CDMA 和复用技术
CDMA工作原理
CDMA工作原理CDMA(码分多址)是以分组的形式广播您的通话的,但与TDMA(时分多址)不同的是,所有通话均在同一信道上传递,它通过指定给各个对话的特殊代码来区分每个对话。
当您使用CDMA 电话时,它实际上接收了在您所使用的网络上传输的所有电话,但只有那些带有您的特殊代码的通话才会被从分组的数据状态重新转换为语音。
单个的CDMA网络单元在这三种数字协议(TDMA,GSM,CDMA)中是最大的,CDMA能管理网络单元覆盖的广阔空间,因为它的智能电话在靠近天线时会自动降低功率,而在远离天线时又会加大功率。
象GSM一样,CDMA以13Kbps的速率传输语音,以9600bps的速率传输数据,但它提供的通话质量在三种数字协议中是最清晰的,而且通话容量是模拟电话的20倍(请看下方的“CDMA工作原理”)。
CDMA既可以在800MHz也可以在1900MHz的频段上工作。
Qualcomm,这个最先将CDMA推向商用的公司,推出了一种双频段电话,被称为QCP2700它允许您在CDMA的两个频率之间进行切换。
象TDMA一样,CDMA在必需时也可以切换到模拟方式,但请注意,这常常是从数字连接变成一个虽然更可靠但质量却较差的模拟连接。
CDMA 工作原理1 拨号:当您拨了一个电话号码,这个号码将与您的电话ID号一起以无线电广播的形式发射出去2 分组传递:电话对您的语音进行数字化,并把它划分为数据位包,然后使用扩频技术广播这些数据包。
CDMA指定440亿个代码中一个代码代表这次对话,并将数据包分散在多个无线电频谱段上,这个代码使您的通话与在同一无线电频段上同时发射的其它通话区分开来。
3 接收与连接:距离最近的CDMA无线捕捉到您的电话的无线电广播,并将它传递到中央交换计算机,这个计算机识别您的电话ID。
这样,蜂窝服务电话提供商可以跟踪您的通话并根据空中占用时间进行计费。
中央交换计算机将您连到安装在电话公司总局的公用电话交换网上,或连到本系统中的其它蜂窝用户。
CDMA技术介绍
CDMA技术介绍1 CDMA的概念CDMA是码分多址的英文缩写(Code Division Multiple Access)。
在移动通信系统中,由于许多移动台要同时通过一个基站和其它移动台进行通信,因此必须对不同的移动台和基站发出的信号赋予不同的特征,以使基站能从众多的移动台信号中分辨出是哪个移动台发出的信号,同时各个移动台也能识别出基站发出的多个信号中哪一个是属于自己的,解决该问题的办法称为多址方式。
多址方式的基础是信号特征上的差异。
有了差异才能进行识别,能识别了才能进行选择。
一般情况下,信号的这种差异可以体现在某些参数上,如信号的工作频率、信号的出现时间以及信号所具有的特定波形等。
因此就产生了以下几种多址方式:FDMA(频分多址)-不同用户分配在时隙(出现时间)相同、工作频率不同的信道上;TDMA(时分多址)-不同用户分配在时隙不同、频率相同的信道上;CDMA(码分多址)-各个用户分配在时隙和频率均相同的信道上,以伪随机正交码(PN码)序列来区分各用户。
对于移动通信网络而言,由于用户数和通信业务量激增,一个突出的问题是在频率资源有限的条件下,如何提高通信系统的容量。
由于多址方式直接影响到移动通信系统的容量,所以采用何种多址方式,更有利于提高这种通信系统的容量,一直是人们非常关心的问题,也是当前研究和开发移动通信的热门课题。
经过多年的理论和实践证明,三种多址方式中:FDMA方式用户容量最小,TDMA方式次之,而CDMA方式容量最大。
CDMA对每个用户信号实现带宽扩展。
CDMA技术的最早应用是在军事通信领域,而对其在移动通信中应用的重视,始于80年代末期。
理论表明CDMA 系统扩频信号的强抗扰特性,可用来提高系统容量。
此外功率控制、话音激活、无线分区、纠错编码也可用在CDMA系统中以增加系统容量,其容量将比现有的FDMA方式大20倍,比TDMA方式大4倍,进而为CDMA技术在移动通信领域开辟了广阔的应用前景。
多路复用技术
信号复合
¶ Â à · ´ Ó · Ã Æ ÷ ß Ë · Ù Í ¨Ð Å Ï ß Â ·
信号分离
¶ Â à · ´ Ó · Ã Æ ÷
多路复用技术的分类:
◇ 频分多路复用FDMA ◇ 时分多路复用TDMA ◇ 波分多路复用WDMA
◇ 码分多路复用CDMA
1 频分多路复用(FDMA)
定义:是将具有一定带宽的信道分割成若干个有较小频带的子信 道,每个子信道传输一路信号,即供一个用户使用,这就是频分 多路复用。 特点: (1)在一条通信线路上设计有多路通信信道;
¦ ¸ Ê Â
¸Ï â Ë1 IJ µ ¨Æ × âÏ ¸ Ë1 ¨³ ² ¤ ¸Ï â Ë2 IJ µ ¨Æ × âÏ ¸ Ë2 ¨³ ² ¤
²í ¸ ϸ âÏ Ë Ä² µ ¨Æ × ¦ ¸ Ê Â ¨³ ² ¤ âÏ ¸ Ë3 ¦ ¸ Ê Â
¸Ï â Ë3 IJ µ ¨Æ ×
¨³ ² ¤ ¸Ï â Ë4 IJ µ ¨Æ ×
填空题
1、数据交换方式基本上分为三种 电路交换 、报文交 换和分组交换 。 2、分组交换有两种方式:数据报方式和虚电路方式。 3、用电路交换技术完成的数据传输要经历电路建立 阶段 、 数据传输阶段和拆除电路连接阶段 。 4、在计算机的通信子网中,其操作方式有两种,它 们是面向连接的电路交换方式和虚电路方式和无连接 的报文交换方式和数据报交换方式。 5、在数据报服务方式中,网络节点要为每个数据报/ 分组选择路由,在虚电路服务方式中,网络节点只在 连接建立时选择路由。
