交通工程公路建设中英文对照外文翻译文献
交通工程专业英语翻译(全)
Unit1The Evolution of Transport交通工具的演化The evolution of transport has been closely linked to the development of humankind throughout the earth’s history.Transport’s early function was to meet the basic need of hauling food supplies and building materials.But with the formation of tribes,then peoples,and finally nations,the societal and economic functions of transport became more and more complex. At first there was mobility required for individuals,clans,households,and animals to protect them against,and to escape from,the dangers of natural disasters and tribal aggressions,and in the search for the best places to settle.As tribal groups formed and gradually established their geographical identity,transport was increasingly needed to open up regions for development,to provide access to natural resources,to promote intercommunal trade,and to mobilize territorial defense.When the first nations came into being,transport played a major role in establishing national integrity.交通工具的演变紧密相连的人类在整个地球的历史发展。
交通工程中英术语对照
交通工程中英术语对照公路highway道路road公路工程highway engineering公路网highway network公路网密度highway density公路等级highway classification公路自然区划climatic zoning for highway公路用地highway right‐of‐way高速公路free way; express way等级公路classified highway辅道relief road干线公路arterial highway支线公路feeder highway专用公路accommodation highway国家干线公路(国道)national trunk highway省级干线公路(省道)provincial trunk highway县公路(县道)county road乡公路(乡道)township road辐射式公路radial highway环形公路ring highway绕行公路bypass交通结构traffic structure交通组成traffic composition混合交通mixed traffic交通流traffic flow交通流理论traffic flow theory车流vehicle stream交通密度traffic density车头间距space headway车头时距time headway车间净距vehicular gap延误delay地点速度spot speed行驶速度running speed运行速度operating speed临界速度critical speed平均速度average speed计算行车速度(设计车速)design speed交通量traffic volume年平均日交通量annual average daily traffic月平均日交通量monthly average daily traffic年第30位最大小时交通量thirtieth highest annual hourly volume年最大小时交通量maximum annual hourly设计小时交通量design hourly volume通行能力traffic capacity基本通行能力basic traffic capacity可能通行能力possible traffic capacity设计通行能力design traffic capacity道路服务水平level of service公路交通规划traffic planning交通调查traffic survey交通量调查traffic volume survey交通量观测站traffic volume observation station起迄点调查(OD调查)origin‐destination study出行trip境内交通local traffic过境交通through traffic交通发生traffic generation交通分布traffic distribution交通分配traffic assignment交通预测traffic prognosis行车道carriageway分离式行车道divided carriageway车道lane变速车道speed‐change lane 加速车道acceleration lane减速车道deceleration lane爬坡车道climbing lane停车道parking lane错车道turn‐out lane自行车道cycle path路侧人行道sidewalk分隔带lane separator中央分隔带median divider中间带central strip路肩shoulder;verge路缘带marginal strip路缘石kerb;curb侧向余宽lateral clearance路拱camber;crown路拱横坡crown slope公路建筑限界clearance of highway公路路线highway route公路线形highway alignment平面线形horizontal alignment纵面线形vertical alignment线形要素alignment elements平曲线horizontal curve极限最小平曲线半径limited minimum radius of horizontal curve复曲线compound curve反向曲线reverse curve断背曲线broken‐back curve回头曲线switch‐back curve缓和曲线transition curve竖曲线vertical curve弯道加宽curve widening加宽缓和段transition zone of curve超高superelevation超高缓和段superelevation runoff纵坡longitudinal gradient最大纵坡maximum longitudinal gradient最小纵坡minimum longitudinal gradient变坡点grade change point平均纵坡average gradient坡长限制grade length limitation高原纵坡拆减highland grade compensation缓和坡段transition grading zone合成坡度resultant gradient视距sight distance 停车视距non‐passing sight distance,stopping sight distance超车视距passing sight distance道路交叉road intersection;道口railroad grade crossing平面交叉at‐grade intersection;gradecrossing正交叉right‐angle intersection斜交叉skew intersection环形交叉rotary intersection十字形交叉"+"T形交叉T intersection错位交叉offset intersection; staggered junctionY形交叉Y intersection立体交叉grade separation分离式立体交叉simple grade separation, separate grade crossing互通式立体交叉interchange苜蓿叶形立体交叉full cloverleaf interchange部分苜蓿叶形立体交叉cloverleaf interchange菱形立体交叉diamond interchange定向式立体交叉directional interchange喇叭形立体交叉three‐Leg interchange环形立体交叉rotary interchange匝道ramp交叉口road crossing;intersection交叉口进口intersection entrance交叉口出口intersection exit加铺转角式交叉口intersection with widened corners拓宽路口式交叉口flared intersection分道转弯式交叉口channelized intersection渠化交通channelization交织weaving交织路段weaving section合流converging分流diverging冲突点conflict point交通岛traffic island导流岛channelization island中心岛central island安全岛refuge island沿线设施roadside facilities 交通安全设施traffic safety device人行横道crosswalk人行地道pedestrian underpass人行天桥pedestrian overcrossing护栏guard fence防护栅guard fence,safety barrier遮光栅anti‐dizzling screen应急电话emergency telephone反光标志reflective sign反光路钮reflective button弯道反光镜traffic mirror道路交通标志road traffic sign警告标志warning sign禁令标志regulatory sign指示标志guide sign指路标志information sign辅助标志auxiliary sign可变信息标志changeable message sign路面标线pavement marking防雪设施snow protection facilities防沙设施sands protection facilities隔音墙acoustic barrier停车场parking area踏勘reconnaissance可行性研究feasibility study线形设计highway alignment design公路景观设计highway landscape design选线route selection路线控制点control point定线location比较线alternative line展线line development初测preliminary survey定测location survey地貌topographic feature地物culture地形topography台地terrace垭口pass;saddle back平原区plain terrain微丘区rolling terrain重丘区hilly terrain山岭区mountainous terrain沿溪线valley line山脊线ridge line山坡线hill‐side line越岭线ridge crossing line土方调配cut‐fill transition土方调配图cut‐fill transition program土方调配经济运距economical hauling distance导线traverse导线测量traverse survey中线center line中线测量center line survey施工测量construction survey竣工测量final survey(路线)平面图plan交点intersection point虚交点imaginary intersection point转点turning point转角intersection angle方位角azimuth angle象限角bearing方向角direction angle切线长tangent length曲线长curve length外(矢)距external secant测站instrument station测点observation point中桩center stake加桩additional stake护桩reference stake断链broken chainage水准测量leveling survey水准点bench mark绝对基面absolute datum高程elevation地面高程ground elevation设计高程designed elevation(路线)纵断面图profile中桩填挖高度cut and fill at center stake地形测量topographic survey基线base line地形图topographic map等高线contour line横断面测量cross‐sectional survey横断面图cross‐section坑探pit test钻探boring摄影测量photogrammetry航空摄影测量aerial photogrammetry地面立体摄影测量ground stereophoto grammetry地面控制点测量ground control‐point survey航摄基线aerophoto base影像地图photographic map像片索引图(镶辑复照图)photo index航摄像片判读aerophoto interpretation综合法测图planimatric photo全能法测图universal photo微分法测图differential photo像片镶嵌图photo mosaic路基subgrade路堤embankment路堑cutting半填半挖式路基part cut‐part fill subgrade台口式路基benched subgrade路基宽度width of subgrade路基设计高程design elevation of subgrade(路基)最小填土高度minimum height of fill边坡side slope边坡坡度grade of side slope(边)坡顶top of slope(边)坡脚toe of slope护坡道berm边坡平台plain stage of slope碎落台berm at the foot of cutting slope护坡slope protection挡土墙retaining wall重力式挡土墙gravity retaining wall衡重式挡土墙balance weight retaining wall悬臂式挡土墙cantilever retaining wall扶壁式挡土墙counterfort retaining wall柱板式挡土墙column‐plate retaining wall锚杆式挡土墙anchored retaining wall by tie rods锚碇板式挡土墙anchored bulkhead retainingwall石笼rock filled gabion抛石riprap路基排水subgrade drainage边沟side ditch截水沟intercepting ditch排水沟drainage ditch急流槽chute跌水drop water蒸发池evaporation pond盲沟blind drain渗水井seepage well透水路堤permeable embankment过水路面ford填方fill挖方cut借土borrow earth弃土waste取土坑borrow pit弃土堆waste bank回填土back‐filling黄土loess软土soft soil淤泥mud泥沼moor泥炭peat盐渍土salty soil膨胀土expansive soil冻土frozen soil多年冻土permafrost流砂quicksand软弱地基soft ground强夯法dynamic consolidation预压法preloading method反压护道loading berm砂井sand drain路基砂垫层sand mat of subgrade压实compaction压实度degree of compaction(标准)最大干容重maximum dry unit weight相对密实度relative density毛细水capillary water土石方爆破blasting procedure抛掷爆破blasting for throwing rock爆破漏斗blasting crater松动爆破blasting for loosening rock爆破作用圈acting circles of blasting路面pavement弹性层状体系理论elastic multilayer theory (回弹)弯沉deflection加州承载比(CBR)California bearing ratio,(CBR)路面宽度width of pavement路槽road trough刚性路面rigid pavement柔性路面flexible pavement路面结构层pavement structure layer面层surface course磨耗层wearing course联结层binder course基层base course垫层bed course隔水层aquitard隔温层thermal insulating course封层seal coat透层prime coat保护层protection course补强层strengthening layer高级路面high type pavement次高级路面sub‐high type pavement中级路面intermediate type pavement低级路面low type pavement水泥混凝土路面cement concrete pavement沥青路面bituminous pavement沥青混凝土路面bituminous concrete pavement沥青碎石路面bituminous macadam pavement沥青贯入碎(砾)石路面bituminous penetrationpavement沥青表面处治bituminous surface treatment块料路面block pavement石块路面stone block pavement泥结碎石路面clay‐bound macadam pavement水结碎石路面water‐bound macadam pavement级配路面graded aggregate pavement稳定土基层stabilized soil base course工业废渣基层industrial waste base course块石基层Telford base层铺法spreading in layers拌和法mixing method厂拌法plant mixing method路拌法road mixing method热拌法hot mixing method冷拌法cold mixing method热铺法hot laid method冷铺法cold laid method贯入法penetration method铺砌法pitching method缩缝contraction joint胀缝expansion joint真缝true joint假缝dummy joint横缝transverse joint纵缝longitudinal joint施工缝construction joint传力杆dowel bar拉杆tie bar路面平整度surface evenness路面粗糙度surface roughness路面摩擦系数friction coefficient of pavement附着力adhesive force水滑现象hydroplaning phenomenon桥梁bridge公路桥highway bridge公铁两用桥highway and rail transit bridge人行桥pedestrian bridge跨线桥overpass bridge高架桥viaduct永久性桥permanent bridge半永久性桥semi‐permanent bridge临时性桥temporary bridge钢筋混凝土桥reinforced concrete bridge预应力混凝土桥prestressed concrete bridge钢桥steel bridge圬工桥masonry bridge木桥timber bridge正交桥right bridge斜交桥skew bridge弯桥curved bridge坡桥bridge on slope斜桥skew bridge正桥right bridge上承式桥deck bridge中承式桥half‐through bridge下承式桥through bridge梁桥beam bridge简支梁桥simple supported beam bridge连续梁桥continuous beam bridge悬臂梁桥cantilever beam bridge联合梁桥composite beam bridge板桥slab bridge拱桥arch bridge双曲拱桥two‐way curved arch bridge空腹拱桥open spandrel arch bridge实腹拱桥filled spandrel arch bridge系杆拱桥bowstring arch bridge桁架桥truss bridge刚构桥rigid frame bridgeT形刚构桥T‐shaped rigid frame bridge连续刚构桥continuous rigid frame bridge斜腿刚构桥rigid frame bridge with inclined legs斜拉桥(斜张桥)cable stayed bridge悬索桥suspension bridge漫水桥submersible bridge浮桥pontoon bridge开启桥movable bridge装配式桥fabricated bridge装拆式钢桥fabricated steel bridge涵洞culvert管涵pipe culvert拱涵arch culvert箱涵box culvert盖板涵slab culvert无压力式涵洞non‐pressure culvert压力式涵洞pressure culvert半压力式涵洞partial pressure culvert倒虹吸涵siphon culvert上部结构superstructure主梁main beam横梁floor beam纵梁longitudinal beam, stringer挂梁suspended beam拱圈archring拱上结构spandrel structure腹拱spandrel arch拱上侧墙spandrel wall桥面系floor system, bridge decking桥面铺装bridge deck pavement伸缩缝expansion and contraction joint桥面伸缩装置bridge floor expansion and contraction installation安全带safety belt桥头搭板transition slab at bridge head下部结构substructure桥墩pier墩身pier body墩帽coping盖梁bent cap破冰体ice apron重力式桥墩gravity pier实体桥墩solid pier空心桥墩hollow pier柱式桥墩column pier排架桩墩pile bent pier柔性墩flexible pier制动墩braking pier单向推力墩single direction thrusted pier桥台abutment台身abutment body前墙front wall翼墙wing walls台帽coping锥坡conical slope耳墙wing wallsU形桥台U‐shaped abutment八字形桥台flare wing wall abutment一字形桥台head wall abutment, straight abutment重力式桥台gravity abutment埋置式桥台buried abutment扶壁式桥台counterforted abutment锚锭板式桥台anchored bulkhead abutment支撑式桥台supported type abutment地基subsoil加固地基consolidated subsoil天然地基natural subsoil基础foundation扩大基础spread foundation沉井基础open caisson foundation管柱基础cylindrical shaft foundation桩基础pile foundation桩pile预制桩precast pile就地灌注桩cast‐in‐place concrete pile摩擦桩friction pile支承桩bearing pile承台bearing platform支座bearing固定支座fixed bearing活动支座expansion bearing索塔cable bent tower索鞍cable saddle调治构造物regulating structure丁坝spur dike顺坝longitudinal dam桥位bridge site桥梁全长total length of bridge主桥main bridge引桥approach span跨径span桥涵计算跨径computed span桥涵净跨径clear span矢跨比rise span ratio计算矢高calculated rise of arch桥下净空clearance of span桥面净空clearance above bridge floor桥梁建筑高度construction height of bridge荷载load永久荷载permanent load可变荷载variable load偶然荷载accidental load荷载组合loading combinations车辆荷载标准loading standard for design vehicle设计荷载design load施工荷载construction load梁beam简支梁simple‐supported beam连续梁continuous beam悬臂梁cantilever beam板slab拱arch桁架truss刚构rigid frame柱column强度strength刚度stiffness rigidity抗裂度crack resistance稳定性stability位移displacement变形deformation挠度deflection预拱度camber流域catchment basin集水面积runoff area径流runoff水文测验hydrological survey河床river bed河槽river channel主槽main channel边滩side shoal河滩flood land河床宽度bed width河槽宽度channel width过水断面discharge section水位water level最高(或最低)水位maximum (minimum)waterlevel通航水位navigable water level设计水位design water lever水面比降water surface slope河床比降gradient of river bed湿周wetted perimeter糙率coefficient of roughness水力半径hydraulic radius水文计算hydrological computation设计流量designed discharge设计流速designed flow velocity行近流速approach velocity洪水调查flood survey洪水频率flood frequency设计洪水频率designed flood frequency潮汐河流tidal river悬移质suspended load推移质bed material load水力计算hydraulic computation水头water head冲刷scour桥下一般冲刷general scour under bridge桥墩(或台)局部冲刷local scour near pier自然演变冲刷natural scour冲刷系数coefficient of scouring淤积silting壅水back water流冰ice drift先张法pretensioning method后张法post‐tensioning method缆索吊装法erection with cableway悬臂拼装法erection by protrusion悬臂浇筑法cast‐in‐place cantilever method移动支架逐跨施工法span by span method纵向拖拉法erection by longitudinal pulling method顶推法incremental launching method转体架桥法construction by swing浮运架桥法erecting by floating顶入法jack‐in method围堰cofferdam护筒pile casing隧道tunnel洞门tunnel portal衬砌tunnel lining明洞open cut tunnel围岩surrounding rock隧道建筑限界structural approach limit of tunnels明挖法open cut method矿山法mine tunnelling method盾构法shield tunnelling method沉埋法(沉管法)immersed tunnel导坑heading隧道支撑tunnel support构件支撑element support喷锚支护lock bolt support with shotcrete隧道通风tunnel ventilation隧道照明tunnel lighting养护maintenance定期养护periodical maintenance巡回养护patrol maintenance大中修周期maintenance period小修保养routine maintenance中修intermediate maintenance大修heavy maintenance改善工程road improvement抢修emergency repair of road加固strengthening of structure回砂sand sweeping罩面overlay of pavement路面翻修pavement recapping路面补强pavement strengthening车辙rutting路面搓板surface corrugation路面网裂net‐shaped cracking路面龟裂alligator cracking路面碎裂pavement spalling反射裂缝reflection crack路面坑槽pot holes路面冻胀surface frost heave路面沉陷pavement depression路面滑溜surface slipperiness露骨surface angularity啃边edge failure泛油bleeding拥包upheaval拱胀blow up错台faulting of slab ends错法slab staggering滑坡slide坍方land slide崩塌collapse碎落debris avalanche沉降settlement沉陷subsidence泥石流mud avalanche(振动)液化liquefaction翻浆frost boiling岩溶karst沙害sand hazard雪害snow hazard水毁washout好路率rate of good roads养护质量综合值general rating of maintenancequality路容road appearance路况road condition路况调查road condition survey路政管理road administration民工建勤civilian labourers working on public project养路费toll of road maintenance养路道班maintenance gang粒料granular material集料(骨料)aggregate矿料mineral aggregate矿粉mineral powder砂sand砾石gravel砂砾sand gravel卵石cobble stone碎石broken stone, crushed stone片石rubble块石block stone料石dressed stone石屑chip工业废渣industrial solid waste结合料binder有机结合料organic binding agent沥青bitumen地沥青asphalt天然沥青natural asphalt石油沥青petroleum asphalt煤沥青coal tar乳化沥青emulsified bitumen氧化沥青oxidized asphalt路用沥青road bitumen有机结合料inorganic binding agent粉煤灰fly ash混合料mixture沥青混合料bituminous mixture沥青混凝土混合料bituminous concrete mixture沥青碎石混合料bituminous macadam mixture沥青砂asphalt sand沥青膏asphalt mastic水泥砂浆cement mortar石灰砂浆lime mortar水泥混凝土混合料cement concrete mixture水泥混凝土cement concrete钢筋混凝土reinforced concrete预应力(钢筋)混凝土prestressed concrete早强混凝土early strength concrete干硬性混凝土dry concrete贫混凝土lean concrete轻质混凝土light‐weight concrete纤维混凝土fibrous concrete外掺剂admixture减水剂water reducing agent加气剂air entraining agent早强剂early strength agent缓凝剂retarder钢筋steel bar预应力钢材prestressing steel高强钢丝high tensile steel wire钢铰线stranded steel wire冷拉钢筋cold‐stretched steel bar冷拔钢丝cold‐drawn steel wire高强螺栓high strength bolt空隙率porosity孔隙比void ratio粒径grain size颗粒组成grain composition细度fineness筛分sieve analysis级配gradation级配曲线grading curve最佳级配optimum gradation含水量water content最佳含水量optimum water content稠度界限consistency limit液限liquid limit塑限plastic limit缩限shrinkage limit塑性指数plasticity index水泥标号cement mark水泥混凝土标号cement concrete mark水泥混凝土配合比proportioning of cement concrete水灰比water cement ratio和易性workability坍落度slump硬化hardening水硬性hydraulicity气硬性air hardening离析segregation徐变creep老化ageing(沥青)稠度consistency(of bitumen)针入度penetration粘(滞)度viscosity软化点softening point延度ductility闪点flash point溶解度dissolubility热稳性hot stability水稳性water stability油石化asphalt‐aggregate ratio含油率bitumen content压碎率rate of crushing磨耗度abrasiveness弹性模量modulus of elasticity回弹模量modulus of resilience劲度(模量)stiffness modulus模量比modulus ratio泊松比Poisson's ratio疲劳试验fatigue test劈裂试验splitting test三轴试验triaxial test击实试验compaction test触探试验cone penetration test弯沉试验deflection test环道试验circular track test承载板试验loading plate test透水性试验perviousness test车辙试验wheel tracking test马歇尔试验Marshall stability test压实度试验compactness test铺砂法sand patch method硬练胶砂强度试验earth‐dry mortar strengthtest软练胶砂强度试验plastic mortar strengthtest(水泥)安定性试验soundness test(of cement)击实仪compaction test equipment长杆贯入仪penetration test equipment承载板loading plate杠杆弯沉仪beam lever deflectometer路面曲率半径测定仪surface‐curvature apparatus路面平整度测定仪viameter路面透水度测定仪surface permeameter五轮仪fifth‐wheel tester制动仪skiddometer速度检测器speed detector万能试验机universal testing machine三轴(剪切)仪triaxial shear equipment加州承载比(CBR)测定仪California bearing ratiotester标准筛standard sieves(沥青)针入度仪penetrometer(沥青)粘度仪viscosimeter(沥青)延度仪ductilometer(沥青)软化点仪(环‐球法)softening point tester(ring‐ball method)闪点仪(开口杯式)flash point tester (open cupmethod)马歇尔稳定度仪Marshall stability apparatus(沥青混合料)抽提仪bitumen extractor砂浆稠度仪mortar penetration tester坍落度圆锥筒slump cone标准工业粘度计standard concrete consistometer饱和面干吸水率试模saturated‐surface‐dried moisture retention tester撞击韧度试验机impact toughness machine圆盘耐磨硬度试验机wear hardness machine狄法尔磨耗试验机Deval abrasion testing machine洛杉矶磨耗试验机Los Angeles abrasion testing machine压碎率试模crushing strength tester单斗挖掘机single‐bucket excavator推土机bulldozer除根机rootdozer铲运机scraper平地机grader挖沟机trencher耕耘机cultivator松土机ripper松土搅拌机pulvi‐mixer稳定土拌和机stabilizer凿岩机rock breaker碎石机stone crusher碎石撒布机stone spreader装载机loader羊足压路机sheep‐foot roller手扶式单轮压路机walk behind single drum蛙式打夯机frog rammer内燃夯实机internal combustion compactor铁夯(铁撞柱)tamping iron压路机roller振动压路机vibratory roller沥青加热器asphalt heater沥青泵asphalt pump沥青洒布机asphalt sprayer沥青洒布车asphalt distributor沥青混合料拌和设备asphalt mixing plant沥青混合料摊铺机asphalt paver散装水泥运输车cement deliver truck水泥混凝土混合料拌和设备concrete mixing plant(水泥混凝土混合料)搅拌concrete deliver truck运输车水泥混凝土混合料摊铺机concrete paver振捣器concrete vibrator水泥混凝土混合料整面机concrete finisher真空泵vacuum pump水泥混凝土路面切缝机concrete joint cutter水泥混凝土路面锯缝机concrete saw水泥混凝土路面清缝机concrete joint cleaner水泥混凝土路面填缝机concrete joint sealer水泵pump泥浆泵mud pump张拉钢筋油泵prestressed steel bar drawing oil pump砂浆泵mortar pump水泥混凝土混合料泵concrete pump钢筋切断机bar shear钢筋冷轧机cold‐rolling mill钢筋冷拉机steel stretcher钢筋冷拔机steel bar cold‐extruding machine钢筋冷镦机steel bar heading press machine钢筋拉伸机steel extension machine钢筋弯曲机steel bar bender钢筋调直机steel straighten machine对焊机butt welder钻孔机boring machine打桩机pile driver拔桩机pile extractor千斤顶jack张拉预应力钢筋千斤顶prestressed steel bar drawing jack手拉葫芦chain block起重葫芦hoisting block卷扬机hoister缆索吊装设备cableway erecting equipment起重机crane架桥机bridge erection equipment砂筒sand cylinder盾构shield全气压盾构compressed air shield半盾构roof shield隧道掘进机tunnel boring machine全断面隧道掘进机tunnel boring machine for full section喷枪shotcrete equipment装碴机mucker盾构千斤顶main jack拉合千斤顶pull‐in jacks复拌沥青混合料摊铺机asphalt remixer路面铣削机pavemill回砂车sand sweeping equipment除雪机snow plough装雪机snow Loader洗净剂喷布车detergent spray truck清扫车sweeper洒水车water truck划标线机Line maker振动筛vibrating screen撒布机spreader输送机conveyer提升机elevator翻斗车dump‐body car自卸汽车dumping wagon牵引车tow truck拖车头tractor truck挂车trailer平板车flat truck工程车shop truck万能杆件fabricated universal steel members交通规则traffic rules交通事故traffic accident交通事故率traffic accident rate人口事故率population accident rate车辆事故率vehicle accident rate运行事故率operating accident rate交通控制traffic control中央控制台central control unit点控制spot control线控制line control面控制area control交通信号traffic signal交通信号灯traffic signal lamp信号周期signal cycle绿信比split ratio信号相位signal phase相位差phase difference绿波green wave交通监视系统traffic surveillance交通公害vehicular pollution英汉术语对照索引abrasiveness磨耗度absolute datum绝对基面abutment桥台abutment pier制动墩acceleration lane加速车道accidental load偶然荷载accommodation lane专用车道acoustic barrier隔音墙acting circles of blasting爆破作用圈additional stake加桩adjacent curve in one direction同向曲线admixture外加剂adverse grade for safety反坡安全线aerial photogrammetry航空摄影测量aerophoto base航摄基线aerophoto interpretation航摄像片判读ageing老化aggregate集料(骨料)air hardening气硬性alignment design(城市道路)平面设计,线形设计alignment element线形要素alligator cracking路面龟裂allowable