇形面积取得最大值4.此时,r =82+2=2 (cm),∴|AB |=2×2sin1=4 sin1 (cm).16.解:(1)根据题意,有x =4t ,y =-3t ,所以r =(4t )2+(-3t )2=5|t |,①当t >0时,r =5t ,sin α=-35,cos α=45,所以2sin α+cos α=-65+45=-25.②当t <0时,r =-5t ,sin α=-3t -5t =35,cos α=4t -5t=-45,所以2sin α+cos α=65-45=25.(2)设P (a ,3a )(a ≠0)是角β终边y =3x 上一点,若a <0,则β是第三象限角,r =-2a ,此时sin β=3a -2a=-32;若a >0,则β是第一象限角,r =2a ,此时sin β=3a 2a =32. 第二节1.解析:cos α=-35,α∈(π2,π),所以sin α=45,∴tan α=sin αcos α=-43.答案:-432.解析:由sin θ=-45<0,tan θ>0知,θ是第三象限角,故cos θ=-35.答案:-353.解析:cos(π3-α)=cos[π2-(π6+α)]=sin(π6+α)=35.答案:354.解析:∵sin x =2cos x ,∴tan x =2,∴5sin x -cos x 2sin x +cos x =5tan x -12tan x +1=95.答案:955.解析:由cos2θ+cos θ=0,得2cos 2θ-1+cos θ=0,所以cos θ=-1或cos θ=12,当cos θ=-1时,有sin θ=0,当cos θ=12时,有sin θ=±32.于是sin2θ+sin θ=sin θ(2cos θ+1)=0或3或- 3.答案:0或3或- 36.解:由题意,得2sin αcos α=120169.①又∵sin 2α+cos 2α=1,②①+②得:(sin α+cos α)2=289169,②-①得:(sin α-cos α)2=49169.又∵α∈(π4,π2),∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0,∴sin α+cos α=1713.③sin α-cos α=713,④③+④得:sin α=1213.③-④得:cos α=513.7.解析:由已知,得tan x =2,所以sin 2x +1=2sin 2x +cos 2x =2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.答案:958.解析:cos 10π3=cos 4π3=-cos π3=-12.答案:-129.解析:cos α=-1-sin 2α=-45, sin2αcos 2α=2sin αcos αcos 2α=2sin αcos α=2×35-45=-32.10.解析:sin α+cos αsin α-cos α+cos 2α=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α=tan α+1tan α-1+1tan 2α+1=165 11.解析:∵tan x =sin(x +π2)=cos x ,∴sin x =cos 2x ,∴sin 2x +sin x -1=0,解得sin x =5-12.答案:5-1212.解析:由cos θ(sin θ+cos θ)=1⇒sin θ·cos θ=1-cos 2θ=sin 2θ⇒sin θ(sin θ-cos θ)=0⇒sin θ=0或sin θ-cos θ=0,又∵θ∈[0,π),∴θ=0或π4.答案:0或π413.解析:由已知,得cos(α+7π12)=cos[(α+π12)+π2]=-sin(α+π12)=-13.14.解析:由⎩⎪⎨⎪⎧cos α+2sin α=-5, ①sin 2α+cos 2α=1, ②将①代入②得(5sin α+2)2=0,∴sin α=-255,cos α=-55,∴tan α=2.解析:∵f (α)=sin α·cos α·cot α-cos α=-cos α,∴f (-313π)=-cos π3=-12.答案:-1215.解:(1)当n 为奇数时,sin(2n π+2π3)·cos(n π+4π3)=sin 2π3·cos[(n +1)π+π3]=sin(π-π3)·cos π3=sin π3·cos π3=32×12=34.(2)当n 为偶数时,sin(2n π+2π3)·cos(n π+4π3)=sin 2π3·cos 4π3=sin(π-π3)·cos(π+π3)=sin π3·(-cos π3)=32×(-12)=-34.16.解:由已知,得⎩⎪⎨⎪⎧sin A =2sin B , ①3cos A =2cos B , ②①2+②2得:2cos 2A =1,即cos A =±22.(1)当cos A =22时,cos B =32,又A 、B 是三角形内角,∴A =π4,B =π6,∴C =π-(A +B )=712π.