数学专业英语
数学专业英语
数学专业英语课后答案2.1数学、方程与比例词组翻译1.数学分支branches of mathematics,算数arithmetics,几何学geometry,代数学algebra,三角学trigonometry,高等数学higher mathematics,初等数学elementary mathematics,高等代数higher algebra,数学分析mathematical analysis,函数论function theory,微分方程differential equation2.命题proposition,公理axiom,公设postulate,定义definition,定理theorem,引理lemma,推论deduction3.形form,数number,数字numeral,数值numerical value,图形figure,公式formula,符号notation(symbol),记法/记号sign,图表chart4.概念conception,相等equality,成立/真true,不成立/不真untrue,等式equation,恒等式identity,条件等式equation of condition,项/术语term,集set,函数function,常数constant,方程equation,线性方程linear equation,二次方程quadratic equation5.运算operation,加法addition,减法subtraction,乘法multiplication,除法division,证明proof,推理deduction,逻辑推理logical deduction6.测量土地to measure land,推导定理to deduce theorems,指定的运算indicated operation,获得结论to obtain the conclusions,占据中心地位to occupy the centric place汉译英(1)数学来源于人类的社会实践,包括工农业的劳动,商业、军事和科学技术研究等活动。
数学专业英语
举一个简单的例子,当常微分方程满足f‟(x) = f(x) 的关系时,最特殊的情况是指数函数 f(x) = ex
We shall see presently that every solution of (9.1) f‟(x) = f(x) must be of the form f(x) = Cex , where C may be any constant.
The study of differential equations is one part of mathematics that, perhaps more than any other , has been directly inspired by mechanics, astronomy, and mathematical physics .Its history began in the 17th century when Newton, Leibniz, and the Bernoullis solved some simple differential equations arising from problems in geometry and mechanics .
displacement Bernoulli
n.位移
n. (人名) 伯努利
The Bernoullis 伯努利(家族) mathematical physics 数学物理
A large variety of scientific problems arise in which one tries to determine something from its rate of change.
这些方程叫做微分方程,他们的研究方式 是最难的数学分ations are classified under two main headings: ordinary and partial, depending on whether the unknown is a function of just one variable or of two or more variables. classified 分类 variable 变量
数学专业英语词汇
数学专业英语词汇相信自己比依赖别人重要。
用尽心机不如静心做事数学 mathematics, maths(BrE), math(AmE) 公理 axiom 定理 theorem 计算calculation 算 operation 证明 prove 假设 hypothesis, hypotheses(pl.) 命题 proposition 算术 arithmetic 加 plus(prep.), add(v.), addition(n.) 被加数 augend, summand 加数 addend 和 sum 减 minus(prep.), subtract(v.), subtraction(n.) 被减数 minuend 减数 subtrahend 差 remainder 乘times(prep.), multiply(v.), multiplication(n.) 被乘数 multiplicand, faciend 乘数 multiplicator 积 product 除 divided by(prep.), divide(v.), division(n.) 被除数 dividend 除数 divisor 商 quotient 等于 equals, is equal to, is equivalent to 大于 is greater than 小于 is lesser than 大于等于 is equal or greater than 小于等于 is equal or lesser than 运算符operator 平均数mean 算术平均数arithmatic mean 几何平均数geometric mean n个数之积的n次方根倒数(reciprocal) x的倒数为1/x 有理数 rational number 无理数 irrational number 实数 real number 虚数 imaginary number 数字 digit 数 number 自然数 natural number 整数 integer 小数 decimal 小数点 decimal point 分数 fraction 分子 numerator 分母 denominator 比ratio 正 positive 负 negative 零 null, zero, nought, nil 十进制 decimal system 二进制 binary system 十六进制 hexadecimal system 权 weight, significance 进位 carry 截尾 truncation 四舍五入 round 下舍入 round down 上舍入 round up 有效数字 significant digit 无效数字 insignificant digit 代数 algebra 公式 formula, formulae(pl.) 单项式 monomial 多项式polynomial, multinomial 系数 coefficient 未知数 unknown, x-factor, y-factor, z-factor 等式,方程式 equation 一次方程 simple equation 二次方程quadratic equation 三次方程 cubic equation 四次方程 quartic equation 不等式 inequation 阶乘 factorial 对数 logarithm 指数,幂 exponent 乘方power 二次方,平方 square 三次方,立方 cube 四次方 the power of four, the fourth power n次方 the power of n, the nth power 开方 evolution, extraction 二次方根,平方根 square root 三次方根,立方根 cube root 四次方根 the root of four, the fourth root n次方根 the root of n, the nth root sqrt(2)=1.414 sqrt(3)=1.732sqrt(5)=2.236 常量 constant 变量 variable 坐标系 coordinates 坐标轴x-axis, y-axis, z-axis 横坐标 x-coordinate 纵坐标 y-coordinate 原点origin 象限quadrant 截距(有正负之分)intercede (方程的)解solution 几何geometry 点 point 线 line 面 plane 体 solid 线段 segment 射线 radial 平行 parallel 相交 intersect 角 angle 角度 degree 弧度 radian锐角 acute angle 直角 right angle 钝角 obtuse angle 平角 straight angle 周角perigon 底 base 边 side 高 height 三角形 triangle 锐角三角形 acute triangle 直角三角形 right triangle 直角边 leg 边 hypotenuse 勾股定理Pythagorean theorem 钝角三角形 obtuse triangle 不等边三角形 scalene triangle 等腰三角形 isosceles triangle 等边三角形 equilateral triangle 四边形 quadrilateral 平行四边形 parallelogram 矩形 rectangle 长 length 宽 width 周长 perimeter 面积 area 相似 similar 全等 congruent 三角trigonometry 正弦 sine 余弦 cosine 正切 tangent 余切 cotangent 正割secant 余割 cosecant 反正弦 arc sine 反余弦 arc cosine 反正切 arc tangent 反余切 arc cotangent 反正割 arc secant 反余割 arc cosecant集合aggregate 元素 element 空集 void 子集 subset 交集 intersection 并集union 补集 complement 映射 mapping 函数 function 定义域 domain, field of definition 值域 range 单调性 monotonicity 奇偶性 parity 周期性periodicity 图象 image 数列,级数 series 微积分 calculus 微分differential 导数 derivative 极限 limit 无穷大 infinite(a.) infinity(n.) 无穷小 infinitesimal 积分 integral 定积分 definite integral 不定积分indefinite integral 复数 complex number 矩阵 matrix 行列式 determinant 圆 circle 圆心 centre(BrE), center(AmE) 半径 radius 直径 diameter 圆周率 pi 弧 arc 半圆 semicircle 扇形 sector 环 ring 椭圆 ellipse 圆周 circumference 轨迹 locus, loca(pl.) 平行六面体parallelepiped 立方体 cube 七面体 heptahedron 八面体 octahedron 九面体enneahedron 十面体 decahedron 十一面体 hendecahedron 十二面体dodecahedron 二十面体 icosahedron 多面体 polyhedron 旋转 rotation 轴axis 球 sphere 半球 hemisphere 底面 undersurface 表面积 surface area 体积 volume 空间 space 双曲线 hyperbola 抛物线 parabola 四面体 tetrahedron 五面体 pentahedron 六面体 hexahedron菱形 rhomb, rhombus, rhombi(pl.), diamond 正方形 square 梯形 trapezoid 直角梯形 right trapezoid 等腰梯形isosceles trapezoid 五边形 pentagon 六边形 hexagon 七边形 heptagon 八边形 octagon 九边形 enneagon 十边形 decagon 十一边形 hendecagon 十二边形dodecagon 多边形 polygon 正多边形 equilateral polygon 相位 phase 周期period 振幅 amplitude 内心 incentre(BrE), incenter(AmE) 外心excentre(BrE), excenter(AmE) 旁心 escentre(BrE), escenter(AmE) 垂心orthocentre(BrE), orthocenter(AmE) 重心 barycentre(BrE), barycenter(AmE) 内切圆 inscribed circle 外切圆 circumcircle 统计 statistics 平均数average 加权平均数 weighted average 方差 variance 标准差 root-mean-square deviation, standard deviation 比例 propotion 百分比 percent 百分点 percentage 百分位数 percentile 排列 permutation 组合 combination 概率,或然率 probability 分布 distribution 正态分布 normal distribution 非正态分布 abnormal distribution 图表 graph 条形统计图 bar graph 柱形统计图 histogram 折线统计图 broken line graph 曲线统计图 curve diagram 扇形统计图 pie diagram abscissa 横坐标 absolute value 绝对值 acute angle 锐角 adjacent angle 邻角 addition 加 algebra 代数 altitude 高 angle bisector 角平分线 arc 弧 area 面积 arithmetic mean 算术平均值(总和除以总数) arithmetic progression 等差数列(等差级数) arm 直角三角形的股 at 总计(乘法) average 平均值 base 底 be contained in 位于...上 bisect 平分center 圆心 chord 弦 circle 圆形 circumference 圆周长 circumscribe 外切,外接 clockwise 顺时针方向 closest approximation 最相近似的combination 组合 common divisor 公约数,公因子 common factor 公因子complementary angles 余角(二角和为90度) composite number 合数(可被除1及本身以外其它的数整除) concentric circle 同心圆 cone 圆锥(体积,1/3*pi*r*r*h) congruent 全等的 consecutive integer 连续的整数coordinate 坐标的 cost 成本 counterclockwise 逆时针方向 cube 1.立方数 2.立方体(体积,a*a*a 表面积,6*a*a) cylinder 圆柱体 decagon 十边形 decimal 小数 decimal point 小数点 decreased 减少 decrease to 减少到 decrease by 减少了 degree 角度 define 1.定义 2.化简 denominator 分母 denote 代表,表示 depreciation 折旧 distance 距离 distinct 不同的 dividend 1. 被除数 2.红利 divided evenly 被除数 divisible 可整除的 division 1.除 2.部分divisor 除数 down payment 预付款,定金 equation 方程 equilateral triangle 等边三角形 even number 偶数 expression 表达 exterior angle 外角face (立体图形的)某一面 factor 因子 fraction 1.分数 2.比例 geometric mean 几何平均值(N个数的乘积再开N次方) geometric progression 等比数列(等比级数) have left 剩余 height 高 hexagon 六边形 hypotenuse 斜边improper fraction 假分数 increase 增加 increase by 增加了 increase to 增加到 inscribe 内切,内接 intercept 截距 integer 整数 interest rate 利率in terms of... 用...表达 interior angle 内角 intersect 相交 irrational无理数 isosceles triangle 等腰三角形 least common multiple 最小公倍数least possible value 最小可能的值 leg 直角三角形的股 length 长 listprice 标价 margin 利润 mark up 涨价 mark down 降价 maximum 最大值 median, medium 中数(把数字按大小排列,若为奇数项,则中间那项就为中数,若为偶数项,则中间两项的算术平均值为中数。
数学专业英语常用词汇-14页精选文档
