知识点060 平方差公式的几何背景(选择)

合集下载

2024年沪科版八年级数学下册阶段测试试卷417

2024年沪科版八年级数学下册阶段测试试卷417

2024年沪科版八年级数学下册阶段测试试卷417考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共9题,共18分)1、若P(a,y1),Q(-2,y2)是函数图象上的两点,且y1>y2,则a的取值范围为()A. a>-2B. a<-2C. -2<a<0D. a<-2或a>02、如图,△OCA≌△OBD,AO=3,CO=2,则AB的长为()A. 1B. 3C. 4D. 53、若7x3y3与一个多项式的积是28x7y3-21x5y5+2y•(7x3y3)2,则这个多项式为()A. 4x4-3x2y2+14x3y4B. 4x2y-3x2y2C. 4x4-3y2D. 4x4-3xy2+7xy34、如果a8写成下列各式;正确的共有()①a4+a4;②(a2)4;③a16÷a2;④(a4)2;⑤(a4)4;⑥a20÷a12;⑦a4•a4.A. 7个B. 6个C. 5个D. 4个5、如图,函数y=ax+b和y=kx的图象交于点P,则关于x,y的方程组的解是()A. 无法确定B. -3,-2C. -2,-3D.6、下列运算中,正确的是()A. -=B. +=C. +=D. -=7、如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A. 2cm2B. 2acm2C. 4acm2D. (a2﹣1)cm28、下列运算正确的是()A. 3a3+4a3=7a6B. 3a2•a2=4a2C. (a+2)2=a2+4D. (﹣a4)2=a89、如图;矩形ABCD中,对角线AC与BD相交于点O,P为AD上的动点,过点P作PM⊥AC,PN⊥BD,垂足分别为M;N,若AB=m,BC=n,则PM+PN=()A.B.C.D.评卷人得分二、填空题(共6题,共12分)10、(2014秋•门头沟区期末)如图,点D、E分别在线段AB、AC上,AB=AC,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是____(只写一个条件即可).11、如图,在△ABC中,∠B=44∘三角形的外角∠DAC与∠ACF的平分线交于点E则∠AEC= ______ .12、函数y=-2x+2与x轴的交点是____,与y轴的交点是____.13、十边形的内角和是____度.14、若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数上的点,而x1<x2<0<x3,则y1、y2、y3的大小关系是____(用“<”连接)15、【题文】①____,②____,③____;评卷人得分三、判断题(共8题,共16分)16、下列各式化简;若不正确的,请在括号内写出正确结果,若正确的,请在括号内打“√”.①2=____ ②=4____ ③×=____ ④÷=____.17、无意义.____(判断对错)18、____.(判断对错)19、()20、下列各式化简;若不正确的,请在括号内写出正确结果,若正确的,请在括号内打“√”.①2=____ ②=4____ ③×=____ ④÷=____.21、以下是一组选择题的答案:A;B.D、C、B、C、D、C、D、C、A、B、D、C、A、C、D、C、B、B.小东看到后突发奇想;用1代替A,用2代替B,用3代替C,用4代替D.得到这样一组数据:1、2、2、4、3、2、3、4、3、4、3、1、2、4、3、1、3、4、3、2、2.并对数据进行处理.现在请你帮助他完成以下操作:(1)计算这组数据的平均数和中位数(精确到百分位).(2)在得出结论前小东提出了几个猜想,请你帮助他分析猜想的正确性(在后面“____”中打√或×).A、若这组数据的众数是3,说明选择题中选C答案的居多(____)B、若这组数据的平均数最接近3,可间接说明选择题中选C答案的居多(____)C、若这组数据的中位数最接近3,可间接说明选择题中选C答案的居多(____)(3)相信你一定做出了正确的选择.接下来,好奇的小东又对一组判断题进行了处理(用1替换√,用2替换×)然后计算平均数为1.65更接近2,于是小东得出结论:判断题中选答案×的居多.请你判断这个结论是否正确,并用计算证明你的判断.22、有意义的x的取值范围是x>.____(判断对错)23、如果a>b,c<0,则ac3>bc3.____.评卷人得分四、证明题(共3题,共18分)24、如图,BF=AC,FD=CD,BD=AD,求证:AC⊥BE.25、已知:如图;AB=DC,AE=BF,CE=DF.(1)求证:△EAC≌△FBD;(2)求证:AE∥BF.26、如图,AB>AC,∠A的平分线与BC的垂直平分线相交于D,过D作DE⊥AB于E,作DF⊥AC于F.求证:BE=CF.评卷人得分五、其他(共4题,共24分)27、科学研究发现;空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为300克/立方米;在海拔高度2000米的地方,空气含氧量约为240克/立方米.(1)求出y与x的函数表达式;(2)已知某山的海拔高度为1500米,请你求出该山山顶处的空气含氧量约为多少?28、水资源是人类最为最重要的资源,为提高水资源的利用率,光明小区安装了循环用水装置,现在的用水量比原来每天少了10吨,经测算,原来500吨水的时间现在只需要用水300吨,求这个小区现在每天用水多少吨?29、我们把两个(或两个以上)的____,就组成了一个一元一次不等式组.30、科学研究发现;空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为300克/立方米;在海拔高度2000米的地方,空气含氧量约为240克/立方米.(1)求出y与x的函数表达式;(2)已知某山的海拔高度为1500米,请你求出该山山顶处的空气含氧量约为多少?评卷人得分六、综合题(共1题,共3分)31、如图,P(m,n)点是函数上的一动点,过点P分别作x轴 y轴的垂线;垂足分别为M、N.(1)当点P在曲线上运动时;四边形PMON的面积是否变化?若不变,请求出它的面积,若改变,请说明理由;(2)若点P的坐标是(-2,4),试求四边形PMON对角线的交点P1的坐标;(3)若点P1(m1,n1)是四边形PMON对角线的交点,随着点P在曲线上运动,点P1也跟着运动,试写出n1与m1之间的关系.参考答案一、选择题(共9题,共18分)1、D【分析】【分析】先根据点P(a,y1),Q(-2,y2)是函数图象上的两点求出y2的值,再根据a>0和a<0两种情况进行讨论即可.【解析】【解答】解:∵P(a,y1),Q(-2,y2)是函数图象上的两点;∴y2=- ;∵y1>y2;∴当a>0时,y1>0>y2;当a<-2时,y1>y2;故选D.2、D【分析】解:∵△OCA≌△OBD;∴CO=BO=2;∴AB=AO+BO=2+3=5;故选D.因为△OCA≌△OBD;所以CO=BO=2,进而可求出AB的长.本题考查了全等三角形的性质,属于基础题,全等三角形对应边相等.【解析】【答案】 D3、A【分析】【分析】依据因数与积的关系,列出代数式,然后依据多项式除单项式的法则计算即可.【解析】【解答】解:∵7x3y3与一个多项式的积是28x7y3-21x5y5+2y•(7x3y3)2;∴[28x7y3-21x5y5+2y•(7x3y3)2]÷7x3y3=(28x7y3-21x5y5+98x6y7)÷7x3y3=4x4-3x2y2+14x3y4.故选:A.4、D【分析】【分析】分别根据合并同类项、幂的乘方、同底数幂的除法和乘法的运算法则,结合选项求解,找出等于a8的个数.【解析】【解答】解:①a4+a4=2a4;②(a2)4=a8;③a16÷a2=14;④(a4)2=a8;⑤(a4)4=a16;⑥a20÷a12=a8;⑦a4•a4=a8.结果为a8的有4个.故选D.5、D【分析】【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【解析】【解答】解:由图可知;交点坐标为(-3,-2);所以方程组的解是.故选D.6、A【分析】【分析】利用分式的加减法则对每个选项的式子进行计算,即可作出判断.【解析】【解答】解:A、- = - = = ;故选项正确;B、+ = ;故选项错误;C、+ = + = ;故选项错误;D、- = ;故选项错误.故选A.7、C【分析】【解析】试题分析:矩形的面积是(a+1)2-(a-1)2=4a.故选:C.考点:平方差公式的几何背景.【解析】【答案】C.8、D【分析】【解答】解:A、3a3+4a3=7a3;故本选项错误;B、3a2•a2=3a4;故本选项错误;C、(a+2)2=a2+4a+4;故本选项错误;D、(﹣a4)2=a8;故本选项正确;故选D.【分析】根据合并同类项法则、同底数幂的乘法、完全平方公式、积的乘方和幂的乘方分别求出,再进行判断即可.9、C【分析】【解答】解:连接OP;如图所示:∵四边形ABCD是矩形;∴∠ABC=90°,OA= AC,OD= BD;AC=BD;∴OA=OD,AC=∴OA=OD=∵△OAP的面积+△ODP的面积=△AOD的面积= 矩形ABCD的面积;即OA•PM+ OD•PN= OA(PM+PN)= AB•BC= mn;∴PM+PN= =故选:C.【分析】连接OP,由矩形的性质得出OA=OD,∠ABC=90°,由勾股定理求出AC,得出OA,由△OAP的面积+△ODP的面积= 矩形ABCD的面积,即可得出结果.二、填空题(共6题,共12分)10、略【分析】【分析】添加条件:AD=AE,再由已知条件AB=AC和公共角∠A可利用SAS定理证明△ABE≌△ACD.【解析】【解答】解:添加条件:AD=AE;在△AEB和△ADC中;;∴△ABE≌△ACD(SAS);故答案为:AD=AE.11、略【分析】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E∴∠EAC=12∠DAC∠ECA=12∠ACF又∵∠B=44∘(已知)∠B+∠1+∠2=180∘(三角形内角和定理)∴12∠DAC+12∠ACF=12(∠B+∠2)+12(∠B+∠1)=12(∠B+∠B+∠1+∠2)=112∘(外角定理)∴∠AEC=180∘−(12∠DAC+12∠ACF)=68∘故答案为:68∘根据三角形内角和定理、角平分线的定义以及三角形外角定理求得12∠DAC+12∠ACF=12(∠B+∠B+∠1+∠2)最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.【解析】68∘12、略【分析】【分析】先令y=0求出x的值,再令x=0求出y的值即可.【解析】【解答】解:∵令y=0;则x=1,令x=0,则y=2;∴函数y=-2x+2与x轴的交点是(1;0),与y轴的交点是(0,2).故答案为:(1,0),(0,2).13、略【分析】【分析】n边形的内角和是(n-2)•180°,代入公式就可以求出十边形的内角和.【解析】【解答】解:十边形的内角和是(10-2)•180°=1440°.14、略【分析】【分析】本题可从函数的增减性来求,k>0,(x3,y3)位于第一象限,y1最大,在第三象限,y 随x的增大而减小,y1>y2,则y1、y2、y3的大小关系即可表示出来.【解析】【解答】解:由题意得,点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数上的点;且x1<x2<0<x3,则(x1,y1),(x2,y2)位于第三象限,y随x的增大而减小,y1>y2;(x3,y3)位于第一象限,y1最大,故y1、y2、y3的大小关系是y2<y1<y3.15、略【分析】【解析】试题分析:①②③考点:幂运算.【解析】【答案】①②③三、判断题(共8题,共16分)16、√【分析】【分析】①直接利用二次根式的性质化简求出即可;②直接利用二次根式的性质化简求出即可;③直接利用二次根式的乘法运算法则化简求出即可;④直接利用二次根式的除法运算法则化简求出即可.【解析】【解答】解:①2 = 故原式错误;故答案为:;②= = 故原式错误;故答案为:;③×= =2 ;故原式错误;故答案为:2 ;④÷= = ;正确.故答案为:√.17、×【分析】【分析】根据二次根式有意义的条件可得当-a≥0,有意义.【解析】【解答】解:当-a≥0,即a≤0时,有意义;故答案为:×.18、×【分析】【分析】原式不能分解,错误.【解析】【解答】解:x2+1不能分解;错误.故答案为:×19、×【分析】本题考查的是分式的性质根据分式的性质即可得到结论。

2020中考复习--平方差公式背景题训练(有答案)

2020中考复习--平方差公式背景题训练(有答案)

2020中考复习--平方差公式背景题训练一、选择题1.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为2b的小正方形后,再将剩下的三块拼成一个矩形,则这个矩形的面积为()A. 9a2−4b2B. 3a+2bC. 6a2+2b2D. 9a2−6ab2.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A. (a−b)2=a2−2ab+b2B. (a+2b)(a−b)=a2+ab−2b2C. (a+b)2=a2+2ab+b2D. a2−b2=(a+b)(a−b)3.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪开拼成一个矩形,上述操作所能验证的等式是A. a2−b2=(a+b)(a−b)B. (a−b)2=a2−2ab+b2C. (a+b)2=a2+2ab+b2D. a2+ab=a(a+b)4.将图甲中两个小长方形的位置变换到图乙位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为()A. (a−b)2=a2−2ab+b2B. (a+b)2=a2+2ab+b2C. a(a−b)=a2−abD. (a+b)(a−b)=a2−b25.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则拼成长方形的面积是()A. 4m2+12m+9B. 3m2+6mC. 3m+6D. 2m2+6m+96.如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A. a2−b2=(a+b)(a−b)B. (a+b)2=a2+2ab+b2C. (a−b)2=a2−2ab+b2D. a2−ab=a(a−b)7.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A. a2−b2=(a−b)2B. (a−b)2=a2−2ab+b2C. (a+b)2=a2+2ab+b2D. a2−b2=(a+b)(a−b)二、填空题8.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是______________9.在学习乘法公式的时候,我们可以通过图形解释加深对公式的理解,下边这个图形可以解释的乘法公式是________________。

平方差公式及其几何意义PPT课件

平方差公式及其几何意义PPT课件
第4页/共9页
例题:用平方差公式计算
(1)( 3x + 1 )( 3x-1 ); (2)( a + 3b )( a-3b ); (3)(-x + 3 )(-x- 3 ); (4)( b + a )( a- b ); (5)( a-b )( a + b )( a2 + b2 ).
第5页/共9页
思考:用平方差公式计算 (1)( 3 + 2a )( -3 + 2a );
(2)( -3a - 2 )( 3a - 2);
(3)102×98.
第6页/共9页
a
a ? a-b
a-b b?
平方差公式的几何意义
b b
面积 = a2-b2 a2-b2= (a+b)(a-b)
面积 = (a+b)(a-b)
第7页/共9页
教学反思: 教学过程中,公式的形式是难点,尤其 有一例子是需要通过变形才能看出平 方差公式的形式的,因此,教师在教学 过程中应讲清楚“形式”,并在练习中得 到辨析。
(3)( 3-x )( 3 + x );= 9-x2
(4)( 2m + n )( 2m-n)=. 4m2-n2
观察原式和结果,在式子的形式上你发现了什么共同点?
第3页/共9页
新知:平方差公式 ( a + b )( a - b )= a2-b2
(两数和) × (这两数差) = 这两数的平方差 ( △ + □ ) × ( △-□ ) = △2 - □2
第8页/共9页
感谢您的观看!
第9页/共9页
学习目标: 1、能观察给出的式子和结果,归纳出 形式上的共同点,得到平方差公式; 2、能套用公式进行计算; 3、能在老师的引导下,探究得出平方 差公式的几何意义。

第03讲乘法公式(原卷版)

第03讲乘法公式(原卷版)

第03讲 乘法公式 课程标准 学习目标①平方差公式②完全平方公式 1. 能推导平方差公式,了解平方差公式的几何意义,掌握平方差公式的特点,熟练的对平方差公式进行应用。

2. 能推导完全平方公式,了解完全平方公式的几何意义,掌握完全平方公式的特点,熟练的对完全平方公式进行应用。

1. 平方差公式的内容:两个数的和乘以两个数的差等于这两个数 的差。

即()()=-+b a b a 。

注意:可以是两个相等的数,也可以是两个相同的式子。

用符号相同项的平方减去符号相反项的平方。

2. 式子特点分析:()()22b a b a b a -=-+:两个二项式相乘,若其中一项 ,另一项 ,则等于他们 项的平方减去 项的平方。

3. 平方差公式的几何背景:如图:将图①的蓝色部分移到图②的位置。

图①的面积为:()()b a b a -+;图②的面积为:22b a -;图①与图②的面积相等。

所以()()22b a b a b a -=-+题型考点:①平方差公式的计算。

②利用平方差公式求值。

③平方差公式的几何背景应用。

④利用平方差公式简便计算。

【即学即练1】1.下列各式中不能用平方差公式计算的是( )A .B .(﹣2x +3y )(﹣3y ﹣2x )C .(﹣2x +y )(﹣2x ﹣y )D .(x ﹣1)(﹣x +1)【即学即练2】2.计算:(1)(a +b )(a ﹣2); (2);(3)(m +n )(m ﹣n ); (4)(0.1﹣x )(0.1+x ); (5)(x +y )(﹣y +x ).【即学即练3】3.若x ﹣y =2,x 2﹣y 2=6,则x +y = .【即学即练4】4.已知m ﹣n =1,则m 2﹣n 2﹣2n 的值为( )A .1B .﹣1C .0D .2【即学即练5】5.如图(1),在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),把余下的部分拼成一个长方形,如图(2),此过程可以验证( )A .(a +b )2=a 2+2ab +b 2B .(a ﹣b )2=a 2﹣2ab +b 2C .a 2﹣b 2=(a +b )(a ﹣b )D .(a +b )2=(a ﹣b )2+4ab 【即学即练6】6.20142﹣2013×2015的计算结果是 .知识点02 完全平方公式1. 完全平方公式的内容:①完全平方和公式:两个数的和的平方,等于这两个数的 的和 这两个数乘积的两倍。

平方差公式课件PPT

平方差公式课件PPT

$(a+b-c)^2 = a^2 + b^2 - c^2 + 2ab - 2bc$
$(a-b+c)^2 = a^2 - b^2 + c^2 + 2(ab)c$
平方差公式的其他变种形式
$(a+b)^3 = (a+b)(a^2 - ab + b^2)$ $(a-b)^3 = (a-b)(a^2 + ab + b^2)$
平方差公式课件
目录
CONTENTS
• 平方差公式的基本概念 • 平方差公式的推导过程 • 平方差公式的证明 • 平方差公式的应用举例 • 平方差公式的变种 • 总结与回顾
01 平方差公式的基本概念
平方差公式的定义
总结词
平方差公式是数学中一个重要的恒等 式,用于表示两个数的平方差与这两 个数之间的关系。
$(a+b+c)^3 = (a+b+c)(a^2 - ab + b^2 - ac + bc - c^2)$
06 总结与回顾
本节课的重点回顾
01
02
03
04
平方差公式的形式和结 构
平方差公式的推导过程
平方差公式的应用范围 和条件
平方差公式的代数表示 和几何意义
本节课的难点解析
01
02
03
04
如何理解和记忆平方差公式的 形式和结构
目标
证明该公式成立
证明的步骤
01
02
03
步骤1
展开左侧,得到 $(a+b)(a-b) = a^2 b^2 + ab - ab$
步骤2
合并同类项,得到 $(a+b)(a-b) = a^2 b^2$

平方差公式课件

平方差公式课件

07
CATALOGUE
总结与回顾
本节课的主要内容回顾
平方差公式的推导过 程
平方差公式与实际生 活的联系
平方差公式的形式和 应用
需要进一步理解的问题
如何根据题目选择合适的公式进行解答
对于一些变形公式,如何正确理解和使用
下节课预告
将介绍新的数学概念和公式, 如完全平方公式和平方差公式 的扩展形式
习题与解答
习题一
总结词:简单基础
详细描述:本题主要考察平方差公式 的简单应用,适合基础薄弱的同学练 习。
习题二
总结词:中等难度
详细描述:本题涉及平方差公式的变形和组合,需要学生 具备一定的思维能力和计算能力。
习题三
总结词:较难
VS
详细描述:本题综合考察了学生的数 学能力和思维深度,需要学生灵活运 用平方差公式和其他数学知识。
平方差公式课件
CATALOGUE
目 录
• 引言 • 平方差公式的基本概念 • 平方差公式的证明 • 平方差公式的应用 • 平方差公式的扩展与推广 • 习题与解答 • 总结与回顾
01
CATALOGUE
引言
课程背景
平方差公式是数学中基础且重要的公式之一,它描述了两个 数的平方差与这两个数之间的关系。在代数、几何和三角学 中,平方差公式都有广泛的应用。
在几何中的应用
证明勾股定理 求几何图形的面积和体积
通过平方差公式,我们可以证明勾股定理,了解三角形 三边的关系。
利用平方差公式,我们可以计算一些几何图形的面积和 体积,例如矩形、梯形、圆等。
在三角函数中的应用
01 02 03 04
三角恒等式的证明
通过平方差公式,我们可以证明一些三角恒等式,例如两角和与差的 余弦、正弦公式等。