异步时分复用技术又被称为统计时分复用或智能时分复 用(ITDM)技术,它能动态地按需分配时隙,时间片位 置与信号源没有固定的对应关系
时分多路复用常用于传输数字信号。 但是也不局限于传输数字信号,模拟信号也 可 以同时交叉传输。另外,对于模拟信号, 时分多路复用和频分多路复用结合起来使用 也是可能的。一个传输系统可以频分许多条 通道,每条通道再用时分多路复用来细分。
cdma 原理
cdma 原理
CDMA (Code Division Multiple Access) 是一种无线通信技术,它的原理是利用编码和解码技术对信号进行分割和复用,使多个用户在同一频率带宽内同时进行通信。
CDMA技术的主要原理如下:
1. 扩频:CDMA技术中,每个用户的信号都会被编码成一串较长的扩频码。
扩频码是一种伪随机序列,其比特频率远远高于传输信号的比特频率。
通过扩频码,原始信号被扩展到更宽的频带上。
2. 复用:CDMA技术使用了碎片化复用的原理。
每个用户的扩频码都是不同的,并且彼此相互正交,使得多个用户的信号可以重叠在同一频率上而不会相互干扰。
接收端利用正交性可以将目标用户的信号从其他用户的信号中分离出来。
3. 解码:在接收端,接收到的复用的信号会经过一个与发送端相同的扩频码进行解码。
解码后的信号可以恢复为原始信号。
CDMA技术的优点在于其频谱利用效率较高,可以支持更多的用户数目,而且在信道干扰和多路径衰落等复杂环境下仍能保持通信质量。
此外,CDMA还具有抗干扰和保密性好的特点,使其成为许多移动通信系统的重要技术。
现代通信系统的主要技术
2.1.2 频分多路复用
例:贝尔公司的108系列调频方式的调制解调器的规范。
图2.3 FDM应用:调制解调器
2.1.2 频分多路复用
例:图2.4 给出了3路音频原始信号频分多路复用一条带宽为12KHz (60KHz~72KHz)的物理信道的示意图。
频移
图2.4 频分多路复用FDM
f (KHZ)
2.1.2 频分多路复用
注:音频信道带宽为4KHZ,有效带宽为3KHZ,信道两边各留500HZ 警戒频 带。 模拟电视信道带宽为6MHZ。
例:某传输系统,带宽为960MHZ,能传输多少路模拟电视节目?
2.1.3 时分多路复用
所谓时分多路复用(TDM)就是将一条物理的传输线路按时间分成若 干时间片轮换地为多个信号所使用,每个时间片由其中一个信号占用。
2. 分组交换(Packet Switching)
分组交换与报文变换最大的不同点是: (1)把数据传送单位的最大长度限制在较小的范围内,这样
每个节点所需要的存储量低了。 (2) 分组是较小的传输单位,只有出错的分组才会被重发,
因此大大降低了重发的比例和开销,提高了交换速度。
2. 分组交换(Packet Switching)
采用报文交换的优点是:
(1) 电路利用率高,不发报文不占信道; (2) 在电路交换网络上,当通信量变得很大时,就不能接受新的呼
叫。而在报文交换网络上,通信量大时仍然可以接收报文,不 过传送延迟会增加。 (3) 报文交换系统可以把一个报文发送到多个目的地,而电路交换 网络很难做到这一点。 (4) 节点对报文的可靠性负责: 收到报文的节点根据报文含有的地址进行路由; 节点对报文进行查错; 节点可以对报文进行速度和代码的转换。
SDM(空分复用)FDM(频分多路复用)TDM(时分多路复用)WDM(波分多路复用)CDMA(码分多址)
时分复用(TDM,Time Division Multiplexing)就是将提供给整个信道传输信息的时间划分成若干时间片(简称时隙),并将这些时隙分配给每一个信号源使用,每一路信号在自己的时隙内独占信道进行数据传输。时分复用技术的特点是时隙事先规划分配好且固定不变,所以有时也叫同步时分复用。其优点是时隙分配固定,便于调节控制,适于数字信息的传输;缺点是当某信号源没有数据传输时,它所对应的信道会出现空闲,而其他繁忙的信道无法占用这个空闲的信道,因此会降低线路的利用率。时分复用技术与频分复用技术一样,有着非常广泛的应用,电话就是其中最经典的例子,此外时分复用技术在广电也同样取得了广泛地应用,如SDH,ATM,IP和 HFC网络中CM与CMTS的通信都是利用了时分复用的技术。
CDMA是采用数字技术的分支——扩频通信技术发展起来的一种崭新而成熟的无线通信技术,它是在FDM和TDM的基础上发展起来的。FDM的特点是信道不独占,而时间资源共享,每一子信道使用的频带互不重叠;TDM的特点是独占时隙,而信道资源共享,每一个子信道使用的时隙不重叠;CDMA的特点是所有子信道在同一时间可以使用整个信道进行数据传输,它在信道与时间资源上均为共享,因此,信道的效率高,系统的容量大。CDMA的技术原理是基于扩频技术,即将需传送的具有一定信号带宽的信息数据用一个带宽远大于信号带宽的高速伪随机码(PN)进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去;接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。CDMA码分多址技术完全适合现代移动通信网所要求的大容量、高质量、综合业务、软切换等,正受到越来越多的运营商和用户的青睐。