数学专业英语词汇代数部分1. 有关数*算add,plus 加?subtract 减?difference 差??multiply, times 乘?product 积?divide 除?divisible 可被整除的?divided evenly被整除? dividend 被除数,红利?divisor 因子,除数?quotient 商?remainder余数??factorial 阶乘?power 乘方?radical sign, root sign 根号? round to四舍五入?to the nearest 四舍五入2. 有关集合union 并集?proper subset 真子集?solution set 解集??3.有关代数式、方程和不等式algebraic term 代数项?like terms, similar terms同类项? numerical coefficient 数字系数? literal coefficient 字母系数?? inequality 不等式?triangle inequality 三角不等式?? range 值域??original equation 原方程? equivalent equation 同解方程,等价方程?linear equation 线性方程(e.g. 5?x?+6=22)?4.有关分数和小数proper fraction真分数?improper fraction 假分数?mixed number 带分数?vulgar fraction,common fraction 普通分数?simple fraction简分数?complex fraction繁分数?? numerator 分子?denominator 分母?(least) common denominator(最小)公分母?quarter 四分之一?decimal fraction 纯小数?infinite decimal 无穷小数recurring decimal循环小数?tenths unit 十分位??5. 基本数学概念arithmetic mean 算术平均值? weighted average 加权平均值? geometric mean 几何平均数? exponent 指数,幂?base 乘幂的底数,底边?cube 立方数,立方体?square root平方根?cube root 立方根??common logarithm 常用对数?digit 数字?constant 常数?variable 变量??inverse function反函数? complementary function 余函数? linear 一次的,线性的? factorization 因式分解?absolute value绝对值,e.g.|-32|=32?round off四舍五入 ?6.有关数论natural number 自然数?positive number 正数?negative number 负数?odd integer, odd number 奇数?even integer, even number 偶数? integer, whole number 整数?positive whole number 正整数? negative whole number 负整数?? consecutive number 连续整数?real number, rational number 实数,有理数?irrational(number)无理数??inverse 倒数?composite number 合数 e.g. 4,6,8,9,10,12,14,15……?prime number 质数 e.g. 2,3,5,7,11,13,15……注意:所有的质数(2除外)都是奇数,但奇数不一定是质数 reciprocal 倒数??common divisor 公约数?multiple 倍数?(least)common multiple (最小)公倍数?? (prime) factor (质)因子?common factor 公因子??ordinary scale, decimal scale 十进制? nonnegative 非负的??tens 十位? units 个位??mode众数?median 中数??common ratio 公比??7.数列arithmetic progression(sequence) 等差数列?geometric progression(sequence) 等比数列??approximate 近似?(anti)clockwise (逆) 顺时针方向? cardinal 基数?ordinal 序数?direct proportion 正比?distinct 不同的?estimation 估计,近似? parentheses 括号?proportion 比例?permutation 排列?combination 组合?table 表格?trigonometric function 三角函数? unit 单位,位?几何部分1. 所有的角alternate angle 内错角? corresponding angle 同位角? vertical angle对顶角?central angle圆心角?interior angle 内角?exterior angle 外角? supplementary angles补角? complementary angle余角? adjacent angle 邻角?acute angle 锐角?obtuse angle 钝角?right angle 直角?round angle周角?straight angle 平角? included angle夹角??2.所有的三角形equilateral triangle 等边三角形? scalene triangle不等边三角形? isosceles triangle等腰三角形? right triangle 直角三角形? oblique 斜三角形?inscribed triangle 内接三角形??3.有关收敛的平面图形,除三角形外semicircle 半圆?concentric circles 同心圆? quadrilateral四边形?pentagon 五边形?hexagon 六边形?heptagon 七边形?octagon 八边形?nonagon 九边形?decagon 十边形?polygon多边形?parallelogram 平行四边形? equilateral 等边形?plane 平面?square 正方形,平方?rectangle 长方形?regular polygon 正多边形? rhombus 菱形?trapezoid梯形??4.其它平面图形arc 弧?line, straight line 直线?line segment 线段?parallel lines 平行线?segment of a circle 弧形??5.有关立体图形cube 立方体,立方数?rectangular solid 长方体?regular solid/regular polyhedron 正多面体? circular cylinder 圆柱体? cone圆锥?sphere 球体?solid 立体的??6.有关图形上的附属物altitude 高?depth 深度?side 边长?circumference, perimeter 周长? radian弧度?surface area 表面积?volume 体积?arm 直角三角形的股?cross section 横截面?center of a circle 圆心?chord 弦?radius 半径?angle bisector 角平分线? diagonal 对角线?diameter 直径?edge 棱?face of a solid 立体的面? hypotenuse 斜边?included side夹边?leg三角形的直角边?median of a triangle 三角形的中线? base 底边,底数(e.g. 2的5次方,2就是底数)?opposite直角三角形中的对边? midpoint 中点?endpoint 端点?vertex (复数形式vertices)顶点? tangent 切线的?transversal截线?intercept 截距??7.有关坐标coordinate system 坐标系? rectangular coordinate 直角坐标系? origin 原点?abscissa横坐标?ordinate纵坐标?number line 数轴? quadrant 象限?slope斜率?complex plane 复平面??8.其它plane geometry 平面几何? trigonometry 三角学?bisect 平分?circumscribe 外切?inscribe 内切?intersect相交?perpendicular 垂直? pythagorean theorem勾股定理? congruent 全等的?multilateral 多边的?1.单位类cent 美分?penny 一美分硬币 ?nickel 5美分硬币?dime 一角硬币?dozen 打(12个)?score 廿(20个)?Centigrade 摄氏?Fahrenheit 华氏?quart 夸脱?gallon 加仑(1 gallon = 4 quart)? yard 码?meter 米?micron 微米?inch 英寸?foot 英尺?minute 分(角度的度量单位,60分=1度)? square measure 平方单位制?cubic meter 立方米?pint 品脱(干量或液量的单位)??2.有关文字叙述题,主要是有关商业intercalary year(leap year) 闰年(366天)?common year 平年(365天)? depreciation 折旧?down payment 直接付款?discount 打折?margin 利润?profit 利润?interest 利息?simple interest 单利? compounded interest 复利? dividend 红利?decrease to 减少到?decrease by 减少了?increase to 增加到?increase by 增加了?denote 表示?list price 标价?markup 涨价?per capita 每人?ratio 比率?retail price 零售价?tie 打Chapter onefunction notation方程符号函数符号quadratic functions 二次函数quadratic equations 二次方程式二次等式chapter twoEquivalent algebraic expressions 等价代数表达式rational expression 有理式有理表达式horizontal and vertical translation of functions 函数的水平和垂直的平移reflections of functions 函数的倒映映射chapter threeExponential functions 指数函数exponential decay 指数式衰减exponent 指数properties of exponential functions 指数函数的特性chapter fourTrigonometry 三角学Reciprocal trigonometric ratios 倒数三角函数比Trigonometric functions 三角函数Discrete functions 离散函数数学mathematics, maths(BrE), math(AmE)公理 axiom定理 theorem计算 calculation运算 operation证明 prove假设 hypothesis, hypotheses(pl.)命题 proposition算术 arithmetic加 plus(prep.), add(v.), addition(n.) 被加数 augend, summand加数 addend和 sum减minus(prep.), subtract(v.), subtraction(n.)被减数 minuend减数 subtrahend差 remainder乘times(prep.), multiply(v.), multiplication(n.)被乘数 multiplicand, faciend乘数 multiplicator积 product除divided by(prep.), divide(v.), division(n.)被除数 dividend除数 divisor商 quotient等于equals, is equal to, is equivalent to大于 is greater than小于 is lesser than大于等于 is equal or greater than 小于等于 is equal or lesser than运算符 operator数字 digit数 number自然数 natural number整数 integer小数 decimal小数点 decimal point分数 fraction分子 numerator分母 denominator比 ratio 正 positive负 negative零 null, zero, nought, nil十进制 decimal system二进制 binary system十六进制 hexadecimal system权 weight, significance进位 carry截尾 truncation四舍五入 round下舍入 round down上舍入 round up有效数字 significant digit无效数字 insignificant digit代数 algebra公式 formula, formulae(pl.)单项式 monomial多项式 polynomial, multinomial系数 coefficient未知数 unknown, x-factor, y-factor, z-factor等式,方程式 equation一次方程 simple equation二次方程 quadratic equation三次方程 cubic equation四次方程 quartic equation不等式 inequation阶乘 factorial对数 logarithm指数,幂 exponent乘方 power二次方,平方 square三次方,立方 cube四次方 the power of four, the fourth powern次方 the power of n, the nth power 开方 evolution, extraction二次方根,平方根 square root三次方根,立方根 cube root四次方根 the root of four, the fourth rootn次方根 the root of n, the nth root 集合 aggregate元素 element空集 void子集 subset 交集 intersection并集 union补集 complement映射 mapping函数 function定义域 domain, field of definition 值域 range常量 constant变量 variable单调性 monotonicity奇偶性 parity周期性 periodicity图象 image数列,级数 series微积分 calculus微分 differential导数 derivative极限 limit无穷大 infinite(a.) infinity(n.) 无穷小 infinitesimal积分 integral定积分 definite integral不定积分 indefinite integral有理数 rational number 无理数 irrational number 实数 real number虚数 imaginary number复数 complex number矩阵 matrix行列式 determinant几何 geometry点 point线 line面 plane体 solid线段 segment射线 radial平行 parallel相交 intersect角 angle角度 degree弧度 radian锐角 acute angle直角 right angle钝角 obtuse angle平角 straight angle 周角 perigon底 base边 side高 height三角形 triangle锐角三角形 acute triangle直角三角形 right triangle直角边 leg斜边 hypotenuse勾股定理 Pythagorean theorem钝角三角形 obtuse triangle不等边三角形 scalene triangle等腰三角形 isosceles triangle等边三角形 equilateral triangle四边形 quadrilateral平行四边形 parallelogram矩形 rectangle长 length宽 width菱形rhomb, rhombus, rhombi(pl.), diamond正方形 square梯形 trapezoid直角梯形 right trapezoid等腰梯形 isosceles trapezoid 五边形 pentagon六边形 hexagon七边形 heptagon八边形 octagon九边形 enneagon十边形 decagon十一边形 hendecagon十二边形 dodecagon多边形 polygon正多边形 equilateral polygon 圆 circle圆心 centre(BrE), center(AmE) 半径 radius直径 diameter圆周率 pi弧 arc半圆 semicircle扇形 sector环 ring椭圆 ellipse圆周 circumference 周长 perimeter面积 area轨迹 locus, loca(pl.)相似 similar全等 congruent四面体 tetrahedron五面体 pentahedron六面体 hexahedron平行六面体 parallelepiped 立方体 cube七面体 heptahedron八面体 octahedron九面体 enneahedron十面体 decahedron十一面体 hendecahedron十二面体 dodecahedron二十面体 icosahedron多面体 polyhedron棱锥 pyramid棱柱 prism棱台 frustum of a prism 旋转 rotation轴 axis圆锥 cone圆柱 cylinder圆台 frustum of a cone球 sphere半球 hemisphere底面 undersurface表面积 surface area体积 volume空间 space坐标系 coordinates坐标轴 x-axis, y-axis, z-axis 横坐标 x-coordinate纵坐标 y-coordinate原点 origin双曲线 hyperbola抛物线 parabola三角 trigonometry正弦 sine余弦 cosine正切 tangent余切 cotangent正割 secant余割 cosecant 反正弦 arc sine反余弦 arc cosine反正切 arc tangent反余切 arc cotangent反正割 arc secant反余割 arc cosecant相位 phase周期 period振幅 amplitude内心 incentre(BrE), incenter(AmE) 外心 excentre(BrE), excenter(AmE) 旁心 escentre(BrE), escenter(AmE) 垂心orthocentre(BrE), orthocenter(AmE)重心barycentre(BrE), barycenter(AmE)内切圆 inscribed circle外切圆 circumcircle统计 statistics平均数 average加权平均数 weighted average方差 variance标准差root-mean-square deviation,standard deviation比例 propotion百分比 percent百分点 percentage百分位数 percentile排列 permutation组合 combination概率,或然率 probability分布 distribution正态分布 normal distribution非正态分布 abnormal distribution 图表 graph条形统计图 bar graph柱形统计图 histogram折线统计图 broken line graph曲线统计图 curve diagram扇形统计图 pie diagram希望以上资料对你有所帮助,附励志名言3条::1、世事忙忙如水流,休将名利挂心头。
数学专业英语(Doc版).20