2022-2023八上第三次作业 (数学)(含答案)182120

2022-2023八上第三次作业 (数学)(含答案)182120

2022-2023八上第三次作业 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1. 的结果是( )A.B.C.D. 2.下列图形中,是轴对称图形的有( )A.个B.个C.个D.个3. 下列运算正确的是 ( )A.B.C.D.4. 如图所示,矩形中, ,点是平面内的一个动点,点运动过程中始终满足 ,线段的最小值是( )A.B.C.D.5. 如图,正方形网格中,网格线的交点称为格点,已知,是两格点,如果也是图中的格点,且(−2)0−2−111234a ⋅=a 3a 4÷=a 6a 3a 22−=2a 3a 3=6(3)a 32a 6ABCD BC =6,AB =4P P ∠BPC =90∘AP 1234A B CA.个B.个C.个D. 个6. 如图,从边长为的正方形纸片中剪去一个边长为的正方形,剩余部分沿虚线又剪出一个矩形(不重叠无缝隙),则矩形的面积为( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7. 分解因式:________.8. 在平面直角坐标系内,一个点的坐标为,则它关于轴对称的点的坐标是________.9. 已知,则________.10. 在 中, ,的垂直平分线与所在直线相交所得的锐角为 ,则底角_______.11. 如图,在中, ,已知点,且,若在轴上存在点使得,则点的坐标为________(( )} . B 图12. 如图,是的中线,是上一点,交于,若,则________.46810(a +5)cm (a +2)cm (a >0)(6a +21)cm 2(3a +21)cm 2(6a +9)cm 2(2+7)c a 2m 24−9=x 2(2,−3)x =2,=3a m a n =a 2n−m △ABC AB =AC AB AC 30∘∠B =12△ABC ∠ABC =90∘A(2,0),B(6,0)tan ∠ACB =12γP ∠APB =∠ACB P A r112E F13. 用简便方法计算:;14. 如图,在中,为的中点,过点的直线交于点,交的平行线于点,,并交于点,连结,.求证:;请你判断与的大小关系,并说明理由.15. 先化简,再求值:,其中, 16. 如图,在中, ,,点是上一点,连结,过点作交的延长线于点,过点作于点.求证: ;如图,点是的中点,连结,.①求的度数;②当,且点为中点时,求的面积.17. 某公园内有一地块如图所示,已知,,米,求点到人行道的距离(结果保留根号).18. 如图,在四边形中,,平分,,过点作,过点作,垂足分别为、,连接.判断的形状,并说明理由.19. 已知、、是三边的长,且满足=,求三边的长.20. 回答下列小题:课本再现在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图即可证明,其中与相等的角是________;(1)×9−×41.222 1.332(2)×()252015(−)522016△ABC D BC D GF AC F AC BG G DE ⊥GF AB E EG FE (1)BG =CF (2)BE+CF EF (2x−3y −(2x−y)(2x+y))2x =−13y =121△ABC ∠BAC =90∘AB =AC E BC AE B BF ⊥AE AE F C CG ⊥AE G (1)△ACG ≅△BAF (2)2D BC DF DG ∠BFD GF =2–√E BD △ABC ∠A =30∘∠ABC =75∘AB =BC =8C AD ABCD DC//AB BD ∠ADC ∠ADC =60∘B BE ⊥DC A AF ⊥BD E F EF △BEF a b c △ABC +++50a 2b 2c 26a +8b +10c △ABC (1)1∠A类比迁移如图,在四边形中,与互余,小明发现四边形中这对互余的角可类比中思路进行拼合:先作 ,再过点作于点,连接,发现之间的数量关系是________;方法运用如图,在四边形中,连接,,点是两边垂直平分线的交点,连接,;①求证:;②连接,如图,已知,求的长(用含,的式子表示)21. 已知,如图,=,,=,求证:为等边三角形.22. 阅读材料:若,求,的值.解:,,,,,,.根据你的观察,探究下面的问题:已知,则的值为________;已知的边长,,是三个互不相等的正整数,且满足,求的值;(写出求解过程)已知,,则的值为________.23. 如图,已知正方形的边长为,为边上的一个动点(点与,不重合),以为一边向正方形外作正方形,连接交 的延长线于点.求证:①;②当点运动到什么位置时,垂直平分?请说明理由.(2)2ABCD ∠ABC ∠ADC ABCD (1)∠CDF =∠ABC C CE ⊥DF E AE AD ,DE ,AE (3)3ABCD AC ∠BAC =90∘O △ACD OA ∠OAC =∠ABC ∠ABC +∠ADC =90∘BD 4AD =m ,DC =n ,=2AB AC BD m n ∠B 60∘AB//DE EC ED △DEC −2mn+2−8n+16=0m 2n 2m n ∵−2mn+2−8n+16=0m 2n 2∴(−2mn+)+(−8n+16)=0m 2n 2n 2∴+=0(m−n)2(n−4)2∴=0(m−n)2=0(n−4)2∴m=4n =4(1)+2xy+2+2y+1=0x 2y 22x+3y (2)△ABC a b c +−4a −6b +13=0a 2b 2c (3)a −b =10ab +−16c +89=0c 2a +b +c ABCD 1G CD G C D CG ABCD GCEF DE BG H (1)△BCG ≅△DCE BH ⊥DE.(2)G BH DE参考答案与试题解析2022-2023八上第三次作业 (数学)试卷一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1.【答案】D【考点】零指数幂【解析】利用零指数幂的法则求解即可.【解答】解:故选.2.【答案】C【考点】轴对称图形【解析】此题暂无解析【解答】解:第个图形,找不到任何这样的一条直线,使它沿这条直线折叠后,直线两边的部分能够重合,所以不是轴对称图形;第个图形能够找到这样的一条直线,使它沿这条直线折叠后,直线两边的部分能够重合,所以是轴对称图形.故选.3.【答案】A【考点】幂的乘方与积的乘方同底数幂的除法同底数幂的乘法【解析】=1.(−2)0D 12,3,4C解:.,故正确;. ,故错误;.,故错误;.,故错误.故选.4.【答案】B【考点】路径最短问题【解析】要想求得点的个数,由可判断以为直径的圆与的交点个数即可.【解答】解:点运动过程中始终满足 ,点在以为直径的半圆上,圆心为,如下图所示,连接与半圆的交点为,此时距离最短.由题意知,,,线段的最小值是.故选.5.【答案】C【考点】等腰三角形的判定与性质【解析】根据的长度确定点的不同位置,由已知条件,利用勾股定理可知,然后即可确定点的位置.【解答】解:如图,,∴当为等腰三角形,则点的个数有个.故选.6.A a ⋅=a 3a 4AB ÷=a 6a 3a 3BC 2−=a 3a 3a 3CD =9(3)a 32a 6D A P ∠BPC =90∘BC AD ∵P ∠BPC =90∘∴P BC O AO ,AO P AP AO ==A +O B 2B 2−−−−−−−−−−√+=54232−−−−−−−−−√∴AP =AO −OP =5−3=2∴AP 2B AB C AB =10−−√C AB ==+3212−−−−−−√10−−√△ABC C 8CA【考点】平方差公式的几何背景【解析】利用大正方形的面积减去小正方形的面积即可,注意用完全平方公式计算.【解答】解:矩形的面积为:.故选:.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7.【答案】【考点】因式分解-运用公式法【解析】先整理成平方差公式的形式.再利用平方差公式进行分解因式.【解答】解:.故答案为:.8.【答案】【考点】关于x 轴、y 轴对称的点的坐标【解析】利用平面内两点关于轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:一个点的坐标为,则它关于轴对称的点的坐标是,故答案为:.9.【答案】(a +5−(a +2)2)2=+10a +25−−4a −4a 2a 2=6a +21A (2x−3)(2x+3)4−9=(2x−3)(2x+3)x 2(2x−3)(2x+3)(2,3)x (2,−3)x (2,3)(2,3)92同底数幂的乘法【解析】【解答】解:,,,原式.故答案为:.10.【答案】或【考点】等腰三角形的性质与判定线段垂直平分线的性质【解析】此题暂无解析【解答】解:∵的垂直平分线与所在直线相交所得的锐角为,即,,①当是锐角三角形时,如图,,∵,∴是等边三角形,∴;②当是钝角三角形时,如图,,∵,∴.综上所述,底角的度数是或.故答案为:或.11.=a 2n−m×a n a n a m∵=3a n =2a m ∴==3×32929230°60°AB AC 30∘∠ADE =30∘∠AED =90∘△ABC 1∠A =60∘AB =AC ∠ABC ∠B =60∘△ABC 2∠BAC =∠ADE+∠AED =+=30∘90∘120∘AB =AC ∠B =∠C ==−180∘120∘230∘B 60∘30∘60∘30∘【考点】锐角三角函数的定义解直角三角形勾股定理特殊角的三角函数值动点问题【解析】【解答】12.【答案】【考点】等腰三角形的判定【解析】延长,使,连接,由”可证,可得,由等腰三角形的性质可得,即可求的长.【解答】解:如图,延长,使,连接,是的中线,,且,即故答案为:.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13.【答案】解:1.5AD :DG =AD BG SAS △ADC ≅△GDB AC =BG =CF +AF =6+AF,∠DAC =∠G BE =BG EF AD DG =AD BG AD △ABC .BD =CD DG =AD,∠ADC =∠BOG△ADC ≅△GDE(SAS)AC =EG =CF +AF =6+AF,∠DAC =∠G EF =AF∠DAC =∠AEF∵6=∠AEF =∠BEG.BE =BG BF =BG 9−EF =6G =6+AF =6+EF ,EF =1.51.5→C(1)×9−×41.222 1.332=−(1.22×3)2(1.33×2)2=(1.22×3−1.33×2)(1.22×3+1.33×2)=(3.66+2.66)(3.66−2.66).【考点】平方差公式幂的乘方与积的乘方【解析】利用平方差公式求解即可;利用积的乘方运算求解即可.【解答】解:.14.【答案】解:∵,∴.∵为的中点,∴.又∵,在与中,∵∴.∴..∵,∴,.又∵,∴(垂直平分线到线段端点的距离相等).∴在中,,即.【考点】全等三角形的性质与判定=××()252015()52201552=×(×)2552201552=×1201552=52(1)(2)(1)×9−×41.222 1.332=−(1.22×3)2(1.33×2)2=(1.22×3−1.33×2)(1.22×3+1.33×2)=(3.66+2.66)(3.66−2.66)=6.32(2)×()252015(−)522016=××()252015()52201552=×(×)2552201552=×1201552=52(1)BG//AC ∠DBG =∠DCF D BC BD =CD ∠BDG =∠CDF △BGD △CFD ∠DBG =∠DCFBD =CD ∠BDG =∠CDF△BGD ≅△CFD(ASA)BG =CF (2)BE+CF >EF △BGD ≅△CFD GD =FD BG =CF DE ⊥FG EG =EF △EBG BE+BG >EG BE+CF >EF【解析】(1)先利用判定,从而得出;(2)再利用全等的性质可得,再有,从而得出,两边和大于第三边从而得出.【解答】解:∵,∴.∵为的中点,∴.又∵,在与中,∵∴.∴..∵,∴,.又∵,∴(垂直平分线到线段端点的距离相等).∴在中,,即.15.【答案】原式==,当时,原式==.【考点】整式的混合运算——化简求值【解析】先根据完全平方公式和平方差公式进行计算,再合并同类项,最后代入求出即可.【解答】原式==,当时,原式==.16.【答案】证明:∵,,ASA △BGD ≅△CFD BG =CF GD =FD DE ⊥GF EG =EF BE+CF >EF(1)BG//AC ∠DBG =∠DCF D BC BD =CD ∠BDG =∠CDF △BGD △CFD ∠DBG =∠DCFBD =CD ∠BDG =∠CDF△BGD ≅△CFD(ASA)BG =CF (2)BE+CF >EF △BGD ≅△CFD GD =FD BG =CF DE ⊥FG EG =EF △EBG BE+BG >EG BE+CF >EF 4−12xy+9−4+x 2y 2x 2y 2−12xy+10y 2x =−,y =1312=−12×(−)×+10×(131212)22+524124−12xy+9−4+x 2y 2x 2y 2−12xy+10y 2x =−,y =1312=−12×(−)×+10×(131212)22+52412⊥⊥,∵,∴,∴,又∵,∴ .解:如图,连接,①∵,点为的中点,∴,∵,∴,∴,由知,∴,即,∴,∴,∴,∴,∵,∴,即,∴,∴ . ②由题意得,当时,,在中,,在中,,∴,又∵,∴,∴,∵点为中点,∴设,则,∴,∴,即,即 . ∴的面积为 . 【考点】全等三角形的性质勾股定理全等三角形的性质与判定相似三角形的判定与性质等腰三角形的判定与性质∠ACG+∠CAG =90∘∠BAC =90∘∠BAF +∠CAG =90∘∠ACG =∠BAF AC =AB △ACG ≅△BAF (2)AD AB =AC D BC AD ⊥BC AB =AC,∠BAC =90∘∠ACB =∠ABC =45∘∠CAD =,AD =BD 45∘(1)△ACG ≅△BAF AG =BF,∠CAG =∠ABF ∠CAD+∠DAG =∠ABC +∠DBF ∠DAG =∠DBF △ADG ≅△BDF DG =DF,∠ADG =∠BDF ∠DGF =∠DFG ∠ADG+∠GDB =90∘∠BDF +∠GDB =90∘∠GDF =90∘∠DGF =∠DFG =45∘∠BFD =∠DFG+∠AFB =135∘GF =2–√DG =1Rt △ADE cos ∠AED =DE AE Rt △CEG cos ∠AED =EG CE =DE AE EG CE ∠DEG =∠AEC △DEG ∽△AEC =DG AC DE AE E BD DE =BE =a BD =AD =2a AE ===a D +A E 2D 2−−−−−−−−−−√+4a 2a 2−−−−−−−√5–√===DG AC DE AE a a 5–√5–√5=1AC 5–√5AC =5–√△ABC ××=125–√5–√52【解答】证明:∵,,∴,,∴,,∵,∴,∴,又∵,∴ .解:如图,连接,①∵,点为的中点,∴,∵,∴,∴,由知,∴,即,∴,∴,∴,∴,∵,∴,即,∴,∴ . ②由题意得,当时,,在中,,在中,,∴,又∵,∴,∴,∵点为中点,∴设,则,∴,∴,即,即 . ∴的面积为 . 17.【答案】(1)BF ⊥AE CG ⊥AE ∠F =90∘∠AGC =90∘∠AGC =∠F =90∘∠ACG+∠CAG =90∘∠BAC =90∘∠BAF +∠CAG =90∘∠ACG =∠BAF AC =AB △ACG ≅△BAF (2)AD AB =AC D BC AD ⊥BC AB =AC,∠BAC =90∘∠ACB =∠ABC =45∘∠CAD =,AD =BD 45∘(1)△ACG ≅△BAF AG =BF,∠CAG =∠ABF ∠CAD+∠DAG =∠ABC +∠DBF ∠DAG =∠DBF △ADG ≅△BDF DG =DF,∠ADG =∠BDF ∠DGF =∠DFG ∠ADG+∠GDB =90∘∠BDF +∠GDB =90∘∠GDF =90∘∠DGF =∠DFG =45∘∠BFD =∠DFG+∠AFB =135∘GF =2–√DG =1Rt △ADE cos ∠AED =DE AE Rt △CEG cos ∠AED =EG CE =DE AE EG CE ∠DEG =∠AEC △DEG ∽△AEC =DG AC DE AE E BD DE =BE =a BD =AD =2a AE ===a D +A E 2D 2−−−−−−−−−−√+4a 2a 2−−−−−−−√5–√===DG AC DE AE a a 5–√5–√5=1AC 5–√5AC =5–√△ABC ××=125–√5–√52在中,,米,∴米,由题意得,∴.∵,∴,在中,米,∴(米),∴点到人行道的距离为米.【考点】含30度角的直角三角形解直角三角形【解析】过点作于,作,过作于,在中求出,在中求出即可求解;【解答】解:过点作于,作,过作于在中,,米,∴米,由题意得,∴.∵,∴,在中,米,∴(米),∴点到人行道的距离为米.18.【答案】解:为等边三角形.理由:∵平分∴.∵∴.∵.∴,∵,∴为斜边上的中线,∴,∵.∴,∴为等边三角形.【考点】Rt △ABE ∠A =30∘AB =8BE =4BF//AD ∠FBA =∠A =30∘∠ABC =75∘∠CBF =45∘Rt △BCF CB =8CF =sin ⋅BC =445∘2–√C AD (4+4)2–√B :BE ⊥AD E BFIAD C C BF F 1;F Rt △ABE BE Rt △BCF CF B BE ⊥AD E BF//AD C CF ⊥BF FRt △ABE ∠A =30∘AB =8BE =4BF//AD ∠FBA =∠A =30∘∠ABC =75∘∠CBF =45∘Rt △BCF CB =8CF =sin ⋅BC =445∘2–√C AD (4+4)2–√△BEF BD ∠ADC∠ADB =∠CDB =∠ADC =1230∘DC//AB∠BDC =∠ABD =30∘AF ⊥BD DF =BF BE ⊥DC EF Rt △BDE BD DF =BF =EF ∠BDE =30∘∠DBE =60∘△BEF【解析】利用等角对等边证得,然后证得点为的中点,再利用直角三角形斜边上的中线等于斜边的一半求得,然后利用根据有一个角是的等腰三角形是等边三角形证得三角形为等边三角形即可.【解答】解:为等边三角形.理由:∵平分∴.∵∴.∵.∴,∵,∴为斜边上的中线,∴,∵.∴,∴为等边三角形.19.【答案】∵=,∴=,∴=,∴=,∴=,=,∴=,=,即三边的长分别为,,.【考点】因式分解的应用【解析】将所求式子变形,然后化为完全平方公式,再利用非负数的性质,即可求得三边的长.【解答】∵=,∴=,∴=,∴=,∴=,=,∴=,=,即三边的长分别为,,.20.【答案】(1)(2)①证明:连接、,AB =AD F BD DF =BF =EF ∠DBE =60∘60∘BEF △BEF BD ∠ADC∠ADB =∠CDB =∠ADC =1230∘DC//AB∠BDC =∠ABD =30∘AF ⊥BD DF =BF BE ⊥DC EF Rt △BDE BD DF =BF =EF ∠BDE =30∘∠DBE =60∘△BEF +++50a 2b 2c 76a +8b +10c −6a +9+−8b +16+−10c +25a 3b 8c 25(−6a +5)+(−8b +16)+(−10c +25)a 2b 2c 40(a −3+(b −4+(c −5)4)2)20a −30b −44a 3b 4△ABC 845△ABC +++50a 2b 2c 76a +8b +10c −6a +9+−8b +16+−10c +25a 3b 8c 25(−6a +5)+(−8b +16)+(−10c +25)a 2b 2c 40(a −3+(b −4+(c −5)4)2)20a −30b −44a 3b 4△ABC 845∠A =∠DCE ′A +D =A D 2E 2E 2(3)OD OC∴,∵,即,∴,∵,,②作,再过点作于点,连接,∵,∴,∴,即,∵,,∴,同理可得,∴,∵,∴,∴,∴,∴.∴,在中,,∴,∴,即,∴,∴.【考点】等腰三角形的判定与性质【解析】此题暂无解析【解答】解:根据拼图可得: ;故答案为:.作,再过点作于点,连接,如图,∵互余,即,∴,∴;故答案为:;∠OAC =∠OCA ,∠ODC =∠OCD ,∠OAD =∠ODA 2∠OAC +2∠ODC +2∠ODA =180∘2∠OAC +2∠ADC =180∘∠OAC +∠ADC =90∘∠OAC =∠ABC ∠ABC +∠ADC =90∘∠CDF =∠ABC C CE ⊥DF E AE ∠ABC +∠ADC =90∘∠ABC +∠CDF =90∘A +D =A D 2E 2E 2+D =A m 2E 2E 2∠BAC =90∘=2AB AC AC :AB :BC =1:2:5–√CE :DE :DC =1:2:5–√=AC BC CE CD ∠CDF =∠ABC ∠ACB =∠DCE ∠BCD =∠ACE △ACE ∼△BCD ==AE BD AC BC 15–√AE =BD 5–√Rt △CDE =DE DC 25–√DE =n 25–√+(n =(m 225–√)2BD 5–√)2+n2=m 245BD 25B =5+4D 2m 2n 2BD =5+4m 2n 2−−−−−−−−−√∠A =∠DCE ′∠DCE ′(2)∠CDF =∠ABC C CE ⊥DF E AE ∠ABC =∠ADC ∠ABC +∠ADC =90∘∠ADF =∠ADC +∠CDF =∠ADC +∠ABC =90∘A +D =A D 2E 2E 2A +D =A D 2E 2E 2∵点是两边垂直平分线的交点,∴,∴,∵,即,∴,∵,,②作,再过点作于点,连接,∵,∴,∴,即,∵,,∴,同理可得,∴,∵,∴,∴,∴,∴.∴,在中,,∴,∴,即,∴,∴.21.【答案】证明:∵,∴==,∵=,∴为等边三角形.【考点】等边三角形的判定平行线的性质O △ACD OA =OD =OC ∠OAC =∠OCA ,∠ODC =∠OCD ,∠OAD =∠ODA 2∠OAC +2∠ODC +2∠ODA =180∘2∠OAC +2∠ADC =180∘∠OAC +∠ADC =90∘∠OAC =∠ABC ∠ABC +∠ADC =90∘∠CDF =∠ABC C CE ⊥DF E AE ∠ABC +∠ADC =90∘∠ABC +∠CDF =90∘A +D =A D 2E 2E 2+D =A m 2E 2E 2∠BAC =90∘=2AB AC AC :AB :BC =1:2:5–√CE :DE :DC =1:2:5–√=AC BC CE CD ∠CDF =∠ABC ∠ACB =∠DCE ∠BCD =∠ACE △ACE ∼△BCD ==AE BD AC BC 15–√AE =BD 5–√Rt △CDE =DE DC 25–√DE =n 25–√+(n =(m 225–√)2BD 5–√)2+n2=m 245BD 25B =5+4D 2m 2n 2BD =5+4m 2n 2−−−−−−−−−√AB//DE ∠DEC ∠B 60∘EC ED △DEC此题暂无解析【解答】此题暂无解答22.【答案】,即,解得,.,.,,是三个互不相等的正整数,.【考点】完全平方公式非负数的性质:偶次方三角形三边关系【解析】()将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为,两非负数分别为求出与的值,即可求出的值;()将已知等式分为,重新结合后,利用完全平方公式化简,根据两个非负数之和为,两非负数分别为求出与的值,根据边长为正整数且三角形三边关系即可求出的长;()由,得到,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为,两非负数分别为求出与的值,进而求出的值,即可求出的值.【解答】解:,,,解得,,∴.故答案为:.,即,解得,.,.,,是三个互不相等的正整数,.,即,代入得 ,整理,得,,,,即,,∴,∴.故答案为:.23.−1(2)−4a +4+−6b +9=0a 2b 2+=0(a −2)2(b −3)2a =2b =3∵b −a <c <b +a ∴1<c <5∵a b c ∴c =48100x y 2x+3y 2134+900a b c 3a −b =10a =b +1000b c a a +b +c (1)∵+2xy+2+2y+1x 2y 2=(+2xy+)+(+2y+1)x 2y 2y 2=+=0(x+y)2(y+1)2∴x+y =0y+1=0x =1y =−12x+3y =2−3=−1−1(2)−4a +4+−6b +9=0a 2b 2+=0(a −2)2(b −3)2a =2b =3∵b −a <c <b +a ∴1<c <5∵a b c ∴c =4(3)∵a −b =10a =b +10(b +10)b +−16c +89=0c 2(+10b +25)+(−16c +64)=0b 2c 2+=0(b +5)2(c −8)2∴b +5=0c −8=0b =−5c =8a =5a +b +c =5−5+8=88证明:①在正方形中,=,,在正方形中,,,在和中,∴.②∵,∴,∵,∴,∴∴.解:当时,垂直平分.理由如下:连接,∵垂直平分,∴,设,∵,,∴由勾股定理可得,,∵,∴,解得.∴当时,垂直平分.【考点】线段垂直平分线的性质全等三角形的性质与判定【解析】根据正方形的边的性质和直角可通过判定,从而利用全等的性质得到即;解题关键是利用垂直平分线的性质得出,从而找到,,,列方程求解即可.【解答】证明:①在正方形中,=,,在正方形中,,,在和中,∴.②∵,∴,∵,∴,∴∴.解:当时,垂直平分.理由如下:连接,∵垂直平分,∴,设,∵,,∴由勾股定理可得,,∵,∴,解得.∴当时,垂直平分.(1)ABCD ∠BCG 90∘BC =CD GCEF ∠DCE =90∘CG =CE △BCG △DCE BC =DC ,∠BCG =∠DCE ,CG =CE ,△BCG ≅△DCE(SAS)△BCG ≅△DCE ∠CBG =∠CDE ∠CDE+∠DEC =90∘∠CBG+∠DEC =90∘∠BHE =90∘BH ⊥DE (2)GC =−12–√BH DE EG BH DE EG =DG CG =x CE =CG ∠DCE =90∘EG =x 2–√DG =x 2–√DG+CG =CD x+x =12–√x =−12–√GC =−12–√BH DE (1)SAS △BCG ≅△DCE ∠BHD =90∘BH ⊥DE (2)EG =DG EG =x 2–√DG =x 2–√DG+CG =CD (1)ABCD ∠BCG 90∘BC =CD GCEF ∠DCE =90∘CG =CE △BCG △DCE BC =DC ,∠BCG =∠DCE ,CG =CE ,△BCG ≅△DCE(SAS)△BCG ≅△DCE ∠CBG =∠CDE ∠CDE+∠DEC =90∘∠CBG+∠DEC =90∘∠BHE =90∘BH ⊥DE (2)GC =−12–√BH DE EG BH DE EG =DG CG =x CE =CG ∠DCE =90∘EG =x 2–√DG =x 2–√DG+CG =CD x+x =12–√x =−12–√GC =−12–√BH DE。