rebound deflection容许(回弹)弯沉alternative line比较线anchored bulkhead abutment锚锭板式桥台anchored bulkhead retaining wall锚锭板式挡 土墙anchored retaining wall by tie rods锚杆式挡 土墙anionic emulsified bitumen阴离子乳化沥青annual average daily traffic年平均日交通量anti‐creep heap(厂矿道路)挡车堆anti‐dizzling screen防炫屏(遮光栅)antiskid heap(厂矿道路)防滑堆approach span引桥aquitard隔水层arch bridge拱桥arch culvert拱涵arch ring拱圈arterial highway干线公路arterial road(厂内)主干道,(城市)主干路asphalt distributor沥青洒布车asphalt mixing plant沥青混合料拌和设备asphalt paver沥青混合料摊铺机asphalt remixer复拌沥青混合料摊铺机asphalt sand沥青砂asphalt sprayer沥青洒布机asphaltic bitumen地沥青at‐grade intersection平面交叉auxiliary lane附加车道average consistency(of soil)(土的)平均稠度average gradient平均纵坡azimuth angle方位角balance weight retaining wall衡重式挡土墙base course基层base line基线basic traffic capacity基本通行能力beam bridge梁桥beam level deflectometer杠杆弯沉仪bearing支座bearing angle象限角bearing pile支承桩bearing platform承台bed course垫层bench mark水准点benched subgrade台口式路基bending strength抗弯强度Benkelman beam杠杆弯沉仪(贝克曼弯沉仪)bent cap盖梁berm护坡道binder结合料binder course联结层bitumell沥青bitumen extractor(沥青混合料)抽提仪bitumen‐aggregate ratio油石比bituminous concrete mixture沥青混凝土混合料bituminous concrete pavement沥青混凝土路面bituminous macadam mixture沥青碎石混合料bituminous macadam pavement沥青碎石路面bituminous mixture沥青混合料bituminous pavement沥青路面bituminous penetration pavement沥青贯入式路面bituminous surface treatment(沥青)表面处治blasting crater爆破漏斗blasting for loosening rock松动爆破blasting for throwing rock抛掷爆破blasting procedure土石方爆破bleeding泛油blind ditch盲沟blind drain盲沟block pavement块为路面block stone块石blow up拱胀boring钻探boring log(道路)地质柱状图boring machine钻孔机borrow earth借土borrow pit取土坑boundary frame on crossing道口限界架boundary frame on road道路限界架boundary line of road construction道路建筑 限界bowstring arch bridge系杆拱桥box culvert箱涵branch pipe of inlet雨水口支管branch road(城市)支路,(厂内)支道bridge桥梁bridge decking桥面系bridge deck pavement桥面铺装bridge floor expantion and contraction installation桥面伸缩装置bridge girder erection equipment架桥机bridge on slope坡桥bridge site桥位bridge road驮道broken chainage断链broken stone碎石broken back curve断背曲线buried abutment埋置式桥台bus bay公交(车辆)停靠站bypass公交绕行公路cable bent tower索塔cable saddle索鞍cable stayed bridge斜拉桥(斜张桥)cableway erecting equipment缆索吊装设备california bearing ratio(CBR)加州承载比 (CBR)california bearing ratio tester加州承载比 (CBR)测定仪camber curve路拱曲线cantilever beam bridge悬臂梁桥cantilever retaining wall悬臂式挡土墙capacity of intersection交叉口通行能力capacity of network路网通行能力capillary water毛细水carriage way车行道(行车道)cast‐in‐place cantilever method悬臂浇筑法cationic emulsified bitumen阳离子乳化沥青cattle‐pass畜力车道cement concrete水泥混凝土cement concrete mixture水泥混凝土混合料cement concrete pavement水泥混凝土路面center‐island中心岛center lane中间车道center line of road道路中线center line survey中线测量center stake中桩central reserve分隔带channelization渠化交通channelization island导流岛channelized intersection分道转弯式交叉口chip石屑chute急流槽circular curve圆曲线circular road环路circular test环道试验city road城市道路civil engineering fabric土工织物classified highway等级公路classified road等级道路clay‐bound macadam泥结碎石路面clearance净空clearance above bridge floor桥面净空clearance of span桥下净空climatic zoning for highway公路自然区划climbing lane爬坡车道cloverleaf interchange苜蓿叶形立体交叉coal tar煤沥青cobble stone卵石coefficient of scouring冲刷系数cohesive soil粘性土cold laid method冷铺法cold mixing method冷拌法cold‐stretched steel bar冷拉钢筋column pier柱式墩combination‐type road system混合式道路系统compaction压实compaction test击实试验compaction test apparatus击实仪compactness test压实度试验composite beam bridge联合梁桥composite pipe line综合管道(综合管廊)compound curve复曲线concave vertical curve凹形竖曲线concrete joint cleaner(水泥混凝土)路面清缝 机concrete joint sealer(水泥混凝土)路面填缝机concrete mixing plant水泥混凝土(混合料)拌和设备concrete paver水泥混凝土(混合料)摊铺机concrete pump水泥混凝土(混合料)泵concrete saw(水泥混凝土)路面锯缝机cone penetration test触探试验conflict point冲突点conical slope锥坡consistency limit(of soil)(土的)稠度界限consolidated subsoil加固地基consolidation固结construction by swing转体架桥法construction height of bridge桥梁建筑高度construction joint施工缝construction load施工荷载construction survey施工测量continuous beam bridge连续梁桥contour line等高线contraction joint缩缝control point路线控制点converging合流convex vertical curve凸形竖曲线corduroy road木排道counterfort retaining wall扶壁式挡土墙counterfort abutment扶壁式桥台country road乡村道路county road县公路(县道),乡道creep徐变critical speed临界速度cross roads十字形交叉cross slope横坡cross walk人行横道cross‐sectional profile横断面图cross‐sectional survey横断面测量crown路拱crushed stone碎石crushing strength压碎值culture地物culvert涵洞curb路缘石curb side strip路侧带curve length曲线长curve widening平曲线加宽curved bridge弯桥cut挖方cut corner for sight line(路口)截角cut‐fill transition土方调配cut‐fill transition program土方调配图cutting路堑cycle path自行车道cycle track自行车道deceleration lane减速车道deck bridge上承式桥deflection angle偏角deflection test弯沉试验degree of compaction压实度delay延误density of road network道路(网)密度depth of tunnel隧道埋深design elevation of subgrade路基设计高程design frequency(排水)设计重现期design hourly volume设计小时交通量design of elevation(城市道路)竖向设计design of vertical alignment纵断面设计design speed计算行车速度(设计车速)design traffic capacity设计通行能力design vehicle设计车辆design water level设计水位designed elevation设计高程designed flood frequency设计洪水频率dislicking treatment防滑处理Deval abrasion testing machine狄法尔磨耗试。
交通工程专业外文翻译外文文献英文文献
土木工程学院交通工程专业中英文翻译Road Design专业:交通工程英文原文The Basics of a Good RoadWe have known how to build good roads for a long time. Archaeologists have found ancient Egyptian roadsthat carried blocks to the pyramids in 4600 BCE. Later,the Romans built an extensive road system, using the same principles we use today. Some of these roads are still in service.If you follow the basic concepts of road building, you will create a road that will last. The ten commandments of a good road are:(1)Get water away from the road(2)Build on a firm foundation(3)Use the best materials(4)Compact all layers properly(5)Design for traffic loads and volumes(6)Design for maintenance(7)Pave only when ready(8)Build from the bottom up(9)Protect your investment(10)Keep good records1.Get water away from the roadWe can’t overemphasize the importance of good drainage.Engineers estimate that at least 90% of a road’s problems can be related to excess water or to poor waterdrainage. Too much water in any layer of a road’sstructure can weaken that la yer, leading to failure.In the surface layer, water can cause cracks and potholes. In lower layers it undermines support, causing cracks and potholes. A common sign of water in an asphalt road surface is alligator cracking — an interconnected pattern of cracks forming small irregular shaped pieces that look like alligator skin. Edge cracking, frost heaves, and spring breakup of pavements also point to moistureproblems.To prevent these problems remember that water:• flows downhill• needs to flow somepla ce• is a problem if it is not flowingEffective drainage systems divert, drain and dispose of water. To do this they use interceptor ditches and slopes,road crowns, and ditch and culvert systems.Divert —Interceptor ditches, located between the road and higher ground along the road, keep the water from reaching the roadway. These ditches must slope so they carry water away from the road.Drain —Creating a crown in the road so it is higher along the centerline than at the edges encourages water to flow off the road. Typically a paved crown should be 1⁄4" higher than the shoulder for each foot of width from the centerline to the edge. For gravel surfaces the crown should be 1⁄2" higher per foot of width. For this flow path to work, the road surface must be relatively water tight. Road shoulders also must be sloped away from the road to continue carrying the flow away. Superelevations (banking) at the outside of curves will also help drainthe road surface.Dispose —A ditch and culvert system carries water away from the road structure. Ditches should be at least one foot lower than the bottom of the gravel road layer that drains the roadway. They must be kept clean and must be sloped to move water into natural drainage. If water stays in the ditches it can seep back into the road structure and undermine its strength. Ditches should also be protected from erosion by planting grass, or installing rock and other erosion control measures. Erosion can damage shoulders and ditches, clog culverts, undermine roadbeds, and contaminate nearby streams and lakes. Evaluate your ditch and culvert system twice a year to ensure that it works. In the fall, clean out leaves and branches that can block flow. In spring, check for and remove silts from plowing and any dead plant material left from the fall.2.Build on a firm foundationA road is only as good as its foundation. A highway wears out from the top down but falls apart from the bottom. The road base must carry the entire structure and the traffic that uses it.To make a firm foundation you may need to stabilize the roadbed with chemical stabilizers, large stone called breaker run, or geotextile fabric. When you run into conditions where you suspect that the native soil is unstable, work with an engineer to investigate the situation and design an appropriate solution.3.Use the best materialsWith all road materials you “pay now or pay later.” Inferior materials may require extensive maintenance throughout the road’s life. They may also force you to replace the road prematurely.Crushed aggregate is the best material for the base course. The sharp angles of thecrushed material interlock when they are compacted. This supports the pavement and traffic by transmitting the load from particle to particle. By contrast, rounded particles act like ballbearings, moving under loads.Angular particles are more stable than rounded particles.Asphalt and concrete pavement materials must be of the highest quality, designed for the conditions, obtained from established firms, and tested to ensure it meets specifications.4.Compact all layersIn general, the more densely a material is compacted, the stronger it is. Compaction also shrinks or eliminates open spaces (voids) between particles. This means that less water can enter the structure. Water in soil can weaken the structure or lead to frost heaves. This is especially important for unsurfaced (gravel) roads. Use gravel which has a mix of sizes (well-graded aggregate) so smaller particles can fill the voids between larger ones. Goodcompaction of asphalt pavement lengthens its life.5.Design for traffic loads and volumesDesign for the highest anticipated load the road will carry. A road that has been designed only for cars will not stand up to trucks. One truck with 9 tons on a single rear axle does as much damage to a road as nearly 10,000 cars.Rural roads may carry log trucks, milk trucks, fire department pumper trucks, or construction equipment. If you don’t know what specific loads the road will carry, a good rule of thumb is to design for the largest piece of highway maintenance equipment that will be used on the road.A well-constructed and maintained asphalt road should last 20 years without major repairs or reconstruction. In designing a road, use traffic counts that project numbers and sizes of vehicles 20 years into the future. These are only projections, at best, but they will allow you to plan for traffic loadings through a road’s life.6.Design for maintenanceWithout maintenance a road will rapidly deteriorate and fail. Design your roads so they can be easily maintained. This means:• adequate ditches that can be cleaned regularly• culverts that are marked for easy locating in the spring• enough space for snow after it is plowed off the road• proper cross slopes for safet y, maintenance and to avoid snow drifts• roadsides that are planted or treated to prevent erosion• roadsides that can be mowed safelyA rule of thumb for adequate road width is to make it wide enough for a snowplow to pass another vehicle without leaving the travelled way.Mark culverts with a post so they can be located easily.7.Pave only when readyIt is not necessary to pave all your roads immediately. There is nothing wrong with a well-built and wellmaintained gravel road if traffic loads and volume do not require a paved surface. Three hundred vehicles per day is the recommended minimum to justify paving.Don’t assume that laying down asphalt will fix a gravel road that is failing. Before you pave, make sure you have an adequate crushed stone base that drains well and is properly compacted. The recommended minimum depth of crushed stone base is 10" depending on subgrade soils. A road paved only when it is ready will far outperform one that is constructed too quickly.8.Ê Build from the bottom upThis commandment may seem obvious, but it means that you shouldn’t top dress or resurface a road if the problem is in an underlying layer. Before you do any road improvement, locate the cause of any surface problems. Choose an improvement technique that will address the problem. This may mean recycling or removing all road materials down to the native soil and rebuilding everything. Doing any work that doesn’t solve the problem is a waste of money and effort.9.Ê Protect your investmentThe road system can be your municipality’s biggest investment. Just as a home needs painting or a new roof, a road must be maintained. Wisconsin’s severe climate requires more road maintenance than in milder places. Do these important maintenance activities: Surface —grade, shape, patch, seal cracks, control dust, remove snow and iceDrainage —clean and repair ditches and culverts; remove all excess materialRoadside —cut brush, trim trees and roadside plantings, control erosionTraffic service —clean and repair or replace signsDesign roads with adequate ditches so they can be maintained with a motor grader. Clean and grade ditches to maintain proper pitch and peak efficiency. After grading, remove all excess material from the shoulder.10.Keep good recordsYour maintenance will be more efficient with good records. Knowing the road’s construction, life, and repair history makes it much easier to plan and budget its future repairs. Records can also help you evaluate the effectiveness of the repair methods and materials you used.Good record keeping starts with an inventory of the system. It should include the history and surface condition of the roadway, identify and evaluate culverts and bridges, note ditch conditions, shoulders, signs, and such structures as retaining walls and guardrails.Update your inventory each year or when you repair or change a road section. A formal pavement management system can help use these records and plan and budget road improvements.ResourcesThe Basics of a Good Road#17649, UW-Madison, 15 min. videotape. Presents the Ten Commandments of a Good Road. Videotapes are loaned free through County Extension offices.Asphalt PASER Manual(39 pp), Concrete PASER Manual (48 pp), Gravel PASER Manual (32 pp). These booklets contain extensive photos and descriptions of road surfacesto help you understand types of distress conditions and their causes. A simple procedure for rating the condition helps you manage your pavements and plan repairs.Roadware, a computer program which stores and reports pavement condition information. Developed by the Transportation Information Center and enhanced by the Wisconsin Department of Transportation, it uses the PASER rating system to provide five-year cost budgets and roadway repair/reconstruction priority lists.Wisconsin Transportation Bulletin factsheets, available from the Transportation Information Center (T.I.C.).Road Drainage, No. 4. Describes drainage for roadways, shoulders, ditches, and culverts.Gravel Roads, No. 5. Discusses the characteristics of a gravel road and how to maintain one.Using Salt and Sand for Winter Road Maintenance,No. 6. Basic information and practical tips on how to use de-icing chemicals and sand.Culverts—Proper Use and Installation, No. 15. Selecting and sizing culverts, designing, installing and maintaining them.Geotextiles in Road Construction/Maintenance andErosion Control, No. 16. Definitions and common applications of geotextiles on roadways and for erosion control.T.I.C. workshops are offered at locations around the state.Crossroads,an 8-page quarterly newsletter published by the T.I.C. carries helpful articles, workshop information, and resource lists. For more information on any of these materials, contact the T.I.C. at 800/442-4615.中文译文一个良好的公路的基础长久以来我们已经掌握了如何铺设好一条道路的方法,考古学家发现在4600年古埃及使用建造金字塔的石块铺设道路,后来,罗马人使用同样的方法建立了一个庞大的道路系统,这种方法一直沿用到今天。
道路路桥工程中英文对照外文翻译文献
道路路桥工程中英文对照外文翻译文献Asphalt Mixtures: ns。
Theory。
and Principles1.nsXXX industry。
XXX。
The most common n of asphalt is in the n of XXX "flexible" XXX them from those made with Portland cement。
XXX2.XXXXXX the use of aggregates。
XXX。
sand。
or gravel。
and a binder。
XXX for the pavement。
XXX。
The quality of the asphalt XXX to the performance of the pavement。
as it must be able to XXX。
3.PrinciplesXXX。
with each layer XXX layers typically include a subgrade。
a sub-base。
a base course。
and a surface course。
The subgrade is the natural soil or rock upon which the pavement is built。
while the sub-base and base courses provide nal support for the pavement。
The surface course is the layer that comes into direct contact with traffic and is XXX。
In n。
the use of XXX.The n of flexible pavement can be subdivided into high and low types。
交通工程外文文献
2. VEHICLE MODEL The 2 degrees of freedom (DOF) bicycle model is considered here shown in Eq. (1).
& +& − G β = PY U GW & O −& O ,
Ã!%ÃDA68
Keywords: Integrated control, DYC, Active steering, LMI, QP
1. INTRODUCTION Motivated by the ever increasing demand for safety against car accidents, diverse researches on active safety systems for ground vehicles are having been up to recent years. Such systems include active steering and independent brake intervention. Active safety systems are developed based on the so called “bywire” technologies to drive the devices independently of the driver’s operation. Such by-wire driven steering and braking systems which are dealt with in this article are produced in large quantities lately (Rieth and Schwarz, 2004). Here, the vehicle is assumed to be equipped with by-wire driven active four wheel steering and active braking system. This article proposes the optimal integration of these systems to improve vehicle handling and stability.
道路与桥梁工程中英文对照外文翻译文献