数学专业英语-Sequences and SeriesSeries are a natural continuation of our study of functions. In the previous cha pter we found howto approximate our elementary functions by polynomials, with a certain error te rm. Conversely, one can define arbitrary functions by giving a series for them. We shall see how in the sections below.In practice, very few tests are used to determine convergence of series. Esse ntially, the comparision test is the most frequent. Furthermore, the most import ant series are those which converge absolutely. Thus we shall put greater emp hasis on these.Convergent SeriesSuppose that we are given a sequcnce of numbersa1,a2,a3…i.e. we are given a number a n, for each integer n>1.We form the sumsS n=a1+a2+…+a nIt would be meaningless to form an infinite suma1+a2+a3+…because we do not know how to add infinitely many numbers. However, if ou r sums S n approach a limit as n becomes large, then we say that the sum of our sequence converges, and we now define its sum to be that limit.The symbols∑a=1 ∞a nwill be called a series. We shall say that the series converges if the sums app roach a limit as n becomes large. Otherwise, we say that it does not converge, or diverges. If the seriers converges, we say that the value of the series is∑a=1∞=lim a→∞S n=lim a→∞(a1+a2+…+a n)In view of the fact that the limit of a sum is the sum of the limits, and other standard properties of limits, we get:THEOREM 1. Let{ a n}and { b n}(n=1,2,…)be two sequences and assume that the series∑a=1∞a n∑a=1∞b nconverge. Then ∑a=1∞(a n + b n ) also converges, and is equal to the sum of the two series. If c is a number, then∑a=1∞c a n=c∑a=1∞a nFinally, if s n=a1+a2+…+a n and t n=b1+b2+…+b n then∑a=1∞a n ∑a=1∞b n=lim a→∞s n t nIn particular, series can be added term by term. Of course , they cannot be multiplied term by term.We also observe that a similar theorem holds for the difference of two serie s.If a series ∑a n converges, then the numbers a n must approach 0 as n beco mes large. However, there are examples of sequences {an} for which the serie s does not converge, and yet lim a→∞a n=0Series with Positive TermsThroughout this section, we shall assume that our numbers a n are >0. Then t he partial sumsS n=a1+a2+…+a nare increasing, i.e.s1<s2 <s3<…<s n<s n+1<…If they are approach a limit at all, they cannot become arbitrarily large. Thus i n that case there is a number B such thatS n< Bfor all n. The collection of numbers {s n} has therefore a least upper bound ,i.e. there is a smallest number S such thats n<Sfor all n. In that case , the partial sums s n approach S as a limit. In other wo rds, given any positive number ε>0, we haveS –ε< s n < Sfor all n .sufficiently large. This simply expresses the fact that S is the least o f all upper bounds for our collection of numbers s n. We express this as a theo rem.THEOREM 2. Let{a n}(n=1,2,…)be a sequence of numbers>0 and letS n=a1+a2+…+a nIf the sequence of numbers {s n} is bounded, then it approaches a limit S , wh ich is its least upper bound.Theorem 3 gives us a very useful criterion to determine when a series with po sitive terms converges:THEOREM 3. Let∑a=1∞a n and∑a=1∞b n be two series , with a n>0 for all n an d b n>0 for all n. Assume that there is a number c such thata n< cb nfor all n, and that∑a=1∞b n converges. Then ∑a=1∞a n converges, and∑a=1∞a n ≤c∑a=1∞b nPROOF. We havea1+…+a n≤cb1+…+cb n=c(b1+…+b n)≤c∑a=1∞b nThis means that c∑a=1∞b n is a bound for the partial sums a1+…+a n.The least u pper bound of these sums is therefore ≤c∑a=1∞b n, thereby proving our theore m.Differentiation and Intergration of Power Series.If we have a polynomiala0+a1x+…+a n x nwith numbers a0,a1,…,a n as coefficients, then we know how to find its derivati ve. It is a1+2a2x+…+na n x n–1. We would like to say that the derivative of a ser ies can be taken in the same way, and that the derivative converges whenever the series does.THEOREM 4. Let r be a number >0 and let ∑a n x n be a series which conv erges absolutely for ∣x∣<r. Then the series ∑na n x n-1also converges absolutel y for∣x∣<r.A similar result holds for integration, but trivially. Indeed, if we have a series ∑a=1∞a n x n which converges absolutely for ∣x∣<r, then the series∑a=1∞a n/n+1 x n+1=x∑a=1∞a n x n∕n+1has terms whose absolute value is smaller than in the original series.The preceding result can be expressed by saying that an absolutely converge nt series can be integrated and differentiated term by term and and still yields an absolutely convergent power series.It is natural to expect that iff (x)=∑a=1∞a n x n,then f is differentiable and its derivative is given by differentiating the series t erm by term. The next theorem proves this.THEOREM 5. Letf (x)=∑a=1∞a n x nbe a power series, which converges absolutely for∣x∣<r. Then f is differentia ble for ∣x∣<r, andf′(x)=∑a=1∞na n x n-1.THEOREM 6. Let f (x)=∑a=1∞a n x n be a power series, which converges abso lutely for ∣x∣<r. Then the relation∫f (x)d x=∑a=1∞a n x n+1∕n+1is valid in the interval ∣x∣<r.We omit the proofs of theorems 4,5 and 6.Vocabularysequence 序列positive term 正项series 级数alternate term 交错项approximate 逼近,近似 partial sum 部分和elementary functions 初等函数 criterion 判别准则(单数)section 章节 criteria 判别准则(多数)convergence 收敛(名词) power series 幂级数convergent 收敛(形容词) coefficient 系数absolute convergence 绝对收敛 Cauchy sequence 哥西序列diverge 发散radius of convergence 收敛半径term by term 逐项M-test M—判别法Notes1. series一词的单数和复数形式都是同一个字.例如:One can define arbitrary functions by giving a series for them(单数)The most important series are those which converge absolutely(复数)2. In view of the fact that the limit of a sum of the limits, and other standard properties of limits, we get:Theorem 1…这是叙述定理的一种方式: 即先将事实说明在前面,再引出定理. 此句用in view of the fact that 说明事实,再用we get 引出定理.3. We express this as a theorem.这是当需要证明的事实已再前面作了说明或加以证明后,欲吧已证明的事实总结成定理时,常用倒的一个句子,类似的句子还有(参看附录Ⅲ):We summarize this as the following theorem; Thus we come to the following theorem等等.4. The least upper bound of these sums is therefore ≤c∑a=1∞b n, thereby proving our theorem.最一般的定理证明格式是”给出定理…定理证明…定理证毕”,即thereby proving our theorem;或we have thus proves the theorem或This completes the proof等等作结尾(参看附录Ⅲ).5. 本课文使用较多插入语.数学上常见的插入语有:conversely; in practice; essentially; in particular; ind eed; in other words; in short; generally speaking 等等.插入语通常与句中其它成份没有语法上的关系,一般用逗号与句子隔开,用来表示说话者对句子所表达的意思的态度.插入语可以是一个词,一个短语或者一个句子.ExerciseⅠ. Translate the following exercises into Chinese:1. In exercise 1 through 4,a sequence f (n) is defined by the formula given. In each case, (ⅰ)Determine whether the sequence (the formulae are omitted).2. Assume f is a non–negative function defined for all x>1. Use the methodsuggested by the proof of the integral test to show that∑k=1n-1f(k)≤∫1n f(x)d x ≤∑k=2n f(k)Take f(x)=log x and deduce the inequalitiesc•n n•c-n< n!<c•n n+1•c-nⅡ. The proof of theorem 4 is given in English as follows(Read the proof through and try to learn how a theorem is proved, then translate this proof into Chinese ):Proof of theorem 4 Since we are interested in the absolute convergence. We may assume that a n>0 for all n. Let 0<x<r, and let c be a number such that x<c<r. Recall that lim a→∞n1/n=1.We may write n a n x n =a n(n1/n x)n. Then for all n sufficiently large, we conclude that n1/n x<c. This is because n1/n comes arbitrarily close to x and x<c. Hence for all n sufficiently large, we have na n x n<a n c n. We can then compare the series ∑nax n with∑a n c n to conclude that∑na n x n converges. Since∑na n x n-1=1n/x∑na n x n, we have proved theorem 4.Ⅲ. Recall from what you have learned in Calculus about (ⅰ) Cauchy sequence and (ⅱ) the radius of c onvergence of a power series.Now give the definitions of these two terms respectively.Ⅳ. Translate the following sentences into Chinese:1. 一旦我们能证明,幂级数∑a n z n在点z=z1收敛,则容易证明,对每一z1∣z∣<∣z1∣,级数绝对收敛;2. 因为∑a n z n在z=z1收敛,于是,由weierstrass的M—判别法可立即得到∑a n z n在点z,∣z∣<z1的绝对收敛性;3. 我们知道有限项和中各项可以重新安排而不影响和的值,但对于无穷级数,上述结论却不总是真的。
数学专业英语(Doc版).Word5
数学专业英语-Differential CalculusHistorical IntroductionNewton and Leibniz,quite independently of one another,were largely responsible for developing the ideas of integral calculus to the point where hitherto insur mountable problems could be solved by more or less routine methods.The succ essful accomplishments of these men were primarily due to the fact that they were able to fuse together the integral calculus with the second main branch o f calculus,differential calculus.The central idea of differential calculus is the notion of derivative.Like the inte gral,the derivative originated from a problem in geometry—the problem of find ing the tangent line at a point of a curve.Unlile the integral,however,the deriva tive evolved very late in the history of mathematics.The concept was not form ulated until early in the 17th century when the French mathematician Pierre de Fermat,attempted to determine the maxima and minima of certain special func tions.Fermat’s idea,basically very simple,can be understood if we refer to a curve a nd assume that at each of its points this curve has a definite direction that ca n be described by a tangent line.Fermat noticed that at certain points where th e curve has a maximum or minimum,the tangent line must be horizontal.Thus t he problem of locating such extreme values is seen to depend on the solution of another problem,that of locating the horizontal tangents.This raises the more general question of determining the direction of the tange nt line at an arbitrary point of the curve.It was the attempt to solve this gener al problem that led Fermat to discover some of the rudimentary ideas underlyi ng the notion of derivative.At first sight there seems to be no connection whatever between the problem of finding the area of a region lying under a curve and the problem of findin g the tangent line at a point of a curve.The first person to realize that