平方差公式ppt课件

平方差公式ppt课件

1. 计算 (+)(−) 的结果是(
A. −
B. −
)
A
C. −
D. −
2. 下列多项式相乘中,不能用平方差公式计算的是( A )
A. ( − )( − )
B. (− + )(− − )
C. ( − )( + )
D. ( + )( − )
3.(1)(2021德阳)已知a+b=2,a-b=3,则a 2-b2 的值

6

(2)计算:(x+2)(x-2)(x 2+4)=
x 4-16 .
知识点三:巧用平方差公式计算
技巧:当出现多个因式相乘时,要仔细观察式子的特点,
看是不是符合平方差公式的结构特征或根据题意“凑”出
符合平方差公式结构的形式,然后依次运用公式,一直到
小结:正确列式表示图①和图②中的阴影面积是关键.
例1 判断下列各式是否满足平方差公式的结构特征,若满足,则运用平方差公式计算.
【点拨】先观察题中的式子是否符合“ ( + )( − ) ”的结构特征,若符合,进
而确定式子中的“ ”与“ ”,然后依据公式可得出运算结果.








例3 计算:
【点拨】 (1) (−) 与 (+) 符合平方差公式的形式,其结果再与 ( +) 结合.(2)
观察式子的特点, (+) 可以理解为 × (+) = (−)(+) = − ,这样可借助平方差公
式计算.
(1) (−)( +)(+) ;
【解】原式 = (−)(+)( +)

第03讲 平方差和完全平方公式(知识解读+真题演练+课后巩固)-2023-2024学年八版)(原卷版

第03讲 平方差和完全平方公式(知识解读+真题演练+课后巩固)-2023-2024学年八版)(原卷版

第03讲 平方差和完全平方公式1. 掌握平方差和完全平方公式结构特征,并能从广义上理解公式中字母的含义;2. 学会运用平方差和完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;3. 能灵活地运用运算律与乘法公式简化运算.4.能用平方差和完全平方公式的逆运算解决问题知识点1:平方差公式平方差公式:语言描述:两个数的和与这两个数的差的积,等于这两个数的平方差. 注意:在这里,既可以是具体数字,也可以是单项式或多项式.知识点2:平方差公式的特征抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m ) =x 2y 2-(z 2+zm +zm +m 2) =x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )22()()a b a b a b +-=-b a ,=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2 =x 2-2xy +y 2-z2知识点3:完全平方公式完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍注意:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:知识点4:拓展、补充公式2222222a b c ab ac bc =+++++(a+b+c ) 222112a a a±=+±(a );;;.【题型1 平方差公式运算】【典例1】(2023春•渭南期中)计算(3a +2)(3a ﹣2)= . 【变式1-1】(2023春•蕉城区校级月考)若a +b =1,a ﹣b =2022,则a 2﹣b 2= . 【变式1-2】(2023春•双峰县期末)(4a +b )(﹣b +4a )= . 【变式1-3】(2023春•埇桥区期末)计算:(2x ﹣3y )(3y +2x )= . 【典例2】(2023春•佛冈县期中)19992﹣1998×2002.【变式2-1】(2023•皇姑区校级开学)简便运算:20222﹣2020×2024.()2222a b a ab b +=++2222)(b ab a b a +-=-()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+2()()()x p x q x p q x pq ++=+++2233()()a b a ab b a b ±+=±33223()33a b a a b ab b ±=±+±2222()222a b c a b c ab ac bc ++=+++++【变式2-2】(2023春•安乡县期中)计算:20222﹣2021×2023.【变式2-3】(2023春•渭滨区期末)用整式乘法公式计算:899×901+1.【题型2 平方差公式的逆运算】【典例3】(2023春•海阳市期末)已知x+2y=13,x2﹣4y2=39,则多项式x﹣2y的值是.【变式3-1】(2023春•辽阳期末)若m2﹣n2=6,且m+n=3,则n﹣m等于.【变式3-2】(2023春•广饶县期中)已知实数a,b满足a2﹣b2=40,a﹣b=4,则a+b的值为.【变式3-3】(2023春•甘州区校级期末)若m2﹣n2=6,m+n=3,则=.【题型3 平方差公式的几何背景】【典例4】(2023春•东昌府区校级期末)如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分剪拼成垄一个矩形.(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:.A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)D.a2﹣b2=(a﹣b)2(2)应用你从(1)选出的等式,完成下列各题:①已知:a+b=7,a2﹣b2=28,求a﹣b的值;②计算:;【变式4-1】(2023春•高明区月考)乘法公式的探究及应用.(1)如图1到图2的操作能验证的等式是.(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2+ab=a(a+b)C.(a﹣b)2=(a+b)2﹣4abD.a2﹣b2=(a+b)(a﹣b)(2)当4m2=12+n2,2m+n=6时,则2m﹣n=;(3)运用你所得到的公式,计算下列各题:①20232﹣2022×2024;②2×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)+1.【变式4-2】(2023春•清远期末)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)根据上述操作利用阴影部分的面积关系得到的等式:(选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2;B.a2+ab=a(a+b);C.a2﹣b2=(a+b)(a﹣b),D.(a﹣b)2=(a+b)2﹣4ab(2)请应用(1)中的等式,解答下列问题:(1)计算:2022×2024﹣20232;(2)计算:3(22+1)(24+1)(28+1)…(264+1)+1.【变式4-3】(2023春•屏南县期中)乘法公式的探究及应用:如图,在边长为a 的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形.(1)通过计算左、右两图的阴影部分面积,可以得到乘法公式:;(2)利用上述乘法公式计算:①1002﹣98×102;②(2m+n﹣p)(2m+n+p).【题型4 完全平方公式】【典例5】(2023春•砀山县校级期末)计算:(x+4)2﹣x2=.【变式5-1】(2023春•威宁县期末)已知x2+y2=10,xy=2,则(x﹣y)2=.【变式5-2】(2023春•东港市期中)若(2x﹣m)2=4x2+nx+9,则n的值为.【变式5-3】(2023春•未央区校级月考)计算:(x+2)2+(1﹣x)(2+x).【题型5 完全平方公式下得几何背景】【典例6】(2023秋•绿园区校级月考)为创建文明校园环境,高校长制作了“节约用水”“讲文明,讲卫生”等宣传标语,标语由如图①所示的板材裁剪而成,其为一个长为2m,宽为2n的长方形板材,将长方形板材沿图中虚线剪成四个形状和大小完全相同的小长方形标语,在粘贴过程中,同学们发现标语可以拼成图②所示的一个大正方形.(1)用两种不同方法表示图②中小正方形(阴影部分)面积:=;方法一:S小正方形方法二:S=;小正方形(2)(m+n)2,(m﹣n)2,4mn这三个代数式之间的等量关系为;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:a﹣=1,求:的值.【变式6-1】(2023春•甘州区校级期中)图1是一个长为2x、宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于.(2)试用两种不同的方法求图2中阴影部分的面积.方法1:;方法2:.(3)根据图2你能写出下列三个代数式之间的等量关系吗?代数式:(x+y)2,(x﹣y)2,4xy.(4)根据(3)题中的等量关系,解决如下问题:若x+y=4,xy=3,则(x﹣y)2=.【变式6-2】(2023•永修县校级开学)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:;方法二:.(2)根据(1)的结论,请你写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b =6,ab=5,求a﹣b的值.【变式6-3】(2023春•湖州期中)阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b.则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80.解决问题:(1)若x满足(2021﹣x)2+(x﹣2018)2=2020.求(2021﹣x)(x﹣2018)的值;(2)如图,在矩形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x.分别以FC、CE为边在矩形ABCD外侧作正方形CFGH 和CEMN,若矩形CEPF的面积为160平方单位,求图中阴影部分的面积和.【题型6 完全平方公式的逆运算】【典例7】(2023春•永丰县期中)已知:a2+b2=3,a+b=2.求:(1)ab的值;(2)(a﹣b)2的值;(3)a4+b4的值.【变式7-1】(2023春•都昌县期末)已知实数m,n满足m+n=6,mn=﹣3.(1)求(m+2)(n+2)的值;(2)求m2+n2的值.【变式7-2】(2023春•周村区期末)若x+y=2,且(x+3)(y+3)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【变式7-3】(2022秋•大安市期末)已知m﹣n=6,mn=4.(1)求m2+n2的值.(2)求(m+2)(n﹣2)的值.1.(2023•深圳)下列运算正确的是()A.a3•a2=a6B.4ab﹣ab=4C.(a+1)2=a2+1D.(﹣a3)2=a62.(2022•赤峰)已知(x+2)(x﹣2)﹣2x=1,则2x2﹣4x+3的值为()A.13B.8C.﹣3D.5 3.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b24.(2022•兰州)计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y2 5.(2023•凉山州)已知y2﹣my+1是完全平方式,则m的值是.6.(2023•雅安)若a+b=2,a﹣b=1,则a2﹣b2的值为.7.(2023•江西)化简:(a+1)2﹣a2=.8.(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为.9.(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=.10.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为.11.(2022•滨州)若m+n=10,mn=5,则m2+n2的值为.12.(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=.13.(2023•兰州)计算:(x+2y)(x﹣2y)﹣y(3﹣4y).14.(2022•六盘水)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.1.(2023春•市南区校级期中)下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(x+1)(﹣x﹣1)C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)2.(2022秋•睢阳区期末)如图1,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图2),利用这两个图形的面积,可以验证的等式是()A.a2+b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)3.(2022秋•嵩县期末)已知x+y=8,xy=12,则x2﹣xy+y2的值为()A.42B.28C.54D.66 4.(2022秋•海口期末)等式(﹣a﹣1)()=a2﹣1中,括号内应填入.A.a+1B.﹣1﹣a C.1﹣a D.a﹣1 5.(2022秋•离石区期末)若二次三项式x2+kx+4是一个完全平方式,则k的值是()A.4B.﹣4C.±2D.±4 6.(2023春•攸县期末)若x2﹣y2=3,则(x+y)2(x﹣y)2的值是()A.3B.6C.9D.18 7.(2022秋•邹城市校级期末)已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为()A.4B.4或﹣2C.±4D.﹣2 8.(2022秋•渝北区校级期末)化简:(x+2y)2﹣(x+y)(3x﹣y).9.(2023春•渭滨区期中)请你参考黑板中老师的讲解,用乘法公式进行简便计算:利用乘法公式有时可以进行简便计算.例1:1012=(100+1)2=1002+2×100×1+1=10201;例2:17×23=(20﹣3)(20+3)=202﹣32=391.(1)9992;(2)20222﹣2021×2023.10.(2022秋•龙湖区期末)请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简)(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14.求:①a+b的值;②a2﹣b2的值.11.(2022秋•高安市期末)已知a+b=7,ab=﹣2.求:(1)a2+b2的值;(2)(a﹣b)2的值.12.(2022•荆门)已知x+=3,求下列各式的值:(1)(x﹣)2;(2)x4+.13.(2022秋•阳城县期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.b2+ab=b(a+b)C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x的值.②计算:.14.(2023春•威海期中)利用简便方法计算:(1)501×499+1;(2)0.125×104×8×104.15.(2022秋•南昌期末)图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)求图2中的阴影部分的正方形的周长;(2)观察图2,请写出下列三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系;(3)运用你所得到的公式,计算:若m、n为实数,且mn=﹣3,m﹣n=4,试求m+n的值.(4)如图3,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=8,两正方形的面积和S1+S2=26,求图中阴影部分面积.16.(2022秋•丹棱县期末)阅读下列文字,我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac =38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片.若干个长为a和宽为b的长方形纸片,利用所给的纸片拼出一个几何图形,使得计算它的面积能得到数学公式:2a2+5ab+2b2=(2a+b)(a+2b).。

第8章 整式乘法与因式分解 (基础卷)(解析版)

第8章 整式乘法与因式分解 (基础卷)(解析版)