中英文对照外文翻译(文档含英文原文和中文翻译)Bridge research in EuropeA brief outline is given of the development of the European Union, together with the research platform in Europe. The special case of post-tensioned bridges in the UK is discussed. In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio: relating to the identification of voids in post-tensioned concrete bridges using digital impulse radar.IntroductionThe challenge in any research arena is to harness the findings of different research groups to identify a coherent mass of data, which enables research and practice to be better focused. A particular challenge exists with respect to Europe where language barriers are inevitably very significant. The European Community was formed in the 1960s based upon a political will within continental Europe to avoid the European civil wars, which developed into World War 2 from 1939 to 1945. The strong political motivation formed the original community of which Britain was not a member. Many of the continental countries saw Britain’s interest as being purelyeconomic. The 1970s saw Britain joining what was then the European Economic Community (EEC) and the 1990s has seen the widening of the community to a European Union, EU, with certain political goals together with the objective of a common European currency.Notwithstanding these financial and political developments, civil engineering and bridge engineering in particular have found great difficulty in forming any kind of common thread. Indeed the educational systems for University training are quite different between Britain and the European continental countries. The formation of the EU funding schemes —e.g. Socrates, Brite Euram and other programs have helped significantly. The Socrates scheme is based upon the exchange of students between Universities in different member states. The Brite Euram scheme has involved technical research grants given to consortia of academics and industrial partners within a number of the states— a Brite Euram bid would normally be led by an industrialist.In terms of dissemination of knowledge, two quite different strands appear to have emerged. The UK and the USA have concentrated primarily upon disseminating basic research in refereed journal publications: ASCE, ICE and other journals. Whereas the continental Europeans have frequently disseminated basic research at conferences where the circulation of the proceedings is restricted.Additionally, language barriers have proved to be very difficult to break down. In countries where English is a strong second language there has been enthusiastic participation in international conferences based within continental Europe —e.g. Germany, Italy, Belgium, The Netherlands and Switzerland. However, countries where English is not a strong second language have been hesitant participants }—e.g. France.European researchExamples of research relating to bridges in Europe can be divided into three types of structure:Masonry arch bridgesBritain has the largest stock of masonry arch bridges. In certain regions of the UK up to 60% of the road bridges are historic stone masonry arch bridges originally constructed for horse drawn traffic. This is less common in other parts of Europe as many of these bridges were destroyed during World War 2.Concrete bridgesA large stock of concrete bridges was constructed during the 1950s, 1960s and 1970s. At the time, these structures were seen as maintenance free. Europe also has a large number of post-tensioned concrete bridges with steel tendon ducts preventing radar inspection. This is a particular problem in France and the UK.Steel bridgesSteel bridges went out of fashion in the UK due to their need for maintenance as perceived in the 1960s and 1970s. However, they have been used for long span and rail bridges, and they are now returning to fashion for motorway widening schemes in the UK.Research activity in EuropeIt gives an indication certain areas of expertise and work being undertaken in Europe, but is by no means exhaustive.In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio. The example relates to the identification of voids in post-tensioned concrete bridges, using digital impulse radar.Post-tensioned concrete rail bridge analysisOve Arup and Partners carried out an inspection and assessment of the superstructure of a 160 m long post-tensioned, segmental railway bridge in Manchester to determine its load-carrying capacity prior to a transfer of ownership, for use in the Metrolink light rail system..Particular attention was paid to the integrity of its post-tensioned steel elements. Physical inspection, non-destructive radar testing and other exploratory methods were used to investigate for possible weaknesses in the bridge.Since the sudden collapse of Ynys-y-Gwas Bridge in Wales, UK in 1985, there has been concern about the long-term integrity of segmental, post-tensioned concrete bridges which may b e prone to ‘brittle’ failure without warning. The corrosion protection of the post-tensioned steel cables, where they pass through joints between the segments, has been identified as a major factor affecting the long-term durability and consequent strength of this type of bridge. The identification of voids in grouted tendon ducts at vulnerable positions is recognized as an important step in the detection of such corrosion.Description of bridgeGeneral arrangementBesses o’ th’ Barn Bridge is a 160 m long, three span, segmental, post-tensionedconcrete railway bridge built in 1969. The main span of 90 m crosses over both the M62 motorway and A665 Bury to Prestwick Road. Minimum headroom is 5.18 m from the A665 and the M62 is cleared by approx 12.5 m.The superstructure consists of a central hollow trapezoidal concrete box section 6.7 m high and 4 m wide. The majority of the south and central spans are constructed using 1.27 m long pre-cast concrete trapezoidal box units, post-tensioned together. This box section supports the in site concrete transverse cantilever slabs at bottom flange level, which carry the rail tracks and ballast.The center and south span sections are of post-tensioned construction. These post-tensioned sections have five types of pre-stressing:1. Longitudinal tendons in grouted ducts within the top and bottom flanges.2. Longitudinal internal draped tendons located alongside the webs. These are deflected at internal diaphragm positions and are encased in in site concrete.3. Longitudinal macalloy bars in the transverse cantilever slabs in the central span .4. Vertical macalloy bars in the 229 mm wide webs to enhance shear capacity.5. Transverse macalloy bars through the bottom flange to support the transverse cantilever slabs.Segmental constructionThe pre-cast segmental system of construction used for the south and center span sections was an alternative method proposed by the contractor. Current thinking suggests that such a form of construction can lead to ‘brittle’ failure of the ent ire structure without warning due to corrosion of tendons across a construction joint,The original design concept had been for in site concrete construction.Inspection and assessmentInspectionInspection work was undertaken in a number of phases and was linked with the testing required for the structure. The initial inspections recorded a number of visible problems including:Defective waterproofing on the exposed surface of the top flange.Water trapped in the internal space of the hollow box with depths up to 300 mm.Various drainage problems at joints and abutments.Longitudinal cracking of the exposed soffit of the central span.Longitudinal cracking on sides of the top flange of the pre-stressed sections.Widespread sapling on some in site concrete surfaces with exposed rusting reinforcement.AssessmentThe subject of an earlier paper, the objectives of the assessment were:Estimate the present load-carrying capacity.Identify any structural deficiencies in the original design.Determine reasons for existing problems identified by the inspection.Conclusion to the inspection and assessmentFollowing the inspection and the analytical assessment one major element of doubt still existed. This concerned the condition of the embedded pre-stressing wires, strands, cables or bars. For the purpose of structural analysis these elements、had been assumed to be sound. However, due to the very high forces involved,、a risk to the structure, caused by corrosion to these primary elements, was identified.The initial recommendations which completed the first phase of the assessment were:1. Carry out detailed material testing to determine the condition of hidden structural elements, in particularthe grouted post-tensioned steel cables.2. Conduct concrete durability tests.3. Undertake repairs to defective waterproofing and surface defects in concrete.Testing proceduresNon-destructi v e radar testingDuring the first phase investigation at a joint between pre-cast deck segments the observation of a void in a post-tensioned cable duct gave rise to serious concern about corrosion and the integrity of the pre-stress. However, the extent of this problem was extremely difficult to determine. The bridge contains 93 joints with an average of 24 cables passing through each joint, i.e. there were approx. 2200 positions where investigations could be carried out. A typical section through such a joint is that the 24 draped tendons within the spine did not give rise to concern because these were protected by in site concrete poured without joints after the cables had been stressed.As it was clearly impractical to consider physically exposing all tendon/joint intersections, radar was used to investigate a large numbers of tendons and hence locate duct voids within a modest timescale. It was fortunate that the corrugated steel ducts around the tendons were discontinuous through the joints which allowed theradar to detect the tendons and voids. The problem, however, was still highly complex due to the high density of other steel elements which could interfere with the radar signals and the fact that the area of interest was at most 102 mm wide and embedded between 150 mm and 800 mm deep in thick concrete slabs.Trial radar investigations.Three companies were invited to visit the bridge and conduct a trial investigation. One company decided not to proceed. The remaining two were given 2 weeks to mobilize, test and report. Their results were then compared with physical explorations.To make the comparisons, observation holes were drilled vertically downwards into the ducts at a selection of 10 locations which included several where voids were predicted and several where the ducts were predicted to be fully grouted. A 25-mm diameter hole was required in order to facilitate use of the chosen horoscope. The results from the University of Edinburgh yielded an accuracy of around 60%.Main radar sur v ey, horoscope verification of v oids.Having completed a radar survey of the total structure, a baroscopic was then used to investigate all predicted voids and in more than 60% of cases this gave a clear confirmation of the radar findings. In several other cases some evidence of honeycombing in the in site stitch concrete above the duct was found.When viewing voids through the baroscopic, however, it proved impossible to determine their actual size or how far they extended along the tendon ducts although they only appeared to occupy less than the top 25% of the duct diameter. Most of these voids, in fact, were smaller than the diameter of the flexible baroscopic being used (approximately 9 mm) and were seen between the horizontal top surface of the grout and the curved upper limit of the duct. In a very few cases the tops of the pre-stressing strands were visible above the grout but no sign of any trapped water was seen. It was not possible, using the baroscopic, to see whether those cables were corroded.Digital radar testingThe test method involved exciting the joints using radio frequency radar antenna: 1 GHz, 900 MHz and 500 MHz. The highest frequency gives the highest resolution but has shallow depth penetration in the concrete. The lowest frequency gives the greatest depth penetration but yields lower resolution.The data collected on the radar sweeps were recorded on a GSSI SIR System 10.This system involves radar pulsing and recording. The data from the antenna is transformed from an analogue signal to a digital signal using a 16-bit analogue digital converter giving a very high resolution for subsequent data processing. The data is displayed on site on a high-resolution color monitor. Following visual inspection it is then stored digitally on a 2.3-gigabyte tape for subsequent analysis and signal processing. The tape first of all records a ‘header’ noting the digital radar settings together with the trace number prior to recording the actual data. When the data is played back, one is able to clearly identify all the relevant settings —making for accurate and reliable data reproduction.At particular locations along the traces, the trace was marked using a marker switch on the recording unit or the antenna.All the digital records were subsequently downloaded at the University’s NDT laboratory on to a micro-computer.(The raw data prior to processing consumed 35 megabytes of digital data.)Post-processing was undertaken using sophisticated signal processing software. Techniques available for the analysis include changing the color transform and changing the scales from linear to a skewed distribution in order to highlight、突出certain features. Also, the color transforms could be changed to highlight phase changes. In addition to these color transform facilities, sophisticated horizontal and vertical filtering procedures are available. Using a large screen monitor it is possible to display in split screens the raw data and the transformed processed data. Thus one is able to get an accurate indication of the processing which has taken place. The computer screen displays the time domain calibrations of the reflected signals on the vertical axis.A further facility of the software was the ability to display the individual radar pulses as time domain wiggle plots. This was a particularly valuable feature when looking at individual records in the vicinity of the tendons.Interpretation of findingsA full analysis of findings is given elsewhere, Essentially the digitized radar plots were transformed to color line scans and where double phase shifts were identified in the joints, then voiding was diagnosed.Conclusions1. An outline of the bridge research platform in Europe is given.2. The use of impulse radar has contributed considerably to the level of confidence in the assessment of the Besses o’ th’ Barn Rail Bridge.3. The radar investigations revealed extensive voiding within the post-tensioned cable ducts. However, no sign of corrosion on the stressing wires had been found except for the very first investigation.欧洲桥梁研究欧洲联盟共同的研究平台诞生于欧洲联盟。
公路工程建设中英文对照外文翻译文献
公路工程建设中英文对照外文翻译文献(文档含英文原文和中文翻译)Asphalt Mixtures-Applications, Theory andPrinciples1 . ApplicationsAsphalt materials find wide usage in the construction industry. The use of asphalt as a cementing agent in pavements is the most common of its applications, however, and the one that will be considered here.Asphalt products are used to produce flexible pavements for highways and airports. The term “flexible” is used to distinguish these pavements from those made with Portland cement, which are classified as rigid pavements, that is, having beam strength. This distinction is important because it provides they key to the design approach which must be used for successful flexible pavement structures.The flexible pavement classification may be further broken down into high and low types, the type usually depending on whether a solid or liquid asphalt product isused. The low types of pavement are made with the cutback, or emulsion, liquid products and are very widely used throughout this country. Descriptive terminology has been developed in various sections of the country to the extent that one pavement type may have several names. However, the general process followed in construction is similar for most low-type pavements and can be described as one in which the aggregate and the asphalt product are usually applied to the roadbed separately and there mixed or allowed to mix, forming the pavement.The high type of asphalt pavements is made with asphalt cements of some selected penetration grade.Fig. ·1 A modern asphalt concrete highway. Shoulder striping is used as a safely feature.Fig. ·2 Asphalt concrete at the San Francisco International Airport.They are used when high wheel loads and high volumes of traffic occur and are, therefore, often designed for a particular installation.2 . Theory of asphalt concrete mix designHigh types of flexible pavement are constructed by combining an asphalt cement, often in the penetration grade of 85 to 100, with aggregates that are usually divided into three groups, based on size. The three groups are coarse aggregates, fine aggregates, and mineral filler. These will be discussed in detail in later chapter.Each of the constituent parts mentioned has a particular function in the asphalt mixture, and mix proportioning or design is the process of ensuring that no function is neglected. Before these individual functions are examined, however, the criteria for pavement success and failure should be considered so that design objectives can be established.A successful flexible pavement must have several particular properties. First, it must be stable, that is to resistant to permanent displacement under load. Deformation of an asphalt pavement can occur in three ways, two unsatisfactory and one desirable. Plastic deformation of a pavement failure and which is to be avoided if possible. Compressive deformation of the pavement results in a dimensional change in the pavement, and with this change come a loss of resiliency and usually a degree of roughness. This deformation is less serious than the one just described, but it, too, leads to pavement failure. The desirable type of deformation is an elastic one, which actually is beneficial to flexible pavements and is necessary to their long life.The pavement should be durable and should offer protection to the subgrade. Asphalt cement is not impervious to the effects of weathering, and so the design must minimize weather susceptibility. A durable pavement that does not crack or ravel will probably also protect the roadbed. It must be remembered that flexible pavements transmit loads to the subgrade without significant bridging action, and so a dry firm base is absolutely essential.Rapidly moving vehicles depend on the tire-pavement friction factor for control and safety. The texture of the pavement surfaces must be such that an adequate skid resistance is developed or unsafe conditions result. The design procedure should be used to select the asphalt material and aggregates combination which provides a skid resistant roadway.Design procedures which yield paving mixtures embodying all these properties are not available. Sound pavements are constructed where materials and methods are selected by using time-tested tests and specifications and engineering judgments along with a so-called design method.The final requirement for any pavement is one of economy. Economy, again, cannot be measured directly, since true economy only begins with construction cost and is not fully determinable until the full useful life of the pavement has been recorded. If, however, the requirements for a stable, durable, and safe pavement are met with a reasonable safety factor, then the best interests of economy have probably been served as well.With these requirements in mind, the functions of the constituent parts can be examined with consideration give to how each part contributes to now-established objectives or requirements. The functions of the aggregates is to carry the load imposed on the pavement, and this is accomplished by frictional resistance and interlocking between the individual pieces of aggregates. The carrying capacity of the asphalt pavement is, then, related to the surface texture (particularly that of the fine aggregate) and the density, or “compactness,”, of the aggregates. Surfac e texture varies with different aggregates, and while a rough surface texture is desired, this may not be available in some localities. Dense mixtures are obtained by using aggregates that are either naturally or artificially “well graded”. This means that the fine aggregate serves to fill the voids in the coarser aggregates. In addition to affecting density and therefore strength characteristics, the grading also influences workability. When an excess of coarse aggregate is used, the mix becomes harsh and hard to work. When an excess of mineral filler is used, the mixes become gummy and difficult to manage.The asphalt cement in the flexible pavement is used to bind the aggregate particles together and to waterproof the pavements. Obtaining the proper asphalt content is extremely important and bears a significant influence on all the items marking a successful pavement. A chief objective of all the design methods which have been developed is to arrive at the best asphalt content for a particular combination of aggregates.3 . Mix design principlesCertain fundamental principles underlie the design procedures that have been developed. Before these procedures can be properly studied or applied, some consideration of these principles is necessary.Asphalt pavements are composed of aggregates, asphalt cement, and voids. Considering the aggregate alone, all the space between particles is void space. The volume of aggregate voids depends on grading and can vary widely. When the asphalt cement is added, a portion of these aggregate voids is filled and a final air-void volume is retained. The retention of this air-void volume is very important to thecharacteristics of the mixture. The term air-void volume is used, since these voids are weightless and are usually expressed as a percentage of the total volume of the compacted mixture.An asphalt pavement carries the applied load by particle friction and interlock. If the particles are pushed apart for any reason , then the pavement stability is destroyed. This factor indicates that certainly no more asphalt should be