these t wo seemingly remote ideas are,in fact, rather intimately related appears to have been Newton’s teacher,Isaac Barrow(1630-1677).However,Newton and Leibniz were the first to understand the real importance of this relation and they explo ited it to the fullest,thus inaugurating an unprecedented era in the development of mathematics.Although the derivative was originally formulated to study the problem of tang ents,it was soon found that it also provides a way to calculate velocity and,mo re generally,the rate of change of a function.In the next section we shall consi der a special problem involving the calculation of a velocity.The solution of this problem contains all the essential fcatures of the derivative concept and may help to motivate the general definition of derivative which is given below.A Problem Involving VelocitySuppose a projectile is fired straight up from the ground with initial velocity o f 144 feet persecond.Neglect friction,and assume the projectile is influenced onl y by gravity so that it moves up and back along a straight line.Let f(t) denote the height in feet that the projectile attains t seconds after firing.If the force of gravity were not acting on it,the projectile would continue to move upward with a constant velocity,traveling a distance of 144 feet every second,and at ti me t we woule have f(t)=144 t.In actual practice,gravity causes the projectile t o slow down until its velocity decreases to zero and then it drops back to eart h.Physical experiments suggest that as the projectile is aloft,its height f(t) is gi ven by the formula(1)f(t)=144t –16 t2The term –16t2is due to the influence of gravity.Note that f(t)=0 when t=0 a nd when t=9.This means that the projectile returns to earth after 9 seconds and it is to be understood that formula (1) is valid only for 0<t<9.The problem we wish to consider is this:To determine the velocity of the proj ectile at each instant of its motion.Before we can understand this problem,we must decide on what is meant by the velocity at each instant.To do this,we int roduce first the notion of average velocity during a time interval,say from time t to time t+h.This is defined to be the quotient.Change in distance during time interval =f(t+h)-f(t)/hThis quotient,called a difference quotient,is a number which may be calculated whenever both t and t+h are in the interval[0,9].The number h may be positiv e or negative,but not zero.We shall keep t fixed and see what happens to the difference quotient as we take values of h with smaller and smaller absolute v alue.The limit process by which v(t) is obtained from the difference quotient is wri tten symbolically as follows:V(t)=lim(h→0)[f(t+h)-f(t)]/hThe equation is used to define velocity not only for this particular example bu t,more generally,for any particle moving along a straight line,provided the position function f is such that the differerce quotient tends to a definite limit as h approaches zero.The example describe in the foregoing section points the way to the introducti on of the concept of derivative.We begin with a function f defined at least on some open interval(a,b) on the x axis.Then we choose a fixed point in this in terval and introduce the difference quotient[f(x+h)-f(x)]/hwhere the number h,which may be positive or negative(but not zero),is such th at x+h also lies in(a,b).The numerator of this quotient measures the change in the function when x changes from x to x+h.The quotient itself is referred to a s the average rate of change of f in the interval joining x to x+h.Now we let h approach zero and see what happens to this quotient.If the quot ient.If the quotient approaches some definite values as a limit(which implies th at the limit is the same whether h approaches zero through positive values or through negative values),then this limit is called the derivative of f at x and is denoted by the symbol f’(x) (read as “f prime of x”).Thus the formal defi nition of f’(x) may be stated as follows:Definition of derivative.The derivative f’(x)is defined by the equationf’(x)=lim(h→o)[f(x+h)-f(x)]/hprovided the limit exists.The number f’(x) is also called the rate of change of f at x.In general,the limit process which produces f’(x) from f(x) gives a way of ob taining a new function f’from a given function f.This process is called differ entiation,and f’is called the first derivative of f.If f’,in turn,is defined on an interval,we can try to compute its first derivative,denoted by f’’,and is calle d the second derivative of f.Similarly,the nth derivative of f denoted by f^(n),is defined to be the first derivative of f^(n-1).We make the convention that f^(0) =f,that is,the zeroth derivative is the function itself.Vocabularydifferential calculus微积分differentiable可微的intergral calculus 积分学differentiate 求微分hither to 迄今 integration 积分法insurmountable 不能超越 integral 积分routine 惯常的integrable 可积的fuse 融合integrate 求积分originate 起源于sign-preserving保号evolve 发展,引出 axis 轴(单数)tangent line 切线 axes 轴(复数)direction 方向 contradict 矛盾horizontal 水平的contradiction 矛盾vertical 垂直的 contrary 相反的rudimentary 初步的,未成熟的composite function 合成函数,复合函数area 面积composition 复合函数intimately 紧密地interior 内部exploit 开拓,开发 interior point 内点inaugurate 开始 imply 推出,蕴含projectile 弹丸 aloft 高入云霄friction摩擦initial 初始的gravity 引力 instant 瞬时rate of change 变化率integration by parts分部积分attain 达到definite integral 定积分defferential 微分indefinite integral 不定积分differentiation 微分法 average 平均Notes1. Newton and Leibniz,quite independently of one another,were largely responsible for developing…by more or less routine methods.意思是:在很大程度上是牛顿和莱伯尼,他们相互独立地把积分学的思想发展到这样一种程度,使得迄今一些难于超越的问题可以或多或少地用通常的方法加以解决。
数学专业英语(Doc版).14
数学专业英语-MathematicansLeonhard Euler was born on April 15,1707,in Basel, Switzerland, the son of a mathematician and Caivinist pastor who wanted his son to become a pastor a s well. Although Euler had different ideas, he entered the University of Basel to study Hebrew and theology, thus obeying his father. His hard work at the u niversity and remarkable ability brought him to the attention of the well-known mathematician Johann Bernoulli (1667—1748). Bernoulli, realizing Euler’s tal ents, persuaded Euler’s father to change his mind, and Euler pursued his studi es in mathematics.At the age of nineteen, Euler’s first original work appeared. His paper failed to win the Paris Academy Prize in 1727; however this loss was compensated f or later as he won the prize twelve times.At the age of 28, Euler competed for the Pairs prize for a problem in astrono my which several leading mathematicians had thought would take several mont hs to solve.To their great surprise, he solved it in three days! Unfortunately, th e considerable strain that he underwent in his relentless effort caused an illness that resulted in the loss of the sight of his right eye.At the age of 62, Euler lost the sight of his left eye and thus became totally blind. However this did not end his interest and work in mathematics; instead, his mathematical productivity increased considerably.On September 18, 1783, while playing with his grandson and drinking tea, Eul er suffered a fatal stroke.Euler was the most prolific mathematician the world has ever seen. He made s ignificant contributions to every branch of mathematics. He had phenomenal m emory: He could remember every important formula of his time. A genius, he could work anywhere and under any condition.George cantor (March 3, 1845—June 1,1918),the founder of set theory, was bo rn in St. Petersburg into a Jewish merchant family that settled in Germany in 1856.He studied mathematics, physics and philosophy in Zurich and at the University of Berlin. After receiving his degree in 1867 in Berlin, he became a lecturer at the university of Halle from 1879 to 1905. In 1884,under the stra in of opposition to his ideas and his efforts to prove the continuum hypothesis, he suffered the first of many attacks of depression which continued to hospita lize him from time to time until his death.The thesis he wrote for his degree concerned the theory of numbers; however, he arrived at set theory from his research concerning the uniqueness of trigon ometric series. In 1874, he introduced for the first time the concept of cardinalnumbers, with which he proved that there were “more”transcendental numb ers than algebraic numbers. This result caused a sensation in the mathematical world and became the subject of a great deal of controversy. Cantor was troub led by the opposition of L. Kronecker, but he was supported by J.W.R. Dedek ind and G. Mittagleffer. In his note on the history of the theory of probability, he recalled the period in which the theory was not generally accepted and cri ed out “the essence of mathematics lies in its freedom!”In addition to his work on the concept of cardinal numbers, he laid the basis for the concepts of order types, transfinite ordinals, and the theory of real numbers by means of fundamental sequences. He