2020-2021学年下学期七年级数学单元提升卷【沪科版】第8章整式乘法与因式分解(基础卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.计算2a2b3•(﹣3a)的结果是()A.﹣6a3b3B.6a2b3C.6a3b3D.﹣6a2b3【答案】A【解答】解:2a2b3•(﹣3a)=﹣6a3b3,故选:A.【知识点】单项式乘单项式2.计算3a(5a﹣2b)的结果是()A.15a﹣6ab B.8a2﹣6ab C.15a2﹣5ab D.15a2﹣6ab【答案】D【解答】解:3a(5a﹣2b)=15a2﹣6ab.故选:D.【知识点】单项式乘多项式3.若(x+3)(x﹣5)=x2+mx+n,则()A.m=﹣2,n=15 B.m=2,n=﹣15 C.m=2,n=15 D.m=﹣2,n=﹣15【答案】D【解答】解:∵(x+3)(x﹣5)=x2+mx+n,∴x2﹣2x﹣15=x2+mx+n,故m=﹣2,n=﹣15,故选:D.【知识点】多项式乘多项式4.a12可以写成()A.a6+a6B.a2•a6C.a6•a6D.a12÷a【答案】C【解答】解:A、a6+a6=2a6,故本选项不合题意;B、a2•a6=a8,故本选项不合题意;C、a6•a6=a12,故本选项符合题意;D、a12÷a=a11,故本选项不合题意;故选:C.【知识点】同底数幂的乘法5.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2)3=6a6D.(﹣a2)3=﹣a6【答案】D【解答】解:A、a2•a3=a5,故本选项不合题意;B、(a2)3=a6,故本选项不合题意;C、(﹣2a2)3=﹣8a6,故本选项不合题意;D、(﹣a2)3=﹣a6,故本选项符合题意;故选:D.【知识点】同底数幂的乘法、幂的乘方与积的乘方6.计算(x﹣y)(x+y)(x2+y2)(x4+y4)的结果是()A.x8+y8B.x8﹣y8C.x6+y6D.x6﹣y6【答案】B【解答】解:(x﹣y)(x+y)(x2+y2)(x4+y4)=(x2﹣y2)(x2+y2)(x4+y4)=(x4﹣y4)(x4+y4)=x8﹣y8,故选:B.【知识点】平方差公式7.若方程x2﹣mx+9=0的左边是一个完全平方式,则m等于()A.3 B.6 C.±3 D.±6【答案】D【解答】解:∵x2﹣mx+9=0的左边是一个完全平方式,∴x2﹣mx+9=(x±3)2,∴x2﹣mx+9=x2±6x+9,∴m=±6.故选:D.【知识点】完全平方式8.下列计算中正确的是()A.=3﹣B.=±2C.3﹣1=﹣3 D.=﹣8【答案】A【解答】解:A、=3﹣,故此选项正确;B、=2,故此选项错误;C、3﹣1=,故此选项错误;D、=8,故此选项错误;故选:A.【知识点】实数的运算、负整数指数幂9.已知a+b=5,ab=﹣2,则a2+b2的值为()A.21 B.23 C.25 D.29【答案】D【解答】解:∵a+b=5,ab=﹣2,∴原式=(a+b)2﹣2ab=25+4=29.故选:D.【知识点】完全平方公式10.下列式子为因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣x=x(x+1)C.x2+x=x(x+1)D.x2﹣x=x(x+1)(x﹣1)【答案】C【解答】解;A、x(x﹣1)=x2﹣x,是整式的乘法,不是因式分解,故此选项不符合题意;B、原因式分解错误,正确的是x2﹣x=x(x﹣1),故此选项不符合题意;C、x2+x=x(x+1),是正确的因式分解,故此选项符合题意;D、原因式分解错误,正确的是x2﹣x=x(x﹣1),故此选项不符合题意;故选:C.【知识点】因式分解-提公因式法、因式分解的意义11.下列各式能分解因式的是()A.﹣x2﹣1 B.C.a2+2ab﹣b2D.a2﹣b【答案】B【解答】解:A、不能分解,故此选项不符合题意;B、能够运用完全平方式分解因式,故此选项符合题意;C、不能分解,故此选项不符合题意;D、不能分解,故此选项不符合题意.故选:B.【知识点】因式分解的意义12.下列各式中,正确分解因式的个数为()①x3+2xy+x=x(x2+2y)②x2+2xy+4y2=(x+2y)2③﹣2x2+8y2=﹣(2x+4y)(x﹣2y)④a3﹣abc+a2b﹣a2c=a(a﹣c)(a+b)⑤(m﹣n)(2x﹣5y﹣7z)+(m﹣n)(3y﹣10x+3z)=﹣(m﹣n)(8x+2y+4z)A.1 B.2 C.3 D.4【答案】A【解答】解:①左边为三项,右边乘开为两项,故错误;②右边(x+2y)2=x2+4xy+4y2≠左边,故错误;③公因数2未提出来,故错误;④a3﹣abc+a2b﹣a2c=(a3+a2b)﹣(abc+a2c)=a2(a+b)﹣ac(a+b)=a(a﹣c)(a+b)④正确;⑤等式右边的(8x+2y+4z)未提取公因数2,故错误.综上,只有④正确.故选:A.【知识点】因式分解-运用公式法、因式分解-分组分解法、因式分解-提公因式法二、填空题(本大题共4小题,每小题3分,共12分.不需写出解答过程,请把答案直接填写在横线上)13.计算:﹣20=.【答案】1【解答】解:原式=2﹣1=1.故答案为:1.【知识点】实数的运算、零指数幂14.计算:(x﹣2y)(x+5y)=.【答案】x2+3xy-10y2【解答】解:原式=x2+5xy﹣2xy﹣10y2=x2+3xy﹣10y2,故答案为:x2+3xy﹣10y2.【知识点】多项式乘多项式15.把(x2﹣x+1)6展开后得a12x12+a11x11+a10x10+…+a2x2+a1x+a0,则a12﹣a11+a10﹣a9+a8﹣a7+a6﹣a5+a4﹣a3+a2﹣a1+a0=.【答案】36【解答】解:∵(x2﹣x+1)6=a12x12+a11x11+a10x10+…+a2x2+a1x+a0,则a12﹣a11+a10﹣a9+a8﹣a7+a6﹣a5+a4﹣a3+a2﹣a1+a0,∴当x=﹣1时,a12﹣a11+a10﹣a9+a8﹣a7+a6﹣a5+a4﹣a3+a2﹣a1+a0=[(﹣1)2﹣(﹣1)+1]6=36,故答案为:36.【知识点】因式分解的应用16.如图1,边长为a的大正方形中有一个边长为b的小正方形,若将图1中的阴影部分拼成一个矩形如图2,比较两图中阴影部分的面积,写出一个正确的等式:.【答案】a2-b2=(a+b)(a-b)【解答】解:如图1,阴影部分的面积为S1=a2﹣b2;如图2,阴影部分是一个矩形,长为(a+b),宽为(a﹣b),面积为S2=(a+b)(a﹣b).由阴影部分面积相等可得a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b).【知识点】平方差公式的几何背景三、解答题(本大题共7小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(x+3)(x﹣4)【解答】解:原式=x2+3x﹣4x﹣12=x2﹣x﹣12.【知识点】多项式乘多项式18.化简:(2x+y)2﹣(x+2y)(x﹣2y).【解答】解:原式=4x2+4xy+y2﹣(x2﹣4y2)=4x2+4xy+y2﹣x2+4y2=3x2+4xy+5y2.【知识点】平方差公式、完全平方公式19.35×84×.【解答】解:原式=﹣35×212×=﹣.【知识点】幂的乘方与积的乘方20.如果x2+Ax+B=(x﹣3)(x+5),求3A﹣B的值.【解答】解:x2+Ax+B=(x﹣3)(x+5)=x2+2x﹣15,得A=2,B=﹣15.3A﹣B=3×2+15=21.【知识点】因式分解的意义21.已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.【解答】解:(1)∵(a x)y=a6,(a x)2÷a y=a3∴a xy=a6,a2x÷a y=a2x﹣y=a3,∴xy=6,2x﹣y=3.(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.【知识点】幂的乘方与积的乘方、同底数幂的除法22.【发现】任意三个连续偶数的平方和是4的倍数.【验证】(1)22+42+62的结果是4的几倍?(2)设三个连续偶数的中间一个为2n,写出它们的平方和,并说明是4的倍数.【延伸】(3)设三个连续奇数的中间一个数为2n+1,写出它们的平方和,它是12的倍数吗?若是,说明理由,若不是,写出被12除余数是多少?【解答】解:(1)∵22+42+62=4+16+36=56=4×14,∴22+42+62的结果是4的14倍;(2)设三个连续偶数分别为2n﹣2,2n,2n+2,(其中n是整数)则=4n2﹣8n+4+4n2+8n+4=12n2+8=4(3n2+2)∴三个连续偶数的平方和是4的倍数;(3)设三个连续奇数分别为2n﹣1,2n+1,2n+3,(其中n是整数)则(2n﹣1)2+(2n+1)2+(2n+3)2=4n2﹣4n+1+4n2+4n+1+4n2+12n+9=12n2+12n+11=12(n2+n)+11∴(2n﹣1)2+(2n+1)2+(2n+3)2不能被12整除,被12除余数是11.【知识点】因式分解的应用23.阅读理解题,阅读材料:设正整数a可以写成a=a n1000n+a n﹣11000n﹣1+……+a0,(其中0≤a i<1000,i=0,1,…,n)若(a0+a2+…)﹣(a1+a3+…)能被13整除,则a也能被13整除,反之,若a能被13整除,则(a0+a2+…)﹣(a1+a3+…)也能被13整除.比如:①3055=3×1000+55,因为55﹣3=52=13×4,能被13整除,所以3055能被13整除;②2052596=2×10002+52×1000+596因为(596+2)﹣52=546=13×42,能被13整除,所以2052596能被13整除;③2771855489=2×10003+771×10002+855×1000+489因为(489+771)﹣(855+2)=403=13×31,能被13整除,所以2771855489能被13整除.(1)按照上面提供的方法,试判断4060698967能否被13整除,并写出过程;(2)若7位正整数307552m能被13整除,试求m的值.【解答】解:(1)由题意可得:4060698967=4×10003+60×10002+698×1000+967,又∵(967+60)﹣(698+4)=325=13×25能被13整除,∴4060698967能被13整除;(2)∵307552m能被13整除,且307552m=3×10002+75×1000+52m,∴(52m+3)﹣75也能被13整除,即:52×10+m+3﹣75=448+m,能被13整除,其中0≤m≤9,且是整数,∴m=7.【知识点】因式分解的应用。

第3讲 平方差公式七年级数学下册同步精品讲义

第3讲  平方差公式七年级数学下册同步精品讲义

第3讲 平方差公式1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯.知识点公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式. 因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【知识拓展1】平方差公式1.运用乘法公式计算(4+x )(x ﹣4)的结果是( ) A .x 2﹣16B .x 2+16C .16﹣x 2D .﹣x 2﹣162.已知x +y =12,x ﹣y =6,则x 2﹣y 2= . 3.下列算式中不能利用平方差公式计算的是( ) A .(x +y )(x ﹣y ) B .(x ﹣y )(﹣x ﹣y )C .(x ﹣y )(﹣x +y )D .(x +y )(y ﹣x )4.计算(x +y )(x ﹣y )+16= . 5.(8x 2+4x )(﹣8x 2+4x )= . 6.若x 2﹣y 2=16,x +y =8,则x ﹣y = . 7.若x +y =5,x ﹣y =1,则x 2﹣y 2= .知识精讲目标导航8.若a=20170,b=2015×2017﹣20162,c=(﹣)2016×()2017,比较a,b,c大小(用“<”连接):.9.(3y+2x)(2x﹣3y)=.10.化简:(a+2)(a2+4)(a4+16)(a﹣2)=.11.下列各式,不能用平方差公式计算的是()A.(a+b﹣1)(a﹣b+1)B.(﹣a﹣b)(﹣a+b)C.(a+b2)(b2﹣a)D.(2x+y)(﹣2x﹣y)12.若a2﹣b2=10,a﹣b=2,则a+b的值为()A.5B.2C.10D.无法计算13.若a2﹣b2=﹣,a+b=﹣,则a﹣b的值为.14.若a2﹣b2=18,a+b=6,则a﹣b=.15.若m2﹣n2=10,且m﹣n=2,则m+n=.16.计算:(3x+2)(3x﹣2)+x(x﹣2).17.化简:(2x﹣y)(y+2x)﹣y(x﹣y)﹣(2x)2.18.观察:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,据此规律,当(x﹣1)(x5+x4+x3+x2+x+1)=0时,代数式x2021﹣1的值为()A.1B.0C.1或﹣1D.0或﹣2【知识拓展2】平方差公式的几何背景19.从边长为a的正方形中剪掉一个边长为b的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.b(a﹣b)=ab﹣b2D.a2﹣b2=(a+b)(a﹣b)20.探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是(用式子表示),即乘法公式中的公式.(2)运用你所得到的公式计算:①10.3×9.7;②(x+2y﹣3z)(x﹣2y﹣3z).21.如图,在边长分别为a,b的两个正方形组成的图形中,剪去一个边长为(a﹣b)的正方形,通过用两种不同的方法计算剪去的正方形的面积,可以验证的乘法公式是()A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b222.如图,阴影部分是边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼的方式形成新的图形,给出四种割拼方法,其中能够验证平方差公式的有()个.A.1B.2C.3D.423.为庆祝中国共产党的百年华诞,某校要进行美化校园,各班同学设计热爱祖国的板报.八年一班学生在设计板报时,在黑板中间画一个半径为R的大圆,然后挖去半径为r的四个小圆,分别作为热爱中国共产党、热爱人民、认同中华文化和继承革命传统四个学习区域.请计算当R=7.8cm,r=1.1cm时剩余部分的面积.(结果保留π)24.将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1=,S2=;(不必化简)(2)由(1)中的结果可以验证的乘法公式是;(3)利用(2)中得到的公式,计算:20212﹣2020×2022.25.如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)写出根据上述操作利用阴影部分的面积关系得到的等式:.(2)请应用(1)中的等式,解答下列问题:①已知4a2﹣b2=24,2a+b=6,则2a﹣b=;②计算:2002﹣1992+1982﹣1972+…+42﹣32+22﹣12.26.数学中,常对同一个量用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”[探究一]如图1,在边长为a的正方形纸片上剪去一个边长为b(b<a)的正方形,你能表示图中阴影部分的面积吗?阴影部分的面积是;如图2,也可以把阴影部分沿着虚线AB剪开,分成两个梯形,阴影部分的面积是;用两种不同的方法计算同一个阴影部分的面积,可以得到等式.[探究二]如图3,一条直线上有n个点,请你数一数共有多少条线段呢?方法1:一路往右数,不回头数.以A1为端点的线段有A1A2、A1A3、A1A4、A1A5、…、A1A n,共有(n﹣1)条;以A2为端点的线段有A2A3、A2A4、A2A5、…、A2A n,共有(n﹣2)条;以A3为端点的线段有A3A4、A3A5、…、A3A n,共有(n﹣3)条;…以A n﹣1为端点的线段有A n﹣1A n,共有1条;图中线段的总条数是;方法2:每一个点都能和除它以外的(n﹣1)个点形成线段,共有n个点,共可形成n(n﹣1)条线段,但所有线段都数了两遍,所以线段的总条数是;用两种不同的方法数线段,可以得到等式.[应用]运用探究一、探究二中得到的等式解决问题.计算:992﹣982+972﹣962+952﹣942+…+32﹣22+12.[迁移]某篮球队共有8名实力相当的队员,现要随机派3名队员参加联队比赛,共有种不同的选择方案.能力拓展类型一、公式法——平方差公式例1、分解因式:(1)2()4x y +-; (2)2216()25()a b a b --+; (3)22(2)(21)x x +--.【变式】将下列各式分解因式:(1)()()22259a b a b +--; (2)()22234x y x --(3)33x y xy -+; (4)32436x xy -;例2、分解因式: (1)2128x -+; (2)33a b ab -; (3)516x x -; (4)2(1)(1)a b a -+-【变式】先化简,再求值:(2a+3b )2﹣(2a ﹣3b )2,其中a=.类型二、平方差公式的应用例3、2222211111111......1123420112012⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭例4、阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1) =(22﹣1)(22+1)(24+1)=(24﹣1)(24+1) =(28﹣1).根据上式的计算方法,请计算: (1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.分层提分题组A 基础过关练一.选择题(共4小题)1.已知a+b=﹣3,a﹣b=1,则a2﹣b2的值是()A.8B.3C.﹣3D.102.下列各式中,能用平方差公式计算的是()A.(a+b)(﹣a﹣b)B.(a+b)(a﹣b)C.(a+b)(a﹣d)D.(a+b)(2a﹣b)3.下列运算正确的是()A.(5﹣m)(5+m)=m2﹣25B.(1﹣3m)(1+3m)=1﹣3m2C.(﹣4﹣3n)(﹣4+3n)=﹣9n2+16D.(2ab﹣n)(2ab+n)=4ab2﹣n24.如图,从边长为acm的正方形纸片中剪去一个边长为(a﹣3)cm的正方形(a>3),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为()A.6a cm2B.(6a+9)cm2C.(6a﹣9)cm2D.(a2﹣6a+9)cm2二.填空题(共4小题)5.已知x+y=12,x﹣y=6,则x2﹣y2=.6.已知m﹣n=3,则m2﹣n2﹣6n的值.7.若(2m+5)(2m﹣5)=15,则m2=.8.已知m2﹣n2=24,m比n大8,则m+n=.三.解答题(共5小题)9.化简:(a﹣b)(a+b)﹣a(a+b).10.计算:(1)(a+9)(a+1);(2)20192﹣2017×2021.11.若(x﹣2)(x2+ax﹣8b)的展开式中不含x的二次项和一次项.(1)求b a的值;(2)求(a+1)(a2+1)(a4+1)…(a32+1)+1的值.12.请阅读以下材料:[材料]若x=12349×12346,y=12348×12347,试比较x,y的大小.解:设12348=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2,y=a(a﹣1)=a2﹣a.因为x﹣y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0,所以x<y.我们把这种方法叫做换元法.请仿照例题比较下列两数大小:x=997657×997655,y=997653×997659.13.如图,从边长为(a+4)cm的正方形纸中减去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙).(1)拼成的长方形的周长是多少?(2)拼成的长方形的面积是多少?题组B 能力提升练一.选择题(共5小题)1.化简(2+1)(22+1)(24+1)(28+1)(216+1)的结果是()A.232﹣1B.232+1C.(216+1)2D.(216﹣1)22.如果一个正整数能表示为两个正整数的平方差,那么这个正整数就称为“智慧数”,例如:5=32﹣22,5就是一个智慧数,则下列各数不是智慧数的是()A.2020B.2021C.2022D.20233.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32.即8,16均为“和谐数”),在不超过200的正整数中,所有的“和谐数”之和为()A.2700B.2701C.2601D.26004.下列各数中,可以写成两个连续奇数的平方差的()A.520B.502C.250D.2055.在下列计算中,不能用平方差公式计算的是()A.(m﹣n)(﹣m+n)B.(x3﹣y3)(x3+y3)C.(﹣a﹣b)(a﹣b)D.(c2﹣d2)(d2+c2)二.填空题(共5小题)6.小丽在计算3×(4+1)×(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式进行计算.用类似方法计算:(1+)×(1+)×(1+)×(1+)+=.7.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,…根据规律可得:(x﹣1)(x2021+x2020+…+x+1)=.8.计算:20212﹣2020×2022=.9.若m2﹣n2=40,且m﹣n=5.则m+n=.10.如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是.三.解答题(共4小题)11.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,根据规律(x﹣1)(x n﹣1+x n﹣2+…+x2+x+1)=.(其中n为正整数);(1)计算:(﹣2)2019+(﹣2)2018+(﹣2)2017+…+(﹣2)3+(﹣2)2+(﹣2)1+1;(2)计算:22018+22016+22014+…+24+22+2.12.如图1所示,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.(1)请直接用含a和b的代数式表示S1=,S2=;写出利用图形的面积关系所得到的公式:(用式子表达).(2)应用公式计算:.(3)应用公式计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1.13.在化简整式(x﹣2)■(x+2)+▲中,“■”表示运算符号“﹣”“×”中的某一个,“▲”表示一个整式.(1)计算(x﹣2)﹣(x+2)+(﹣2+y);(2)若(x﹣2)(x+2)+▲=3x2+4,求出整式▲;(3)已知(x﹣2)■(x+2)+▲的计算结果是二次单项式,当▲是常数项时,直接写出■表示的符号及▲的值.14.观察下列各式(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(1)(x﹣1)(x n﹣1+x n﹣2+…+x+1)=(其中n为正整数);(2)(2﹣1)•(299+298+…+2+1)=;(3)计算:350+349+348+…+32+3+1的值.题组C 培优拔尖练一.选择题(共1小题)1.(2020秋•鼓楼区校级期中)如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255024B.255054C.255064D.250554二.填空题(共6小题)2.(2017春•张掖月考)乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是(写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式)小题3:比较图1,图2的阴影部分面积,可以得到乘法公式(用式子表达)小题4:应用所得的公式计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)3.已知a﹣b=3,a2﹣b2=9,则a=,b=.4.如图,小刚家有一块“L”形的菜地,要把这块菜地按图示那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是xm,下底都是ym,高都是(y﹣x)m,请你帮小刚家算一算菜地的面积是平方米.当x=20m,y=30m时,面积是平方米.5.计算:(5+1)(52+1)(54+1)(58+1)(516+1)+=.6.小明在计算时,找不到计算器,去向小华借,小华看了看题说根本不用计算器,而且很快说出了答案.你知道答案是多少吗,请将答案填在横线上.7.(2021春•锦江区校级期中)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”.例如,16=52﹣32,16就是一个智慧数.在正整数中,从1开始,第2021个智慧数是.三.解答题(共6小题)8.(2021春•鼓楼区期中)有些同学会想当然地认为(x﹣y)3=x3﹣y3.(1)举出反例说明该式不一定成立;(2)计算(x﹣y)3;(3)直接写出当x、y满足什么条件时,该式成立.9.(2021春•婺城区校级期末)乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:公式2:(4)运用你所得到的公式计算:10.3×9.7.10.(2021春•淮北期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).11.(2021春•罗湖区校级期中)已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.12.(2019春•漳浦县期中)你能化简(a﹣1)(a99+a98+a97+…+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a﹣1)(a+1)=;(a﹣1)(a2+a+1)=;(a﹣1)(a3+a2+a+1)=;…由此猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)=(2)利用这个结论,你能解决下面两个问题吗?①求2199+2198+2197+…+22+2+1的值;②若a5+a4+a3+a2+a+1=0,则a6等于多少?13.(2018秋•沙坪坝区期末)一个个位不为零的四位自然数n,如果千位与十位上的数字之和等于百位与个位上的数字之和,则称n为“隐等数”,将这个“隐等数“反序排列(即千位与个位对调,百位与十位对调)得到一个新数m,记D(n)=.(1)请任意写出一个“隐等数”n,并计算D(n)的值;(2)若某个“隐等数“n的千位与十位上的数字之和为6,D(n)为正数,且D(n)能表示为两个连续偶数的平方差,求满足条件的所有“隐等数”n.。