(2)当cos A =-22时,cos B =-32.又A 、B 是三角形内角,∴A =34π,B =56π,不合题意.综上知,A =π4,B =π6,C =712π.解:(1)∵a ∥b ,∴3cos α-1·(sin α-m )=0,∴m =sin α-3cos α=2sin(α-π3).又∵α∈[0,2π),∴当sin(α-π3)=-1时,m min =-2.此时α-π3=32π,即α=116π.(2)∵a ⊥b ,且m =0,∴3sin α+cos α=0.∴tan α=-33.∴cos(π2-α)·sin(π+2α)cos(π-α)=sin α·(-sin2α)-cos α=tan α·2sin α·cos α=tan α·2sin α·cos αsin 2α+cos 2α=tan α·2tan α1+tan 2α=12. 第三节1.解析:∵y =sin(x -π2)=-cos x ,y =-cos x 为偶函数,∴T =2π,在[0,π2]上是增函数,图象关于y 轴对称.答案:④2.解析:y =2cos 2(x -π4)-1=cos(2x -π2)=sin2x ,∴T =π,且为奇函数3.解析:f (x )=(1+3·sin x cos x )·cos x =cos x +3sin x =2sin(x +π6),∵0≤x <π2,∴π6≤x +π6<2π3,∴当x +π6=π2时,f (x )取得最大值2.答案:24.解析:∵x =π12是对称轴,∴f (0)=f (π6),即cos0=a sin π3+cos π3,∴a =33.5.解析:∵T =2πω=π,∴ω=2,又∵函数的图象关于直线x =π3对称,所以有sin(2×π3+φ)=±1,∴φ=k 1π-π6(k 1∈Z ),由sin(2x +k 1π-π6)=0得2x +k 1π-π6=k 2π(k 2∈Z ),∴x =π12+(k 2-k 1)π2,当k 1=k 2时,x =π12,∴f (x )图象的一个对称中心为(π12,0).答案:(π12,0)6.解:(1)f (x )=32(cos2x +1)+12sin2x -32=32cos2x +12sin2x =sin(2x +π3),故T =π.由2k π-π2≤2x +π3≤2k π+π2(k ∈Z ),得k π-512π≤x ≤k π+π12,所以单调递增区间为[k π-512π,k π+π12](k ∈Z ).(2)令f (x )=1,即sin(2x +π3)=1,则2x +π3=2k π+π2(k ∈Z ).于是x =k π+π12(k ∈Z ),∵0≤x <3π,且k ∈Z ,∴k =0,1,2,则π12+(π+π12)+(2π+π12)=13π4.∴在[0,3π)内使f (x )取到最大值的所有x 的和为134π.7.解析:f (x )=cos 2x 3+sin 2x 3=2sin(2x 3+π4),相邻的两条对称轴之间的距离是半个周期,T=2π23=3π,∴T 2=3π2 8.解析:④中,∵T =2πω=π,∴ω=2.又2×π3-π6=π2,所以x =π3为对称轴.解析:π4<x <π2,tan x >1,令tan 2x -1=t >0,则y =tan2x tan 3x =2tan 4x 1-tan 2x =2(t +1)2-t =-2(t +1t +2)≤-8,故填-8.9.解析:因为f (x )=sin 2x +2cos x =-cos 2x +2cos x +1=-(cos x -1)2+2,又其在区间[-2π3,θ]上的最大值为1,可知θ只能取-π2. 答案:-π210.解析:由题意,得2π4ω≥2π3,∴0<ω≤34,则ω的最大值为34.答案:3411.解析:因为图象的对称中心是其与x 轴的交点,所以由y =2sin(2x 0+π3)=0,x 0∈[-π2,0],得x 0=-π6.12.解析:因为已知函数的最大值为4,最小值为0,所以⎩⎪⎨⎪⎧A +m =4m -A =0,解得A =m =2,又最小正周期为2πω=π2,所以ω=4,又直线x =π3是其图象的一条对称轴,将x =π3代入得sin(4×π3+φ)=±1,所以φ+4π3=k π+π2(k ∈Z ),即φ=k π-5π6(k ∈Z ),当k =1时,φ=π6.答案:④13.解析:函数y =sin π2x 的周期T =4,若在区间[0,t ]上至少出现两个波峰,则t ≥54T =5.答案:514.解析:∵y =3sin ωx +cos ωx =2sin(ωx +π6),且由函数y =f (x )与直线y =2的两个相邻交点间的距离为π知,函数y =f (x )的周期T =π,∴T =2πω=π,解得ω=2,∴f (x )=2sin(2x+π6).令2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ). 15.