also studied general point sets in Euclidean space a nd defined the concepts of accumulation point, closed set and open set. He wa s a pioneer in dimension theory, which led to the development of topology.Kantorovich was born on January 19, 1912, in St. Petersburg, now called Leni ngrad. He graduated from the University of Leningrad in 1930 and became a f ull professor at the early age of 22.At the age of 27, his pioneering contributi ons in linear programming appeared in a paper entitled Mathematical Methods for the Organization and planning of production. In 1949, he was awarded a S talin Prize for his contributions in a branch of mathematics called functional a nalysis and in 1958, he became a member of the Russian Academy of Science s. Interestingly enough, in 1965,kantorovich won a Lenin Prize fo r the same o utstanding work in linear programming for which he was awarded the Nobel P rize. Since 1971, he has been the director of the Institute of Economics of Ma nagement in Moscow.Paul R. Halmos is a distinguished professor of Mathematics at Indiana Univers ity, and Editor-Elect of the American Mathematical Monthly. He received his P h.D. from the University of Illinois, and has held positions at Illinois, Syracuse, Chicago, Michigan, Hawaii, and Santa Barbara. He has published numerous b ooks and nearly 100 articles, and has been the editor of many journals and se veral book series. The Mathematical Association of America has given him the Chauvenet Prize and (twice) the Lester Ford award for mathematical expositio n. His main mathematical interests are in measure and ergodic theory, algebraic, and operators on Hilbert space.Vito Volterra, born in the year 1860 in Ancona, showed in his boyhood his e xceptional gifts for mathematical and physical thinking. At the age of thirteen, after reading Verne’s novel on the voyage from earth to moon, he devised hi s own method to compute the trajectory under the gravitational field of the ear th and the moon; the method was worth later development into a general proc edure for solving differential equations. He became a pupil of Dini at the Scu ola Normale Superiore in Pisa and published many important papers while still a student. He received his degree in Physics at the age of 22 and was made full professor of Rational Mechanics at the same University only one year lat er, as a successor of Betti.Volterra had many interests outside pure mathematics, ranging from history to poetry, to music. When he was called to join in 1900 the University of Rome from Turin, he was invited to give the opening speech of the academic year. Volterra was President of the Accademia dei Lincei in the years 1923-1926. H e was also the founder of the Italian Society for the Advancement of Science and of the National Council of Research. For many years he was one of the most productive scientists and a very influential personality in public life. Whe n Fascism took power in Italy, Volterra did not accept any compromise and pr eferred to leave his public and academic activities.Vocabularypastor 牧师 hospitalize 住进医院theology 神学 thesis 论文strain 紧张、疲惫transcendental number 超越数relentless 无情的sensation 感觉,引起兴趣的事prolific 多产的controversy 争论,辩论depression 抑郁;萧条,不景气essence 本质,要素transfinite 超限的Note0. 本课文由几篇介绍数学家生平的短文组成,属传记式体裁。
数学专业英语
数学专业英语Lesson 1Mathematics as a Language of Scienceassert vt. 断言;坚持主张;维护表明qualitative adj. 性质的;定性的quantitative adj. 量的;数量的;定量的;与数量有关的astronomy n. 天文学postulate n. 假定, 基本条件, 基本原理 vt. 要求, 假定 vi. 要求hypothetical adj. 假设的, 假定的,爱猜想的Lesson 2deduction n. 减除, 扣除, 减除额, 推论, 演绎induction n. 归纳;归纳法;归纳所得之结论verification n. 验证;证实correlate vt. 使相互关联 vi. 和...相关discard vt. 丢弃, 抛弃 v. 放弃discredit n. 不信任;失信consistent adj. 一致的, 调和的, 坚固的, [数、统]相容的inadequacy n. 不充分 ,不适当,不适合,不足额conic, conical adj 圆锥的;圆锥形的ellipse n. 椭圆, 椭圆形 ellipt (n.)hyperbolic adj. 双曲线的 hyperbola (n.)parabolic adj. 用寓言表达的: 抛物线的,像抛物线的 parabola (n.) algebraic adj. 代数的, 关于代数学的mineralogy n. 矿物学refraction n. 折光, 折射stimulus n. 刺激物, 促进因素, 刺激, 刺激impetus n. 冲力推动力;刺激Lesson 3Axioms, definitions and Theoremsaxiom n. [数]公理definition n. 阐明;确定定义;界说extravagant adj. 奢侈的, 浪费的, 过分的, 放纵的collinear adj. 在同一直线上的, 同线的convex adj. 凸出的;凸面的segment n. 部分;片段;节, 弓形;圆缺;弧形, 线段conswquently adv. 从而, 因此in terms of adv. 根据, 按照, 用...的话, 在...方面pretense n. 主张, 要求, 伪称, 借口, 自称Lesson 4Geometry and Geometrical termsterm n. 学期, 期限, 期间, 条款, 条件, 术语triangle n. [数]三角形, 三人一组, 三角关系parallelogram n. 平行四边形straight angle n. [数]平角right angle n. 直角acute angle n. 锐角obtuse angle n. 钝角reflex angle n. 优角rectilinear adj 直线的;由直线组成的;循直线进行的isosceles triangle n. 等腰三角形equilateral triangle n. 等边三角形right triangle n. 直角三角形obtuse triangle n. 钝角三角形acute triangle n. 锐角三角形equiangular triangle n. 正三角形,等角三角形hypotenuse n. (直角三角形的)斜边circle 圆center 中心;中央;圆心diameter n. 直径radius n. 半径, 范围, 辐射光线, 有效航程, 范围, 界限circumference n. 圆周, 周围Lesson 5The Method of Limitslimit n. 限度,极限,极点infinite adj. 无限的;无穷的infinitesimal adj. 无穷小的, 极小的, 无限小的calculus n. 微积分学, 结石exemplify vt. 例证, 例示, 作为...例子inscribe v. 记下polygon n. [数]多角形, 多边形diminish v. (使)减少, (使)变小curvilinear adj 曲线的, 由曲线组成的intuition n. 直觉, 直觉的知识integral n. [数学] 积分, 完整, 部分defective adj. 有缺陷的, (智商或行为有)欠缺的differential coefficient 微分系数arithmetical adj. 算术的, 算术上的convergence n. 集中, 收敛criterion n. (批评判断的)标准, 准据, 规范sequence n. 次序, 顺序, 序列irrational numbers n. [数]无理数domain ,定义域contradiction 矛盾reversal n. 颠倒, 反转, 反向, 逆转, 撤销Lesson 6Functioncontinuous variable 连续变量;[连续变数]variation 变分, 变化interval 区间independent variable 自变量dependent variable 应变量rectangular coordinate 直角坐标abscissa n. 〈数〉横坐标ordinate n. [数]纵线, 纵座标gradient adj. 倾斜的n. 梯度, 倾斜度, 坡度slope n. 斜坡, 斜面, 倾斜 v. (使)顺斜Lesson 7Differential and Integral calculusdifferential adj. 微分的n. 微分 (differentiation)Integral n. [数学] 积分, 完整, 部分 (integration)calculus n. 微积分学, 结石interrelation n. 相互关系trigonometry n. 三角法exponential adj. 指数的, 幂数的logarithm n. [数] 对数derivative n. 导数;微商tangent n. 切线, [数]正切counterclockwise adj. 反时针方向的adv. 反时针方向 (clockwise) definite integral 定积分approximation n. 接近, 走近, [数]近似值culminate v. 达到顶点mean n. 平均数, 中间, 中庸differential equation 微分方程extreme value n. 极值multiple integral 多重积分double integralline integralfunctional analysis 泛函分析Lesson 8 The Concept of Cardinal Number (I)cardinal number n. 基数(如: 1, 2, 3, ... 有别于序数)denumerable adj. 可数的aggregate n. 合计, 总计, 集合体adj. 合计的, 集合的, 聚合的v. 聚集, 集合, 合计purport n. 主旨 v. 声称fancier n. 空想家, 培育动物(或植物)的行家, 爱好者sniff v. 用力吸, 嗅, 闻到, 发觉, 轻视, 用力吸气n. 吸, 闻, 吸气声, 嗤之以鼻scheme n. 安排, 配置, 计划, 阴谋, 方案, 图解, 摘要v. 计划, 设计, 图谋, 策划, * n.(计算数学)方法,格式superior n. 长者, 高手, 上级adj. 较高的, 上级的, 上好的, 出众的, 高傲的cumbersome adj. 讨厌的, 麻烦的, 笨重的instruction n. 指示, 用法说明(书), 教育, 指导, 指令drastically adv. 激烈地, 彻底地conservation 守衡律quadrature n. 求积, 求积分interpolation n. 插值extrapolation n. [数]外推法, 推断internal point 内点identical adj. 同一的, 同样的generalized solution 广义解functional 泛函hydrodynamics 流体力学,水动力学divergence 发散(性),梯度,发散量play an important (fundamental ... ) role 起着重要的(...)作用integro-interpolation method 积分插值法Variational method 变分方法comparatively adv. 比较地, 相当地deficiency n. 缺乏, 不足fictive adj. 虚构的, 想象上的, 虚伪的self-adjoint (nonself-adjoint) 自治的,自伴的,自共轭的finite element method 有限元法spline approximation 样条逼近Particles-in-the-Cell 网格质点法herald n. 使者, 传令官, 通报者, 先驱, 预兆vt. 预报, 宣布, 传达, 欢呼advection n. 水平对流phenomenological adj. 现象学的, 现象的fluctuation n. 波动, 起伏optimism n. 乐观, 乐观主义pessimism n. 悲观, 悲观主义unjustified adj 未被证明其正确的mean-square 均方dispersion n. [数] 离差, 差量Polynomial n adj. [数]多项式的interpolation 插值arithmetic n. 算术, 算法rounding errors 舍入误差multiple n. 倍数, 若干subjective adj. 主观的, 个人的objective adj. 客观的,outcome n. 结果, 成果pattern n. 样品toss v. 投, 掷exhaust vt. 用尽, 耗尽, 抽完, 使精疲力尽divisible adj. 可分的dice, die n. 骰子assign vt. 分配, 指派attach vt. 缚上, 系上, 贴上v. 配属, 隶属于pitfall n. 缺陷chairperson 主席mechanics n. (用作单数)机械学、力学, (用作复数)技巧, 结构statics n. [物]静力学dynamics n. 动力学adequately adv. 充分地celestial adj. 天上的macroscopic adj. 肉眼可见的, 巨观的classical field theory 经典场理论rigit adj. 刚硬的, 刚性的, 严格的elastic adj. 弹性的plastic n. 可塑的,塑性的,塑料的quantum n. 量, 额, [物] 量子, 量子论inception n. 起初, 获得学位pertain v. 适合, 属于gravitation n. 地心吸力, 引力作用tide n. 潮, 潮汐, 潮流, 趋势monumental adj. 纪念碑的, 纪念物的, 不朽的, 非常的encompass v. 包围, 环绕, 包含或包括某事物ingredient n. 成分, 因素acquainted adj. 有知识的, 知晓的synonymous adj. 同义的configuration n. 构造, 结构, 配置, 外形reference n. 提及, 涉及, 参考, 参考书目inertia n. 惯性, 惯量attribute 特性momentum n. 动量proportional adj. 比例的, 成比例的, 相称的, 均衡的designate 指明negligible adj. 可以忽略的, 不予重视的projectile n. 射弹 adj. 发射的ballistics n. 弹道学, 发射学intractable adj. 难处理的{Mechanics of a Particlein consequence of adv. 由于的...缘故exert vt. 尽(力), 施加(压力等), 努力v. 发挥, 竭尽全力, 尽galaxy n. 星系, 银河, 一群显赫的人, 一系列光彩夺目的东furnish vt. 供应, 提供, 装备, 布置v. 供给torque n. 扭矩, 转矩moment 力矩的friction 摩擦dissipation n. 消散, 分散, 挥霍, 浪费, 消遣, 放荡, 狂饮infer v. 推断Hooke s Law and Its Consequenceselasticity n. 弹力, 弹性constitutive adj. 构成的, 制定的atomistic adj. 原子论的crack n. 裂缝, 噼啪声v. (使)破裂, 裂纹, (使)爆裂continuum mechanics n. 连续介质力学superposition n. 重叠, 重合, 叠合strain n. 过度的疲劳, 紧张, 张力, 应变vt. 扭伤, 损伤v. 拉紧, 扯紧, (使)紧张, 尽力thermodynamics n. [物] 热力学reckon vt. 计算, 总计, 估计, 猜想vi. 