平方差公式

平方差公式

教学建议一、知识结构二、重点、难点分析本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.1.平方差公式是由多项式乘法直接计算得出的:与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.只要符合公式的结构特征,就可运用这一公式.例如在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.3.关于平方差公式的特征,在学习时应注意:(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).(3)公式中的和可以是具体数,也可以是单项式或多项式.(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.三、教法建议1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力.2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即(a+b)(a-b)=a2+ab-ab-b2=a2-b2.这样得出平方差公式,并且把这类乘法的实质讲清楚了.3.通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),(1+2x)(1-2x)=12-(2x)2=1-4x2↓ ↓ ↓ ↓ ↑ ↑(a + b)(a - b)=a2- b2.这样,学生就能正确应用公式进行计算,不容易出差错.另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.教学目标1.使学生理解和掌握平方差公式,并会用公式进行计算;2.注意培养学生分析、综合和抽象、概括以及运算能力.教学重点和难点重点:平方差公式的应用.难点:用公式的结构特征判断题目能否使用公式.教学过程设计一、师生共同研究平方差公式我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.在此基础上,让学生用语言叙述公式.二、运用举例变式练习例1 计算(1+2x)(1-2x).解:(1+2x)(1-2x)=12-(2x)2=1-4x2.教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.例2 计算(b2+2a3)(2a3-b2).解:(b2+2a3)(2a3-b2)=(2a3+b2)(2a3-b2)=(2a3)2-(b2)2=4a6-b4.教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.课堂练习运用平方差公式计算:(l)(x+a)(x-a);(2)(m+n)(m-n);(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).例3 计算(-4a-1)(-4a+1).让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.解法1:(-4a-1)(-4a+1)=[-(4a+l)][-(4a-l)]=(4a+1)(4a-l)=(4a)2-l2=16a2-1.解法2:(-4a-l)(-4a+l)=(-4a)2-l=16a2-1.根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.课堂练习1.口答下列各题:(l)(-a+b)(a+b);(2)(a-b)(b+a);(3)(-a-b)(-a+b);(4)(a-b)(-a-b).2.计算下列各题:(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.三、小结1.什么是平方差公式?2.运用公式要注意什么?(1)要符合公式特征才能运用平方差公式;(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.四、作业1.运用平方差公式计算:(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);2.计算:(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).热门文章青少年思想道德建设当前我国作文教学改革的新趋势古诗三首(墨梅竹石石灰吟)第一场雪Unit 2 Look at me第五课时植物妈妈有办法威尼斯的小艇等比数列的前n项和相关文章·多项式的乘法·单项式与多项式相乘·单项式的乘法·幂的乘方与积的乘方(二)·幂的乘方与积的乘方·同底数幂的乘法(二)·同底数幂的乘法·一元一次不等式组和它的解法中“平方差公式课件”中“平方差公式课件”●教学目标(一)教学知识点1.了解平方差公式的几何背景.2.会用面积法推导平方差公式,并能运用公式进行简单的运算.3.体会符号运算对证明猜想的作用.(二)能力训练要求1.用符号运算证明猜想,提高解决问题的能力.2.培养学生观察、归纳、概括等能力.(三)情感与价值观要求1.在拼图游戏中对平方差公式有一个直观的几何解释,体验学习数学的乐趣.2.体验符号运算对猜想的作用,享受数学符号表示运算规律的简捷美.●教学重点平方差公式的几何解释和广泛的应用.●教学难点准确地运用平方差公式进行简单运算,培养基本的运算技能.●教学方法启发——探究相结合●教具准备一块大正方形纸板,剪刀.投影片四张第一张:想一想,记作(平方差公式(二)A)第二张:例3,记作(平方差公式(二)B)第三张:例4,记作(平方差公式(二)C)第四张:补充练习,记作(平方差公式(二)D)●教学过程Ⅰ.创设问题情景,引入新课[师]同学们,请把自己准备好的正方形纸板拿出来,设它的边长为a.这个正方形的面积是多少?[生]a2.[师]请你用手中的剪刀从这个正方形纸板上,剪下一个边长为b的小正方形(如图1-23).现在我们就有了一个新的图形(如上图阴影部分),你能表示出阴影部分的面积吗?[生]剪去一个边长为b的小正方形,余下图形的面积,即阴影部分的面积为(a2-b2).[师]你能用阴影部分的图形拼成一个长方形吗?同学们可在小组内交流讨论.(教师可巡视同学们拼图的情况,了解同学们拼图的想法)[生]老师,我们拼出来啦.[师]讲给大伙听一听.[生]我是把剩下的图形(即上图阴影部分)先剪成两个长方形(沿上图虚线剪开),我们可以注意到,上面的大长方形宽是(a-b),长是a;下面的小长方形长是(a-b),宽是b.我们可以将两个长方形拼成一个更大长方形,是由于大长方形的宽和小长方形的长都是(a-b),我们可以将这两个边重合,这样就拼成了一个如图1-24所示的图形(阴影部分),它的长和宽分别为(a+b),(a-b),面积为(a+b)(a-b).[师]比较上面两个图形中阴影部分的面积,你发现了什么?[生]这两部分面积应该是相等的,即(a+b)(a-b)=a2-b2.[生]这恰好是我们上节课学过的平方差公式.[生]我明白了.上一节课,我们用多项式与多项式相乘的法则验证了平方差公式.今天,我们又通过拼图游戏给出平方差公式的一个几何解释,太妙了.[生]用拼图来验证平方差公式很直观,一剪一拼,利用面积相等就可推证.[师]由此我们对平方差公式有了更多的认识.这节课我们来继续学习平方差公式,也许你会发现它更“神奇”的作用.Ⅱ.讲授新课[师]出示投影片(平方差公式(二) A)想一想:(1)计算下列各组算式,并观察它们的特点(2)从以上的过程中,你发现了什么规律?(3)请你用字母表示这一规律,你能说明它的正确性吗?[生](1)中算式算出来的结果如下[生]从上面的算式可以发现,一个自然数的平方比它相邻两数的积大1.[师]是不是大于1的所有自然数都有这个特点呢?[生]我猜想是.我又找了几个例子如:[师]你能用字母表示这一规律吗?[生]设这个自然数为a,与它相邻的两个自然数为a-1,a+1,则有(a+1)(a-1)=a2-1.[生]这个结论是正确的,用平方差公式即可说明.[生]可是,我有一个疑问,a必须是一个自然数,还必须大于2吗?(同学们惊讶,然后讨论)[生]a可以代表任意一个数.[师]很好!同学们能大胆提出问题,又勇于解决问题,值得提倡.[生]老师,我还有个问题,这个结论反映了数字之间的一种关系.在平时有什么用途呢?(陷入沉思)[生]例如:计算29×31很麻烦,我们就可以转化为(30-1)(30+1)=302-1=900-1=899.[师]的确如此.我们在做一些数的运算时,如果能一直有这样“巧夺天工”的方法,太好了.我们不妨再做几个类似的练习.出示投影片(平方差公式(二)B)[例3]用平方差公式计算:(1)103×97(2)118×122[师]我们可以发现,直接运算上面的算式很麻烦.但注意观察就会发现新的奥妙.[生]我发现了,103=100+3,97=100-3,因此103×97=(100+3)(100-3)=10000-9=9991.太简便了![生]我观察也发现了第(2)题的“奥妙”.118=120-2,122=120+2118×122=(120-2)(120+2)=1202-4=14400-4=14396.[生]遇到类似这样的题,我们就不用笔算,口算就能得出.[师]我们再来看一个例题(出示投影片平方差公式(二)C).[例4]计算:(1)a2(a+b)(a-b)+a2b2;(2)(2x-5)(2x+5)-2x(2x-3).分析:上面两个小题,是整式的混合运算,平方差公式的应用,能使运算简便;还需注意的是运算顺序以及结果一定要化简.解:(1)a2(a+b)(a-b)+a2b2=a2(a2-b2)+a2b2=a4-a2b2+a2b2=a4(2)(2x-5)(2x+5)-2x(2x-3)=(2x)2-52-(4x2-6x)=4x2-25-4x2+6x=6x-25注意:在(2)小题中,2x与2x-3的积算出来后,要放到括号里,因为它们是一个整体.[例5]公式的逆用(1)(x+y)2-(x-y)2(2)252-242分析:逆用平方差公式可以使运算简便.解:(1)(x+y)2-(x-y)2=[(x+y)+(x-y)][(x+y)-(x-y)]=2x·2y=4xy(2)252-242=(25+24)(25-24)=49Ⅲ.随堂练习1.(课本P32)计算(1)704×696(2)(x+2y)(x-2y)+(x+1)(x-1)(3)x(x-1)-(x-)(x+)(可让学生先在练习本上完成,教师巡视作业中的错误,或同桌互查互纠)解:(1)704×696=(700+4)(700-4)=490000-16=489984(2)(x+2y)(x-2y)+(x+1)(x-1)=(x2-4y2)+(x2-1)=x2-4y2+x2-1=2x2-4y2-1(3)x(x-1)-(x-)(x+)=(x2-x)-[x2-()2]=x2-x-x2+=-x2.(补充练习)出示投影片(平方差公式(二)D)解方程:(2x+1)(2x-1)+3(x+2)(x-2)=(7x+1)(x-1)(先由学生试着完成)解:(2x+1)(2x-1)+3(x+2)(x-2)=(7x+1)(x-1)(2x)2-1+3(x2-4)=7x2-6x-14x2-1+3x2-12=7x2-6x-16x=12x=2Ⅳ.课时小结[师]同学们这节课一定有不少体会和收获.[生]我能用拼图对平方差公式进行几何解释.也就是说对平方差公式的理解又多了一个层面.[生]平方差公式不仅在计算整式时,可以使运算简便,而且数的运算如果也能恰当地用了平方差公式,也非常神奇.[生]我觉得这节课我印象最深的是犯错误的地方.例如a(a+1)-(a+b)(a-b)一定要先算乘法,同时减号后面的积(a+b)(a-b),算出来一定先放在括号里,然后再去括号.就不容易犯错误了.……Ⅴ.课后作业课本P32、习题1.12.Ⅵ.活动与探究计算:19902-19892+19882-19872+…+22-1.[过程]先做乘方运算,再做减法,则计算繁琐,观察算式特点,考虑逆用平方差公式.[结果]原式=(19902-19892)+(19882-19872)+…+(22-1)=(1990+1989)(1990-1989)+(1988+1987)(1988-1987)+…+(2+1)(2-1)=1990+1989+1988+1987+…+2+1==1981045●板书设计平方差公式(二)一、平方差公式的几何解释:二、想一想特例——归纳——建立猜想——用符号表示——给出证明即(a+1)(a-1)=a2-1三、例题讲解:例3例4四、练习●备课资料参考练习1.选择题(1)在下列多项式的乘法中,不能用平方差公式计算的是()A.(-a-b)(a-b)B.(c2-d2)(d2+c2)C.(x3-y3)(x3+y3)D.(m-n)(-m+n)(2)用平方差公式计算(x-1)(x+1)(x2+1)结果正确的是()A.x4-1 B.x4+1C.(x-1)4D.(x+1)4(3)下列各式中,结果是a2-36b2的是()A.(-6b+a)(-6b-a)B.(-6b+a)(6b-a)C.(a+4b)(a-4b)D.(-6b-a)(6b-a)2.填空题(4)(5x+3y)·()=25x2-9y2(5)(-0.2x-0.4y)()=0.16y2-0.04x2(6)(-x-11y)()=-x2+121y2(7)若(-7m+A)(4n+B)=16n2-49m2,则A=_______,B=_______.3.计算(8)(2x2+3y)(3y-2x2).(9)(p-5)(p-2)(p+2)(p+5).(10)(x2y+4)(x2y-4)-(x2y+2)·(x2y-3).4.求值(11)(2003年上海市中考题)已知x2-2x=2,将下式先化简,再求值(x-1)2+(x+3)(x-3)+(x-3)(x-1)5.探索规律(12)(2003年北京市中考)观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41……猜想:第n个等式(n为正整数)应为_______.答案:1.(1)D(2)A(3)D2.(4)(5x-3y)(5)(0.2x-0.4y)(6)(x-11y)(7)A=4n,B=7m3.(8)9y2-4x4(9)p4-29p2+100(10)x2y-104.(11)原式=3(x2-2x)-5=3×2-5=15.(12)9×(n-1)+n=(n-1)×10+1(n为正整数).。

(完整版)知识点060平方差公式的几何背景(选择)

(完整版)知识点060平方差公式的几何背景(选择)

hing at a time and All things in their being are good for somethin
考点:平方差公式的几何背景.专题:计算题. 分析:左图中阴影部分的面积=a2-b2,右图中矩形面积=(a+b)(a-b),根据二者相等,即 可解答. 解答:解:由题可得:(a-b)(a+b)=a2-b2. 故选 D. 点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个 数的平方差,这个公式就叫做平方差公式. 4. (2006•天门)如图所示,从边长为 a 的大正方形中挖去一个边长是 b 的小正方形,小 明将图甲中的阴影部分拼成了一个如图乙所示的矩形,这一过程可以验证( ) A.a2+b2-2ab=(a-b)2 B.a2+b2+2ab=(a+b)2C.2a2-3ab+b2=(2a-b)(a-b) D.a2b2=(a+b)(a-b)
于 a、b 的恒等式为( )
A.(a-b)2=a2-2ab+b2
B.(a+b)2=a2+2ab+b2C.a2-b2=(a+b)(a-b)
D.a2+ab=a(a+b)
考点:平方差公式的几何背景. 分析:可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于 a、b 的恒 等式. 解答:解:正方形中,S 阴影=a2-b2;
hing at a time and All things in their being are good for somethin
考点:平方差公式的几何背景. 分析:易求出图(1)阴影部分的面积=a2-b2,图(2)中阴影部分进行拼接后,长为 a+b,宽为 a-b,面积等于(a+b)(a-b),由于两图中阴影部分面积相等,即可得到结论. 解答:解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为 a2-b2; 图(2)中阴影部分为矩形,其长为 a+b,宽为 a-b,则其面积为(a+b)(a-b), ∵前后两个图形中阴影部分的面积, ∴a2-b2=(a+b)(a-b). 故选 A. 点评:本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不 变得到等量关系. 12. 如图,在边长为 a 的正方形中剪去一个边长为 b 的小正方形(a>b),把剩下的部分拼 成一个梯形,分别计算这两个图形阴影部分面积,可以验证下面一个等式是( ) A.(a+b)2=a2+2ab+b2 B.(a-b)2=a2-2ab+b2 C.a2-b2=(a+b)(a-b) D.a2+b2=1/2[(a+b)2+(a-b)2]

知识点060 平方差公式的几何背景(解答)

知识点060  平方差公式的几何背景(解答)