added than the aggregate voids can readily hold. However ,asphalt cement is susceptible to volume change and the pavement is subject to further compaction under use. If the pavement has no air voids when placed, or if it loses them under traffic, then the expanding asphalt will overflow in a condition known as bleeding. The loss of asphalt cement through bleeding weakens the pavement and also reduces surface friction, making the roadway hazardous.Fig. ·3 Cross section of an asphalt concrete pavement showing the aggregate frameworkbound together by asphalt cement.The need for a minimum air-void volume (usually 2 or 3 per cent ) has been established. In addition, a maximum air-void volume of 5 to 7 per cent should not be exceed. An excess of air voids promotes raveling of the pavement and also permits water to enter and speed up the deteriorating processes. Also, in the presence of excess air the asphalt cement hardens and ages with an accompanying loss of durability and resiliency.The air-void volume of the mix is determined by the degree of compaction as well as by the asphalt content. For a given asphalt content, a lightly compacted mixwill have a large voids volume and a lower density and a greater strength will result. In the laboratory, the compaction is controlled by using a specified hammer and regulating the number of blows and the energy per blow. In the field, the compaction and the air voids are more difficult to control and tests must be made no specimens taken from the compacted pavement to cheek on the degree of compaction being obtained. Traffic further compact the pavement, and allowance must be made for this in the design. A systematic checking of the pavement over an extended period is needed to given factual information for a particular mix. A change in density of several per cent is not unusual, however.Asphalt content has been discussed in connection with various facets of the ix design problem. It is a very important factor in the mix design and has a bearing an all the characteristics ld a successful pavement: stability, skid resistance, durability, and economy. As has been mentioned, the various design procedures are intended to provide a means for selecting the asphalt content . These tests will be considered in detail in a future chapter ,but the relationship between asphalt content and the measurable properties of stability, unit weight, and air voids will be discussed here.Fig.4 Variations in stability, unit weight, and air-void content with asphalt cement content.If the gradation and type of aggregate, the degree of compaction, and the type of asphalt cement are controlled, then the strength varies in a predictable manner. The strength will increase up to some optimum asphalt content and then decrease with further additions. The pattern of strength variation will be different when the other mix factors are changed, and so only a typical pattern can be predicted prior to actualtesting.Unit weight varies in the same manner as strength when all other variable are controlled. It will reach some peak value at an asphalt content near that determined from the strength curve and then fall off with further additions.As already mentioned, the air-void volume will vary with asphalt content. However, the manner of variation is different in that increased asphalt content will decrease air-void volume to some minimum value which is approached asymptotically. With still greater additions of asphalt material the particles of aggregate are only pushed apart and no change occurs in air-void volume.In summary, certain principles involving aggregate gradation, air-void volume, asphalt content, and compaction mist be understood before proceeding to actual mix design. The proper design based on these principles will result in sound pavements. If these principles are overlooked, the pavement may fail by one or more of the recognized modes of failure: shoving, rutting, corrugating, becoming slick when the max is too ‘rich’; raveling, cracking,having low durability when the mix is too‘lean’.It should be again emphasized that the strength of flexible is, more accurately, a stability and does not indicate any ability to bridge weak points in the subgrade by beam strength. No asphalt mixture can be successful unless it rests on top of a properly designed and constructed base structure. This fact, that the surface is no better than the base, must be continually in the minds of those concerned with any aspect of flexible pavement work.[1] International Journal of Pavement Research and Technology, 2014, V ol.7 (2), pp.83-92[2] Neville Adam .Concrete Technology-An Essential Element of Structural Design[M].Concrete International,1998.[3] Hewlett Peter C,et al. Lea,s Chemistry of Cement and Concrete[M]. 4thed.Butter-worth-Heinemann,London,1998.[4] M Karasahin . Anisotropic Characteristics of Granular Material . Proceedings of the Fifith Inter-national Symposium on Unbound Aggregates in Roads,2000:139-142 .[5]Sean Davit .Irish Experience in the Use of Unbound Aggregates in Roads1970-2000 .Un-bound Aggregates in Roads Construction,2000.[6]Moore W M,Milberger L J .Evaluation of the TTI Gyratory Compactor .Texas Transportation Institute Report No .99-3 .译文:沥青混合料的应用、理论和原则1、应用沥青材料如今在建筑行业广泛使用。
交通工程专业外文翻译 外文文献
交通工程专业英语英译汉
交通工程专业英语英译汉With the rapid development of transportation engineering, the demand for English-to-Chinese translation in this field has been increasing. This article aims to explore the challenges and opportunities of translating traffic engineering terminology and texts from English to Chinese.**Challenges in Translating Traffic Engineering Terminology**Traffic engineering, being a highly specialized field, possesses a unique vocabulary that often requires a deep understanding of both the source and target languages. For instance, terms such as "traffic flow," "intersection design," and "traffic control systems" must be translated accurately to convey their specific meanings within the context of traffic engineering. Additionally, the use of technical jargon and abbreviations adds further complexity to the translation process.Moreover, cultural differences can pose challenges in translating traffic engineering terms. Concepts that arefamiliar in one culture may not have direct equivalents in another, requiring translators to find creative solutions that maintain the original meaning while adapting to the target culture's context.**Opportunities in Translating Traffic Engineering Texts**Despite the challenges, there are also numerous opportunities in translating traffic engineering texts. Firstly, with the globalization of the transportation industry, there is a growing need for cross-cultural communication. This creates opportunities for translators who are proficient in both English and Chinese to bridge the language gap and facilitate the exchange of ideas and knowledge.Secondly, the advancement of technology has brought about new translation tools and platforms that greatly improve translation efficiency and quality. These tools, such as machine translation and online dictionaries, provide translators with convenient resources to lookup unfamiliar terms and phrases, enabling them to work more efficiently and accurately.Lastly, the increasing demand for traffic engineering expertise in China presents an opportunity for translators to specialize in this field. By specializing in traffic engineering translation, translators can build a reputation and expertise in this area, opening up more translation opportunities and potentially higher compensation.**Conclusion**In conclusion, while translating traffic engineering terminology and texts from English to Chinese can be challenging, it also offers numerous opportunities for translators. By overcoming the linguistic and cultural barriers, translators can play a crucial role in promoting the development of the transportation industry both domestically and internationally.**交通工程专业英语英译汉的挑战与机遇**随着交通工程的快速发展,该领域的英汉翻译需求不断增加。
道路工程毕业设计外文翻译---高速公路设计与施工
原文Highway Design and Construction: The Innovation Challenge Author: Robert E. Skinner Jr.Innovations and advances in research are changing the way highways are built in America.The Egyptians were pouring concrete in 2500 BC, and the Romans used it to construct the Pantheon and the Colosseum. By the mid-1800s, Europeans were building bridges with concrete, and the first “modern” concrete highway pavements appear ed in the latter part of the 19th century. Naturally occurring asphalts, which have been used for waterproofing for thousands of years, came into common use in road construction in the 1800s. The first iron bridge was constructed in 1774, but by the end of the 19th century steel had largely replaced iron in bridge construction. These materials—concrete, asphalt, and steel—are now the mainstays of highway and bridge construction throughout the world, as well as of most types of public works infrastructure. Concrete and steel, the most versatile of these materials, are used for bridges and other highway structures; concrete and asphalt are used for roadway pavements.Everyone is familiar with concrete, asphalt, and steel, and some of us have worked with them, perhaps on home improvement projects. This familiarity, coupled with the long history of their many uses, has led many otherwise technically savvy people to believe that these materials are well understood, that their performance can be easily and reliably predicted, and that the technical challenges in using them for highways were overcome long ago. However, such notions are largely incorrect and misleading.For example, consider concrete, which is a mixture of portland cement, sand, aggregate (gravel or crushed stone), and water. Its performance characteristics are determined by the proportions and characteristics of the components, as well as by how it is mixed and formed. The underlying chemical reactions of concrete are surprisingly complex, not completely understood, and vary with the type of stone. Steel may be added for tensile strength (reinforced concrete), and a variety of additives have been identified to improve the workabilityand performance of concrete in particular applications and conditions. Damage and deterioration to concrete can result from excessive loadings and environmental conditions, such as freeze-thaw cycles and chemical reactions with salts used for deicing._________________________Many factors contribute to theurgent need for innovation inhighway construction._________________________Concrete is the most heavily used substance in the world after water (Sedgwick, 1991). Worldwide, concrete construction annually consumes about 1.6 billion tons of cement, 10 billion tons of sand and crushed stone, and 1 billion tons of water (M.S. Kahn, 2007). Given transportation costs, there is a huge financial incentive to using local sources of stone, even if the properties of that stone are less than ideal. Thus concrete is not a homogenous material. In truth, an unlimited number of combinations and permutations are possible.Much the same can be said of asphalt—technically, asphaltic concrete—which is also a mixture of aggregate (gravel or crushed stone), sand, and cement (asphalt binder); economics promote the use of locally available materials; and the underlying chemistry is not well understood. The characteristics of asphalt binder, for instance, vary depending on the source of crude oil from which it is derived.The metallurgy of steel is probably better understood than the chemistry of either asphalt or concrete, but it too is a mixture with virtually limitless combinations. Strength, toughness, corrosion resistance, and weldability are some of the performance characteristics that vary with the type of steel alloy used and the intended applications.As uses evolve and economic conditions change, we have a continuing need for a more sophisticated understanding of these common materials. Even though they are “mature” products, there is still room for significant incremental improvements in their performance. Because fundamental knowledge is still wanting, there is also considerable potential for breakthroughs in their performance.Factors That Affect Highway ConstructionAll other things being equal, stronger, longer lasting, less costly highway materials are desirable and, given the quantities involved, there are plenty of incentives for innovation. In highway transportation, however, all other things are not equal. A number of other factors contribute to the urgent and continuing need for innovation.First, traffic volume and loadings continue to increase. Every day the U.S. highway network carries more traffic, including heavy trucks that were unimagined when the system wasoriginally conceived and constructed. The 47,000-mile interstate highway system today carries more traffic than the entire U.S. highway system carried in 1956 when the interstates were laid out. The U.S. Department of Transportation (DOT) estimates that in metropolitan areas the annual cost of traffic congestion for businesses and citizens is nearly $170 billion (PB Consult, Inc., 2007).On rural interstates, overall traffic more than doubled between 1970 and 2005; at the same time, the loadings on those highways increased six-fold, mainly due to the increase in the number of trucks and the number of miles they travel. (Truck traffic increased from about 5.7 percent of all vehicle-miles traveled on U.S. highways in 1965 to 7.5 percent in 2000 [FHWA, 2005]).Second, traffic disruptions must be kept to a minimum during construction. Our overstressed highway system is not very resilient. Thus disruptions of any sort, such as lane and roadway closings, especially in major metropolitan areas and on key Interstate routes, can cause massive traffic snarls. This means that repair and reconstruction operations must often be done at night, which introduces a variety of additional complexities and safety issues. Occasionally, heroic measures must be taken to keep traffic moving during construction. For example, during construction of the “Big Dig” in Boston, the elevated Central Artery was in continuous service while cut-cover tunnels were constructed directly below it.Third, environmental, community, and safety requirements have become more stringent. For many good reasons, expectations of what a highway should be, how it should operate, and how it should interact with the environment and adjacent communities are constantly evolving. Designs to promote safety, measures to mitigate a growing list of environmental impacts, and attention to aesthetics have fundamentally changed the scope of major highway projects in the United States. For example, on Maryland’s $2.4 billion Intercounty Connector project in suburban Washington, D.C., which is now under construction, environmental mitigation accounts for 15 percent of project costs, or about $15 million per mile (AASHTO, 2008). Fourth, costs continue to rise. Building and maintaining highways cost effectively is an ever-present goal of good engineering. But cost increases in highway construction have been extraordinary due in part to the expanded scope of highway projects and construction in demanding settings. In addition, the costs of the mainstay materials—portland cement, asphalt binder, and steel—have risen dramatically as the world, particularly China, has gone on a construction binge. The Federal Highway Administration’s cost indices for portland cement concrete pavement, asphalt pavement, and structural steel increased by 51 percent, 58 percent, and 70 percent respectively between 1995 and 2005 (FHWA, 2006).Fortunately, research and innovation in construction have never stopped, although they are not always sufficiently funded and they seem to fly beneath the radar of many scientists and engineers. Nevertheless, there have been great successes, which are cumulatively changing how highways are built in America.The Superpave Design SystemIn response to widespread concerns about premature failures of hot-mix asphalt pavements in the early 1980s, a well funded, congressionally mandated, crash research program was conducted to improve our understanding of asphalt pavements and their performance. The seven-year Strategic Highway Research Program (SHRP), which was managed by the National Research Council, developed a new system of standard specifications, test methods, andengineering practices for the selection of materials and the mix proportions for hot-mix asphalt pavement.The new system has improved matches between combinations of asphalt binder and crushed stone and the climatic and traffic conditions on specific highways. State departments of transportation (DOTs) spend more than $10 billion annually on these pavements, so even modest improvements in pavement durability and useful life can lead to substantial cost savings for agencies and time savings for motorists (TRB, 2001).SHRP rolled out the Superpave system in 1993, but it took years for individual states and their paving contractors to switch to the new system, which represents a significant departure, not only in design, but also in the procedures and equipment used for testing. Each state DOT had to be convinced that the benefits would outweigh the modest additional costs of Superpave mixes, as well as the time and effort to train its staff and acquire necessary equipment.A survey in 2005 showed that 50 state DOTs (including the District of Columbia and Puerto Rico) were using Superpave (Figure 1). The remaining two states indicated that they would be doing so by the end of 2006. Throughout the implementation period, researchers continued to refine the system (e.g., using recycled asphalt pavements in the mix design [TRB, 2005]).It may be years before the cost benefits of Superpave can be quantified. A 1997 study by the Te xas Transportation Institute projected that, when fully implemented, Superpave’s annualized net savings over 20 years would approach $1.8 billion annually—approximately $500 million in direct savings to the public and $1.3 billion to highway users (Little et al., 1997).Moreover, analyses by individual states and cities have found that Superpave has dramatically improved performance with little or no increase in cost. Superpave is not only an example of a successful research program. It also demonstrates that a vigorous, sustained technology-transfer effort is often required for innovation in a decentralized sector, such as highway transportation.Prefabricated ComponentsThe offsite manufacturing of steel and other components of reinforced concrete for bridges and tunnels is nothing new. But the need for reconstructing or replacing heavily used highway facilities has increased the use of prefabricated components in startling ways. In some cases components are manufactured thousands of miles from the job site; in others, they are manufactured immediately adjacent to the site. Either way, we are rethinking how design and construction can be integrated.When the Texas Department of Transportation needed to replace 113 bridge spans on an elevated interstate highway in Houston, it found that the existing columns were reusable, but the bent caps (the horizontal connections between columns) had to be replaced. As an alternative to the conventional, time-consuming, cast-in-place approach, researchers at the University of Texas devised new methods of installing precast concrete bents. In this project, the precast bents cut construction time from 18 months to slightly more than 3 months (TRB, 2001).As part of a massive project to replace the San Francisco-Oakland Bay Bridge, the California Department of Transportation and the Bay Area Toll Authority had to replace a 350-foot, 10-lane section of a viaduct on Yerba Buena Island. In this case, the contractor, C.C. Myers, prefabricated the section immediately adjacent to the existing viaduct. The entire bridge was then shut down for the 2007 Labor Day weekend, while the existing viaduct was demolished and the new 6,500-ton segment was “rolled” into place (Figure 2). The entire operation was accomplished 11 hours ahead of schedule (B. Kahn, 2007).Probably the most extensive and stunning collection of