频分复用(FDM,Frequency Division Multiplexing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。频分复用技术除传统意义上的频分 复用(FDM)外,还有一种是正交频分复用(OFDM)。
码分复用原理
码分复用原理码分复用原理(Code Division Multiple Access,CDMA)是一种数字通信技术,其基本思路是将多个用户的通信信息以不同的编码方式分别传送到目的地,然后再通过相应的解码方式将这些信息还原成源信息。
显然,这种编码和解码的方式需要满足一定的要求,才能保证信息的可靠性和保密性。
码分复用原理的主要思想是:通过对每个用户的信号进行独立的编码,使得不同用户的信号在传输中不发生干扰。
这种编码方式是将用户的信号与特定的码序列进行乘积运算,得到一个新的编码后的信号,然后将这个信号传输到接收端,接收端再将其与相应的码序列进行相关运算,得到源信号。
具体来说,在码分复用原理中,每个用户都拥有一个独特的随机码序列,这个序列通过所有用户都知道的方式广播出去。
当一个用户要发送信息时,他的原始数据按照与其独特的随机码序列相乘运算的方式进行编码,编码后的信号被传输到接收端。
接收端接收到所有用户的信号后,将所有信号与相应的随机码序列进行相关运算,就能得到原始数据。
由于不同用户的随机码序列不同,因此在接收端,只有对应用户的随机码序列才能使信号还原成源数据,其他用户的信号与该序列进行相关运算后,结果将不是原始数据。
码分复用原理的优点是可以克服时分复用时难以避免的时隙冲突问题,因此网络的容量大大提高。
由于每个用户的随机码序列是保密的,因此可以实现信息的保密传输。
码分复用原理是一种高效的数字通信技术,它通过独特的编码方式,实现了多个用户之间的信息分离传输和保密传输。
它在现代通信系统中得到广泛应用。
码分复用原理的应用广泛,其中最为常见的就是CDMA移动通信系统。
CDMA移动通信系统是一种基于码分复用原理的数字通信系统,它采用的是数字无线通信技术,能够实现移动电话、数据传输、短信和互联网接入等多种功能。
CDMA移动通信系统的优点是多方面的。
与传统的时分复用和频分复用相比,CDMA移动通信系统能够提供更高的通信容量和更好的语音质量。
CDMA基本原理
接入信道公用长码掩码
41 33 110001111 32 ACN 28 27 PCN
ห้องสมุดไป่ตู้
18
CDMA信道结构
CDMA系统反向业务信道结构
R-TCH bits Bits/Frame 16 40 80 172 Add Frame Quality Indicator Add 8 Encoder Tail Bits Convolution al Encoder R=1/3, K=9 Symbol Repetition Factpr 28.8 ksps 8X 4X 2X 1X
——T-ADD:导频信号的Ec/Io上门限
——T-DROP:导频信号的Ec/Io下门限 ——T-TDROP:Ec/Io小于T-DROP的延时计时器
20
CDMA主要参数
• SRCH_WIN_A,SRCH_WIN_N,SRCH_WIN_R:搜索窗 口尺寸的定义(用于搜索小区的信号)。
单位:chip
——SRCH_WIN_A:用于搜索有效(激活)和侯选导频信 号 ——SRCH_WIN_N:用于搜索相邻导频信号 ——SRCH_WIN_R:用于搜索剩余导频信号 • •
• 可允许所有Walsh码在各扇区复用 • 系统规定PN码最小偏移值为64chips,可以有512个时间偏置来作 扇区识别(215 /64=512)
同一扇区内所有CDMA信道的短码相同 不同扇区内的CDMA信道的短码不同
11
CDMA的码
WALSH码:区分前向信道(64阶WALSH函数)
导频信道采用全为0的W0; 同步信道采用0、1相间的W32; 寻呼信道采用W1-W7; 业务信道采用W8-W31,W33-W63。
多路复用技术
计算机网络通信原理——多路复用技术
1
多路复用的概念
• 多路复用技术是将多个信源的彼此无关的信号,组合在一 多路复用技术是将多个信源的彼此无关的信号, 是将多个信源的彼此无关的信号 条物理信道上进行传送的技术。 条物理信道上进行传送的技术。 • 多路复用的目的是充分利用昂贵的通信线路,尽可能地容 多路复用的目的是充分利用昂贵的通信线路, 纳较多的用户传输较多的信息。 纳较多的用户传输较多的信息。 • 常用的多路复用技术有:频分多路复用( FDM, 常用的多路复用技术有:频分多路复用( FDM, Frequency Division Multiplexing)、时分多路复用 Multiplexing)、 )、时分多路复用 TDM, Multiplexing)、 )、波分多路复用 (TDM,Time Division Multiplexing)、波分多路复用 WDM, Multiplexing) (WDM,Wavelength Division Multiplexing)和码分 多址(CDMA, Access) 多址(CDMA,Code Division Multiple Access)