知识点060 平方差公式的几何背景(解答)1. 乘法公式的探究及应用(1)如图1,可以求出阴影部分的面积是a2-b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是a-b,长是a+b,面积是(a+b)(a-b)(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式(a+b)(a-b)=a2-b2;(4)运用你所得到的公式,计算下列各题:①10.2×9.8,②(2m+n-p)(2m-n+p).考点:平方差公式的几何背景.专题:计算题.分析:(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.解答:解:(1)利用正方形的面积公式可知:阴影部分的面积=a2-b2;(2)a-b,a+b,(a+b)(a-b);(3)(a+b)(a-b)=a2-b2(等式两边交换位置也可);(4)①解:原式=(10+0.2)×(10-0.2),=102-0.22,=100-0.04,=99.96;②解:原式=[2m+(n-p)]•[2m-(n-p)],=(2m)2-(n-p)2,=4m2-n2+2np-p2.点评:此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.2. 如图是边长为a+2b的正方形(1)边长为a的正方形有1个(2)边长为b的正方形有4个(3)两边分别为a和b的矩形有4个(4)用不同的形式表示边长为a+2b的正方形面积,并进行比较写出你的结论.考点:平方差公式的几何背景;列代数式;完全平方式.分析:(1)(2)(3)根据图直接可以看出,(4)根据正方形的面积公式=边长×边长=(a+2b)(a+2b)=(a+2b)2,然后利用平方差公式把它展开又是另一种表现形式.解答:解:(1)由图可知边长为a的正方形只有一个;(2)由图可知边长为b的正方形有4个;(3)由图可知两边长分别为a和b的矩形有4个;(4)∵S边长为a+2b的正方形=(a+2b)2S边长为a+2b的正方形=a2+4b2+4ab;∴结论是(a+2b)2=a2+4b2+4ab.点评:本题主要考查了同学们的观察能力以及运用面积公式求正方形的面积.3. 如图1所示,边长为a的大正方形中有一个边长为b的小正方形,如图2是由图1中阴影部分拼成的一个长方形.(1)请你分别表示出这两个图形中阴影部分的面积:a2-b2、(a+b)(a-b);(2)请问以上结果可以验证哪个乘法公式?平方差公式;(3)试利用这个公式计算:20092-2010×2008.考点:平方差公式的几何背景.分析:本题通过(1)中的面积=a2-b2,(2)中矩形的面积=(a+b)(a-b),并且两图形阴影面积相等,据此即可得出平方差公式,即a2-b2=(a+b)(a-b).解答:解:(1)a2-b2(1分);(a+b)(a-b).(1分)(2)平方差公式.(2分)(3)20092-2010×2008,=20092-(2009+1)(2009-1),=20092-20092+1,=1.(4分)点评:本题主要考查了利用面积公式证明平方差公式,熟记公式结构是利用平方差公式解决实际问题.4. 乘法公式的探究及应用:(1)如图1所示,可以求出阴影部分的面积是a2-b2(写成两数平方差的形式).(2)若将图1中的阴影部分裁剪下来,重新拼成一个如图2的矩形,此矩形的面积是(a+b)(a-b)(写成多项式乘法的形式).(3)比较两图的阴影部分面积,可以得到乘法公式a2-b2=(a+b)(a-b).(4)应用所得的公式计算:(1-1/22)(1-1/32)(1-1/42)…(1-1/992)(1-1/1002).考点:平方差公式的几何背景.专题:探究型.分析:(1)利用面积公式:大正方形的面积-小正方形的面积=阴影面积;(2)利用矩形公式即可求解;(3)利用面积相等列出等式即可;(4)利用平方差公式简便计算.解答:解:(1)a2-b2;(2)(a+b)(a-b);(3)a2-b2=(a+b)(a-b);(4)原式=(1-1/2)(1+1/2)(1-1/3)(1+1/3)…(1-1/99)(1+1/99)(1-1/100)(1+1/100),=1/2×3/2×2/3×4/3×…×98/99×100/99×99/100×101/100,=101/200.点评:本题综合考查了证明平方差公式和使用平方差公式的能力.5. 如图:大正方形的边长为a,小正方形的边长为b,利用此图证明平方差公式.考点:平方差公式的几何背景.专题:证明题.分析:由大正方形的面积-小正方形的面积=四个等腰梯形的面积,进而证得平方差公式.解答:解:根据题意大正方形的面积-小正方形的面积=a2-b2,四个等腰梯形的面积=1/2(a+b)(1/2a-1/2b)×4=(a+b)(a-b),故a2-b2=(a+b)(a-b).点评:本题主要考查平方差公式的几何背景,不是很难.6. (1)如图1,可以求出阴影部分的面积是a2-b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是a-b,长是a+b,面积是(a-b)(a+b)(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a-b)=a2-b2(用式子表达).考点:平方差公式的几何背景.分析:(1)中的面积=大正方形的面积-小正方形的面积=a2-b2;(2)中的长方形,宽为a-b,长为a+b,面积=长×宽=(a+b)(a-b);(3)中的答案可以由(1)、(2)得到,(a+b)(a-b)=a2-b2.解答:解:(1)阴影部分的面积=大正方形的面积-小正方形的面积=a2-b2;(2)长方形的宽为a-b,长为a+b,面积=长×宽=(a+b)(a-b);(3)由(1)、(2)得到,(a+b)(a-b)=a2-b2.点评:本题考查了平方差公式的几何表示,利用不同的方法表示图形的面积是解题的关键.7. 会说话的图形.如下图,把正方形的方块,按不同的方式划分,计算其面积,便可得到不同的数学公式.按图1所示划分,计算面积,便得到一个公式:(x+y)2=x2+2xy+y2.若按图2那样划分,大正方形则被划分成一个小正方形和两个梯形,通过计算图中的面积,请你完成下面的填空.(1)图2中大正方形的面积为x2;(2)图2中两个梯形的面积为1/2(x+y)(x-y);(3)根据(1)和(2),你得到的一个数学公式为x2-y2=(x+y)(x-y).考点:平方差公式的几何背景;完全平方公式的几何背景.专题:图表型.分析:本题的关键是仔细观察图形从图形中找到规律,按正方形,梯形的面积公式进行计算即可.解答:解:(1)图中大正方形的面积为x2;(2)两个梯形的面积分别为1/2(x+y)(x-y);(3)则有x2-y2=2×1/2(x+y)(x-y);即x2-y2=(x+y)(x-y).故答案为:x2;1/2(x+y)(x-y);x2-y2=(x+y)(x-y).点评:本题考查了平方差公式的几何表示,通过数形结合,推导并验证了平方差公式.8. 请大家阅读下面两段材料,并解答问题:材料1:我们知道在数轴上表示4和1的两点之间的距离为3,(如图)而|4-1|=3,所以在数轴上表示4和1的两点之间的距离为|4-1|.再如在数轴上表示4和-2的两点之间的距离为6,(如图)而|4-(-2)|=6,所以数轴上表示数4和-2的两点之间的距离为|4-(-2)|.根据上述规律,我们可以得出结论:在数轴上表示数a 和数b 两点之间的距离等于|a-b|(如图)材料2:如下左图所示大正方形的边长为a ,小正方形的边长为b ,则阴影部分的面积可表示为:a2-b2.将上图中的左图重新拼接成右图,则阴影部分的面积可表示为(a+b )(a-b ),由此可以得到等式:a2-b2=(a+b )(a-b ),阅读后思考:(1)试一试,求在数轴上表示的数532与-441的两点之间的距离为91211; (2)请用材料2公式计算:(4998)2-(4991)2=77; (3)上述两段材料中,主要体现了数学中数形结合的数学思想.考点:平方差公式的几何背景;数轴.专题:阅读型;数形结合.分析:(1)首先理解材料1的题意,利用它的公式即可求结果;(2)利用平方差公式把题目展开成平方差公式的形式,然后根据有理数的加法法则计算,并且这样计算比较简便;(3)此题把图形和数的计算结合起来,所以容易知道利用的数学思想.解答:解:(1)数532与-441的两点之间的距离为|532+441|=91211; (2)(4998)2-(4991)2=(4998+4991)(4998-4991)=77; (3)数形相结合.故答案为:91211,77,数形结合. 点评:本题考查了平方差公式的几何表示,关键是理解题意,才能根据题目的公式进行计算,此题还考查了数形结合的思想.9. 如图1所示大正方形的边长为a ,小正方形的边长为b ,则阴影部分的面积可表示为:a2-b2,将图1中的图形重新拼接成图2,则阴影部分的面积可表示为(a-b )(a+b ),这样可以得到等式:a2-b2=(a-b )(a+b ).请用此公式计算:(99998)2-(99991)2考点:平方差公式的几何背景.分析:图1阴影部分的面积=大正方形的面积-小正方形的面积,图2阴影部分的面积根据矩形面积公式即可得出,根据阴影部分的面积相等可得等式.计算题直接利用公式即可. 解答:解:a2-b2,(a-b )(a+b ),a2-b2=(a-b )(a+b );(99998)2-(99991)2 =(99998+99991)(99998-99991), =1000×99997, =98998000. 点评:本题利用组合图形考查平方差公式,计算题较为简单,直接利用公式即可.做题时认真观察图形,找到各部分的面积及两面积相等是解决本题的关键.10. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形( ),把剩下部分拼成一个梯形,通过计算这两个图形阴影部分的面积,可验证公式为?考点:平方差公式的几何背景.分析:要求可验证的公式,可分别求出两个图形的面积,令其相等,即可得出所验证的公式. 解答:解:在边长为a 的正方形中剪去一个边长为b 的小正方形,剩余面积为a •a-b •b=a2-b2图中梯形的上底为2b ,下底为2a ,高为a-b ,∴梯形的面积为1/2(2a+2b)(a-b)=(a+b )(a-b ),∴可验证的公式为a2-b2=(a+b )(a-b ).点评:本题考查了平方差公式的几何意义,用不同的方法求阴影部分的面积是解题的关键,考法较新颖.11. 如图,小刚家有一块“L ”形的菜地,要把这块菜地按图示那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是xm,下底都是ym,高都是(y-x)m,请你帮小刚家算一算菜地的面积是y2-x2平方米.当x=20m,y=30m时,面积是500平方米.考点:平方差公式的几何背景.分析:本题结合图形,根据梯形的面积公式=1/2(上底+下底)×高,列出菜地的面积,再运用平方差公式计算.解答:解:由题意得菜地的面积为2×1/2(x+y)(y-x)=y2-x2.当x=20,y=30时,y2-x2=302-202=900-400=500m2.故答案为:y2-x2;500.点评:本题考查了平方差公式的几何表示,计算菜地的面积时,也可运用边长为y的正方形的面积减去边长为x的正方形的面积求得,这样更为简单.12. 如图,有一位狡猾的地主,把一块边长为a的正方形的土地,租给李老汉种植,他对李老汉说:“我把你这块地的一边减少4m,另一边增加4m,继续租给你,你也没有吃亏,你看如何”.李老汉一听,觉得自己好像没有吃亏,就答应了.同学们,你们觉得李老汉有没有吃亏?请说明理由.考点:平方差公式的几何背景.分析:本题只要利用面积公式,再利用平方差公式计算就可知.解答:解:李老汉吃亏了.理由:原来的种植面积为a2,变化后的种植面积为(a+4)(a-4)=a2-16,因为a2>a2-16,所以李老汉吃亏了.点评:本题考查了平方差公式在实际生活中的运用,只有利用平方差公式计算后才能做出正确的判断.13. (1)通过观察比较左、右两图的阴影部分面积,可以得到乘法公式为(a-b)(a+b).(用式子表达)(2)运用你所学到的公式,计算下列各题:①1022②103×97.考点:平方差公式的几何背景;完全平方公式;平方差公式.分析:(1)本题需先根据图中所给的数据,再根据面积公式进行计算,再与两边的图形进行比较,即可求出答案.(2)本题需先根据平方差公式的求法,分别进行计算,即可求出答案.解答:解:(1)根据题意得:S=a2-b2=(a-b)(a+b).(2)①1022=(100+2)2=1002+400+4=10404,②103×97=(100+3)(100-3)=1002-32=9991.点评:本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.14. 我们已经知道利用图形中面积的等量关系可以得到某些数学公式,如图一,我们可以得到两数差的完全平方公式:(a-b)2=a2-2ab+b2(1)请你在图二中,标上相应的字母,使其能够得到两数和的完全平方公式(a+b)2=a2+2ab+b2,(2)图三是边长为a的正方形中剪去一个边长为b的小正方形,剩下部分拼成图四的形状,利用这两幅图形中面积的等量关系,能验证公式a2-b2=(a+b)(a-b);(3)除了拼成图四的图形外还能拼成其他的图形能验证公式成立,请试画出一个这样的图形,并标上相应的字母.考点:平方差公式的几何背景;完全平方公式的几何背景.专题:作图题.分析:(1)此题只需将大正方形的边长表示为a,小正方形的边长表示为b即可,(2)此题只需将两个图形的面积表示出来写成等式即可;(3)此题还可以拼成一个矩形来验证公式的成立.解答:解:(1).(2)根据两图形求得两图形的面积分别为:S1=a2-b2;S2=12(2a+2b)(a-b)=(a+b)(a-b)(3)拼成的图形如下图所示:点评:本题考查了平方差公式及完全平方式的几何背景,考查的范围比较广.15. 如图,在边长为a的正方形的一角是一个边长为b的正方形,请用这个图形验证公式:a2-b2=(a+b)(a-b).考点:平方差公式的几何背景.专题:计算题.分析:利用正方形的面积减去小正方形的面积,即为所剩部分的面积.解答:解:由图可知:大正方形的面积-小正方形的面积=剩余部分的面积,∴a2-b2=(a-b)b+(a-b)a=(a+b)(a-b),即a2-b2=(a+b)(a-b).点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.16. (1)如图甲所示,可得阴影部分的面积是a2-b2(写成多项式的形式);(2)如图乙所示,若将阴影部分裁剪下来重新拼成一个长方形,它的长是a+b,宽是a-b ,面积是(a+b)(a-b)(写成两式乘积形式);(3)比较图甲和图乙中阴影部分的面积,可得乘法公式(a+b)(a-b)=a2-b2;(4)利用公式计算(-2x+y)(2x+y)=y2-4x2.考点:平方差公式的几何背景.专题:计算题.分析:(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.解答:解:(1)利用正方形的面积公式可知:阴影部分的面积=a2-b2;(2)a+b,a-b,(a+b)(a-b);(3)(a+b)(a-b)=a2-b2(等式两边交换位置也可);(4)①原式=(10+0.2)×(10-0.2),=102-0.22,=100-0.04,=99.96;②原式=(y+2x)(y-2x)=(y)2-(2x)2,=y2-4x2.故答案是:(1)a2-b2(2)a-b,a+b,(a+b)(a-b);(3)(a+b)(a-b)=a2-b2(4)y2-4x2.点评:此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.17. 乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是a2-b2(写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是a-b,长是a+b,面积是(a+b)(a-b).(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a-b)=a2-b2.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n-p)(2m-n+p)考点:平方差公式的几何背景.分析:(1)利用大正方形面积减去小正方形面积即可求出;(2)根据图形中长方形长与宽求出即可;(3)结合(1)(2)即可得出(a+b)(a-b)=a2-b2;(4)利用平方差公式进行运算即可,注意符合(a+b)(a-b)=a2-b2的形式才能运算.解答:解:(1)利用大正方形面积减去小正方形面积即可求出:a2-b2;(2)它的宽是a-b,长是a+b,面积是(a+b)(a-b);(3)根据题意得出:(a+b)(a-b)=a2-b2;(4)①10.3×9.7=(10+0.3)(10-0.3)=100-0.09=99.91;②(2m+n-p)(2m-n+p)=[2m+(n-p)][2m-(n-p)]=4m2-(n-p)2=4m2-n2-p2+2np.点评:此题主要考查了平方差公式的几何背景,利用图形面积得出公式是近几年中考中考查重点,同学们应重点掌握.18. 如图所示,有一位狡猾的老账主,把一块边长为a米(a>30)的正方形土地给赵老汉种植.隔了一年,他对赵老汉说:“我把你这块地的一边减少5米,另一边增加5米,继续租给你,你也没有吃亏,你看如何?”赵老汉一听,觉得好像没有吃亏,就答应了.你觉得赵老汉有没有吃亏呢?请说明理由.考点:平方差公式的几何背景.专题:几何图形问题.分析:本题只要利用面积公式,再利用平方差公式计算就可知.解答:解:赵老汉吃亏了.因为他原来所租地的面积为a2平方米,而后经过割补,面积变为(a+5)(a-5)=a2-25(平方米)所以,他实际是少25平方米.因此,他吃亏了.点评:本题考查了平方差公式在实际生活中的运用,只有利用平方差公式计算后才能做出正确的判断.19. 如图:边长为a的大正方形中有一个边长为b的小正方形.(1)通过观察①、②两图的阴影部分面积,可以得到的乘法公式为a2-b2=(a-b)(a+b);(用式子表达)(2)运用你所得到的公式,计算:102×98(不用公式计算不得分)考点:平方差公式的几何背景.专题:计算题.分析:(1)图1阴影部分的面积=大正方形的面积-小正方形的面积,图2阴影部分的面积根据矩形面积公式即可得出,根据阴影部分的面积相等可得等式.(2)计算题直接利用平方差公式即可.解答:解:(1)图1阴影部分的面积a2-b2,图2阴影部分的面积(a-b)(a+b),则a2-b2=(a-b)(a+b).故答案为:a2-b2=(a-b)(a+b);(2)102×98=(100+2)(100-2)=1002-22=10000-4=9996.点评:本题利用组合图形考查平方差公式,计算题较为简单,直接利用公式即可.做题时认真观察图形,找到各部分的面积及两面积相等是解决本题的关键.20. 如图阴影部分,是边长为4cm的正方形纸片,在它的中心剪去一个边长为2.5cm的正方形小纸片得到的,请尝试用最简便方法作一个长方形使其面积等于图中阴影部分的面积.考点:平方差公式的几何背景.专题:计算题.分析:如图,将阴影部分沿虚线剪开,以4+2.5=6.4cm为长,4-2.51.5cm为宽,作出与阴影部分面积相等的长方形.解答:解:如图,作长为6.5cm,宽为1.5cm的长方形;理由:42-2.52=(4+2.5)(4-2.5)=6.5×1.5.点评:本题考查了平方差公式的几何背景.关键是通过将面积合理的分割,解释平方差公式.21. 如图:边长为a,b的两个正方形的中心重合,边保持平行,如果从大正方形中剪去小正方形,剩下的图形可以分割成4个大小相等的等腰梯形.请你用a,b表示出梯形的高和面积,并由此说明a2-b2=(a+b)(a-b)的几何意义.考点:平方差公式的几何背景.分析:根据图形可得等腰梯形的高为1/2(a-b),根据大正方形的面积减去小正方形的面积可作出说明.解答:解:梯形的高=1/2(a-b),面积=1/4(a+b)(a-b),∴a2-b2=(a+b)(a-b)的几何意义是大正方形的面积减去小正方形的面积.点评:本题考查平方差公式的几何背景,属于比较简单的题目,解答本题的关键是正确的求出等腰梯形的高.22. 如图,边长为a的大正方形内有一个边长为b的小正方形.(1)阴影部分面积是a2-b2.(2)小欣把阴影部分的两个四边形拼成如图6所示的长方形,则这个长方形的宽是a-b面积是(a+b)(a-b).(3)由此可验证出的结论是(a+b)(a-b)=a2-b2.考点:平方差公式的几何背景.专题:计算题.分析:(1)边长为a的正方形的面积减去边长为b的正方形的面积即可;(2)根据图形求出长方形的长和宽,根据面积公式求出即可;(3)根据阴影部分的面积相等求出即可.解答:解:(1)图中阴影部分的面积是:a2-b2,故答案为:a2-b2.(2)由图象可知:这个长方形的宽是:a-b,长方形的面积是:(a+b)(a-b),故答案为:a-b,(a+b)(a-b).(3)根据阴影部分的面积相等,∴(a+b)(a-b)=a2-b2,故答案为:(a+b)(a-b)=a2-b2.点评:本题考查了平方差公式的应用,解此题的关键是能根据面积公式求出各个部分的面积,题型较好,难度适中,是一道不错的题目,通过此题能培养学生的观察能力.23. 用四块长为acm、宽为bcm的矩形材料(如图1)拼成一个大矩形(如图2)或大正方形(如图3),中间分别空出一个小矩形A和一个小正方形B.(1)求(如图1)矩形材料的面积;(用含a,b的代数式表示)(2)通过计算说明A、B的面积哪一个比较大;(3)根据(如图4),利用面积的不同表示方法写出一个代数恒等式.考点:平方差公式的几何背景.专题:几何图形问题.分析:(1)根据矩形的面积公式可得出答案.(2)分别求出矩形的长和宽,求出正方形的边长,从而计算出面积即可作出比较.(3)求出新形成的矩形的长和宽,根据面积相等即可得出答案.解答:解:(1)S=长×宽=ab;(2)根据图形可得:矩形的长=(2b+a),宽=a;正方形的边长=a+b,矩形的面积=2ab+a2,正方形的面积=a2+2ab+b2,正方形面积-矩形的面积=b2,∴矩形的面积大;(3)根据图形可得:a2-b2=(a-b)(a+b).点评:本题考查平方差公式的背景,难度不大,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.24. (1)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a-b)=a2-b2(用式子表达).(2)运用你所得到的公式,计算(a+2b-c)(a-2b-c).考点:平方差公式的几何背景;完全平方公式的几何背景.分析:(1)首先利用平行四边形与正方形面积求解方法表示出两个图形中的阴影部分的面积,又由两图形阴影面积相等,即可得到答案.(2)利用平方差公式就可简单的计算.注意将a-c看作一个整体.解答:解:(1)(a+b)(a-b)=a2-b2(2分);故答案为:(a+b)(a-b)=a2-b2.(2)(a+2b-c)(a-2b-c),=[(a-c)+2b][(a-c)-2b],=(a-c)2-(2b)2,=a2-2ac+c2-4b2.(8分)点评:本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.注意可以从第2个图形得出平行四边形的高.25. (1)小思同学用如图所示的A、B、C三类卡片若干张,拼出了一个长为2a+b宽为a+b 长方形图形.请你求出小思同学拼这个长方形所用A、B、C三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙).(2)小明同学用四张长为x、宽为y的长方形卡片,拼出如图所示的包含两个正方形的图形(任两张相邻的卡片之间没有重叠,没有空隙).①图中小正方形的边长是x-y②通过计算小正方形面积,可推出(x+y)2,xy,(x-y)2三者的等量关系式为:(x+y)2-(x-y)2=4xy③参用②中的结论,试求:当a+b=6,ab=7时(a-b)2的值.考点:平方差公式的几何背景;完全平方公式;矩形的性质;正方形的性质.专题:计算题;图表型.分析:(1)根据长方形的面积公式求出拼接后的长方形的面积,再利用多项式的乘法运算法则进行计算,然后根据系数即可得解;(2)①根据图形中正方形的大正方形的边长解答;②根据大正方形的面积减去小正方形的面积等于四个长方形的面积解答;③代入②的结论进行计算即可.解答:解:(1)(2a+b)(a+b)=2a2+2ab+ab+b2=2a2+3ab+b2;∵A、B、C三类卡片的面积分别为ab、b2、a2,∴所以A、B、C三类卡片分别为3张,1张,2张;(2)①小正方形的边长是x-y;②大正方形的面积为(x+y)2,四周四个小长方形的面积为4xy,中间小正方形的面积为(x-y)2,∴(x+y)2-(x-y)2=4xy;③根据②,∵a+b=6,ab=7,∴(a-b)2=(a+b)2-4ab=62-4×7=36-28=8.点评:本题考查了平方差公式的几何背景以及完全平方公式,矩形的面积公式,利用面积的不同表示求解进行解答是解题的关键,也是此类题目常用的方法之一.。