数, 计算, 估计, 依赖, 料想lesson 20strength 强度load 载荷empirical 以经验为依据的member 构件isolated 孤立的segment 部分、段、节stress 应力strain 应变tension 拉伸shear 剪切bend 弯曲torsion 扭转、扭力insofar 在……范围cohesive 内聚性的tensile 拉力、张力stiffness 硬度furnish 供给Lesson 23 Fluid Mechanicseruption 喷发、爆发turbulent 湍流laminar 层流isothermal 等温isotropic 各向同性prevalent 普遍的、流行的tornado 旋风、飓风eddy 旋涡viscosity 粘性、粘度nonviscous 无粘性的rotation 旋转adiabatic 绝热的reversible 可逆的isentropic 等熵的instant 瞬时的streamline 流线stream tube 流管tangential 切线的incompressible 不可压缩的resultant 合成的,组合的downstream 下游的,顺流的elbow 弯管,肘similitude 相似性hydraulic 水力的,水力学的predominante 占主导地位spillway (河或水坝的)放水道,泄洪道prototype 原型,样板Lesson 24 Mechanical Vibration repetitive 重复的,反复的periodic 周期的,定期的tidal 潮的,像潮的stationary 固定的,不动的vibratory 振动的,摆动的propagation 传播couple v .连接,连合acoustic 听觉的,声学的annoyance 烦恼,困惑adjacent 接近的,邻近的damp 阻尼,衰减restore 复职,归还neutral 平衡exciting force 激励力resonant adj. 共振的,谐振的stiffness 刚度,刚性proportionality 成比例地inclusion 包含,包括magnitude 数值,大小substantially adv. 实质上的perturb 干扰,扰乱resonance n. 共振vibratory adj. 振动的, 可知的perceptible 可见的,可知的adudible 听得见的,可闻的foregoing 前述的impulsive 冲击的shock 冲击Fourier series 傅里叶级数excitation 激发,激励discrete 分离,离散的contend with 向…作斗争compressor 压气机fatigue 疲劳perceptible 可见的,可知觉的shredder 切菜器disposal 处理urban 都市的metropolitan 大都市的at-grade 在同一水平面上elevated 高架的guideway 导轨Lesson 25 A prefect to the Continuum Mechanics preface 序言continuum连续 pl. continuua rigid body 刚体contemporary 当代的,同时期的widespread 分布广的, 普及的accommodate 容纳,使适应medium 介质plasticity 塑性residual 剩余的,残留的creep 蠕变,爬行,塑性变形aging 老化polymeric聚合(物)的sandy 沙的,沙质的aubterranean 地下的,隐藏的essence 精髓,本质thermodynamics 热力学self-similar 自相似expedient 方便的sonsolidate 把…联合为一体,统一justify 证明…有理radically 根本地,本质上deliberate 从容不迫的,深思熟虑Lesson 33 what is a computer Attribute v. 赋予medieval 中世纪的astronomer 天文学家Mars 火星resemble vt. 像,相似tedious adj. 冗长乏味的pulp 浆状物,果肉filter vt.过滤underlying adj. 潜在的, 基本的ore n. 矿沙,矿石perceive v. 察觉,看见intervention n. 干涉,插入intelligent adj. 有智力的,聪明的Lesson 34 A computer system manipulate vt. 操纵,使用chip n. 芯片etch vt. 蚀刻,蚀镂fingernail 指甲mount vt. 安装,安置assemble vt. 集合,聚集cabinet 橱柜execute vt. 执行,实现paycheck n.支付薪金的支票bar chart 直方图joystick 游戏杆encounter vt. 遇到,遇上Mathematical Modelingindustry n. 工业, 产业, 行业, 勤奋commerce n. 商业complexity n. 复杂(性), 复杂的事物, 复杂性career n. (原意:道路, 轨道)事业, 生涯, 速度outset n. 开端, 开始essence n. 基本, [哲]本质, 香精advocation n. (=advocacy)拥护支持provision n. 供应, (一批)供应品, 预备, 防备, 规定publicize v. 宣扬roundabout adj. 迂回的, 转弯抹角的n. 道路交叉处的环形路, 迂回路线, 兜圈子的话trial-error vt. n. 试制, 试生产maneuverability n. 可操作性, 机动性vehicle n. 交通工具, 车辆, 媒介物, 传达手段junction n. 连接, 接合, 交叉点, 汇合处ponder v. 沉思, 考虑contrive v. 发明, 设计, 图谋snooker n. (=snooker pool)彩色台球, 桌球context n. 上下文, 文章的前后关系deviation n. 背离数学专业英语-Groups and RingsDuring the present century modern abstract algebra has become more and more important as a tool for research not only in other branches of mathematics bu t even in other sciences .Many discoveries in abstract algebra itself have been made during the past years and the spirit of algebraic research has definitely t ended toward more abstraction and rigor so as to obtain a theory of greatest p ossible generality. In particular, the concepts of group ,ring,integral domain and field have been emphasized.The notion of an abstract group is fundamental in all sciences ,and it is certai nly proper to begin our subject with this concept. Commutative additive groupsare made into rings by assuming closure with respect to a second operation h aving some of the properties of ordinary multiplication. Integral domains and fi elds are rings restricted in special ways and may be fundamental concepts and their more elementary properties are the basis for modern algebra.GroupsDEFINITION A non-empty set G of elements a,b,…is said to form a group with respect to 0 if:I.G is closed with respect to 0II.The associative law holds in G, that isaо(bоc)=(aоb)оcfor every a, b, c of GⅢ. For every a and b of G there exist solutions χand Уin G of the equ ationsaοχ=b yοa=bA group is thus a system consisting of a set of elements and operation οwit h respect to which G forms a group. We shall generally designate the entire s ystem by the set G of its elements and shall call G a group. The notation use d for the operation is generally unimportant and may be taken in as convenien t a way as possible.DEFINITION A group G is called commutative or abelian ifaοb=bοaFor every a and b of G.An elementary physical example of an abelian group is a certain rotation grou p. We let G consist of the rotations of the spoke of a wheel through multiples of 90ºand aοb be the result of the rotation a followed by the rotation b. T he reader will easily verify that G forms a group with respect to οand that aοb=bοa. There is no loss of generality when restrict our attention to multipl icative groups, that is, write ab in stead of aοb.EQUIVALENCEIn any study of mathematical systems the concept of equivalence of systems of the same kind always arises. Equivalent systems are logically distinct but weusually can replace any one by any other in a mathematical discussion with no loss of generality. For groups this notion is given by the definition: let G an d G´be groups with respective operations o and o´,and let there be a1-1 corr espondenceS : a a´ (a in G and a´in G´)between G and G´such that(aοb)´=a´οb´for all a, b of G. then we call G and G´equivalent(or simply, isomorphic)grou ps.The relation of equivalence is an equivalence relation in the technical sense in the set of all groups. We again emphasize that while equivalent groups may be logically distinct they have identical properties.The groups G and G´of the above definition need not be distinct of course a nd o´may be o. when this is the case the self-equivalence S of G is called a n automorphism.I: a aOf G, but other automorphisms may also exist.RingsA ring is an additive abelian groupB such thatI.the set B is closed with respect to a second operation designated by multiplication; that is , every a and b of B define a unique element ab of B. II.multiplication is associative; that isa (bc) = (ab)cfor every a, b, c of B.Ⅲ. The distributive lawsa (b+c) = ab +ac (b+c) a=ba +cahold for every a, b, c of B.The concept of equivalence again arises. We shall writeB ≌B′to mean that B and B′are equivalent.VocabularyGroup 群rigor 严格ring 环 generalization 推广integral domain 整环Abelian group 阿贝尔群commutative additive group 可交换加法群 rotation 旋转automorphism 自同构数学专业英语-Historical introduction of CalculusThe Two Basic Concepts of CalculusThe remarkable progress that has been made in science and technology during the last century is due in large part to the development of mathematics. That branch of mathematics known as integral and differential calculus serves as a natural and powerful tool for attacking a variety of problems that arise in phys ics,engineering,chemistry,geology,biology, and other fields including,rather recentl y,some of the social sciences.To give the reader an idea of the many different types of problems that can b e treatedby the methods of calculus,we list here a few sample questions.With what speed should a rocket be fired upward so that it never returns to e arth? What is the radius of the smallest circular disk that can cover every isosceles triangle of a given perimeter L? What volume of material is removed fr om a solid sphere of radius 2 r if a hole of redius r is drilled through the ce nter? If a strain of bacteria grows at a rate proportional to the amount present and if the population doubles in one hour,by how much will it increase at th e end of two hours? If a ten-pound force stretches an elastic spring one inch,h ow much work is required to stretch the spring one foot?These examples,chosen from various fields,illustrate some of the technical quest ions that can be answered by more or less routine applications of calculus.Calculus is more than a technical tool-it is a collection of fascinating and ex eiting idea that have interested thinking men for centuries.These ideas have to do with speed,area,volume,rate of growth,continuity,tangent line,and otherconcept s from a varicty of fields.Calculus forces us to stop and think carefully about the meanings of these concepts. Another remarkable feature of the subject is it s unifying power.Most of these ideas can be formulated so that they revolve a round two rather specialized problems of a geometric nature.We turn now to a brief description of these problems.Consider a cruve C which lies above a horizontal base line such as that show n in Fig.1. We assume this curve has the property that every vertical line inter sects it once at most.The shaded portion of the figure consists of those pointe which lie below the curve C , above the horizontal base,and between two para llel vertical segments joining C to the base.The first fundamental problem of c alculus is this: To assign a number which measures the area of this shaded re gion.Consider next a line drawn tangent to the curve,as shown in Fig.1. The second fundamental problem may be stated as follows:To assign a