解:(1)f (x )=a ·b =(2sin ωx ,cos 2ωx )·(cos ωx,23)=sin2ωx +3(1+cos2ωx )=2sin(2ωx +π3)+ 3.∵相邻两对称轴的距离为π,∴2π2ω=2π,∴ω=12, ∴f (x )=2sin(x +π3)+ 3.(2)∵x ∈[π6,π3],∴x +π3∈[π2,2π3],∴23≤f (x )≤2+ 3.又∵|f (x )-m |<2,∴-2+m <f (x )<2+m .,若对任意x ∈[π6,π3],恒有|f (x )-m |<2成立,则有⎩⎪⎨⎪⎧-2+m ≤23,2+m ≥2+3,解得3≤m ≤2+2 3. 16.解:(1)∵f (x )=a ·b =2cos 2x +3sin2x +m =2sin(2x +π6)+m +1,∴函数f (x )的最小正周期T =2π2=π.在[0,π]上的单调递增区间为[0,π6],[2π3,π].(2)当x ∈[0,π6]时,∵f (x )单调递增,∴当x =π6时,f (x )取得最大值为m +3,即m +3=4,解之得m =1,∴m 的值为1.17.解:(1)f (x )=3sin ωx +cos ωx -1+m =2sin(ωx +π6)-1+m .依题意,函数f (x )的最小正周期为3π,即2πω=3π,解得ω=23.∴f (x )=2sin(2x 3+π6)-1+m .当x ∈[0,π]时,π6≤2x 3+π6≤5π6,12≤sin(2x 3+π6)≤1,∴f (x )的最小值为m .依题意,m =0.∴f (x )=2sin(2x 3+π6)-1.(2)由题意,得f (C )=2sin(2C 3+π6)-1=1,∴sin(2C 3+π6)=1.而π6≤2C 3+π6≤5π6,∴2C 3+π6=π2,解得C =π2.∴A +B =π2. 在Rt △ABC 中,∵A +B =π2,2sin 2B =cos B +cos(A -C ).第四节1.解析:函数的最小正周期为T =2π|a |,∴当|a |>1时,T <2π.当0<|a |<1时,T >2π,观察图形中周期与振幅的关系,发现④不符合要求.os 2A -sin A -sin A =0,解得sin A =-1±52.∵0<sin A <1,∴sin A =5-12. 2.解析:y =sin(x -π6)=sin(x -π6+2π)=sin(x +11π6)3.解析:因为f (x )=3sin x -cos x =2sin(x -π6),f (x )的图象向右平移φ个单位所得图象对应的函数为奇函数,则φ的最小值为5π6.4.解析:据图象可得:A =3,T 2=5π6-π3⇒T =π,故ω=2,又由f (7π12)=3⇒sin(2×7π12+φ)=1,解得φ=2k π-2π3(k ∈Z ),又-π<φ<π,故φ=-2π3,故f (x )=3sin(2x -2π3),依次判断各选项,易知①②是错误的,由图象易知x =7π12是函数图象的一条对称轴,故③正确,④函数的单调递增区间有无穷多个,区间[π12,7π12]只是函数的一个单调递增区间,⑤由上述推导易知正确.答案:③⑤5.解析:显然结论成立只需保证区间[x 1,x 1+2010]能够包含函数的至少一个完整的单调区间即可,且f (x )=sin ωx +cos ωx =2sin(ωx +π4),则2010≥2πω2⇒ω≥π2010.答案:π2010解:(1)f (x )=32sin2ωx +12cos2ωx +32=sin(2ωx +π6)+32,令2ωx +π6=π2,将x =π6代入可得:ω=1.(2)由(1)得f (x )=sin(2x +π6)+32,经过题设的变化得到的函数g (x )=sin(12x -π6)+32,当x =4k π+43π,k ∈Z 时,函数取得最大值52.令2k π+π2≤12x -π6≤2k π+32π(k ∈Z ),∴4k π+4π3≤x ≤4k π+103π(k ∈Z ).即x ∈[4k π+4π3,4k π+103π],k ∈Z 为函数的单调递减区间.1.解析:由图可知,T 2=2π-34π,∴T =52π,∴2πω=52π,∴ω=45,∴y =sin(45x +φ).又∵sin(45×34π+φ)=-1,∴sin(35π+φ)=-1,∴35π+φ=32π+2k π,k ∈Z . ∵-π≤φ<π,∴φ=910π. 答案:910π2.解析:由图象知T =2(2π3-π6)=π.∴ω=2πT =2,把点(π6,1)代入,可得2×π6+φ=π2,φ=π6.答案:π63.解析:∵f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,∴2πω=π,故ω=2. 又f (x )=sin(2x +π4)∴g (x )=sin[2(x +π8)+π4]=sin(2x +π2)=cos2x .答案:向左平移π8个单位长度4.解析:T 2=1112π-712π=π3,∴ω=2πT =3.