prefabricated applications on a single project was on the Central Artery/Tunnel Project (“Big Dig”) in Boston. For the Ted Williams Tunnel, a dozen 325-foot-long steel tunnel sections were constructed in Baltimore, shipped to Boston, floated into place, and then submerged. However, for the section of the tunnel that runs beneath the Four Points Channel, which is part of the I-90 extension, bridge restrictions made this approach infeasible. Instead, a huge casting basin was constructed adjacent to the channel where 30- to 50-ton concrete tunnel sections were manufactured The basin was flooded and the sections winched into position with cables and then submerged.An even more complicated process was used to build the extension tunnel under existing railroad tracks, which had poor underlying soil conditions. Concrete and steel boxes were built at one end of the tunnel, then gradually pushed into place through soil that had been frozen using a network of brine-filled pipes (Vanderwarker, 2001).Specialty Portland Cement ConcretesNew generations of specialty concretes have improved one or more aspects of performance and allow for greater flexibility in highway design and construction. High-performance concrete typically has compressive strengths of at least 10,000 psi. Today, ultra-high-performance concretes with formulations that include silica fume, quartz flour, water reducers, and steel or organic fibers have even greater durability and compressive strengths up to 30,000 psi. These new concretes can enable construction with thinner sections and longer spans (M.S. Kahn, 2007).Latex-modified concrete overlays have been used for many years to extend the life of existing, deteriorating concrete bridge decks by the Virginia DOT, which pioneered the use of very early strength latex-modified concretes for this application. In high-traffic situations, the added costs of the concrete have been more than offset by savings in traffic-control costs and fewer delays for drivers (Sprinkel, 2006).When the air temperature dips below 40, costly insulation techniques must be used when pouring concrete for highway projects. By using commercially available admixtures that depress the freezing point of water, the U.S. Cold-Weather Research and Engineering Laboratory has developed new concrete formulations that retain their strength and durability at temperatures as low as 23?F. Compared to insulation techniques, this innovation has significantly decreased construction costs and extended the construction season in cold weather regions (Korhonen, 2004).As useful as these and other specialty concretes are, nanotechnology and nanoengineering techniques, which are still in their infancy, have the potential to make even more dramatic improvements in theperformance and cost of concrete.Waste and Recycled MaterialsHighway construction has a long history of using industrial waste and by-product materials. The motivations of the construction industry were simple—to help dispose of materials that are otherwise difficult to manage and to reduce the initial costs of highway construction. The challenge has been to use these materials in ways that do not compromise critical performance properties and that do not introduce substances that are potenti-ally harmful to people or the environment. At the same time, as concerns about sustainability have become more prominent in public thinking, the incentives to use by-product materials have increased. In addition, because the reconstruction and resurfacing of highways create their own waste, recycling these construction materials makes economic and environmental sense.Research and demonstration projects have generated many successful uses of by-product and recycled materials in ways that simultaneously meet performance, environmental, and economic objectives. For example, “crumb rubber” from old tires is increasingly being used as an additive in certain hot-mix asphalt pavement designs, and a number of patents have been issued related to the production and design of crumb rubber or asphalt rubber pavements (CDOT, 2003; Epps, 1994).Several states, notably California and Arizona, use asphalt rubber hot mix as an overlay for distressed flexible and rigid pavements and as a means of reducing highway noise. Materials derived from discarded tires have also been successfully used as lightweight fill for highway embankments and backfill for retaining walls, as well as for asphalt-based sealers and membranes (Epps, 1994; TRB, 2001).Fly ash, a residue from coal-burning power plants, and silica fume, a residue from metal-producing furnaces, are increasingly being used as additives to portland cement concrete. Fly-ash concretes can reduce alkali-silica reactions that lead to the premature deterioration of concrete (Lane, 2001), and silica fume is a component of the ultra-high-performance concrete described above.After many years of experimentation and trials, reclaimed asphalt pavement (RAP) is now routinely used in virtually all 50 states as a substitute for aggregate and a portion of the asphalt binder in hot-mix asphalt, including Superpave mixes. The reclaimed material typically constitutes 25 to 50 percent of the “new” mix (TFHRC, 1998). The National Asphalt Pavement Association estimates that 90 percent of the asphalt pavement removed each year is recycled and that approximately 125 millions tons of RAP are produced, with an annual savings of $300 million (North Central Superpave Center, 2004).Visualization, Global Positioning Systems, and Other New Tools For more than 20 years, highway engineers have used two-dimensional, computer-aided drafting and design (CADD) systems to accelerate the design process and reduce costs. The benefits of CADD systems have derived essentially from automating the conventional design process, with engineers doing more or less what they had done before, although much faster and with greater flexibility.New generations of three- and four-dimensional systems are introducing new ways of designing roads, as well as building them (Figure 4). For example, three-dimensional visualization techniques are clearly useful for engineers. But, perhaps more importantly, they have improved the communication of potential designs to affected communities and public officials; in fact, they represent an entirely new design paradigm. Four-dimensional systems help engineers and contractors analyze the constructability of proposed designs well in advance of actual constructionGlobal positioning systems are being used in surveying/layout, in automated guidance systems for earth-moving equipment, and for monitoring quantities. Other innovations include in situ temperature sensors coupled with data storage, transmission, and processing devices that provide onsite information about the maturity and strength of concrete as it cures (Hannon, 2007; Hixson, 2006).ConclusionThe examples described above suggest the wide range of exciting innovations in the design and construction of highways. These innovations address materials, roadway and bridge designs, design and construction methods, road safety, and a variety of environmental, community, and aesthetic concerns. Looking to the future, however, challenges to the U.S. highway system will be even more daunting—accommodating more traffic and higher loadings; reducing traffic disruptions during construction; meeting more stringent environmental, community, and safety requirements; and continuing pressure to reduce costs. Addressing these challenges will require a commitment to innovation and the research that supports innovation.中文翻译高速公路设计与施工:创新的挑战作者:小罗伯特·E·斯金纳研究方式的创新和进步正在改变着美国公路建设的方式。
交通运输交通系统中英文对照外文翻译文献
中英文对照外文翻译文献(文档含英文原文和中文翻译)译文:交通系统交通运输一直是土木工程最重要的一个方面。
古罗马工程师的巨大成就之一就是公路系统,它使罗马与帝国的各个省之间的快速交通成为可能。
在工程方面的第一所培训学校就是桥梁和公路学校,它于1747年创建于法国。
而在英国,一位道路建筑家,托马斯·泰尔福特于1820年担任了土木工程学会的第一任主席。
现代公路仍然根据18世纪及19世纪初法国人皮埃尔·特埃萨凯,英国人泰尔福特,以及苏格兰人约翰·L·马克当所制定的原则进行建造。
这些人设计出了最初的现代道路,这种道路具有坚实的垫层,基础就建在垫层的上面。
他们设计的道路还具有排水良好而且不渗水的磨耗层,即直接承受车辆交通磨耗的表层。
特埃萨凯和泰尔福特均采用较厚的石头基础,在其上面铺筑由较小碎石组成的基层和由更小的石头组成的磨耗层。
他们的道路还微微隆起成曲线,形成路拱和反拱以便使雨水流走。
马克当认识到当土壤被夯实或压紧之后,只要保证干燥,其本身就可承受道路的重量,因而他能够通过在压实的垫层上铺碎石基层来省掉建造石头基础所需要的昂贵费用。
当时车辆的铁质车轮把表层石头碾压成连续的,较为平整的,更加不透水的表面。
早19世纪,货车和客车都采用铁或钢制车轮,这种道路是适用的。
当汽车在20世纪初出现之后,其橡胶轮胎毁坏了这种平整的路面。
因此,就采用焦油或沥青掺拌碎石,使路面表层更坚固的黏合一起。
现在,遍布全世界的数百万公里的道路采用这种路面。
在20世纪,道路建设基本上仅在两方面进行了改进。
第一种改进是采用混凝土作为磨耗层。
另一种改进则是交通工程,即设计高速的大交通量的、造价经济并且对于车辆和旅客都安全的公路。
交通工程已建成了现代高速公路,这种公路具有限定的入口和最安全的管理。
老式道路常用的拐角形交叉已不使用,而采用互通式立体交叉或其他更为复杂的设计。
现代高速公路通常设有专门的车道,在那里当车辆要驶出公路时可减速驶入时可加速。
二级公路毕业设计外文文献
外文资料及翻译Effects of Design Features on Rigid Pavement PerformanceThe performance of rigid pavements is affected by a variety of design features, including slab thickness, base type, joint spacing, reinforcement, joint orientation, load trans fer, dowel bar coatings, longitudinal joint design, joint sealant, tied concrete shoulders ,and subdrainage . A study was made by ERES Consultants, Inc. under FHWA contract on the effects of these features on rigid pavement performance . Ninety-five pavemen tsections located in four major climatic regions were thoroughly evaluated . The following conclusions, which provide some revealing insights into pavement performance, are abstracted from the report (Smith et al., 1990a).Slab Thickness The effect of slab thickness on pavement performance was significant.It was found that increasing slab thickness reduced transverse and longitudinal cracking in all cases. This effect was much more pronounced for thinner slabs than fo rthicker slabs . It was not possible to compare the performance of the thinner slabs and the thicker slabs directly, because the thick slabs were all constructed directly on th esubgrade and the thinner slabs were all constructed on a base course .Increasing the thickness of slab did not appear to reduce joint spalling or join tfaulting . Thick slabs placed directly on the subgrade, especially in wet climates an dexposed to heavy traffic, faulted as much as thin slabs constructed on a base course .Base Type Base types, including base/slab interface friction, base stiffness, base erodibility, and base permeability, seemed to have a great effect on the performance of jointed concrete pavements . The major performance indicators, which were affected by variations in base type, were transverse and longitudinal cracking, joint spalling, and faulting .The worst performing base type, consisted of the cement-treated or soil cement bases, which tended to exhibit excessive pumping, faulting, and cracking. This is most likely due to the impervious nature of the base, which traps moisture and yet can brea- k down and contribute to the movement of fines beneath the slab .The use of lean concrete bases generally produced poor performance . Large curl -ing and warping stresses have been associated with slabs constructed over lean concrete bases. These stresses result in considerable transverse and longitudinal cracking of the slab . The poor performance of these bases can also be attributed to a bathtub design, in which moisture is trapped within the pavement cross section .Dense-graded asphalt-treated base courses ranged in performance from very poor to good. The fact that these types of bases were often constructed as a bathtub design contributed to their poor performance . This improper design often resulted in severe cracking, faulting, and pumping.The construction of thicker slabs directly on the subgrade with no base resulted In a pavement that performed marginally. These pavements were especially susceptible to faulting, even under low traffic levels.Pavements constructed over aggregate bases had varied performance, but were generally in the fair to very good category. In general, the more open-graded the aggregate,the better the performance . An advantage of aggregate bases is that they contribute the least to the high curling and warping stresses in the slab . Even though aggregate bases are not open-graded, they are more permeable and have a lower friction factor than stabilized bases .The best bases in terms of pavement performance were the permeable bases . Typical base courses have permeabilities ranging from 0 to less than 1 ft/day (0 .3 m/day) ; good permeable bases have permeabilities up to 1000 ft/day (305 m/day) . Specific areas of concern were the high corner deflections and the low load transfer exhibited by the permeable bases . These can affect their long-term performance, so the use of dowel bars might be required . An unexpected benefit of using permeable bases was the reduction in "D" cracking on pavements susceptible to this type of distress .Slab Length For JPCP, the length of slabs investigated ranged from 7 .75 to 30 ft(2.4to9.1m). It was found that reducing the slab length decreased both the magnitude of the joint faulting and the amount of transverse cracking. On pavements with random joint spacings, slabs with joint spacings greater than 18 ft (5.5 m) experienced more transverse cracking than did the shorter slabs .For JRCP, the length of slabs investigated ranged from 21 to 78 ft (6 .4 to 23 .9 m) .Generally, shorter joint spacings performed better, as measured by the deteriorated transverse cracks, joint faulting, and joint spalling . However, several JRCP with long joint spacings performed quite well . In particular, the long jointed pavements in New Jersey, which were constructed with expansion joints, displayed excellent performance .An examination of the stiffness of foundation was made through the use of the radius of relative stiffness, f . Generally speaking, when the ratio L/E, where L is the length of slab, was greater than 5, transverse cracking occurred more frequently . Thisfactor was further examined for different base types . It was found that stiffer base courses required shorter joint spacings to reduce or eliminate transverse cracking .Reinforcement The amount of steel reinforcement appeared to have an effect in controlling the amount of deteriorated transverse cracking . Pavement sections with less than 0.1% reinforcing steel often displayed significant deteriorated transverse cracking.A minimum of 0 .1% reinforcing steel is therefore recommended, with larger amounts required for more severe climate and longer slabs.Joint Orientation Conventional wisdom has it that skewed joints prevent the application of two wheel loads to the joint at the same time and thus can reduce load-associated distresses . The results from the limited sample size in this study were ambiguous, but all of the nondoweled sections with skewed joints had a lower PSR than similar designs with perpendicular joints . The available data provide no definite conclusions on the effectiveness of skewing transverse joints for nondoweled slabs . Skewed joints are not believed to provide any benefit to doweled slabs.Load Transfer Dowel bars were found to be effective in reducing the amount of joint faulting when compared with nondoweled sections of comparable designs. The diameter of dowels had an effect on performance, because larger diameter bars provided better load transfer and control of faulting under heavy traffic than did smaller dowels.It appeared that a minimum dowel diameter of 1 .25 in . (32 mm) was necessary to provide good performance .Nondoweled JPCP slabs generally developed significant faulting, regardless of pavement design or climate . This effect was somewhat mitigated by the use of permeable bases. However, the sections in this group had a much lower number of accumulated ESAL, so no definite conclusions can be drawn yet .Dowel Bar Coatings Corrosion-resistant coatings are needed to protect dowels from the adverse effects of moisture and deicing chemicals .While most of the sections in this study did not contain corrosion-resistant dowel bars, those that did generally exhibited enhanced performance. Very little deteriorated transverse cracking was identified on these sections. In fact, one section in New Jersey with stainless steel-clad dowel bars was performing satisfactorily after 36 years of service .Longitudinal Joint Design The longitudinal joint design was found to be a critical design element.Both inadequate forming techniques and insufficient depths of joint can contribute to the development of longitudinal cracking . There was evidence of the ad vantage of sawing the joints over the use of inserts . The depth of longitudinal joints is generally recommended to be one-third of the actual, notdesigned, slab thickness, but might have to be greater when stabilized bases are used .Joint Sealant Joint sealing appeared to have a beneficial effect on performance . This was particularly true in harsh climates with excessive amounts of moisture . Preformed compression sealants were shown to perform well for more than 15 years under heavy traffic.Except where "D" cracking occurred, pavement sections containing preformed sealants generally exhibited little joint spalling and were in good overall conditions.Rubberized asphalt joint sealants showed good performance for 5 to 7 years.Tied Concrete Shoulders It is generally believed that tied concrete shoulders can reduce edge stresses and corner deflections by providing more lateral supports to the mainline pavement, thus improving pavement performance . Surprisingly, this study showed that, although tied concrete shoulders performed better than asphalt shoulders,many of the tied shoulders were not designed properly and actually contributed to poor performance of the mainline pavement . The tiebars were spaced too far apart ,sometimes at a spacing of 40 in.(1016 mm), and were not strategically located near slab corners to provide adequate support . In some cases, tied concrete shoulders were constructed over a stabilized dense-graded base in a bathtub design, resulting in the poor performance of mainline pavement.Subdrainage The provision of positive subdrainage, either in the form of longitudinal edge drains or the combination of a drainage layer and edge drains, generally reduced the amount of faulting and spalling related to "D" cracking . With few exceptions, the load-associated distresses, especially faulting and transverse cracking, decreased as the drainage characteristics improved . The overall pavement performance can be improved by using an open-graded base or restricting the percentage of fines . A filter layer must be placed below the permeable base, and regular maintenance of the outlets must be provided .译文结构特点对刚性路面性能的影响刚性路面的性能受种种结构特点的影响,如板厚、基层类型、接缝间距、钢筋用量、接风方向、荷载传递、传力杆涂层、纵缝设计、接缝填封料、有拉杆混凝土道肩和地下排水等。
城市交通规划外文翻译文献