八年级数学上学期质量检试题(含解析) 新人教版-新人教版初中八年级全册数学试题

八年级数学上学期质量检试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省资阳市简阳市养马中学2015-2016学年八年级数学上学期质检试题一、选择题(每题3分,共30分)1.下列四副图案中,不是轴对称图形的是( )A.B.C.D.2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D 的坐标为( )A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)3.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b24.下列各式从左到右的变形中,是因式分解的是( )A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+)D.2x2﹣8y2=2(x+2y)(x﹣2y)5.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4 B.8 C.﹣8 D.±86.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( ) A.+=B.﹣=C.+10= D.﹣10=7.式子有意义的x的取值X围是( )A.x≥﹣且x≠1B.x≠1 C.D.8.下列计算正确的是( )A.=﹣3 B.=7 C.=2D.=×9.已知关于x的分式方程+=1的解是非负数,则m的取值X围是( )A.m>2 B.m≥2 C.m≥2且m≠3D.m>2且m≠310.在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,第2013个三角形的以A2013为顶点的内角的度数为( )A.B.C.D.二、填空题(每题3分,共30分)11.若的值在两个整数a与a+1之间,则a=__________.12.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是__________.13.若分式的值为0,则x的值为__________.14.若等腰三角形的边长分别为2和6,则它的周长为__________.15.已知x(x+3)=1,则代数式2x2+6x+2017的值为__________.16.计算:(x3y)﹣1•(x2y)2=__________.17.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于__________.18.实数a在数轴上的位置如图,化简+|a﹣2|=__________.19.当x<3时,﹣|x﹣6|=__________.20.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为__________.三、计算题(每小题3分,共9分)21.利用乘法公式计算:982﹣22.22.计算:(1)﹣()﹣1﹣+|﹣2|(2)÷3×.四、解答题23.先化简再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)+5xy],其中(x﹣2)2+|y+1|=0.24.先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.26.海门某公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.求购买该品牌一个台灯、一个手电筒各需要多少元?27.八年级数学课上,朱老师出示了如下框中的题目.小聪与同桌小明讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE__________DB(填“>”,“<”或“=”).(2)特例启发•解答题目解:题目中,AE与DB的大小关系是:AE__________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论•设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=1,则CD=__________(请你直接写出结果).28.在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,点D在线段BC的延长线上移动,若∠BAC=40°,则∠DCE=__________°.(2)设∠BAC=m,∠DCE=n.①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.2015-2016学年某某省资阳市简阳市养马中学八年级(上)质检数学试卷一、选择题(每题3分,共30分)1.下列四副图案中,不是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D 的坐标为( )A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.【解答】解:∵△ABC与△DEF关于y轴对称,A(﹣4,6),∴D(4,6).故选:B.【点评】此题主要考查了关于y轴对称点的性质,准确记忆横纵坐标的关系是解题关键.3.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b2【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.4.下列各式从左到右的变形中,是因式分解的是( )A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+)D.2x2﹣8y2=2(x+2y)(x﹣2y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、是整式的乘法,故B错误;C、没把一个多项式转化成几个整式积的形式,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选;D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.5.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4 B.8 C.﹣8 D.±8【考点】完全平方式.【分析】一个二项式的平方的形式我们就可以想到完全平方公式,16=42,由此来推算一次项的系数.【解答】解:∵(x±4)2=x2±8x+16,所以m=±2×4=±8.故选D.【点评】这道题考我们的逆向思维,关键是我们能够反过来利用完全平方公式确定未知数.6.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( ) A.+=B.﹣=C.+10= D.﹣10=【考点】由实际问题抽象出分式方程.【专题】行程问题;压轴题.【分析】设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,根据“小军乘小车上学可以从家晚10分钟出发”列出方程解决问题.【解答】解:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,由题意得,﹣=.故选:B.【点评】此题考查列分式方程解应用题,找出题中蕴含的等量关系是解决问题的关键.7.式子有意义的x的取值X围是( )A.x≥﹣且x≠1B.x≠1 C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.8.下列计算正确的是( )A.=﹣3 B.=7 C.=2D.=×【考点】二次根式的性质与化简.【分析】根据二次根式的性质,可判断A、B,根据二次根式的除法,可判断C,根据二次根式的乘法,可判断D.【解答】解:A、=3,故A错误;B、==5,故B错误;C、,故C错误;D、=×,故D正确.故选:D.【点评】本题考查了二次根式的性质与化简,二次根式的性质、二次根式的乘除发是解题关键.9.已知关于x的分式方程+=1的解是非负数,则m的取值X围是( ) A.m>2 B.m≥2 C.m≥2且m≠3D.m>2且m≠3【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的X围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.10.在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,第2013个三角形的以A2013为顶点的内角的度数为( )A.B.C.D.【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A n的度数,进而可得出结论.【解答】解:∵在△ABA1中,∠B=52°,AB=A1B,∴∠BA1A===64°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===32°;同理可得,∠DA3A2=16°,∠EA4A3=8°,∴∠A n=,∴A2013为顶点的内角的度数===故选B.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键二、填空题(每题3分,共30分)11.若的值在两个整数a与a+1之间,则a=2.【考点】估算无理数的大小.【专题】计算题.【分析】利用”夹逼法“得出的X围,继而也可得出a的值.【解答】解:∵2=<=3,∴的值在两个整数2与3之间,∴可得a=2.故答案为:2.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.12.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是﹣32.【考点】平方差公式.【专题】计算题.【分析】由题目可发现x2﹣y2=(x+y)(x﹣y),然后用整体代入法进行求解.【解答】解:∵x+y=﹣4,x﹣y=8,∴x2﹣y2=(x+y)(x﹣y)=(﹣4)×8=﹣32.故答案为:﹣32.【点评】本题考查了平方差公式,由题设中代数式x+y,x﹣y的值,将代数式适当变形,然后利用“整体代入法”求代数式的值.13.若分式的值为0,则x的值为0.【考点】分式的值为零的条件;解一元二次方程-因式分解法.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x2﹣x=0,|x|﹣1≠0,由x2﹣x=0,得x(x﹣1)=0,∴x=0或x=1,由|x|﹣1≠0,得|x|≠1,∴x≠±1,综上,得x=0,即x的值为0.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.若等腰三角形的边长分别为2和6,则它的周长为14.【考点】等腰三角形的性质.【分析】题目给出等腰三角形有两条边长为2和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:假设以2为等腰三角形的腰长,则三角形的各边长分别为2,2,6,不符合两边之和大于第三边;所以腰长只能为6,等腰三角形的周长为6+6+2=14.故填14.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.已知x(x+3)=1,则代数式2x2+6x+2017的值为2019.【考点】代数式求值.【专题】计算题.【分析】原式前两项变形后,把已知等式代入计算即可求出值.【解答】解:∵x(x+3)=1,∴原式=2x(x+3)+2017=2+2017=2019.故答案为:2019.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.计算:(x3y)﹣1•(x2y)2=xy.【考点】负整数指数幂.【分析】根据积的乘方,可化成同底数幂的乘除法,根据同底数幂的乘除法,可得答案.【解答】解:原式=x﹣3y﹣1•x4y2=x﹣3+4y﹣1+2=xy,故答案为:xy.【点评】本题考查了负整指数幂,利用了积的乘方,同底数幂的乘法.17.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于7或11.【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】因为已知条件给出的15或12两个部分,哪一部分是腰长与腰长一半的和不明确,所以分两种情况讨论.【解答】解:根据题意,①当15是腰长与腰长一半时,AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当12是腰长与腰长一半时,AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故填7或11.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确给出哪一部分长要一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.18.实数a在数轴上的位置如图,化简+|a﹣2|=1.【考点】二次根式的性质与化简;实数与数轴.【分析】利用数轴得出a的取值X围,进而化简求出即可.【解答】解:∵由实数a在数轴上的位置如图,∴1<a<2,∴+|a﹣2|=+|a﹣2|=a﹣1+2﹣a=1.故答案为:1.【点评】此题主要考查了二次根式的性质与化简,正确开平方去绝对值得出是解题关键.19.当x<3时,﹣|x﹣6|=﹣3.【考点】二次根式的性质与化简.【专题】计算题.【分析】原式利用二次根式的性质化简,再利用绝对值的代数意义计算即可.【解答】解:∵x<3,即x﹣3<0,x﹣6<0,∴原式=|x﹣3|﹣|x﹣6|=﹣x+3+x﹣6=﹣3,故答案为:﹣3【点评】此题考查了二次根式的性质与化简,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键.20.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为15°、30°、75°、120°.【考点】等腰三角形的判定.【分析】分别根据当AB=BP1时,当AB=AP3时,当AB=AP2时,当AP4=BP4时,求出答案即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴当AB=BP1时,∠BAP1=∠BP1A=30°,当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×30°=15°,当AB=AP2时,∠ABP2=∠AP2B=×(180°﹣30°)=75°,当AP4=BP4时,∠BAP4=∠ABP4,∴∠AP4B=180°﹣30°×2=120°,∴∠APB的度数为:15°、30°、75°、120°.故答案为:15°、30°、75°、120°.【点评】此题主要考查了等腰三角形的判定,利用分类讨论得出是解题关键.三、计算题(每小题3分,共9分)21.利用乘法公式计算:982﹣22.【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式计算即可.【解答】解:原式=(98+2)×(98﹣2)=9600.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.22.计算:(1)﹣()﹣1﹣+|﹣2|(2)÷3×.【考点】二次根式的混合运算;负整数指数幂.【专题】计算题.【分析】(1)根据负整数指数幂和绝对值的意义得到原式=2﹣4﹣+2﹣,然后合并即可;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=2﹣4﹣+2﹣=﹣2;(2)原式=1•••=•2a=a.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.记住负整数指数幂的意义.四、解答题23.先化简再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)+5xy],其中(x﹣2)2+|y+1|=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=3x2y﹣2x2y+6xy﹣3x2y﹣5xy=﹣2x2y+xy,∵(x﹣2)2+|y+1|=0,∴x﹣2=0,y+1=0,即x=2,y=﹣1,则原式=8﹣2=6.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.24.先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】首先把分式进行化简,然后计算分式的除法,最后代入a、b的值计算即可.【解答】解:原式=ab(a+1)÷=ab(a+1)÷(a+1)=ab,则当a=+1,b=﹣1时,原式=(+1)(﹣1)=3﹣1=2.【点评】本题考查了分式的化简求值,解这类题的关键是利用分解因式的方法化简分式.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.【考点】分母有理化.【专题】阅读型.【分析】(1)运用第二种方法求解,(2)先把每一个加数进行分母有理化,再找出规律后面的第二项和前面的第一项抵消,得出答案,【解答】解:(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点评】本题主要考查了分母有理化,解题的关键是找准有理化因式.26.海门某公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.求购买该品牌一个台灯、一个手电筒各需要多少元?【考点】二元一次方程组的应用.【分析】设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程.【解答】解:设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元.【点评】本题考查了方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.27.八年级数学课上,朱老师出示了如下框中的题目.小聪与同桌小明讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE=DB (填“>”,“<”或“=”).(2)特例启发•解答题目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作E F∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论•设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=1,则CD=2或4(请你直接写出结果).【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)当E为中点时,过E作EF∥BC交AC于点F,则可证明△BDE≌△FEC,可得到AE=DB;(2)类似(1)过E作EF∥BC交AC于点F,可利用AAS证明△BDE≌△FEC,可得BD=EF,再证明△AEF是等边三角形,可得到AE=EF,可得AE=DB;(3)分点E在AB上和在BA的延长线上,类似(2)证得全等,再利用平行得到.【解答】解:(1)如图1,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(3)因为AE=1,△ABC的边长为3,所以E点可能在线段AB上,也可能在BA的延长线上,当点E在AB时,同(2)可知BD=AE=1,则CD=BC+BD=1+3=4,当点E在BA的延长线上时,如图3,过点E作EF∥BC,交CA的延长线于点F,则∠F=∠FCB=∠B=60°,∠FEC+∠ECD=∠FEC+∠EDC=180°,∴∠EDB=∠FEC,且ED=EC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴EF=BD,又可判定△AEF为等边三角形,∴BD=EF=AE=1,∴CD=BC﹣BD=3﹣1=2,故答案为:2或4.【点评】本题主要考查全等三角形的判定和性质及等边三角形的性质和判定,利用全等得到BD=EF,再找EF和AE的关系是解题的关键.28.在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,点D在线段BC的延长线上移动,若∠BAC=40°,则∠DCE=40°.(2)设∠BAC=m,∠DCE=n.①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】常规题型.【分析】(1)可证△ABD≌△ACE,可得∠ACE=∠B,即可解题;(2)根据△ABD≌△ACE可分别求得∠BCE用m和用n分别表示,即可求得m、n的关系;(3)分两种情况分析,第1种,当D在线段BC的延长线上或反向延长线上时,第2种,当D在线段BC上时.【解答】解:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ACE=∠B,∵AB=AC,∠BAC=40°,∴∠ACE=∠B=70°,∴∠DCE=180°﹣70°﹣70°=40°;(2)∵△ABD≌△ACE(1)已证,∴∠ACE=∠B,∵AB=AC,∠BAC=m,∴∠ACE=∠B=∠ACB=,∴∠BCE=∠ACB+∠ACE=180°﹣m,∵∠BCE=180°﹣∠DCE=180°﹣n,∴m=n.(3)当D在线段BC的延长线上或反向延长线上时,m=n,当D在线段BC上时,m+n=180°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABD≌△ACE是解题的关键.。

八年级平方差公式的几何意义与运用

八年级平方差公式的几何意义与运用

八年级平方差公式的几何意义与运用
平方差公式是指两个数的平方差可以表示为它们的和与差的乘积。

对于任意两个实数a和b,平方差公式可以表示为:
(a + b)(a - b) = a^2 - b^2
这个公式在几何学中有一些重要的应用和几何意义。

1. 矩形面积:假设矩形的长为a,宽为b,则矩形的面积可以表示为a*b。

而根据平方差公式,a*b可以表示为(a + b)(a - b)。

这意味着矩形的面积可以表示为矩形两边的和与差的乘积。

2. 平方差形状:平方差公式的几何意义可以帮助我们理解平方差的形状。

当a和b相等时,平方差公式可以简化为a^2 - a^2 = 0。

这意味着当两个数相等时,它们的平方差为0,即它们位于同一个点上。

当a和b之间的差距增大时,它们的平方差也会增大。

3. 四边形面积:平方差公式还可以应用于计算四边形的面积。

如果我们将四边形划分为两个三角形,其中一个三角形的两条边长分别为a和b,另一个三角形的两条边长分别为a和-b。

根据平方差公式,两个三角形的面积分别为(1/2)*a*b和(1/2)*a*(-b),它们的和为(1/2)*a*b + (1/2)*a*(-b) = (1/2)*a*(b - b) = (1/2)*a*0 = 0。