又(712π,0)是函数的一个上升段的零点, ∴3×712π+φ=3π2+2k π(k ∈Z ),得φ=-π4+2k π,k ∈Z ,代入f (π2)=-23,得A =223,∴f (0)=23. 答案:235.解析:由y =sin(2x +π3)=sin2(x +π6)可知其函数图象关于点(-π6,0)对称,因此要使平移后的图象关于(-π12,0)对称,只需向右平移π12即可.答案:右 π126.解析:由题意,知f (x )=3sin x -cos x =2(32sin x -12cos x )=2sin(x -π6),其图象向左平移m 个单位后变为y =2sin(x -π6+m ),平移后其对称轴为x -π6+m =k π+π2,k ∈Z .若为偶函数,则x =0,所以m =k π+2π3(k ∈Z ),故m 的最小值为2π3.答案:2π37.解析:y =tan(ωx +π4)向右平移π6个单位长度后得到函数解析式y =tan[ω(x -π6)+π4],即y =tan(ωx +π4-πω6),显然当π4-πω6=π6+k π(k ∈Z )时,两图象重合,此时ω=12-6k (k ∈Z ).∵ω>0,∴k =0时,ω的最小值为12.答案:128.解析:由于函数y =sin(2x +π3)的最小正周期是π,故函数y =|sin(2x +π3)|的最小正周期是π2,①正确;y =sin(x -3π2)=cos x ,该函数在[π,3π2)上单调递增, ②正确;当x =5π4时,y =sin(2x +5π6)=sin(5π2+5π6)=sin(π2+5π6)=cos 5π6=-32,不等于函数的最值,故x =5π4不是函数y =sin(2x +5π6)的图象的一条对称轴,③不正确.答案:29.解析:当0≤x ≤1时,y =sin πx2的图象如图所示,y =kx 的图象在[0,1]之间的部分应位于此图象下方,当k ≤0时,y =kx 在[0,1]上的图象恒在x 轴下方,原不等式成立.当k >0,kx ≤sin πx2时,在x ∈[0,1]上恒成立,k ≤1即可.故k ≤1时,x ∈[0,1]上恒有sin πx2≥kx .答案:k ≤110.解:(1)f (x )=sin 2ωx +cos 2ωx +2sin ωx ·cos ωx +1+cos2ωx =sin2ωx +cos2ωx +2=2sin(2ωx +π4)+2,依题意,得2π2ω=2π3,故ω=32.(2)依题意,得g (x )=2sin[3(x -π2)+π4]+2=2sin(3x -5π4)+2.由2k π-π2≤3x -5π4≤2k π+π2(k ∈Z ),解得23k π+π4≤x ≤23k π+7π12(k ∈Z ).故g (x )的单调增区间为[23k π+π4,23k π+7π12](k ∈Z ).11.解:(1)由最低点为M (2π3,-2)得 A =2.由T =π得ω=2πT =2ππ=2.由点M (2π3,-2)在图象上得2sin(4π3+φ)=-2,即sin(4π3+φ)=-1,∴4π3+φ=2k π-π2(k ∈Z ),即φ=2k π-11π6,k ∈Z .又φ∈(0,π2),∴φ=π6, ∴f (x )=2sin(2x +π6).(2)∵x ∈[0,π12],∴2x +π6∈[π6,π3],∴当2x +π6=π6,即x =0时,f (x )取得最小值1;当2x +π6=π3,即x =π12时,f (x )取得最大值 3.12.解:法一:(1)由cos π4cos φ-sin 3π4sin φ=0得cos π4cos φ-sin π4sin φ=0,即cos(π4+φ)=0.又|φ|<π2,∴φ=π4.(2)由(1)得,f (x )=sin(ωx +π4).依题意,T 2=π3,又T =2πω,故ω=3,∴f (x )=sin(3x +π4).函数f (x )的图象向左平移m 个单位后所对应的函数为g (x )=sin[3(x +m )+π4],g (x )是偶函数当且仅当3m +π4=k π+π2(k ∈Z ),即m =k π3+π12(k ∈Z ).从而,最小正实数m =π12.法二:(1)同法一.(2)由(1)得 ,f (x )=sin(ωx +π4).依题意,T 2=π3.又T =2πω,故ω=3,∴f (x )=sin(3x +π4).函数f (x )的图象向左平移m 个单位后所对应的函数为g (x )=sin[3(x +m )+π4].g (x )是偶函数当且仅当g (-x )=g (x )对x ∈R 恒成立,亦即sin(-3x +3m +π4)=sin(3x +3m +π4)对x ∈R 恒成立.∴sin(-3x )cos(3m +π4)+cos(-3x )·sin(3m +π4)=sin3x cos(3m +π4)+cos3x sin(3m +π4),即2sin3x cos(3m +π4)=0对x ∈R 恒成立.∴cos(3m +π4)=0,故3m +π4=k π+π2(k ∈Z ),∴m =k π3+π12(k ∈Z ),从而,最小正实数m =π12.。