城市交通规划外文翻译文献(文档含中英文对照即英文原文和中文翻译)Urban transportation PlanningAn urban transportation system is basic component of an urban area's social,economic,and physical structure. Not only does the design and performance of a transportation system provide opportunities for mobility,but over the long term,it influences patterns of growth and the level of economic activity through the accessibility it provides to land. Planning for the development or maintenance of the urban transportation system is thus an important activity,both for promoting the efficient movement of people andgoods in an urban area and for maintaining the strong supportive role that transportation can play in attaining other community objectives.There are several basic concepts about an urban transportation system that should be kept in mind. Most important,a transportation system in an urban area is defined as consisting of the facilities and services that allow travel throughout the region,providing opportunities for:(I)mobility to residents of an urban area and movement of goods and (2) accessibility to land .Given this definition,an urban transportation system can be further characterized by three major components: the spatial configuration that permits travel from one location to another; the transportation technologies that provide the means of moving over these distances; and the institutional framework that provides for the planning, construction, operation, and maintenance of system facilities.The Spatial Configuration of a Transportation SystemOne way to describe the spatial dimension of an urban transportation system is to consider the characteristics of individual trips from an origin to a destination. For example, a trip can consist of several types of movement undertaken to achieve different objectives. Travelers leaving home might use a local bus system to reach a suburban subway station(a trip collection process),proceed through the station to the subway platform (a transfer process),ride the subway to a downtown station (a line-haul process),and walk to a place of employment (a distribution process). Similarly,one can view a home-to-worktrip by car as consisting of similar segments,with the local street system providing the trip collection process, a freeway providing the line-haul capability,a parking lot in the central business district serving as a transfer point,and walking,as before,serving the distribution function.The facilities and services that provide these opportunities for travel,when interconnected to permit movement from one location to another,form a network. Thus,another way of representing the spatial dimension of an urban transportation system is as a set of road and transit networks. Even in the smallest urban areas,where mass transit is not available,the local street network provides the basic spatial characteristic of the transportation system.The transportation system of a city can influence the way in which the city's social and economic structure, often called the urban activity system,develops. At the same time,changes in this structure can affect the ability of the transportation system to provide mobility and accessibility. Thus , the transportation system is closely related to the urban activity system and; historically, has been an important determinant of urban form.Because of the relation between transportation and urban activities,many of the methods used by transportation planners depend on estimates of trips generated by specific land uses. The relation also suggests that the options available to public officials dealing with transportation problems should include not only those related directly to the transportation system, but also actions such as zoning that affect the distribution of land use, and thus influence theperformance of the transportation system.The foregoing considerations point to two important principles for transportation planning: The transportation system should beConsidered as an integral part of the social and economic system in an urban area.Viewed as a set of interconnected facilities and services designed to provide opportunities for travel from one location to another.The Technology of Urban TransportationThe technology of urban transportation is closely related to the spatial configuration of the transportation system in that the design transportation networks reflects the speed, operating , and cost characteristics of the vehicle or mode of transportation being used. Technology includes the means of propulsion, type of support,means of guidance,and control technique.The development and widespread use of electric streetcars in urban areas during the late nineteenth century was a technological innovation that initiated the transformation of most North American cities. The advent of the electric streetcar permitted urban areas to expand beyond the boundaries that had been dictated by previous transportation technologies (e. g.,walking,horse,horsecar),spawning `streetcar suburbs' with dramatically lower residential densities along streetcar lines radiating from the central city. Whereas many industries had decentralized along railroad lines leading from the central city,and workers initially had to live near these factories, the introduction of streetcars now permitted more distant living.The success of the streetcar in providing access from selected suburban areas to central business districts was followed by public acceptance of a second major technological innovation-the automobile,powered by the internal combustion engine. Increasing consumer preferences for lower-density living and for an ability to travel beyond established urban boundaries sparked a phenomenal growth in automobile ownership and usage,beginning in the 1920s .④The automobile continues and accelerated the evolution of urban structure started by the electric streetcar. Its availability permitted further expansion of urban areas and, more important, provided access to land between the radial streetcar and railroad lines leading into the central city.The technology of the internal-combustion engine,however, also led to the decline of other transportation modes used in urban areas by providing a less expensive and more flexible replacement for rail-based modes. While the automobile provided new opportunities for personal mobility and urban growth, motor buses rapidly replaced electric streetcars, to the extent that only five North American cities today still operate large-scale streetcar systems-Boston, Philadelphia, Pittsburgh, Toronto, and San Francisco (although this trend has reversed somewhat in recent years with new `light rail' systems in operation in Edmonton, Calgary, San Diego, and Buffalo). At the same time, the growth of private automobile use has dramatically reduced the use of public transportationin general, particularly since the end of World War II. According to the latest census figures, in 1980, 62. 3 million Americans normally drove alone to work each day, another 19 million car-pooled, and 6 million used public transportation.The technologies and the resulting modes available today for urban transportation are common to most cities but are often applied in different ways to serve different purposes. It should be noted that certain types of modes are appropriate than others in serving different types of urban trips.The technological dimension of the urban transportation system suggests a third principle for urban transportation planning:Transportation planners must consider the transportation system as consisting of different modes , each having different operational and cost characteristics.From; Michael D. Meyer and Eric J. Miller "Urban Transportation Planning", 1984城市交通规划城市交通系统是市区的社会、经济、和物质结构的一个基本组成部分。
外文翻译1
河南理工大学交通工程专业中英文翻译Road Design专业:交通工程学生:曹阳威指导老师:宋晖颖河南理工大学2013届毕业设计中英文翻译2013年6月英文原文The Basics of a Good RoadWe have known how to build good roads for a long time. Archaeologists have found ancient Egyptian roadsthat carried blocks to the pyramids in 4600 BCE. Later,the Romans built an extensive road system, using the same principles we use today. Some of these roads are still in service.If you follow the basic concepts of road building, you will create a road that will last. The ten commandments of a good road are:(1)Get water away from the road(2)Build on a firm foundation(3)Use the best materials(4)Compact all layers properly(5)Design for traffic loads and volumes(6)Design for maintenance(7)Pave only when ready(8)Build from the bottom up(9)Protect your investment(10)Keep good records1.Get water away from the roadWe can’t overemphasize the importance of good drainage.Engineers estimate that at least 90% of a road’s problems can be related to excess water or to poor waterdrainage. Too much water in any layer of a road’sstructure can weaken that layer, leading to failure.In the surface layer, water can cause cracks and potholes. In lower layers it undermines support, causing cracks and potholes. A common sign of water in an asphalt road surface is alligator cracking — an interconnected pattern of cracks forming small irregular shaped pieces that look like alligator skin. Edge cracking, frost heaves, and spring breakup of pavements also point to moisture problems.To prevent these problems remember that water:• flows downhill• needs to flow someplace• is a problem if it is not flowingEffective drainage systems divert, drain and dispose of water. To do this they use interceptor ditches and slopes,road crowns, and ditch and culvert systems.Divert —Interceptor ditches, located between the road and higher ground along the road, keep the water from reaching the roadway. These ditches must slope so they carry water away from the road.Drain —Creating a crown in the road so it is higher along the centerline than at the edges encourages water to flow off the road. Typically a paved crown should be 1⁄4" higher than the shoulder for each foot of width from the centerline to the edge. For gravel surfaces the crown should be 1⁄2" higher per foot of width. For this flow path to work, the road surface must be relatively water tight. Road shoulders also must be sloped away from the road to continue carrying the flow away. Superelevations (banking) at the outside of curves will also help drainthe road surface.Dispose —A ditch and culvert system carries water away from the road structure. Ditches should be at least one foot lower than the bottom of the gravel road layer that drains the roadway. They must be kept clean and must be sloped to move water into natural drainage. If water stays in the ditches it can seep back into the road structure and undermine its strength. Ditches should also be protected from erosion by planting grass, or installing rock and other erosion control measures. Erosion can damage shoulders and ditches, clog culverts, undermine roadbeds, and contaminate nearby streams and lakes. Evaluate your ditch and culvert system twice a year to ensure that it works. In the fall, clean out leaves and branches that can block flow. In spring, check for and remove silts from plowing and any dead plant material left from the fall.2.Build on a firm foundationA road is only as good as its foundation. A highway wears out from the top down but falls apart from the bottom. The road base must carry the entire structure and the traffic that uses it.To make a firm foundation you may need to stabilize the roadbed with chemical stabilizers, large stone called breaker run, or geotextile fabric. When you run into conditions where you suspect that the native soil is unstable, work with an engineer to investigate the situation and design an appropriate solution.3.Use the best materialsWith all road materials you “pay now or pay later.” Inferior materials may require extensive maintenance throughout the road’s life. They may also force you to replace the road prematurely.Crushed aggregate is the best material for the base course. The sharp angles of thecrushed material interlock when they are compacted. This supports the pavement and traffic by transmitting the load from particle to particle. By contrast, rounded particles act like ballbearings, moving under loads.Angular particles are more stable than rounded particles.Asphalt and concrete pavement materials must be of the highest quality, designed for the conditions, obtained from established firms, and tested to ensure it meets specifications. 4.Compact all layersIn general, the more densely a material is compacted, the stronger it is. Compaction also shrinks or eliminates open spaces (voids) between particles. This means that less water can enter the structure. Water in soil can weaken the structure or lead to frost heaves. This is especially important for unsurfaced (gravel) roads. Use gravel which has a mix of sizes (well-graded aggregate) so smaller particles can fill the voids between larger ones. Goodcompaction of asphalt pavement lengthens its life.5.Design for traffic loads and volumesDesign for the highest anticipated load the road will carry. A road that has been designed only for cars will not stand up to trucks. One truck with 9 tons on a single rear axle does as much damage to a road as nearly 10,000 cars.Rural roads may carry log trucks, milk trucks, fire department pumper trucks, or construction equipment. If you don’t know what specific loads the road will carry, a good rule of thumb is to design for the largest piece of highway maintenance equipment that will be used on the road.A well-constructed and maintained asphalt road should last 20 years without major repairs or reconstruction. In designing a road, use traffic counts that project numbers and sizes of vehicles 20 years into the future. These are only projections, at best, but they will allow you to plan for trafficloadings through a road’s life.6.Design for maintenanceWithout maintenance a road will rapidly deteriorate and fail. Design your roads so they can be easily maintained. This means:• adequate ditches that can be cleaned regularly• culverts that are marked for easy locating in the spring• enough space for snow after it is plowed off the road• proper cross slopes for safety, maintenance and to avoid snow drifts• roadsides that are planted or treated to prevent erosion• roadsides that can be mowed safelyA rule of thumb for adequate road width is to make it wide enough for a snowplow to pass another vehicle without leaving the travelled way.Mark culverts with a post so they can be located easily.7.Pave only when readyIt is not necessary to pave all your roads immediately. There is nothing wrong with a well-built and wellmaintained gravel road if traffic loads and volume do not require a paved surface. Three hundred vehicles per day is the recommended minimum to justify paving.Don’t assume that laying down asphalt will fix a gravel road that is failing. Before you pave, make sure you have an adequate crushed stone base that drains well and is properly compacted. The recommended minimum depth of crushed stone base is 10" depending on subgrade soils. A road paved only when it is ready will far outperform one that is constructed too quickly.8.Ê Build from the bottom upThis commandment may seem obvious, but it means that you shouldn’t top dress or resurface a road if the problem is in an underlying layer. Before you do any road improvement, locate the cause of any surface problems. Choose an improvement technique that will address the problem. This may mean recycling or removing all road materials down to the native soil and rebuilding everything. Doing any work that doesn’t solv e the problem is a waste of money and effort.9.Ê Protect your investmentThe road system can be your municipality’s biggest investment. Just as a home needs painting or a new roof, a road must be maintained. Wisconsin’s severe climate requires more road maintenance than in milder places. Do these important maintenance activities: Surface —grade, shape, patch, seal cracks, control dust, remove snow and iceDrainage —clean and repair ditches and culverts; remove all excess materialRoadside —cut brush, trim trees and roadside plantings, control erosionTraffic service —clean and repair or replace signsDesign roads with adequate ditches so they can be maintained with a motor grader. Clean and grade ditches to maintain proper pitch and peak efficiency. After grading, remove all excess material from the shoulder.10.Keep good recordsYour maintenance will be more efficient with good records. Knowing the road’s construction, life, and repair history makes it much easier to plan and budget its future repairs. Records can also help you evaluate the effectiveness of the repair methods and materials you used.Good record keeping starts with an inventory of the system. It should include the history and surface condition of the roadway, identify and evaluate culverts and bridges, note ditch conditions,shoulders, signs, and such structures as retaining walls and guardrails.Update your inventory each year or when you repair or change a road section. A formal pavement management system can help use these records and plan and budget road improvements.ResourcesThe Basics of a Good Road#17649, UW-Madison, 15 min. videotape. Presents the Ten Commandments of a Good Road. Videotapes are loaned free through County Extension offices.Asphalt PASER Manual(39 pp), Concrete PASER Manual (48 pp), Gravel PASER Manual (32 pp). These booklets contain extensive photos and descriptions of road surfacesto help you understand types of distress conditions and their causes. A simple procedure for rating the condition helps you manage your pavements and plan repairs.Roadware, a computer program which stores and reports pavement condition information. Developed by the Transportation Information Center and enhanced by the Wisconsin Department of Transportation, it uses the PASER rating system to provide five-year cost budgets and roadway repair/reconstruction priority lists.Wisconsin Transportation Bulletin factsheets, available from the Transportation Information Center (T.I.C.).Road Drainage, No. 4. Describes drainage for roadways, shoulders, ditches, and culverts.Gravel Roads, No. 5. Discusses the characteristics of a gravel road and how to maintain one.Using Salt and Sand for Winter Road Maintenance,No. 6. Basic information and practical tips on how to use de-icing chemicals and sand.Culverts—Proper Use and Installation, No. 15. Selecting and sizing culverts, designing, installing and maintaining them.Geotextiles in Road Construction/Maintenance andErosion Control, No. 16. Definitions and common applications of geotextiles on roadways and for erosion control.T.I.C. workshops are offered at locations around the state.Crossroads,an 8-page quarterly newsletter published by the T.I.C. carries helpful articles, workshop information, and resource lists. For more information on any of these materials, contact the T.I.C. at 800/442-4615.中文译文一个良好的公路的基础长久以来我们已经掌握了如何铺设好一条道路的方法,考古学家发现在4600年古埃及使用建造金字塔的石块铺设道路,后来,罗马人使用同样的方法建立了一个庞大的道路系统,这种方法一直沿用到今天。
道路交通安全中英文对照外文翻译文献
中英文资料外文翻译文献(文档含英文原文和中文翻译)视觉零——道路交通安全的一项实施政策关键词:视觉零、道路安全、实施摘要:本文的范畴是一个提纲,一般来说,道路安全理念本来就存在于现在道路和道路设计中。
追踪这种理念的起源,提出了新的街道道路的设计原则有人会争辩说,在目前的道路设计理念的缺陷。
是主要的原因全球道路安全危机,清楚表明其人造的性质。
一个由决策过程所构成的简短的描述,导致零视觉在1997年作为瑞典交通安全政策确立。
通过对问题的分析,为寻求解决之道提出建议。
这些解决方案基于视觉零中的一些原则。
这些措施包括一个用于创建错误容忍的道路系统的新的基本机制,和道路、街道新的设计原则。
因此,传统的“怪罪受害者”的质疑和焦点放在了需要专业人士基于这些新的标准所采取的行动。
在过去10年在瑞典的死亡人数已经从大约550 /年下降到450 /年。
重新设计的道路中央分隔带已经减少了80%在死亡。
街道以30公里/小时的设计速度显示出类似的结果。
这表明,从视觉零衍生出来的策略是有效的,但还没有大规模实施。
1、过程自1993年,在瑞典瑞典公路管理局(SRA)的有一个整体的责任道路交通安全。
在1996年,这一责任被政府进一步澄清。
瑞典已有非常小的部委(人员数)。
因此,像SRA的管理部门经常有半政治任务,如发展政策和目标。
政策决定、长期目标和总体预算是由政府或议会做出的,而发展是在管理部门做出的。
继1994年秋季瑞典有了一个新选举的交通部长。
交通部长宣布,安全将是她的优先事项之一。
部长的工作人员就如何使部长能够做出交通安全优先课题和SRA 之间展开对话。
在1994年春天,SRA和主要利益相关者一起对1994-2000年的行车安全提出了一项短期方案。
它不仅有和先前工作的连续性,而且更加强调关键行动和重视成果之间的协作。
这个方案后,直接推动SRA开始制定交通安全长期战略的基本思路。
它已经被确认为当代一些交通安全问题的范例(约翰逊,1991)。
公路建设外文翻译文献