CH1 CH2 LPF1 LPF2 调制器1 调制器 调制器2 调制器 …… CHn LPFn 调制器n 调制器 BPF1 BPF1 BPF1 相 加 器 信 道 BPFn BPF1 BPF2 解调器1 解调器 解调器2 解调器 …… 解调器n 解调器 LPFn
5
LPF1 LPF2
计算机网络通信原理——多路复用技术
注意
• 频分复用是利用各路信号在频率域不相互重叠来区分的。 若 频分复用是利用各路信号在频率域不相互重叠来区分的。 相邻信号之间产生相互干扰,将会使输出信号产生失真。 相邻信号之间产生相互干扰,将会使输出信号产生失真。 • 为了防止相邻信号之间产生相互干扰,应合理选择载波频率 为了防止相邻信号之间产生相互干扰, f1, f2, …, fn,并使各路已调信号频谱之间留有一定的保护带。 并使各路已调信号频谱之间留有一定的保护带。
常见的信道复用技术及特点
常见的信道复用技术及特点
信道复用技术是指多个通信信号共用同一信道进行传输的技术。
常见的信道复用技术包括频分复用(FDMA)、时分复用(TDMA)、码分复用(CDMA)和波分复用(WDM)等。
每种信道复用技术都有其特点和适用场景。
首先,频分复用(FDMA)是指将频段分成若干个较窄的子频带,每个用户占用一个子频带进行通信。
FDMA技术简单易实现,适用于语音通信等低速率应用,但由于频带资源有限,用户数受到限制。
其次,时分复用(TDMA)是指将时间分成若干个时隙,不同用户在不同时隙上进行通信。
TDMA技术能够充分利用信道资源,提高用户数和系统容量,适用于高速率数据通信和多用户接入场景。
再次,码分复用(CDMA)是指不同用户使用不同的扩频码进行通信,通过信道编码和解码技术实现用户信号的分离。
CDMA技术具有抗干扰能力强、频谱利用率高的优点,适用于抗干扰要求高的通信环境。
最后,波分复用(WDM)是指将不同波长的光信号传输在同一光纤中,通过波分复用器和波分复用器实现信号的分离和合并。
WDM技术可大幅提高光纤传输容量,适用于光通信和数据中心等高容量需求场景。
总的来说,不同的信道复用技术有着各自的特点和适用场景,可以根据具体的通信需求来选择合适的技术方案。
在实际应用中,还可以结合多种复用技术来满足更复杂的通信需求。
随着通信技术的不断发展,信道复用技术也将不断演进和完善,为通信系统的性能提升和容量扩展提供更多的可能。
信道复用技术的概念
信道复用技术的概念信道复用技术是指利用一条物理信道同时传输多个信号或数据流的技术。
它可以提高信道的利用效率,从而增加通信系统的容量和带宽利用率。
信道复用技术主要分为以下几种:1. 频分复用(FDMA):将频带划分为不同的频率子带,并将不同的信号分配到不同的子带上进行传输。
2. 时分复用(TDM):将时间划分为不同的时隙,并将不同的信号分配到不同的时隙上进行传输。
3. 码分复用(CDMA):利用不同的扩频码将不同的信号进行编码,然后同时传输到信道上,接收端根据接收到的扩频码解码出相应的信号。
4. 波分复用(WDM):利用不同的波长将不同的信号进行传输,每个波长对应一个独立的信道。
5. 码分时隙复用(TD-CDMA):结合了时分复用和码分复用的特点,将时间划分为不同的时隙,并对每个时隙进行扩频码编码。
这些信道复用技术根据不同的应用场景和需求可以选择合适的技术来进行信号的传输,以提高系统的效率和性能。
当需要在有限的信道资源上传输多个信号时,信道复用技术可以解决资源利用率低下的问题。
通过将多个信号进行复用,可以在相同的信道上同时传输多个信号,提高信道容量和带宽利用率。
频分复用(FDMA)是最常见和简单的信道复用技术之一。
它将可用频谱带宽划分为多个不重叠的频率子带,每个子带用于传输一个信号。
每个信号占据唯一的频率范围,并通过频率选择性滤波器进行分离。
这种方式适用于信号带宽相对较窄且稳定的情况。
时分复用(TDM)则是将时间划分为多个时隙,并将不同信号依次放置在这些时隙中进行传输。
每个信号只能在特定的时隙中进行传输。
发送端和接收端的时钟必须同步,以确保准确的数据传输。
码分复用(CDMA)通过为每个信号分配不同的扩频码,将多个信号同时传输到同一频率上。
接收端利用扩频码进行解码,将所需的信号提取出来。
这种方式具有较高的抗干扰性和隐私性,并适用于移动通信系统。
波分复用(WDM)是利用不同波长的光纤在同一光信道上传输多个信号。
时分多路复用
摘要数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往会超过传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(Multiplexing)。
采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。
频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Division Multiplexing)是两种最常用的多路复用技术。
时分多路复用(TDM)是按传输信号的时间进行分割,它使不同的信号在不同的时间内传送,将整个传输时间分为许多时间间隔(Slot time,TS,又称为时隙),每个时间片被一路信号占用,适用于媒体数据速率容量超过要传输的几路数字信号总速率的情况。