完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。

$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。

$-\frac{\pi}{3}$C。

$\frac{\pi}{6}$D。

$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。

2B。

$\frac{1}{6164}$C。

$-\frac{1}{6164}$D。

$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。

在 $x$ 轴上B。

在直线 $y=x$ 上C。

在 $y$ 轴上D。

在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。

$-\frac{2}{3}$B。

$\frac{3}{2}$C。

$\frac{1}{2}$D。

$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。

向左平移 $\frac{\pi}{4}$ 个单位B。

向右平移 $\frac{\pi}{4}$ 个单位C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数章节测试题一、选择题1. 已知sinθ=53,sin2θ<0,则tanθ等于( )A .-43 B .43 C .-43或43 D .542. 若20π<<x ,则2x 与3sinx 的大小关系是 ( )A .x x sin 32>B .x x sin 32<C .x x sin 32=D .与x 的取值有关3. 已知α、β均为锐角,若P :sinα<sin(α+β),q :α+β<2π,则P 是q 的( )A .充分而不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 函数y =sinx·|cotx |(0<x<π)的大致图象是 ( )A B C D5. 若f(sinx)=3-cos2x ,则f(cosx)=( ) A .3-cos2x B .3-sin2x C .3+cos2x D .3+sin2x 6. 设a>0,对于函数)0(sin sin )(π<<+=x xa x x f ,下列结论正确的是 ( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值 7. 函数f(x)=x x cos 2cos 1-( )A .在[0,2π]、⎥⎦⎤⎝⎛ππ,2上递增,在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤⎝⎛ππ2,23上递减B .⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛23ππ,上递增,在⎥⎦⎤⎝⎛ππ,2、⎥⎦⎤⎝⎛ππ223,上递减 C .在⎪⎭⎫⎢⎣⎡ππ,2、⎥⎦⎤⎝⎛ππ223,上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛23ππ,上递减 D .在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤⎝⎛ππ2,23上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛ππ,2上递减8. y =sin(x -12π)·cos(x -12π),正确的是 ( )A .T =2π,对称中心为(12π,0) B .T =π,对称中心为(12π,0) C .T =2π,对称中心为(6π,0) D .T =π,对称中心为(6π,0)9. 把曲线y cosx +2y -1=0先沿x 轴向右平移2π,再沿y 轴向下平移1个单位,得到的曲线方程为( )xxxxA .(1-y)sinx +2y -3=0B .(y -1)sinx +2y -3=0C .(y +1)sinx +2y +1=0D .-(y +1)sinx +2y +1=010.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则 ( ) A .ω=2,θ=2πB .ω=21,θ=2πC .ω=21,θ=4πD .ω=2,θ=4π二、填空题11.f (x)=A sin(ωx +ϕ)(A>0, ω>0)的部分如图,则f (1) +f (2)+…+f (11)= . 12.已sin(4π-x)=53,则sin2x 的值为 。

13.]2,0[,sin 2sin )(π∈+=x x x x f 的图象与直线y =k 有且仅有两个不同交点,则k 的取值范围是 .14.已知θθsin 1cot 22++=1,则(1+sinθ)(2+cosθ)= 。