公路建设外文翻译文献(文档含中英文对照即英文原文和中文翻译)PavementHighway pavements are divided into two main categories: rigitand flexible.The wearing surfaceof a rigid pavement is usually constructed of Portland cement concrete such that it acts like a beam over any irregularities in the underlying supporting material.The wearing surface of flexible pavements, on the other hand, is usually constructed of bituminous material such that they remain in contact with the underlying material even when minor irregularities occur.Flexible pavements usually consist of a bituminous surface underlaid with a layer of granular material and a layer of a suitable mixture of coarse and fine materials.Coarse aggregatesFine aggregatesTraffic loads are transferred by the wearing surface to the underlying supporting materials through the interlocking of aggregates, the frictionaleffect of the granular materials, and the cohesion of the fine materials.Flexible pavements are further divided into three subgroups: high type, intermediate type, and low type. High-type pavements have wearing surfaces that adequately support the expected traffic load without visible distress due to fatigue and are not susceptible to weather conditions.Intermediate-type pavements have wearing surfaces that range from surface treated to those with qualities just below that of high-type pavements. Low-type pavements are used mainly for low-cost roads and have wearing surfaces that range from untreated to loose natural materials to surface-treated earth.✹The components of a flexible pavement include the subgradeor prepared roadbed, the subbase, basecourse, and the surface course (Fig.11.1).✹Upper surface courseMiddle surface courseLower surface courseThe performance of the pavement depends on the satisfactory performance of each component, which requires proper evaluation of the properties of each component separately.✹The subgrade is usually the natural material located along the horizontal alignment of the pavement and serves as the foundation of the pavement structure.✹The subgrademay also consist of a layer of selected borrow materials, well compacted to prescribedspecifications.✹Compacting plantCompaction deviceCompactnessIt may be necessary to treat the subgrade material to achieve certain strength properties required for the type of pavement being constructed.Located immediately above the subgrade, the subbase component consists of a superior quality to that which generally is used for subgrade construction. The requirements for subbase materials are usually given in terms of the gradation, plastic characteristics, and strength. When the quality of the subgrade material meets the requirements of the subbase material, the subbase component may be omitted.In cases where suitable subbase material is not readily available ,the available material can be treated with other materials to achieve the necessary properties. This process of treating soils to improve their engineering properties is know as stabilization.✹The base course lies immediately above the subbase. It is placed immediately above the subgrade if a subbase course is not used.✹This course usually consists of granular materials such as crushed stone, crushed or uncrushed.The specifications for base course materials usually include stricter requirements than those for subbase materials, particularly with respect to their plasticity, gradation, and strength.Materials that do not have the required properties can be used as base materials if they are properly stabilized with Portland cement, asphalt, or lime .In some cases, high-quality base course materials may also be treated with asphalt or Portland cement to improve the stiffness characteristics of heavy-duty pavementsThe surface course is the upper course of the road pavement and is constructed immediately above the base course. The surface course in flexible pavement usually consists of a mixture of mineral aggregates and asphaltic materials.It should be capable of withstanding high tire pressures, resisting the abrasive forces due to traffic, providing a skid-resistant driving surface, and preventing the penetration of surface water into the underlying layers.✹The thickness of the wearing surface can vary from 3 in. to more than 6 in.(inch,英寸,2.54cm), depending on the expected traffic on the pavement.It was shown that the quality of the surface course of a flexible pavement depends on the mix design of the asphalt concrete used.✹Rigid highway pavements usually are constructed to carry heavy traffic loads, although they have been used for residential and local roads. Properly designed and constructed rigid pavements have long service lives and usually are less expensive to maintain than the flexible pavements.✹The Portland cement concrete commonly used for rigid pavements consists of Portland cement, coarse aggregate, fine aggregate, and water. Steel reinforcing rods may or may not be used, depending on the type of pavement being constructed.Rigid highway pavements be divided into three general type: plain concrete pavements, simply reinforced concrete pavements, and continuously reinforced concrete pavement. The definition of each pavement type is related to the amount of reinforcement used.Plain concrete pavement has no temperature steel or dowels for load transfer.However, steel tie bars are often used to provide a hingeeffect at longitudinal joints and to prevent the opening of these joints. Plain concrete pavements are used mainly on low-volume highways or when cement-stabilized soils are used as subbase.Joints are placed at relatively shorter distances (10 to 20 ft) than with the other types of concrete pavements to reduce the amount of cracking.In some case, the transverse joints of plain concrete pavements are skewed about 4 to 5 ft in plan, such that only one wheel of a vehicle passes through the joint at a time. This helps to provide a smoother ride.Simply reinforced concrete pavements have dowels for the transfer of traffic loads across joints, with these joints spaced at larger distances, ranging from 30 to 100 ft. Temperature steel is used throughout the slab, with the amount dependent on the length of the slab. Tie bars are also commonly used in longitudinal joints.Continuously reinforced concrete pavements have no transverse joints, except construction joints or expansion joints when they are necessary at specific positions, such as at bridges.These pavements have a relatively high percentage of steel, with the minimum usually at 0.6 percent of the cross section of the slab. They also contain tie bars across the longitudinal joints.h/2h/25~10cm填缝料 横向施工缝构造填缝料平缝加拉杆型Bituminous Surface CoursesThe bituminous surface course has to provide resistance to the effects of repeated loading by tyres and to the effects of the environment.✹In addition, it must offer adequate skid resistance in wet weather as well as comfortable vehicle ride. It must also be resistant to rutting and to cracking.✹It is also desirable that surface course is impermeable, except in the case of porous asphalt.Hot rolled asphalt (HRA) is a gapgraded material with less coarse aggregate. In fact it is essentially a bitumen/fine aggregate/filler mortar into which some coarse aggregate is placed.The mechanical propertiesare dominated by those of the mortar. This material has been extensively used as the wearing course on major road in the UK, though its use has recently declined as new materials have been introduced.✹It provides a durablelayer with good resistance to cracking and one which is relatively easy to compact. The coarse aggregate content is low (typically 30%) which results in the compacted mixture having a smooth surface. Accordingly, the skid resistance is inadequate and precoated chippings are rolled into the surface at the time of laying to correct this deficiency.In Scotland, HRA wearing course remains the preferred wearing course on trunk roads including motorway but,since 1999 thin surfacings have been the preferred option in England and Wales. Since 1999 in Northern Ireland, HRA wearing course and thin surfacings are the preferred permitted options.Porous asphalt (PA) is a uniformly graded material which is designed to provide large air voids so that water can drain to the verges within the layer thickness. If the wearing course is to be effective, the basecourse below must be waterproof and the PA must have the ability to retain its open textured properties with time.Thick binder films are required to resist water damage and ageing of the binder. In use, this material minimizes vehicle spray, provides a quiet ride and lower rolling resistance to traffic than dense mixtures.✹It is often specified for environmental reasons but stone mastic asphalt (SMA) and special thin surfacings are generally favoured in current UK practice.There have been high profile instances where a PA wearing course has failed early in its life. The Highways Agency does not recommend the use of a PA at traffic levels above 6000 commercial vehicles per day.✹Asphaltic concrete and dense bitumen macadam (DBM) are continuously graded mixtures similar in principle to the DBMs used in roadbases and basecourses but with smaller maximum particle sizes. Asphaltic concrete tends to have a slightlydenser grading and is used for road surfaces throughout the world with the excepting of the UK.✹It is more difficult to meet UK skid resistance Standards with DBMs than HRA, SMA or PA. This problem can be resolves by providing a separate surface treatment but doing so generally makes DBM economically unattractive.✹Stone mastic asphalt (SMA) material was pioneeredin Germany and Scandinavia and is now widely used in the UK. SMA has a coarse, aggregrate skeleton, like PA, but the voids are filled with a fine aggregate/filler /bitumen mortar.✹In mixtures using penetration grade bitumen , fibres are added to hold the bitumen within the mixture (to prevent “binder drainage”).Bitumen✹oil bitumen( earth oil)✹natural bitumen✹TarWhere a polymer modified bitumen is used, there is generally no need for fibres. SMA is a gap-graded material with good resistance to rutting and high durability. modified bitumen✹SBS✹SBR✹PE\EV A✹It differs from HRA in that the mortar is designed to just fill the voids in the coarse aggregate whereas, in HRA, coarse aggregate is introduced into the mortar and does not provide a continous stone matrix. The higher stone content HRAs ,however, are rather similar to SMA but are not wide used as wearing courses in the UK, being preferred for roadbase and basecourse construction.A variety of thin and what were called ultra thin surfacings (nowadays, the tendency is to use the term …thin surfacings‟ for both thin and ultra thin surfac ings ) have been introduced in recent years, principally as a result of development work concentrated in France.These materials vary in their detailed constituents but usually have an aggregate grading similar to SMA and often incorporate a polymer modified bitumen.They may be used over a high stiffness roadbase and basecourse or used for resurfacing of existing pavements. For heavy duty pavements (i .e those designed to have a useful life of forty years), the maintenance philosophy is one of minimum lane occupancy, which only allows time for replacement of the wearing course to these …long life‟ pavement structures. The new generation of thin surfacings allows this to be conveniently achieved.The various generic mixture types described above can be compared with respect to their mechanical properties and durability characteristics by reference to Fig.12.1. This shows, in principle, how low stone content HRA, asphaltic concrete, SMA and PA mixtures mobilize resistance to loading by traffic.Asphaltic concrete (Fig.12.1a)) presents something of a compromise when well designed, since the dense aggregate grading can offer good resistance to the shear stresses which cause rutting, while an adequate binder content will provide reasonable resistance to the tensile stresses which cause cracking.In general, the role of the aggregate dominates. DBMs tend to have less dense gradings and properties which, therefore, tend towards good rutting resistance andaway from good crack resistance.HRA (Fig.12.1b)) offers particularly good resistance to cracking through the binder rich mortar between the coarse aggregate particles. This also provides good durability but the lack of coarse aggregate content inhibits resistance to rutting.SMA and PA are shown in the same diagram ( Fig.c)) to emphasis the dominant role the coarse aggregate. In both case, well coated stone is used. In PA, the void space remains available for drainage of water, whilst in SMA, the space is occupied by a fine aggregate/ filler/ bitumen/ fibre mortar.Both materials offer good rutting resistance through the coarse aggregate content. The tensile strength of PA is low whilst that of SMA is probably adequate but little mechanical testing data have been reported to date.Drainage for Road and Airports✹Provision of adequate drainage is important factor in the location and geometric design of road and airports. Drainage facilities on any highway, street and airport should adequately provide for the flow of water away from the surface of the pavement to properly designed channels.Inadequate drainage will eventually result in serious damage to the structure.✹In addition, traffic may be slowed by accumulated water on the pavement, and accidents may occur as a result of hydroplaning and loss of visibility from splash and spray. The importance of adequate drainage is recognized in the amount of highway construction dollars allocated to drainage facilities. About25 percent of highway construction dollars are spent for erosion control anddrainage structures, such as culverts, bridges, channels, and ditches.✹Highway Drainage Structures✹One of the main concerns of the highway engineer is to provide an adequate size structure, such that the waterway opening is sufficiently large to discharge the expected flow of water.Inadequately sized structures can result in water impounding, which may lead to failure of the adjacent sections of the highway due to embankments being submerged in water for long periods.✹The two general categories of drainage structures are major and minor. Major structures are those with clear spans greater than 20 feet, whereas minor structures are those with clear spans of 20 feet or less .✹Major structures are usually large bridges, although multiple-span culverts may also be included in this class. Minor structures include small bridges and culverts.Emphasis is placed on selecting the span and vertical clearancerequirements for major structures. The bridge deck should be located above the high water mark .The clearance above the high water mark depends on whether the waterway is navigable ✹If the waterway is navigable, the clearance above the high water mark should allow the largest ship using the channel to pass underneath the bridge without colliding with the bridge deck. The clearance height, type, and spacing of piers also depend on the probability of ice jams and the extentto which floating logs and debris appear on the waterway during high water.✹An examination of the banks on either side of the waterway will indicate the location of the high water mark, since this is usually associated with signs of erosion and debris deposits. Local residents, who have lived near and observed the waterway during flood stages over a number of years, can also give reliable information on the location of the high water mark. Stream gauges that have been installed in the waterway for many years can also provide data that can be used to locate the high water mark.Minor structures, consisting of short-span bridges and culverts, are the predominant type of drainage structures on highways. Although openings for these structures are not designed to be adequate for the worst flood conditions, they shouldbe large enough to accommodate the flow conditions that might occur during the normal life expectancy of the structure.✹Provision should also be made for preventing clogging of the structure due to floating debris and large boulders rolling from the banks of steep channels.✹Culverts are made of different materials and in different shapes. Materials used to construct culverts include concrete(reinforced and unreinforced), corrugated steel, and corrugatedaluminum. Other materials may also be used to line the interiorof the culvert to prevent corrosion and abrasionor to reduce hydraulic resistance. For example, asphaltic concrete may be used to line corrugated metal culverts. The different shapes normally used in culvert construction include circular, rectangular (box), elliptical, pipe arch, metal box, and arch.✹The drainage problem is increased in these areas primarily for two reasons: the impervious nature of the area creates a very high runoff; and there is little room for natural water courses. It is often necessary to collect the entire storm water into a system of pipes and transmit it over considerable distances before it can be loosed again as surface runoff. This collection and transmission further increase the problem, since all of the water must be collected with virtually no pending, thus eliminating any natural storage; and through increased velocity the peak runoffs are reached more quickly.Also, the shorter times of peaks cause the system to be more sensitive to short-duration,high intensive rainfall.Storm sewers,like culverts and bridges,are designed for storms of various intensity-return-period relationships, depending upon the economy and amount of ponding that can be tolerated.✹Airport Drainage✹The problem of providing proper drainage facilities for airports is similar in many ways to that of highways and streets. However, because of the large and relatively flat surface involved, the varying soil conditions, the absence of natural water courses and possible side ditches, and the greater concentration of discharge at the terminus of the construction area, some phases of the problem are more complex. For the average airport the over-all area to be drained is relatively large and an extensive drainage system is required. The magnitude of such a system makes it even more imperative that sound engineering principles based on all of the best available data be used to ensure the most economical design.Overdesigning of facilities results in excessive money investment with no return, and underdesigning can result in conditions hazardous to the air traffic using the airport. In order to ensure surfaces that are smooth, firm, stable, and reasonably free from flooding, it is necessary to provide a system which will do several things.It must collect and remove the surface water from the airport surfaces; intercept and remove surface water flowing toward the airport from adjacent areas; collect and remove any excessive subsurface water beneath the surface of the airport facilities and in many cases lower the ground-water table; and provide protection against erosion of the sloping areas.路面公路的路面被分为两类:刚性的和柔性的。
交通建设项目工程专业外文翻译外文文献英文文献.doc
土木工程学院交通工程专业中英文翻译Road Design专业:交通工程英文原文The Basics of a Good RoadWe have known how to build good roads for a long time. Archaeologists have found ancient Egyptian roadsthat carried blocks to the pyramids in 4600 BCE. Later,the Romans built an extensive road system, using the same principles we use today. Some of these roads are still in service.If you follow the basic concepts of road building, you will create a road that will last. The ten commandments of a good road are:(1)Get water away from the road(2)Build on a firm foundation(3)Use the best materials(4)Compact all layers properly(5)Design for traffic loads and volumes(6)Design for maintenance(7)Pave only when ready(8)Build from the bottom up(9)Protect your investment(10)Keep good records1.Get water away from the roadWe can’t overemphasize the importance of good drainage.Engineers estimate that at least 90% of a road’s problems can be related to excess water or to poor waterdrainage. Too much water in any laye r of a road’sstructure can weaken that layer, leading to failure.In the surface layer, water can cause cracks and potholes. In lower layers it undermines support, causing cracks and potholes. A common sign of water in an asphalt road surface is alligator cracking — an interconnected pattern of cracks forming small irregular shaped pieces that look like alligator skin. Edge cracking, frost heaves, and spring breakup of pavements also point to moisture problems.To prevent these problems remember that water:• flows downhill• needs to flow someplace• is a problem if it is not flowingEffective drainage systems divert, drain and dispose of water. To do this they use interceptor ditches and slopes,road crowns, and ditch and culvert systems.Divert —Interceptor ditches, located between the road and higher ground along the road, keep the water from reaching the roadway. These ditches must slope so they carry water away from the road.Drain —Creating a crown in the road so it is higher along the centerline than at the edges encourages water to flow off the road. Typically a paved crown should be 1⁄4" higher than the shoulder for each foot of width from the centerline to the edge. For gravel surfaces the crown should be 1⁄2" higher per foot of width. For this flow path to work, the road surface must be relativelywater tight. Road shoulders also must be sloped away from the road to continue carrying the flow away. Superelevations (banking) at the outside of curves will also help drainthe road surface.Dispose —A ditch and culvert system carries water away from the road structure. Ditches should be at least one foot lower than the bottom of the gravel road layer that drains the roadway. They must be kept clean and must be sloped to move water into natural drainage. If water stays in the ditches it can seep back into the road structure and undermine its strength. Ditches should also be protected from erosion by planting grass, or installing rock and other erosion control measures. Erosion can damage shoulders and ditches, clog culverts, undermine roadbeds, and contaminate nearby streams and lakes. Evaluate your ditch and culvert system twice a year to ensure that it works. In the fall, clean out leaves and branches that can block flow. In spring, check for and remove silts from plowing and any dead plant material left from the fall.2.Build on a firm foundationA road is only as good as its foundation. A highway wears out from the top down but falls apart from the bottom. The road base must carry the entire structure and the traffic that uses it.To make a firm foundation you may need to stabilize the roadbed with chemical stabilizers, large stone called breaker run, or geotextile fabric. When you run into conditions where you suspect that the native soil is unstable, work with an engineer to investigate the situation and design an appropriate solution.3.Use the best materialsWith all road materials you “pay now or pay later.” Inferior materials may require extensive maintenance throughout the road’s life. They may also force you to replace the road prematurely.Crushed aggregate is the best material for the base course. The sharp angles of thecrushed material interlock when they are compacted. This supports the pavement and traffic by transmitting the load from particle to particle. By contrast, rounded particles act like ballbearings, moving under loads.Angular particles are more stable than rounded particles.Asphalt and concrete pavement materials must be of the highest quality, designed for the conditions, obtained from established firms, and tested to ensure it meets specifications. 