此次课程设计利用MATLAB/Simulink仿真软件实现对时分多路复用系统的模拟仿真,达到对输入信号实现复用和解复用的效果。
关键词:多路复用;解复用;系统仿真目录前言 (1)一、基本原理 (2)1.1多路复用技术 (2)1.2时分多路复用技术概述 (2)1.3TDM系统组成及工作原理 (3)1.4时分复用中的同步技术原理 (3)1.2.1位同步原理 (4)1.2.2帧同步原理 (4)1.2.3 载波同步原理 (4)1.2.4网同步原理 (4)二、模块简介 (6)2.1设计思路 (6)2.2 MATLAB概述 (6)2.3 Simulink简介 (6)2.4时分多路复用系统的基本原理 (7)三、时分复用系统仿真模型 (10)3.1 Simulink仿真框图搭建 (10)3.2 Subsystem/Subsystem1结构框图 (10)3.3参数设置 (11)3.4仿真结果及分析 (13)总结 (17)致谢 (18)参考文献 (19)前言在实际的通信系统中,经常需要在两地之间同时传送多路信号。
CDMA的工作原理与分析
CDMA 的工作原理与分析200920722032闫曦CDMA (Code Division Multiple Access )即码多分址,是一种信道复用技术,它允许每个用户在同一时刻同一信道上使用同一频带进行通信。
同时它也是一种以码分多址接入技术为基础的数字蜂窝移动通信系统。
码分多址系统是一扩频技术为基础,所谓扩频是以把信息的频谱扩展到宽带的传输技术,将扩频技术应用于通信系统中,可以加强系统的抗干扰、抗多径、隐藏、保密和多址能力。
适用于码多分址蜂窝通信系统的扩频技术是直接序列扩频(DS )简称直扩。
它的产生包括调制和扩频两个步骤。
比如,先用要传送的对载波进行调制,再用伪随机序列(PN 序列)扩展信号频谱;也可以先用伪随机序列与信息相乘(把信息的频谱扩展),在对载波进行调制,二者是等效的。
在CDMA 系统中,不同用户传送的信息是靠各自不同的编码序列来区分的。
虽然信号在时间域和频率域是重叠的,但用户信号可以依靠各自不同的编码来区分。
IS-95标准的全称是“双规模宽带扩频蜂窝系统的移动台-基站兼容标准”,这说明IS-95标准是一个公共空中接口(CAI )。
它没有完全规定一个系统如何实现,而只是提出了心灵协议和数据结构的特点和限制,不同的制造商可采取不同的技术和工艺制造出符合IS-95标准规定的系统和设备。
与其他蜂窝标准不同的是,根据话音激活和系统网络要求,IS-95的用户数据速率(不是信道码片速率)要实时的改变。
而且,IS-95的上行链路和下行链路采用不同的调制和扩频技术。
在下行链路上,基站通过采用不同的扩频序列同时发送小区内全部用户的用户数据,使得所有移动台在估计信道条件时,可以使用相干载波检测。
在上行链路上,所有移动台以异步方式响应,并且由于基站的功率控制,理想情况下,每个移动台具有相同的信号电平值。
IS-95系统采用的话音编译器是美国高通公司自行研制的9600bps 码激励线性预测声码器(QCELP ),该声码器检测到话音后就被激活,并在静默期间将数据速率降至1200bps ,中间数据速率为2400、4800和9600bps ,当然数据速率也可以自行设定。
一、三种传输速率
补充资料一、三种传输速率1、符号传输速率(码元速率、波特率)RB指单位时间传输码元的数目。
单位为波特,记为Baud或B。
码元速率与进制无关,只与码元宽度有关。
码元速率又叫调制速率。
它表示调制过程中,单位时间调制信号波(即码元)的变换次数。
2、信息速率(比特率)Rb (Rb= RB.Log2M M是进制数)指每秒钟传输的信息量。
单位:比特/秒,记为bit/s或b/s或bps。
注意在实际系统中常用比特率(单位bps)衡量一个系统的传输速率,其一般指的是单位时间内传输的二进制信号的位数,而不是信息速率的概念。
3、传送速率(消息传输速率)Rm=αRb信道容量——能够传输的最大信息速率(带宽)通信系统的主要性能指标——有效性、可靠性有效性——消息传输的速度,即在给定的信道内,希望单位时间传输更多的消息,模拟通信系统中用带宽衡量,数字通信系统中用速率和频带利用率衡量。
可靠性——指消息传输的质量,即在给定的信道内接收到信息的准确程度,模拟通信系统中用系统输出端的信噪比衡量,数字通信系统中用差错率、可靠度、中断率衡量。
二、复用技术通信信道是通信网络的重要组成部分和宝贵的资源之一,如何充分、有效地利用信道,加大吞吐容量,提高利用率和经济性,是通信网络所面临的一个重要问题。
目前在有线通信系统中常采用频分复用、(同步)时分复用、异步时分复用以及新的光复用技术;在无线通信系统中常采用多址技术。
1、 频分复用(FDM)FDM是指将N个信号复用在一条含有N个信道的线路上,每个信道占用的频带互不相同,也即各路信号在频率上是分开的,而在时间上是重叠的。
2、 时分复用(TDM)TDM是指多个用户在不同的时间段(时隙)占用或共享公共资源的方法。
它的基本原理是基于时隙划分和分配。
对时隙的分配即是指将信道各时隙固定地或以帧为周期分给用户。
但对于某一终端来讲,大部分时间内可能没有信息传送,这使得一帧中的许多时隙被浪费了。
3、统计时分复用(ATDM)是指按用户的需要将信道时隙动态地分配给各用户,即当终端有数据要传送时,才会分配到时隙。
通信原理的讲义第十一章复用