15.平移f (x)=sin(ωx +ϕ)(ω>0,-2π<ϕ<2π),给出下列4个论断: ⑴ 图象关于x =12π对称 ⑵图象关于点(3π,0)对称⑶ 周期是π ⑷ 在[-6π,0]上是增函数以其中两个论断作为条件,余下论断为结论,写出你认为正确的两个命题:(1) .(2) . 三、解答题 16.已知21)4tan(=+απ,(1)求αtan 的值;(2)求ααα222cos 1cos sin +-的值.17.设函数)()(c b a x f +⋅=,其中a =(sinx,-cosx),b =(sinx,-3cosx),c =(-cosx,sinx),x ∈R ;(1) 求函数f(x)的最大值和最小正周期;(2) 将函数y =f(x)的图象按向量d 平移,使平移后的图象关于坐标原点成中心对称,求|d |最小的d .18.在△ABC 中,sinA(sinB +cosB)-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.19.设f (x)=cos2x +23sinxcosx 的最大值为M ,最小正周期为T .⑴ 求M 、T .⑵ 若有10个互不相等的函数x i 满足f (x i )=M ,且0<x i <10π,求x 1+x 2+…+x 10的值.20.已知f (x)=2sin(x +2θ)cos(x +2θ)+23cos 2(x +2θ)-3。

⑴ 化简f (x)的解析式。

⑵ 若0≤θ≤π,求θ使函数f (x)为偶函数。

⑶ 在⑵成立的条件下,求满足f (x)=1,x ∈[-π,π]的x 的集合。

三角函数章节测试题参考答案1. A2. D3. B4. B5. C6. B7. A8. B9.C 10.A 11. 2+2212.25713. 1<k <3 14. 4 15. (1) ②③⇒①④ (2) ①③⇒②④ 16.解:(1) tan(4π+α)=ααtan 1tan 1-+=21解得tan α=-31(2)1cos 21cos cos sin 22cos 1cos 2sin 222-+-=+-ααααααα=6521tan cos 2cos sin 2-=-=-αααα17. 解:(1)由题意得f(x)=)(c b a +⋅ =(sinx ,-cosx)·(sinx -cosx ,sinx -3cosx) =sin 2x -2sinxcosx +3cos 2x =2+cos2x -sin2x =2+2sin(2x +43π)故f(x)的最大值2+2,最小正周期为ππ=22(2) 由sin(2x +43π)=0得2x +43π=k π即x =2πk -83π,k ∈z于是d =(83π-2πk ,-2)|d |=48322+⎪⎭⎫ ⎝⎛-ππk (k ∈z)因为k 为整数,要使| d |最小,则只有k =1,此时d =(-8π,-2)为所示.18.∵ sinA(sinB +cosB)-sinC =0∴ sinA sinB +sinA cosB =sinA cosB +cosA sinB∵ sinB > 0 sinA =cosA ,即tanA =1 又0 < A<π ∴ A =4π,从而C =43π-B 由sinB +cos2C =0,得sinB +cos2(43π-B)=0即sinB(1-2cosB)=0 ∴cosB =21B =3πC =125π19.)(x f =2sin(2x +6π)(1) M =2 T =π(2) ∵)(i x f =2 ∴ sin(2x i +6π)=12x i +6π=2kπ+2π x i =2kπ+6π(k ∈z)又0 < x i <10π ∴ k =0, 1, 2, (9)∴ x 1+x 2+…+x 10=(1+2+…+9)π+10×6π=3140π20.解:(1) f (x)=sin(2x +θ)+3cos(2x +θ)=2sin(2x +θ+3π)(2) 要使f (x)为偶函数,则必有f (-x)=f (x) ∴ 2sin(-2x +θ+3π)=2sin(2x +θ+3π)∴ 2sin2x cos(θ+3π)=0对x ∈R 恒成立∴ cos(θ+3π)=0又0≤θ≤π θ=6π(3) 当θ=6π时f (x)=2sin(2x +2π)=2cos2x =1∴cos2x =21∵x ∈[-π,π] ∴x =-3π或3π21.)(x f =2sin(2x +6π)+2由五点法作出y =)(x f 的图象(略)(1) 由图表知:0<a <4,且a≠3 当0<a <3时,x 1+x 2=34π 当3<a <4时,x 1+x 2=3π(2) 由对称性知,面积为21(67π-6π)×4=2π.。

相关文档
最新文档