4.Compact all layersIn general, the more densely a material is compacted, the stronger it is. Compaction also shrinks or eliminates open spaces (voids) between particles. This means that less water can enter the structure. Water in soil can weaken the structure or lead to frost heaves. This is especially important for unsurfaced (gravel) roads. Use gravel which has a mix of sizes (well-graded aggregate) so smaller particles can fill the voids between larger ones. Goodcompaction of asphalt pavement lengthens its life.5.Design for traffic loads and volumesDesign for the highest anticipated load the road will carry. A road that has been designed only for cars will not stand up to trucks. One truck with 9 tons on a single rear axle does as much damage to a road as nearly 10,000 cars.Rural roads may carry log trucks, milk trucks, fire department pumper trucks, or construction equipment. If you don’t know what specific loads the road will carry, a good rule of thumb is to design for the largest piece of highway maintenance equipment that will be used on the road.A well-constructed and maintained asphalt road should last 20 years without major repairs orreconstruction. In designing a road, use traffic counts that project numbers and sizes of vehicles 20 years into the future. These are only projections, at best, but they will allow you to plan for traffic loadings through a road’s life.6.Design for maintenanceWithout maintenance a road will rapidly deteriorate and fail. Design your roads so they can be easily maintained. This means:• adequate ditches that can be cleaned regularly• culverts that are marked for easy locating in the spring• enough space for snow after it is plowed off the road• proper cross slopes for safety, maintenance and to avoid snow drifts• roadsi des that are planted or treated to prevent erosion• roadsides that can be mowed safelyA rule of thumb for adequate road width is to make it wide enough for a snowplow to pass another vehicle without leaving the travelled way.Mark culverts with a post so they can be located easily.7.Pave only when readyIt is not necessary to pave all your roads immediately. There is nothing wrong with a well-built and wellmaintained gravel road if traffic loads and volume do not require a paved surface. Three hundred vehicles per day is the recommended minimum to justify paving.Don’t assume that laying down asphalt will fix a gravel road that is failing. Before you pave, make sure you have an adequate crushed stone base that drains well and is properly compacted. The recommended minimum depth of crushed stone base is 10" depending on subgrade soils. A road paved only when it is ready will far outperform one that is constructed too quickly.8.Ê Build from the bottom upThis commandment may seem obvious, but it means that you shouldn’t top dress or resurface a road if the problem is in an underlying layer. Before you do any road improvement, locate the cause of any surface problems. Choose an improvement technique that will address the problem. This may mean recycling or removing all road materials down to the native soil and rebuilding everything. Doing any work that doesn’t solve the problem is a waste of money and effort.9.Ê Protect your investmentThe road system can be your municipality’s biggest investment. Just as a home needs painting or a new roof, a road must be maintained. Wisconsin’s severe climate requires more road maintenance than in milder places. Do these important maintenance activities: Surface —grade, shape, patch, seal cracks, control dust, remove snow and iceDrainage —clean and repair ditches and culverts; remove all excess materialRoadside —cut brush, trim trees and roadside plantings, control erosionTraffic service —clean and repair or replace signsDesign roads with adequate ditches so they can be maintained with a motor grader. Clean and grade ditches to maintain proper pitch and peak efficiency. After grading, remove all excess material from the shoulder.10.Keep good recordsYour maintenance will be more efficient with good records. Knowing the road’s construction, life, and repair history makes it much easier to plan and budget its future repairs. Records can also help you evaluate the effectiveness of the repair methods and materials you used.Good record keeping starts with an inventory of the system. It should include the history and surface condition of the roadway, identify and evaluate culverts and bridges, note ditch conditions, shoulders, signs, and such structures as retaining walls and guardrails.Update your inventory each year or when you repair or change a road section. A formal pavement management system can help use these records and plan and budget road improvements.ResourcesThe Basics of a Good Road#17649, UW-Madison, 15 min. videotape. Presents the Ten Commandments of a Good Road. Videotapes are loaned free through County Extension offices.Asphalt PASER Manual(39 pp), Concrete PASER Manual (48 pp), Gravel PASER Manual (32 pp). These booklets contain extensive photos and descriptions of road surfacesto help you understand types of distress conditions and their causes. A simple procedure for rating the condition helps you manage your pavements and plan repairs.Roadware, a computer program which stores and reports pavement condition information. Developed by the Transportation Information Center and enhanced by the Wisconsin Department of Transportation, it uses the PASER rating system to provide five-year cost budgets and roadway repair/reconstruction priority lists.Wisconsin Transportation Bulletin factsheets, available from the Transportation Information Center (T.I.C.).Road Drainage, No. 4. Describes drainage for roadways, shoulders, ditches, and culverts.Gravel Roads, No. 5. Discusses the characteristics of a gravel road and how to maintain one.Using Salt and Sand for Winter Road Maintenance,No. 6. Basic information and practical tips on how to use de-icing chemicals and sand.Culverts—Proper Use and Installation, No. 15. Selecting and sizing culverts, designing, installing and maintaining them.Geotextiles in Road Construction/Maintenance andErosion Control, No. 16. Definitions and common applications of geotextiles on roadways and for erosion control.T.I.C. workshops are offered at locations around the state.Crossroads,an 8-page quarterly newsletter published by the T.I.C. carries helpful articles, workshop information, and resource lists. For more information on any of these materials, contact the T.I.C. at 800/442-4615.中文译文一个良好的公路的基础长久以来我们已经掌握了如何铺设好一条道路的方法,考古学家发现在4600年古埃及使用建造金字塔的石块铺设道路,后来,罗马人使用同样的方法建立了一个庞大的道路系统,这种方法一直沿用到今天。
土木工程公路工程中英文对照外文翻译文献
(文档含英文原文和中文翻译) 中英文对照外文翻译外文翻译(译文)公路工程20世纪的初期,美国的大多数的街道和马路都是用泥土、砖块和松柏木材建造而成的。
由于只是为马匹、马车和步行建造的,这些马路通常得不到细心维护,而且很窄,根本就容纳不下汽车的通行。
随着汽车制造业的发展,在当地有关部门监管下的私立收费公路开始涌现出来。
截止到1921年,美国有了共计38.7万公里的公路。
他们中的很多都是采用19世纪苏格兰工程师托马斯•特尔福德和约翰•麦克亚当(碎石路面正是因为他们而得名的)所制定的规范,他们的标准强调了充分排水的重要性。
除此之外,根本就没有关于大小尺寸、重量限制以及商业标识的国家标准。
在第一次世界大战期间,全国的马路几乎完全被重型卡车破坏了。
当艾森豪威尔将军——在德国服役于美国陆军第一洲际车队——于1919年从德国归国时,他说道:“旧的车队让我开始考虑完善的双车道的公路,但是德国的高速公路让我看到了更宽阔的跨地域纽带可显示出的智慧。
”又经过了一次战争,联邦政府才开始行动起来来建设全国范围的高速公路体系。
第二次世界大战期间,对货车和新道路数量的需求大幅度上升。
战争证明了道路对于防御系统工作的重要性。
13%生产防御设备的工厂都是靠卡车来获得原材料,而且几乎其他所有的工厂半数以上的产品都由机动车来运送。
战争同样也暴露了这样一个现象,对公路的地方管制已经导致已经导致了众多令人混淆的设计标准。
甚至联邦政府和各州的公路都不遵循基本的标准。
一些州允许卡车载重量高达36000磅,但另一些却限制载重不可以超过7,000磅。
一项政府研究项目建议在全国建设一个总长度为33,920英里的国家公路系统。
不久之后,国会很快通过了《1944年联邦资助公路法案》,这项法案呼吁建立严格的、由中央控制的道路设计标准。
州际公路系统最终于1956年正式动工,它被誉为上个世纪最伟大的公共工程之一。
为了修建长达44000公里的公路、桥梁、隧道网,人们必须制定出数以百计的有针对性的特殊工程设计方案和问题解决方针。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中英文对照外文翻译文献(文档含英文原文和中文翻译)英文原文:The Basics of a Good RoadWe have known how to build good roads for a long time. Archaeologists have found ancient Egyptian roadsthat carried blocks to the pyramids in 4600 BCE. Later,the Romans built an extensive road system, using the same principles we use today. Some of these roads are still in service.If you follow the basic concepts of road building, you will create a road that will last. The ten commandments of a good road are:(1)Get water away from the road(2)Build on a firm foundation(3)Use the best materials(4)Compact all layers properly(5)Design for traffic loads and volumes(6)Design for maintenance(7)Pave only when ready(8)Build from the bottom up(9)Protect your investment(10)Keep good records1.Get water away from the roadWe can’t overemphasize the importance of good drainage.Engineers estimate that at least 90% of a road’s problems can be related to excess water or to poor waterdrainage. Too much water in any layer of a road’sstructure can weaken that layer, leading to failure.In the surface layer, water can cause cracks and potholes. In lower layers it undermines support, causing cracks and potholes. A common sign of water in an asphalt road surface is alligator cracking — an interconnected pattern of cracks forming small irregular shaped pieces that look like alligator skin. Edge cracking, frost heaves, and spring breakup of pavements also point to moisture problems.To prevent these problems remember that water:• flows downhill• needs to flow someplace• is a problem if it is not flowingEffective drainage systems divert, drain and dispose of water. To do this they use interceptor ditches and slopes,road crowns, and ditch and culvert systems.Divert —Interceptor ditches, located between the road and higher ground along the road, keep the water from reaching the roadway. These ditches must slope so they carry water away from the road.Drain —Creating a crown in the road so it is higher along the centerline than at the edges encourages water to flow off the road. Typically a paved crown should be 1⁄4" higher than the shoulder for each foot of width from the centerline to the edge. For gravel surfaces the crown should be 1⁄2" higher per foot of width. For this flow path to work, the road surface must be relatively water tight. Road shoulders also must be sloped away from the road to continue carrying the flow away. Superelevations (banking) at the outside of curves will also help drainthe road surface.Dispose —A ditch and culvert system carries water away from the road structure. Ditches should be at least one foot lower than the bottom of the gravel road layer that drains the roadway. They must be kept clean and must be sloped to move water into natural drainage. If water stays in the ditches it can seep back into the road structure and undermine its strength. Ditches should also be protected from erosion by planting grass, or installing rock and other erosion control measures. Erosion can damage shoulders and ditches, clog culverts, undermine roadbeds, and contaminate nearby streams and lakes. Evaluate your ditch and culvert system twice a year to ensure that it works. In the fall, clean out leaves and branches that can block flow. In spring, check for and remove silts from plowing and any dead plant material left from the fall.2.Build on a firm foundationA road is only as good as its foundation. A highway wears out from the top down but falls apart from the bottom. The road base must carry the entire structure and the traffic that uses it.To make a firm foundation you may need to stabilize the roadbed with chemical stabilizers, large stone called breaker run, or geotextile fabric. When you run into conditions where you suspect that the native soil is unstable, work with an engineer to investigate the situation and design an appropriate solution.3.Use the best materialsWith all road materials you “pay now or pay later.” Inferior materials may require extensive maintenance throughout the road’s life. They may also force you to replace the road prematurely.Crushed aggregate is the best material for the base course. The sharp angles of thecrushed material interlock when they are compacted. This supports the pavement and traffic by transmitting the load from particle to particle. By contrast, rounded particles act like ballbearings, moving under loads.Angular particles are more stable than rounded particles.Asphalt and concrete pavement materials must be of the highest quality, designed for the conditions, obtained from established firms, and tested to ensure it meets specifications. 4.Compact all layersIn general, the more densely a material is compacted, the stronger it is. Compaction alsoshrinks or eliminates open spaces (voids) between particles. This means that less water can enter the structure. Water in soil can weaken the structure or lead to frost heaves. This is especially important for unsurfaced (gravel) roads. Use gravel which has a mix of sizes (well-graded aggregate) so smaller particles can fill the voids between larger ones. Goodcompaction of asphalt pavement lengthens its life.5.Design for traffic loads and volumesDesign for the highest anticipated load the road will carry. A road that has been designed only for cars will not stand up to trucks. One truck with 9 tons on a single rear axle does as much damage to a road as nearly 10,000 cars.Rural roads may carry log trucks, milk trucks, fire department pumper trucks, or construction equipment. If you don’t know what specific loads the road will carry, a good rule of thumb is to design for the largest piece of highway maintenance equipment that will be used on the road.A well-constructed and maintained asphalt road should last 20 years without major repairs or reconstruction. In designing a road, use traffic counts that project numbers and sizes of vehicles 20 years into the future. These are only projections, at best, but they will allow you to plan for traffic loadings through a road’s life.6.Design for maintenanceWithout maintenance a road will rapidly deteriorate and fail. Design your roads so they can be easily maintained. This means:• adequate ditches that can be cleaned regularly• culverts that are marked for easy locating in the spring• enough space for snow after it is plowed off the road• proper cross slopes for safety, maintenance and to avoid snow drifts• roadsi des that are planted or treated to prevent erosion• roadsides that can be mowed safelyA rule of thumb for adequate road width is to make it wide enough for a snowplow to pass another vehicle without leaving the travelled way.Mark culverts with a post so they can be located easily.7.Pave only when readyIt is not necessary to pave all your roads immediately. There is nothing wrong with a well-built and wellmaintained gravel road if traffic loads and volume do not require a paved surface. Three hundred vehicles per day is the recommended minimum to justify paving.Don’t assume that laying down asphalt will fix a gravel road that is failing. Before you pave, make sure you have an adequate crushed stone base that drains well and is properly compacted. The recommended minimum depth of crushed stone base is 10" depending on subgrade soils. A road paved only when it is ready will far outperform one that is constructed too quickly.8.Ê Build from the bottom upThis commandment may seem obvious, but it means that you shouldn’t top dress or resurface a road if the problem is in an underlying layer. Before you do any road improvement, locate the cause of any surface problems. Choose an improvement technique that will address the problem. This may mean recycling or removing all road materials down to the native soil and rebuilding everything. Doing any work that doesn’t solve the problem is a waste of money and effort.9.Ê Protect your investmentThe road system can be your municipality’s biggest investment. Just as a home needs painting or a new roof, a road must be maintained. Wisconsin’s severe climate requires more road maintenance than in milder places. Do these important maintenance activities: Surface —grade, shape, patch, seal cracks, control dust, remove snow and iceDrainage —clean and repair ditches and culverts; remove all excess materialRoadside —cut brush, trim trees and roadside plantings, control erosionTraffic service —clean and repair or replace signsDesign roads with adequate ditches so they can be maintained with a motor grader. Clean and grade ditches to maintain proper pitch and peak efficiency. After grading, remove all excess material from the shoulder.10.Keep good recordsYour maintenance will be more efficient with good records. Knowing the road’s construction, life, and repair history makes it much easier to plan and budget its future repairs. Records can also help you evaluate the effectiveness of the repair methods and materials you used.Good record keeping starts with an inventory of the system. It should include the history andsurface condition of the roadway, identify and evaluate culverts and bridges, note ditch conditions, shoulders, signs, and such structures as retaining walls and guardrails.Update your inventory each year or when you repair or change a road section. A formal pavement management system can help use these records and plan and budget road improvements.ResourcesThe Basics of a Good Road#17649, UW-Madison, 15 min. videotape. Presents the Ten Commandments of a Good Road. Videotapes are loaned free through County Extension offices.Asphalt PASER Manual(39 pp), Concrete PASER Manual (48 pp), Gravel PASER Manual (32 pp). These booklets contain extensive photos and descriptions of road surfacesto help you understand types of distress conditions and their causes. A simple procedure for rating the condition helps you manage your pavements and plan repairs.Roadware, a computer program which stores and reports pavement condition information. Developed by the Transportation Information Center and enhanced by the Wisconsin Department of Transportation, it uses the PASER rating system to provide five-year cost budgets and roadway repair/reconstruction priority lists.Wisconsin Transportation Bulletin factsheets, available from the Transportation Information Center (T.I.C.).Road Drainage, No. 4. Describes drainage for roadways, shoulders, ditches, and culverts.Gravel Roads, No. 5. Discusses the characteristics of a gravel road and how to maintain one.Using Salt and Sand for Winter Road Maintenance,No. 6. Basic information and practical tips on how to use de-icing chemicals and sand.Culverts—Proper Use and Installation, No. 15. Selecting and sizing culverts, designing, installing and maintaining them.Geotextiles in Road Construction/Maintenance andErosion Control, No. 16. Definitions and common applications of geotextiles on roadways and for erosion control.T.I.C. workshops are offered at locations around the state.Crossroads,an 8-page quarterly newsletter published by the T.I.C. carries helpful articles, workshop information, and resource lists. For more information on any of these materials, contact the T.I.C. at 800/442-4615.译文:一个良好的公路的基础长久以来我们已经掌握了如何铺设好一条道路的方法,考古学家发现在4600年古埃及使用建造金字塔的石块铺设道路,后来,罗马人使用同样的方法建立了一个庞大的道路系统,这种方法一直沿用到今天。