故,在乘积之后,信号的带宽便拓宽了, 这就是扩频。
可见,扩频后信号的功
率在原信号带宽的功率
原信号频谱
内低于原信号。
扩频后信号频谱 这对于军事上的应用非
常重要,即使得我方的
通信信号不易被敌方检
W频率
测到。
扩频的另外一个特点是抗干扰:
窄带噪声
扩频后信号
W频率 经过解扩之后
原信号
窄带噪声带宽展
W频率
i 为第i 路信号及特征波形的时延参数, i 为第i 路信
号的相位参数, wc 为载波频率。 现考虑用 ck (t ) 特征波形对第k 路信号实现解扩,可
认为此时在第k 路上,接收端已实现同步。即此时可认 为, k 0 , k 0
用2ck (t ) cos( wct ) 去乘s(t ) 得
第十一章 复用
复用又称多址或多路。
通信中复用的本质是:在同一信道上允 许多路信号同时传输。
目前复用技术主要包括:FDM/FDMA频 分复用/多址(波分复用)、TDM/TDMA 时分复用/多址、CDM/CDMA码分复用/ 多址。
11.1 频分复用/波分复用
所谓频分复用,就是用不同的频率传送 各路消息,以实现通信。
滤 去 2wc 信 号
r1 ( t )
dk
(
t
)
c
2 k
(
t
)
N
d i ( t i ) c i ( t i ) c k ( t ) cos( i )
i1,i k
将 r1(t) 在(0,T)上做积分,得 T 时刻接收机输 出为
T
D (T ) t 0 r1 (t )dt
复用技术PPT课件
– T1 – E1 – SONET/SDH
23
统计时分多路复用实例
24
电话业务框图
数字线路具有更高的速度、更好的质量,更好的抗噪性能
25
模拟交换业务
:PSTN
最常见的拨号业务:双绞线连接用户的听筒和网络; 这种连接被称为本地环,进入的网络称为公用电话交换网26
T- 1线路系统
36
E线路速率
E Line E-1 E-2 E-3 E-4
Rate (Mbps)
2.048
8.448
34.368 139.264
Voice Channels
30
120
480 1920
37
数字传输系统的高次群
38
ADSL-非对称数字用户环路
Asymmetrical Digital Subscriber Loop 它是运行在原有普通电话线上的一种新的高速、 宽带技术。 所谓非对称主要体现在上行速率(最大为1.5Mbps) 和下行速率(1.5Mbps~9Mbps )的非对称性上。 其传输距离最长可以达到6km。ADSL的缺点是非 常复杂且功耗很大(大约每条线路需要5W)。
6
FDM复用——频域
7
FDM解复用——时域
8
FDM解复用——频域
9
频分复用应用举例
传统的频分复用典型的应用莫过于广电 HFC网络电视信号的传输了,不管是模拟 电视信号还是数字电视信号都是如此,因 为对于数字电视信号而言,尽管在每一个 频道(8 MHz)以内是时分复用传输的, 但各个频道之间仍然是以频分复用的方式 传输的。
30
cdma系统中使用的多路复用技术
cdma系统中使用的多路复用技术
在CDMA系统中,使用了以下多路复用技术:
1. CDMA多址技术:CDMA(Code Division Multiple Access)
是一种通过编码技术实现多用户之间共用同一个频带的技术。
每个用户使用独特的扩频码来对信号进行编码和解码,使得信号能够在频带上同时传输,从而实现多用户同时通信。
2. 扩频复用:CDMA系统中的每个用户通过将其数据信号与
扩频码相乘,在宽带信道上进行传输。
这种扩宽信号带宽的方式使得多个用户的信号能够在相同的频段上同时传输。
3. 功率控制:CDMA系统中,不同用户之间共享相同的频带,因此需要对不同用户的信号进行功率控制,以确保各用户的信号能够在同一频段上同时传输且不产生干扰。
4. 随机接入:CDMA系统中的用户在发送数据之前,需要经
过一定的随机接入过程,通过随机选取某个扩频码以及时间槽的方式来实现用户之间的资源分配。
总的来说,CDMA系统通过CDMA多址技术、扩频复用、功
率控制和随机接入等多路复用技术,实现了多用户在相同频段上同时传输的能力。
这种技术使得CDMA系统具有较高的频
谱利用率和抗干扰能力。
计算机网络技术基础04 传输、复用和交换技术
·N · · · · ·
·N · · · · ·
· · · · · ·
Ts1 Ts2
Ts3
图 2.17 时分复用示意图
信道复用技术
时分复用
时分复用分为:同步时分复用和异步时分(统计 时分) 复用。 同步时分复用:同步时分复用的每个时间片长度 固定且预先指定,因而从各个信号源发送时是固定同 步的。 异步时分复用:在异步时分复用中,时间片是按 需要动态分配的,提高了传输介质的利用率。时间片 与输入装置之间没有一一对应关系,所以数据单元必 须包含地址信息,降低了传输效率。
9
数据通信传输方式
基带传输与频带传输 1、基带传输 基带传输是指在基带信道上直接传输基带信号的方 式。所谓基带信号是指由数据或消息直接转换成的原始 电信号,基带传输主要用于短距离或有线电系统中。
基带信 号输入
信道信号形成器 信道 滤波器 抽样判决器 基带信 号输出
噪声源
数据通信传输方式
基带传输与频带传输 2、 频带传输 频带传输是包括调制解调过程的传输系统。有时也 把用模拟信道传输数字信号的方法称为频带传输,频带 传输主要用于长距离或无线电系统中。