number which me asures the steepness of this line.Basically,calculus has to do with the precise formulation and solution of these two special problems.It enables us to define the concepts of area and tangent l ine and to calculate the area of a given region or the steepness of a given an gent line. Integral calculus deals with the problem of area while differential cal culus deals with the problem of tangents.Historical BackgroundThe birth of integral calculus occurred more than 2000 years ago when the Gr eeks attempted to determine areas by a procees which they called the method of exhaustion.The essential ideas of this ,method are very simple and can be d escribed briefly as follows:Given a region whose area is to be determined,we inscribe in it a polygonal region which approximates the given region and whos e area we can easily compute.Then we choose another polygonal region which gives a better approximation,and we continue the process,taking polygons with more and more sides in an attempt to exhaust the given region.The method is illustrated for a scmicircular region in Fig.2. It was used successfully by Arch imedes(287-212 B.C.) to find exact formulas for the area of a circle and a fe w other special figures.The development of the method of exhaustion beyond the point to which Ar chimcdcs carried it had to wait nearly eighteen centuries until the use of algeb raic symbols and techniques became a standard part of mathematics. The eleme ntary algebra that is familiar to most high-school students today was completel y unknown in Archimedes’time,and it would have been next to impossible to extend his method to any general class of regions without some convenient w ay of expressing rather lengthy calculations in a compact and simpolified form.A slow but revolutionary change in the development of mathematical notations began in the 16th century A.D. The cumbersome system of Roman numerals was gradually displaced by the Hindu-Arabic characters used today,the symbol s “+”and “-”were introduced for the forst time,and the advantages of the decimal notation began to be recognized.During this same period,the brilliant su ccesse of the Italian mathematicians Tartaglia,Cardano and Ferrari in finding al gebraic solutions of cubic and quadratic equations stimulated a great deal of ac tivity in mathematics and encouraged the growth and acceptance of a new and superior algebraic language. With the wide spread introduction of well-chosen algebraic symbols,interest was revived in the ancient method of exhaustion an d a large number of fragmentary results were discovered in the 16 th century by such pioneers as Cavalieri, Toricelli, Roberval, Fermat, Pascal, and Wallis.Fig.2. The method of exhaustion applied to a semicircular region.Gradually the method of exhaustion was transformed into the subject now calle d integral calculus,a new and powerful discipline with a large variety of applic ations, not only to geometrical problems concerned with areas and volumes but also to jproblems in other sciences. This branch of mathematics, which retaine d some of the original features of the method of exhaustion,received its bigges t impetus in the 17 th century, largely due to the efforts of Isaac Newion (16 42—1727) and Gottfried Leibniz (1646—1716), and its development continued well into the 19 th century before the subject was put on a firm mathematical basis by such men as Augustin-Louis Cauchy (1789-1857) and Bernhard Riem ann (1826-1866).Further refinements and extensions of the theory are still being carried o ut in contemporary mathematicsVocabularygeology 地质学decimal 小数,十进小数biology 生物学discipline 学科social sciences 社会科学 contemporary 现代的disk (disc) 圆盘bacteria 细菌isosceles triangle 等腰三角形 elastic 弹性的perimeter 周长 impetus 动力volume 体积 proportional to 与…成比例center 中心 inscribe 内接steepness 斜度 solid sphere 实心球method of exhaustion 穷举法 refinement 精炼,提炼polygon 多边形,多角形 cumbersome 笨重的,麻烦的polygonal 多角形fragmentary 碎片的,不完全的approximation 近似,逼近 background 背景学专业英语-How to Organize a paper (For Beginers)?The usual journal article is aimed at experts and near-experts, who are the peo ple most likely to read it. Your purpose should be say quickly what you have done is good, and why it works. Avoid lengthy summaries of known results, and minimize the preliminaries to the statements of your main results. There ar e many good ways of organizing a paper which can be learned by studying pa pers of the better expositors. The following suggestions describe a standard acc eptable style.Choose a title which helps the reader place in the body of mathematics. A use less title: Concerning some applications of a theorem of J. Doe. A. good titlecontains several well-known key words, e. g. Algebraic solutions of linear parti al differential equations. Make the title as informative as possible; but avoid re dundancy, and eschew the medieval practice of letting the title serve as an infl ated advertisement. A title of more than ten or twelve words is likely to be m iscopied, misquoted, distorted, and cursed.The first paragraph of the introduction should be comprehensible to any mathe matician, and it should pinpoint the location of the subject matter. The main p urpose of the introduction is to present a rough statement of the principal resul ts; include this statement as soon as it is feasible to do so, although it is som etimes well to set the stage with a preliminary paragraph. The remainder of th e introduction can discuss the connections with other results.It is sometimes useful to follow the introduction with a brief section that estab lishes notation and refers to standard sources for basic concepts and results. N ormally this section should be less than a page in length. Some authors weave this information unobtrusively into their introductions, avoiding thereby a dull section.The section following the introduction should contain the statement of one or more principal results. The rule that the statement of a theorem should precede its proof a triviality. A reader wants to know the objective of the paper, as well as the relevance of each section, as it is being read. In the case of a ma jor theorem whose proof is long, its statement can be followed by an outline of proof with references to subsequent sections for proofs of the various parts.Strive for proofs that are conceptual rather than computational. For an example of the difference, see A Mathematician’s Miscellany by J.E.Littlewood, in wh ich the contrast between barbaric and civilized proofs is beautifully and amusin gly portrayed. To achieve conceptual proofs, it is often helpful for an author t o adopt an initial attitude such as one would take when communicating mathe matics orally (as when walking with a friend). Decide how to state results wit h a minimum of symbols and how to express the ideas of the proof without c omputations. Then add to this framework the details needed to clinch the resul ts.Omit any computation which is routine (i.e. does not depend on unexpected tri cks). Merely indicate the starting point, describe the procedure, and state the o utcome.It is good research practice to analyze an argument by breaking it into a succe ssion of lemmas, each stated with maximum generality. It is usually bad practi ce to try to publish such an analysis, since it is likely to be long and unintere sting. The reader wants to see the path-not examine it with a microscope. A part of the argument is worth isolating as a lemma if it is used at least twice l ater on.The rudiments of grammar are important. The few lines written on the blackbo ard during an hour’s lecture are augmented by spoken commentary, and aat t he end of the day they are washed away by a merciful janitor. Since the publ ished paper will forever speak for its author without benefit of the cleansing s ponge, careful attention to sentence structure is worthwhile. Each author must develop a suitable individual style; a few general suggestions are nevertheless a ppropriate.The barbarism called the dangling participle has recently become more prevalen t, but not less loathsome. “Differentiating both sides with respect to x, the eq uation becomes---”is wrong, because “the equation”cannot be the subject th at does the differentiation. Write instead “differentiating both sides with respec t to x, we get the equation---,”or “Differentiation of both sides with respect to x leads to the equation---”Although the notion has gained some currency, it is absurd to claim that infor mal “we”has no proper place in mathematical exposition. Strict formality is appropriate in the statement of a theorem, and casual chatting should indeed b e banished from those parts of a paper which will be printed in italics. But fif teen consecutive pages of formality are altogether foreign to the spirit of the t wentieth century, and nearly all authors who try to sustain an impersonal digni fied text of such length succeed merely in erecting elaborate monuments to slu msiness.A sentence of the form “if P,Q”can be understood. However “if P,Q,R,S,T”is not so good, even if it can be deduced from the context that the third co mma is the one that serves the role of “then.”The reader is looking at the paper to learn something, not with a desire for mental calisthenics.Vocabularypreliminary 序,小引(名)开端的,最初的(形)eschew 避免medieval 中古的,中世纪的inflated 夸张的comprehensible 可领悟的,可了解的pinpoint 准确指出(位置)weave 插入,嵌入unobtrusivcly 无妨碍地triviality 平凡琐事barbarism 野蛮,未开化portray 写真,描写clinch 使终结rudiment 初步,基础commentary 注解,说明janitor 看守房屋者sponge 海绵dangling participle 不连结分词prevalent 流行的,盛行loathsome 可恶地absurd 荒谬的banish 排除sustain 维持,继续slumsiness 粗俗,笨拙monument 纪念碑calisthenics 柔软体操,健美体操notes1. 本课文选自美国数学会出版的小册子A mamual for authors of mathematical paper的一节,本文对准备投寄英文稿件的读者值得一读。