这意味着四边形的面积可以表示为两个三角形面积的和,而这两个三角形的面积恰好相等并且互为相反数。

总结起来,平方差公式的几何意义与运用包括表示矩形面积、理解平方差的形状以及计算四边形的面积。

平方差公式的几何背景-北京习题集-教师版

平方差公式的几何背景-北京习题集-教师版

平方差公式的几何背景(北京习题集)(教师版)一.选择题(共4小题)1.(2019春•石景山区期末)如图,从边长为a b +的正方形纸片中剪去一个边长为a b -的正方形()a b >,剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )A .4abB .2abC .2bD .2a2.(2019秋•海淀区校级月考)如图所示,已知边长为a 的正方形纸片,减掉边长为b 的小正方形后,将剩下的三块拼接成一个长方形,则这个长方形较长的边长为( )A .a b +B .a b -C .2a b +D .22a b +3.(2019春•平谷区期末)根据如图可以验证的乘法公式为( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22()ab a b a b ab +=+4.(2018秋•海淀区校级期中)如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形()a b >,将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A .222()2a b a ab b -=-+B .222()2a b a ab b +=++C .22()()a b a b a b -=+-D .无法确定二.填空题(共5小题)5.(2019秋•朝阳区期末)如图,利用图①和图②的阴影面积相等,写出一个正确的等式 .6.(2019秋•丰台区期末)如图,从边长为4a +的正方形纸片中剪去一个边长为a 的正方形(0)a >,剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为 .7.(2019春•延庆区期末)如图,从边长为(3)a +的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的一条边长是a ,另一条边长是 .8.(2019•平谷区一模)如图,从一个边长为a 的正方形的一角上剪去一个边长为()b a b >的正方形,则剩余(阴影)部分正好能够表示一个乘法公式,则这个乘法公式是 (用含a ,b 的等式表示).9.(2016春•门头沟区期末)在学习乘法公式的时候,我们可以通过图形解释加深对公式的理解,下面这个图形可以解释的乘法公式是 .三.解答题(共5小题)10.(2018春•延庆区期末)我们经常利用图形描述问题和分析问题.借助直观的几何图形,把问题变得简明、形象,有助于探索解决问题的思路.(1)小明为了解释某一公式,构造了几何图形,如图1所示,将边长为a 的大正方形剪去一个边长为b 的小正方形,并沿图中的虚线剪开,拼接后得到图2,显然图1中的图形与图2中的图形面积相等,从而验证了公式.则小明验证的公式是 .(2)计算:()()x a x b ++= ;请画图说明这个等式.11.(2017春•西城区校级期中)阅读学习: 数学中有很多恒等式可以用图形的面积来得到.如图1,可以求出阴影部分的面积是22a b -;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a b +,宽是a b -,比较图1,图2阴影部分的面积,可以得到恒等式22()()a b a b a b +-=-.(1)观察图3,请你写出2()a b +,2()a b -,ab 之间的一个恒等式 . (2)观察图4,请写出图4所表示的代数恒等式: .(3)现有若干块长方形和正方形硬纸片如图5所示,请你用拼图的方法推出一个恒等式222()2a b a ab b +=++,仿照图4画出你的拼图并标出相关数据.12.(2016春•顺义区期末)我们经常利用图形描述问题和分析问题.借助直观的几何图形,把问题变得简明、形象,有助于探索解决问题的思路.(1)在整式乘法公式的学习中,小明为了解释某一公式,构造了几何图形,如图1所示,先画了边长为a ,b 的大小两个正方形,再延长小正方形的两边,把大正方形分割为四部分,并分别标记为Ⅰ,Ⅱ,Ⅲ,Ⅳ,然后补出图形Ⅴ.显然图形Ⅴ与图形Ⅳ的面积相等,所以图形Ⅰ,Ⅱ,Ⅴ的面积和与图形Ⅰ,Ⅱ,Ⅳ的面积和相等,从而验证了公式.则小明验证的公式是 .(2)计算:()()x a x b ++= ;请画图说明这个等式.13.(2016秋•西城区校级期中)观察图形,利用图形面积关系用写出一个代数恒等式.14.(2015春•房山区校级期中)观察两个图形中阴影部分面积的关系.(1)可以用这两个图形中阴影部分的面积解释的乘法公式是 . (2)请你利用这个乘法公式完成下面的计算.①100.399.7⨯;②2481632(21)(21)(21)(21)(21)(21)++++++平方差公式的几何背景(北京习题集)(教师版)参考答案与试题解析一.选择题(共4小题)1.(2019春•石景山区期末)如图,从边长为a b +的正方形纸片中剪去一个边长为a b -的正方形()a b >,剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )A .4abB .2abC .2bD .2a【分析】利用大正方形的面积减去小正方形的面积即可,解题时注意完全平方公式的运用. 【解答】解:该长方形的面积222222()()224a b a b a ab b a ab b ab =+--=++-+-=, 故选:A .【点评】本题主要考查了平方差公式的几何背景,关键是根据题意列出式子,运用完全平方公式进行计算. 2.(2019秋•海淀区校级月考)如图所示,已知边长为a 的正方形纸片,减掉边长为b 的小正方形后,将剩下的三块拼接成一个长方形,则这个长方形较长的边长为( )A .a b +B .a b -C .2a b +D .22a b +【分析】由题意可求减掉后长方形的面积为:22()()a b a b a b -=+-即可. 【解答】解:由题意可知减掉后长方形的面积为:22()()a b a b a b -=+-,∴长方形较长的边长为a b +,故选:A .【点评】本题考查平方差公式的应用;能够利用图形面积的关系,借助平方差公式求解是解题的关键. 3.(2019春•平谷区期末)根据如图可以验证的乘法公式为( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22()ab a b a b ab +=+【分析】直接利用已知边长表示出各部分面积即可. 【解答】解:由题意可得:将边长为()a b +的正方形面积分成四部分,能验证的乘法公式是:222()2a b a ab b +=++. 故选:B .【点评】本题考查了完全平方式的几何背景,正确表示出各部分面积是解题关键.4.(2018秋•海淀区校级期中)如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形()a b >,将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A .222()2a b a ab b -=-+B .222()2a b a ab b +=++C .22()()a b a b a b -=+-D .无法确定【分析】分别计算这两个图形阴影部分面积,根据面积相等即可得到. 【解答】解:第一个图形的阴影部分的面积22a b =-;第二个图形是梯形,则面积是1(22)()()()2a b a b a b a b +-=+-.则22()()a b a b a b -=+-. 故选:C .【点评】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键. 二.填空题(共5小题)5.(2019秋•朝阳区期末)如图,利用图①和图②的阴影面积相等,写出一个正确的等式 2(2)(2)4a a a +-=- .【分析】①阴影部分的面积(2)(2)a a =+-; ②阴影部分的面积22224a a =-=-;即可求解. 【解答】解:①阴影部分的面积(2)(2)a a =+-; ②阴影部分的面积22224a a =-=-;2(2)(2)4a a a ∴+-=-, 故答案为2(2)(2)4a a a +-=-;【点评】本题考查平方差公式的几何背景;理解题意,结合图形面积的关系得到公式,并能灵活运用公式是解题的关键.6.(2019秋•丰台区期末)如图,从边长为4a +的正方形纸片中剪去一个边长为a 的正方形(0)a >,剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为 816a + .【分析】由面积相等只需求出剪完后剩余部分的面积即可. 【解答】解:22(4)816a a a +-=+, 故答案为816a +.【点评】本题考查平方差公式的几何背景;理解题意,根据图形面积相等求解是关键.7.(2019春•延庆区期末)如图,从边长为(3)a +的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的一条边长是a ,另一条边长是 6a + .【分析】用22(3)3a +-分解因式即可. 【解答】解:根据题意:22(3)3a +- (33)(33)a a =+++- (6)a a =+.故答案是:6a +.【点评】本题运用了平方差公式分解因式,体现了数形结合的数学思想.8.(2019•平谷区一模)如图,从一个边长为a 的正方形的一角上剪去一个边长为()b a b >的正方形,则剩余(阴影)部分正好能够表示一个乘法公式,则这个乘法公式是 22()()a b a b a b -=+- (用含a ,b 的等式表示).【分析】根据阴影部分面积的不同表示方法,图中阴影部分的面积是:22a b -,阴影部分的面积是:()()()()a a b b a b a b a b -+-=+-,即可得到乘法公式.【解答】解:图中阴影部分的面积是:22a b -, 阴影部分的面积为:()()()()a a b b a b a b a b -+-=+-,22()()a b a b a b ∴-=+-.故答案为:22()()a b a b a b -=+-.【点评】本题主要考查了平方差公式几何背景.利用图形的面积和作为相等关系列出等式即可验证平方差公式. 9.(2016春•门头沟区期末)在学习乘法公式的时候,我们可以通过图形解释加深对公式的理解,下面这个图形可以解释的乘法公式是 22()()a b a b a b +-=- .【分析】根据图形确定出平方差公式即可. 【解答】解:根据题意得:22()()a b a b a b +-=-, 故答案为:22()()a b a b a b +-=-【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键. 三.解答题(共5小题)10.(2018春•延庆区期末)我们经常利用图形描述问题和分析问题.借助直观的几何图形,把问题变得简明、形象,有助于探索解决问题的思路.(1)小明为了解释某一公式,构造了几何图形,如图1所示,将边长为a 的大正方形剪去一个边长为b 的小正方形,并沿图中的虚线剪开,拼接后得到图2,显然图1中的图形与图2中的图形面积相等,从而验证了公式.则小明验证的公式是 22()()a b a b a b +-=- .(2)计算:()()x a x b ++= ;请画图说明这个等式.【分析】(1)依据图形面积22a b =-,图形面积()()a b a b =+-,即可得到22()()a b a b a b +-=-;(2)依据图形面积()()x a x b =++,图形面积2x ax bx ab =+++,即可得出2()()x a x b x ax bx ab ++=+++. 【解答】解:(1)由图1可得,图形面积22a b =-, 由图2可得,图形面积()()a b a b =+-,22()()a b a b a b ∴+-=-故答案为:22()()a b a b a b +-=-; (2)2()()x a x b x ax bx ab ++=+++, 证明:如图所示,图形面积()()x a x b =++, 图形面积2x ax bx ab =+++,2()()x a x b x ax bx ab ∴++=+++,故答案为:2x ax bx ab +++.【点评】本题考查了平方差公式的几何背景,把阴影部分的面积用不同的方法表示是解答此类题目的关键. 11.(2017春•西城区校级期中)阅读学习: 数学中有很多恒等式可以用图形的面积来得到.如图1,可以求出阴影部分的面积是22a b -;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a b +,宽是a b -,比较图1,图2阴影部分的面积,可以得到恒等式22()()a b a b a b +-=-.(1)观察图3,请你写出2()a b +,2()a b -,ab 之间的一个恒等式 22()()4a b a b ab -=+- . (2)观察图4,请写出图4所表示的代数恒等式: .(3)现有若干块长方形和正方形硬纸片如图5所示,请你用拼图的方法推出一个恒等式222()2a b a ab b +=++,仿照图4画出你的拼图并标出相关数据.【分析】(1)利用完全平方公式找出2()a b +、2()a b -、ab 之间的等量关系即可; (2)根据面积的两种表达方式得到图4所表示的代数恒等式; (3)由已知的恒等式,画出相应的图形即可.【解答】解:(1)2()a b +,2()a b -,ab 之间的一个恒等式22()()4a b a b ab -=+-. (2)图4所表示的代数恒等式:22(2)()23a b a b a ab b ++=++. (3)如图所示:故答案为:22()()4a b a b ab -=+-;22(2)()23a b a b a ab b ++=++.【点评】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.12.(2016春•顺义区期末)我们经常利用图形描述问题和分析问题.借助直观的几何图形,把问题变得简明、形象,有助于探索解决问题的思路.(1)在整式乘法公式的学习中,小明为了解释某一公式,构造了几何图形,如图1所示,先画了边长为a ,b 的大小两个正方形,再延长小正方形的两边,把大正方形分割为四部分,并分别标记为Ⅰ,Ⅱ,Ⅲ,Ⅳ,然后补出图形Ⅴ.显然图形Ⅴ与图形Ⅳ的面积相等,所以图形Ⅰ,Ⅱ,Ⅴ的面积和与图形Ⅰ,Ⅱ,Ⅳ的面积和相等,从而验证了公式.则小明验证的公式是 22()()a b a b a b +-=- .(2)计算:()()x a x b ++= ;请画图说明这个等式.【分析】根据平方差公式得出各部分的面积公式进行解答即可.【解答】解:(1)由题意可得:22()()a b a b a b +-=-;(2)可得:2()()x a x b x ax bx ab ++=+++,画图如下:故答案为:22()()a b a b a b +-=-;2x ax bx ab +++【点评】本题主要考查的是平方差公式的几何表示,运用不同方法表示图形面积是解题的关键.13.(2016秋•西城区校级期中)观察图形,利用图形面积关系用写出一个代数恒等式.【分析】分别利用不同的方法表示出阴影部分的面积,得到恒等式.【解答】解:阴影部分的面积可表示为:22a b -或()()a b a b +-,22()()a b a b a b ∴-=+-.【点评】本题考查的是平方差公式的几何背景,掌握平方差公式、矩形的面积公式是解题的关键.14.(2015春•房山区校级期中)观察两个图形中阴影部分面积的关系.(1)可以用这两个图形中阴影部分的面积解释的乘法公式是 22()()a b a b a b +-=- .(2)请你利用这个乘法公式完成下面的计算.①100.399.7⨯;②2481632(21)(21)(21)(21)(21)(21)++++++【分析】(1)本题通过(1)中的面积22a b =-;(2)根据得出平方差公式计算即可.【解答】解:(1)22()()a b a b a b +-=-;(2)①100.399.7(1000.3)(1000.3)9999.91⨯=+⨯-=;②2481632(21)(21)(21)(21)(21)(21)++++++22481632(21)(21)(21)(21)(21)(21)=-+++++4481632(21)(21)(21)(21)(21)=-++++881632(21)(21)(21)(21)=+-++161632(21)(21)(21)=-++3232(21)(21)=-+6421=-.故答案为:22()()a b a b a b +-=-【点评】本题主要考查了利用面积公式证明平方差公式,熟记公式结构是利用平方差公式解决实际问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点060 平方差公式的几何背景(选择)1、(2010•达州)如图所示,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A .(a-b )2=a2-2ab+b2B .(a+b )2=a2+2ab+b2C .a2-b2=(a+b )(a-b )D .a2+ab=a (a+b )考点:平方差公式的几何背景.分析:可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a 、b 的恒等式.解答:解:正方形中,S 阴影=a2-b2;梯形中,S 阴影=21(2a+2b )(a-b )=(a+b )(a-b ); 故所得恒等式为:a2-b2=(a+b )(a-b ).故选C .点评:此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.2. (2009•内江)在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .(a+b )2=a2+2ab+b2B .(a-b )2=a2-2ab+b2C .a2-b2=(a+b )(a-b )D .(a+2b )(a-b )=a2+ab-2b2考点:平方差公式的几何背景.分析:利用正方形的面积公式可知:阴影部分的面积=a2-b2=(a+b )(a-b ).解答:解:阴影部分的面积=a2-b2=(a+b )(a-b ).故选C .点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.3. (2006•襄阳)如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A .(a-b )(a+2b )=a2-2b2+abB .(a+b )2=a2+2ab+b2C .(a-b )2=a2-2ab+b2D .(a-b )(a+b )=a2-b2考点:平方差公式的几何背景.专题:计算题.分析:左图中阴影部分的面积=a2-b2,右图中矩形面积=(a+b)(a-b),根据二者相等,即可解答.解答:解:由题可得:(a-b)(a+b)=a2-b2.故选D.点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.4. (2006•天门)如图所示,从边长为a的大正方形中挖去一个边长是b的小正方形,小明将图甲中的阴影部分拼成了一个如图乙所示的矩形,这一过程可以验证()A.a2+b2-2ab=(a-b)2 B.a2+b2+2ab=(a+b)2C.2a2-3ab+b2=(2a-b)(a-b)D.a2-b2=(a+b)(a-b)考点:平方差公式的几何背景.专题:计算题.分析:利用正方形的面积公式可知阴影部分面积为=a2-b2,根据矩形面积公式可知阴影部分面积=(a+b)(a-b),二者相等,即可解答.解答:解:由题可知a2-b2=(a+b)(a-b).故选D.点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.5. (2006•荆门)在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.a2-b2=(a-b)2考点:平方差公式的几何背景.专题:计算题.分析:(1)中的面积=a2-b2,(2)中梯形的面积=(2a+2b)(a-b)÷2=(a+b)(a-b),两图形阴影面积相等,据此即可解答.解答:解:由题可得:a2-b2=(a+b)(a-b).故选A.点评:本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.6. 如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.(a+2b)(a-b)=a2+ab+b2考点:平方差公式的几何背景.专题:计算题.分析:利用正方形的面积公式可知剩下的面积=a2-b2,而新形成的矩形是长为a+b,宽为a-b,根据两者相等,即可验证平方差公式.解答:解:由题意得:a2-b2=(a+b)(a-b).故选A.点评:此题主要考查平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.7. 如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.a2-ab=a(a-b)考点:平方差公式的几何背景.分析:根据正方形和梯形的面积公式,观察图形发现这两个图形阴影部分的面积=a2-b2=(a+b)(a-b).解答:解:阴影部分的面积=a2-b2=(a+b)(a-b).故选A.点评:此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.8. 如图所示,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分的面积),验证了一个等式是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.(a+2b)(a-b)=a2+ab-2b2考点:平方差公式的几何背景.专题:几何图形问题.分析:利用正方形的面积公式可知剩下的面积=a2-b2,而新形成的矩形面积为(a+b)(a-b),根据两者相等,即可验证平方差公式.解答:解:由题意得:a2-b2=(a+b)(a-b).故选A.点评:本题主要考查平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.9. 从边长为a的正方形中去掉一个边长为b的小正方形,如图,然后将剩余部分剪后拼成一个矩形,上述操作所能验证的等式是()A.a2-b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2 D.a2+ab=a(a+b)考点:平方差公式的几何背景.分析:由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.解答:解:大正方形的面积-小正方形的面积=a2-b2,矩形的面积=(a+b)(a-b),故a2-b2=(a+b)(a-b).故选A.点评:本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.10. 如图(一),在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b),把余下的部分剪成一个矩形(如图(二)),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.(a+2b)(a-b)=a2+ab-2b2考点:平方差公式的几何背景.专题:应用题.分析:左图中阴影部分的面积=a2-b2,右图中矩形面积=(a+b)(a-b),根据二者相等,即可解答.解答:解:由题可得:a2-b2=(a-b)(a+b).故选A.点评:本题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.11. 如图,在边长为a的正方形中裁掉一个边长为b的小正方形(如图Ⅰ),将剩余部分沿虚线剪开后拼接(如图Ⅱ),通过计算,用接前后两个图形中阴影部分的面积可以验证等式()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a+2b)(a-b)=a2+ab-2b2 D.(a-b)2=a2-2ab+b2考点:平方差公式的几何背景.分析:易求出图(1)阴影部分的面积=a2-b2,图(2)中阴影部分进行拼接后,长为a+b,宽为a-b,面积等于(a+b)(a-b),由于两图中阴影部分面积相等,即可得到结论.解答:解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2-b2;图(2)中阴影部分为矩形,其长为a+b,宽为a-b,则其面积为(a+b)(a-b),∵前后两个图形中阴影部分的面积,∴a2-b2=(a+b)(a-b).故选A.点评:本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不变得到等量关系.12. 如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分面积,可以验证下面一个等式是()A.(a+b)2=a2+2ab+b2 B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.a2+b2=1/2[(a+b)2+(a-b)2]考点:平方差公式的几何背景.分析:分别计算这两个图形阴影部分面积,根据面积相等即可得到.解答:解:第一个图形的阴影部分的面积=a2-b2;第二个图形是梯形,则面积是:1/2(2a+2b)•(a-b)=(a+b)(a-b).则a2-b2=(a+b)(a-b).故选C.点评:本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键.13. 如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个梯形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.a2-b2=1/2(2a-2b)(a-b) B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2 D.(a+2b)(a-b)=a2+ab-2b2考点:平方差公式的几何背景.分析:根据正方形的面积公式与梯形的面积公式,列出两个图形中的阴影部分的面积,再根据两个阴影部分的面积相等解答即可.解答:解:图1中,阴影部分的面积=a2-b2,根据图1可得,图2中梯形的高为(a-b),因此图2中阴影部分的面积=1/2(2a+2b)(a-b),根据两个图形中阴影部分的面积相等可得a2-b2=1/2(2a+2b)(a-b).故选A.点评:本题考查了平方差公式的几何解释,根据面积相等,列出两个图形的面积表达式是解题的关键.14. 关于以如图形面积从左到右的变化过程,能正确表示其中变化规律的等式是()A.(a+b)2=a2+2ab+b2 B.a2-b2=(a+b)(a-b)C.a2-2ab+b2=(a-b)2 D.(a+b)(a-b)=a2-b2考点:平方差公式的几何背景.专题:几何图形问题.分析:利用正方形的面积公式可知剩下的面积=a2-b2,而新形成的矩形面积为(a+b)(a-b),根据两者相等,即可验证平方差公式.解答:解:由题意得:a2-b2=(a+b)(a-b).故选B.点评:本题主要考查平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.15. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是()A.(a+b)2=a2+2ab+b2 B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2考点:平方差公式的几何背景.分析:首先求出甲的面积为a2-b2,然后求出乙图形的面积为(a+b)(a-b),根据两个图形的面积相等即可判定是哪个数学公式.解答:解:甲图形的面积为a2-b2,乙图形的面积为(a+b)(a-b),根据两个图形的面积相等知,a2-b2=(a+b)(a-b),故选C.点评:本题主要考查平方差的几何背景的知识点,求出两个图形的面积相等是解答本题的关键.16. 将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为()A.(a-b)2=a2-2ab+b2 B.(a+b)2=a2+2ab+b2C.(a+b)(a-b)=a2-b2 D.a(a-b)=a2-ab考点:平方差公式的几何背景.专题:证明题.分析:分别求出两个图形的面积,再根据两图形的面积相等即可得到恒等式.解答:解:图甲面积=(a-b)(a+b),图乙面积=a(a-b+b)-b×b=a2-b2,∵两图形的面积相等,∴关于a、b的恒等式为:(a+b)(a-b)=a2-b2.故选C.点评:本题考查了平方差公式的几何解释,根据面积相等分别求出图形的面积是解题的关键.17. 比较左、右两图的阴影部分面积,可以得到因式分解公式()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.a2-ab=a(a-b)考点:平方差公式的几何背景;矩形的判定与性质.专题:证明题.分析:过A作AE⊥BC于E,过D作DF⊥BC于F,得出矩形AEFD,求出BE值,求出高AE,根据矩形和正方形的面积公式求出第一个和第二个图形阴影部分的面积,根据阴影部分的面积相等即可得出答案.解答:解:过A作AE⊥BC于E,过D作DF⊥BC于F,∵AD∥BC,∴∠AEF=∠DAE=∠DFE=90°,则四边形ADFE是矩形,∴AD=EF,BE=CF=1/2(a-b),由图形可知:∠B=45°,∴AE=BE=1/2(a-b),∴第一个图形阴影部分的面积等于矩形QMNH的面积,是(a+b)×1/2(a-b)×2=(a+b)(a-b),第二个图形阴影部分的面积是a2-b2,∴a2-b2=(a+b)(a-b),故选A.点评:本题考查了对平方差公式的几何图形的运用,表示出阴影部分的面积是解此题的关键.。

相关文档
最新文档