1、模拟数据与数字数据 模拟数据:数据的状态是连续变化和不可数的。 数字数据:数据的状态是离散的和可数的。 2、 模拟信号与数字信号 模拟信号:电信号的参量对应于模拟数据而连续取 值,这样的信号称为模拟信号。 数字信号:电信号的参量对应于离散数据并离散取 值,这样的信号称为数字信号。
4
数据通信传输方式
16
信道复用技术
码分复用
码分复用技术又称码分多址技术( CDMA ), 是基于码型分割信道,每一个用户分配一个地址 码,这些地址码码型互不重叠,以区分每一个用 户。 码分复用技术就是用扩频通信中不同码型的 扩频码之间相关特性,分配给用户不同的扩频码。 CDMA特点:抗干扰能力强;隐蔽性好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波分复用
光通信是由光来运载信号进行传输的方式。在光通 信领域,人们习惯按波长而不是按频率来命名。因 此,所谓的波分复用(WDM,Wavelength Division Multiplexing)其本质上也是频分复用而已。 复用方式 (1)1 310 nm和1 550 nm波长的波分复用 (2)粗波分复用 (3)密集波分复用
密集波分复用
密集波分复用技术(DWDM)可以承载8~160个波长, 而且随着DWDM技术的不断发展,其分波波数的上 限值仍在不断地增长,间隔一般≤1.6 nm,主要应用 于长距离传输系统。在所有的DWDM系统中都需要 色散补偿技术(克服多波长系统中的非线性失真—— 四波混频现象)。在16波DWDM系统中,一般采用常 规色散补偿光纤来进行补偿,而在40波DWDM系统 中,必须采用色散斜率补偿光纤补偿。DWDM能够 在同一根光纤中把不同的波长同时进行组合和传输, 为了保证有效传输,一根光纤转换为多根虚拟光纤。 目前,采用DWDM技术,单根光纤可以传输的数据 流量高达400 Gbit/s,随着厂商在每根光纤中加入更 多信道,每秒太位的传输速度指日可待。
频分复用
频分复用(FDM,Frequency Division Multiplexing) 就是将用于传输信道的总带宽划分成若干个子频带 (或称子信道),每一个子信道传输1路信号。频分复 用要求总频率宽度大于各个子信道频率之和,同时 为了保证各子信道中所传输的信号互不干扰,应在 各子信道之间设立隔离带,这样就保证了各路信号 互不干扰(条件之一)。频分复用技术的特点是所有子 信道传输的信号以并行的方式工作,每一路信号传 输时可不考虑传输时延,因而频分复用技术取得了 非常广泛的应用。频分复用技术除传统意义上的频 分复用(FDM)外,还有一种是正交频分复用(OFDM)。
1.CDMA是扩频通信的一种,它具有扩频 通信的以下特点:
⑴抗干扰能力强。这是扩频通信的基本特点,是所 有通信方式无法比拟的。 ⑵宽带传输,抗衰落能力强。 ⑶由于采用宽带传输,在信道中传输的有用信号的 功率比干扰信号的功率低得多,因此信号好像隐蔽 在噪声中;即功率谱密度比较低,有利于信号隐蔽。 ⑷利用扩频码的相关性来获取用户的信息,抗截获 的能力强。
码分复用
码分复用(CDM,Code Division Multiplexing)是靠 不同的编码来区分各路原始信号的一种复用方式, 主要和各种多址技术结合产生了各种接入技术,包 括无线和有线接入。 分类: (1)FDMA (2)TDMA时分多址 (3)CDMA码分多址 (4)同步码分多址技术
时分复用
时分复用(TDM,Time Division Multiplexing)就是 将提供给整个信道传输信息的时间划分成若干时间 片(简称时隙),并将这些时隙分配给每一个信号源使 用,每一路信号在自己的时隙内独占信道进行数据 传输。时分复用技术的特点是时隙事先规划分配好 且固定不变,所以有时也叫同步时分复用。 优点:时隙分配固定,便于调节控制,适于数字信 息的传输; 缺点:当某信号源没有数据传输时,它所对应的信 道会出现空闲,而其他繁忙的信道无法占用这个空 闲的信道,因此会降低线路的利用率。
复用技术
复用技术是指一种在传输路径上综合多路信道,然 后恢复原机制或解除终端各信道复用技术的过程。 在数据通信中,复用技术提高了信道传输效率,有 广泛应用。多路复用技术是在发送端将多路信号进 行组合(如广电前端使用的混合器),在一条专用的物 理信道上实现传输,接收端再将复合信号分离出来。 多路复用技术主要有两大类:频分多路复用(即频分 复用)和时分多路复用(即时分复用),波分复用和统 计复用本质上也属于这两种复用技术。另外还有其 他复用技术,如码分复用、极化波复用和空分复用。
2.在扩频CDMA通信系统中,由于采用了 新的关键技术而具有一些新的特点:
⑴采用了多种分集方式。除了传统的空间分集外。由于是宽带传输起到了频率分集 的作用,同时在基站和移动台采用了RAKE接收机技术,相当于时间分集的作用。 ⑵采用了话音激活技术和扇区化技术。因为CDMA系统的容量直接与所受的干扰有 关,采用话音激活和扇区化技术可以减少干扰,可以使整个系统的容量增大。 ⑶采用了移动台辅助的软切换。通过它可以实现无缝切换,保证了通话的连续性, 减少了掉话的可能性。处于切换区域的移动台通过分集接收多个基站的信号,可以 减低自身的发射功率,从而减少了对周围基站的干扰,这样有利于提高反向联路的 容量和覆盖范围。 ⑷采用了功率控制技术,这样降低了平准发射功率。 ⑸具有软容量特性。可以在话务量高峰期通过提高误帧率来增加可以用的信道数。 当相邻小区的负荷一轻一重时,负荷重的小区可以通过减少导频的发射功率,使本 小区的边缘用户由于导频强度的不足而切换到相临小区,使负担分担。 ⑹兼容性好。由于CDMA的带宽很大,功率分布在广阔的频谱上,功率话密度低, 对窄带模拟系统的干扰小,因此两者可以共存。即兼容性好。 ⑺CDMA的频率利用率高,不需频率规划,这也是CDMA的特点之一。 ⑻CDMA高效率的OCELP话音编码。话音编码技术是数字通信中的一个重要课题。 OCELP是利用码表矢量量化差值的信号,并根据语音激活的程度产生一个输出速率 可变的信号。这种编码方式被认为是目前效率最高的编码技术,在保证有较好话音 质量的前提下,大大提高了系统的容量。这种声码器具有8kbit/S和13kbit/S两种速 率的序列。8kbit/S序列从1.2kbit/s到9.6kbit/s可变,13kbit/S序列则从1.8kbt/s到 14.4kbt/S可变。最近,又有一种8kbit/sEVRC型编码器问世,也具有8kbit/s声码器 容量大的特点,话音质量也有了明显的提高。
CDMA 和复用技术
CDMA
定义 特点
定义AND原理
码分多址(CDMA)是在数字技术的分支--扩频通信技术上 发展起来的一种崭新而成熟的无线通信技术。 。CDMA技术的原理是基于扩频技术,即将需传送的具 有一定信号带宽信息数据,用一个带宽远大于信号带宽的 高速伪随机码进行调制,使原数据信号的带宽被扩展,再 经载波调制并发送出去。接收端使用完全相同的伪随机码, 与接收的带宽信号作相关处理,把宽带信号换成原信息数 据的窄带信号即解扩,以实现信息通信。 CDMA是指一种扩频多址数字式通信技术,通过独特的 代码序列建立信道,可用于二代和三代无线通信中的任何 一种协议。CDMA是一种多路方式,多路信号只占用一 条信道,极大提高带宽使用率,应用于800MHz和 1.9GHz的超高频(UHF)移动电话系统。CDMA使用带扩 频技术的模-数转换(ADC),输入音频首先数字化为二进 制元。传输信号频率按指定类型编码
FDMA
FDMA频分多址采用调频的多址技术,业务信道在 不同的频段分配给不同的用户。FDMA适合大量连 续非突发性数据的接入,单纯采用FDMA作为多址 接入方式已经很少见。目前中国联通、中国移动所 使用的GSM移动电话网就是采用FDMA和TDMA两 种方式的结合。
TDMA时分多址
TDMA时分多址采用了时分的多址技术,将业务信 道在不同的时间段分配给不同的用户。TDMA的优 点是频谱利用率高,适合支持多个突发性或低速率 数据用户的接入。除中国联通、中国移动所使用的 GSM移动电话网采用FDMA和TDMA两种方式的结 合外,广电HFC网中的CM与CMTS的通信中也采用 了时分多址的接入方式(基于DOCSIS1.0或1.1和 Eruo DOCSIS1.0或1.1)。
同步码分多址技术
同步码分多址(SCDMA,Synchrnous Code Division Multiplexing Access)指伪随机码之间是同 步正交的,既可以无线接入也可以有线接入,应用 较广泛。广电HFC网中的CM与CMTS的通信中就用 到该项技术,例如美国泰立洋公司(Terayon)和北京 凯视通电缆电视宽带接入,结合ATDM(高级时分多 址)和SCDMA上行信道通信(基于DOCSIS2.0或 Eruo DOCSIS2.0)。 中国第3代移动通信系统也采用同步码分多址技术, 它意味着代表所有用户的伪随机码在到达基站时是 同步的,由于伪随机码之间的同步正交性,可以有 效地消除码间干扰,系统容量方面将得到极大的改 善,它的系统容量是其他第移动通信标准的4~5 倍。
1 310 NM和1 550 NM波长的波分复用
这种复用技术在20世纪70年代初时仅用两个波长:1 310 nm窗口一个波长,1 550 nm窗口一个波长,利 用WDM技术实现单纤双窗口传输,这是最初的波分 复用的使用情况。
粗波分复用
继在骨干网及长途网络中应用后,波分复用技术也开始在 城域网中得到使用,主要指的是粗波分复用技术。 CWDM使用1 200~1 700 nm的宽窗口,目前主要应用波 长在1 550 nm的系统中,当然1 310 nm波长的波分复用 器也在研制之中。粗波分复用(大波长间隔)器相邻信道的 间距一般≥20 nm,它的波长数目一般为4波或8波,最多 16波。当复用的信道数为16或者更少时,由于CWDM系 统采用的DFB激光器不需要冷却,在成本、功耗要求和 设备尺寸方面,CWDM系统比DWDM系统更有优势, CWDM越来越广泛地被业界所接受。CWDM无需选择成 本昂贵的密集波分解复用器和“光放”EDFA,只需采用 便宜的多通道激光收发器作为中继,因而成本大大下降。 如今,不少厂家已经能够提供具有2~8个波长的商用 CWDM系统,它适合在地理范围不是特别大、数据业务 发展不是非常快的城市使用。
传统的频分复用
传统的频分复用典型的应用莫过于广电HFC网络电 视信号的传输了,不管是模拟电视信号还是数字电 视信号都是如此,因为对于数字电视信号而言,尽 管在每一个频道(8 MHz)以内是时分复用传输的,但 各个频道之间仍然是以频分复用的方式传输的。
正交频分复用