数学专业英语(Doc版).11
数学专业英语-Linear AlgebraFor the definition that follows we assume that we are given a particular field K. The scalars to be used are to be elements of K.DEFINITION. A vector space is a set V of elements called vectors satisfyi ng the following axioms.(A) To every pair, x and y ,of vectors in V corresponds a vector x+y,call ed the sum of x and y, in such a way that.(1) addition is commutative, x + y = y + x.(2) addition is associative, x + ( y + z ) = ( x + y ) + z.(3) there exists in V a unique vector 0 (called the origin ) such that x + 0 = x for every vector x , and(4) to every vector x in V there corresponds a unique vector - x such that x + ( - x ) = 0.(B) To every pair,αand x , where αis a scalar and x is a vector in V ,the re corresponds a vector αx in V , called the product of αand x , in such a way that(1) multiplication by scalars is associative,α(βx ) = (αβ) x(2) 1 x = x for every vector x.(C) (1) multiplication by scalars is distributive with respect to vector addition,α( x + y ) = αx+βy , and(2)multiplication by vectors is distributive with respect to scalar addition,(α+β) x = αx + βx .The relation between a vector space V and the underlying field K is usually d escribed by saying that V is a vector space over K . The associated field of s calars is usually either the real numbers R or the complex numbers C . If V i s linear space and M真包含于V , and if αu -v belong to M for every u an d v in M and every α∈ K , then M is linear subspace of V . If U = { u 1,u 2,…} is a collection of points in a linear space V , then the (linear) span of the set U is the set of all points o the form ∑c i u i, where c i∈ K ,and all but a finite number of the scalars c i are 0.The span of U is al ways a linear subspace of V.A key concept in linear algebra is independence. A finite set { u 1,u 2,…, u} is said to be linearly independent in V if the only way to write 0 = ∑kc i u i is by choosing all the c i= 0 . An infinite set is linearly independent if every finite set is independent . If a set is not independent, it is linearlyd ependent, and in this case, some point in the set can be written as a linear co mbination of other points in the set. A basis for a linear space M is an indep endent set that spans M . A space M is finite-dimensional if it can be spanne d by a finite set; it can then be shown that every spanning set contains a basi s, and every basis for M has the same number of points in it. This common number is called the dimension of M .Another key concept is that of linear transformation. If V and W are linear sp aces with the same scalar field K , a mapping L from V into W is called lin ear if L (u + v ) = L( u ) + L ( v ) and L ( αu ) = αL ( u ) for ever y u and v in V and αin K . With any I , are associated two special linear spaces:ker ( L ) = null space of L = L-1 (0)= { all x ∈V such that L ( X ) = 0 }Im ( L ) = image of L = L( V ) = { all L( x ) for x∈V }.Then r = dimension of Im ( L ) is called the rank of L. If W also has dime nsion n, then the following useful criterion results: L is 1-to-1 if and only if L is onto.In particular, if L is a linear map of V into itself, and the only solu tion of L( x ) = 0 is 0, then L IS onto and is therefore an isomorphism of V onto V , and has an inverse L -1. Such a transformation V is also said to b e nonsingular.Suppose now that L is a linear transformation from V into W where dim ( V ) = n and dim ( W ) = m . Choose a basis {υ 1 ,υ 2 ,…,υn} for V and a basis {w 1 ,w2 ,…,w m} for W . Then these define isomorphisms of V onto K n and W onto K m, respectively, and these in turn induce a linear transfor mation A between these. Any linear transformation ( such as A ) between K n and K m is described by means of a matrix ( a), according to the formula Aij( x ) = y , where x = { x1, x 2,…, x n} y = { y1, y 2,…, y m} and Y j =Σn j=i a ij x i I=1,2,…,m.The matrix A is said to represent the transformation L and to be the represent ation induced by the particular basis chosen for V and W .If S and T are linear transformations of V into itself, so is the compositic tra nsformation ST . If we choose a basis in V , and use this to obtain matrix re presentations for these, with A representing S and B representing T , then ST must have a matrix representation C . This is defined to be the product AB o f the matrixes A and B , and leads to the standard formula for matrix multipli cation.The least satisfactory aspect of linear algebra is still the theory of determinants even though this is the most ancient portion of the theory, dating back to Lei bniz if not to early China. One standard approach to determinants is to regard an n -by- n matrix as an ordered array of vectors( u 1 , u 2,…, u n) and t hen its determinant det ( A ) as a function F( u 1 , u 2 ,…, u n) of these n vectors which obeys certain rules.The determinant of such an array A turns out to be a convenient criterion for characterizing the nonsingularity of the associated linear transformation, since d et ( A ) = F ( u 1, u 2,…, u n) = 0 if and only if the set of vectors u i ar e linearly dependent. There are many other useful and elegant properties of det erminants, most of which will be found in any classic book on linear algebra. Thus, det ( AB ) = det ( A ) det ( B ), and det ( A ) = det ( A') ,where A' is the transpose of A , obtained by the formula A' =( a ji ), thereby rotating the array about the main diagonal. If a square matrix is triangular, meaning th at all its entries above the main diagonal are 0,then det ( A ) turns out to be exactly the product of the diagonal entries.Another useful concept is that of eigenvalue. A scalar is said to be an eigenva lue for a transformation T if there is a nonzero vector υwith T (υ) λυ. It is then clear that the eigenvalues will be those numbers λ∈ K such that T -λI is a singular transformation. Any vector in the null space of T -λI is called an eigenvector of T associated with eigenvalue λ, and their span the eigenspace, E λ. It is invariant under the action of T , meaning that T carrie s Eλinto itself. The eigenvalues of T are then exactly the set of roots of the polynomial p(λ) =det ( T -λI ).If A is a matrix representing T ,then one h as p (λ) det ( A -λI ), which permits one to find the eigenvalues of T easil y if the dimension of V is not too large, or if the matrix A is simple enough. The eigenvalues and eigenspaces of T provide a means by which the nature and structure of the linear transformation T can be examined in detail.Vocabularylinear algebra 线性代数non-singular 非奇异field 域isomorphism 同构vector 向量isomorphic 同构scalar 纯量,无向量 matrix 矩阵(单数)vector space 向量空间matrices 矩阵(多数)span 生成,长成determinant 行列式independence 无关(性),独立(性) array 阵列dependence 有关(性) diagonal 对角线linear combination 线性组合 triangular 三角形的basis 基(单数) entry 表值,元素basis 基(多数) eigenvalue 特征值,本征值dimension 维eigenvector 特征向量linear transformation 线性变换 invariant 不变,不变量null space 零空间 row 行rank 秩 column 列singular 奇异 system of equations 方程组homogeneous 齐次Notes1. If U = { u 1, u 2,…}is a collection of points in a linearspace V , then the (linear) span of the set U is the set of all points of the form ∑c i u i , w where c i ∈K ,and all but a finite number of scalars c I are 0.意思是:如果U = { u 1, u 2,…}是线性空间V 的点集,那么集 U 的(线性)生成是所有形如∑c i u i的点集,这里c i ∈ K ,且除了有限个c i外均为0.2. A finite set { u 1, u 2,…, u k}is said to be linearly independent if the only way to write 0 = ∑c i u I is by choosing all the c i= 0.这一句可以用更典型的句子表达如下: A finite set { u 1, u 2,…, u k} is said to be linearly independen t in V if ∑c i u i is by choosing all the c i= 0.这里independent 是形容词,故用linearly修饰它. 试比较F(x) is a continuous periodic function.这里periodi c 是形容词但它前面的词却用continuous 而不用continuously,这是因为continuous 这个词不是修饰periodi c而是修饰作为整体的名词periodic function.3. Then these define isomorphisms of V onto K n and W onto K M respectively, and these in turn inducea linear transformation A between these.这里第一个these代表前句的两个基(basis);第二个these代表isomorphisms;第三个these代表什么留给读者自己分析.4. The least satisfactory aspect of linear algebra is still the theory of determinants-意思是:线性代数最令人不满意的方面仍是有关行列式的理论.least satisfactory 意思是:最令人不满意.5. If a square matrix is triangular, meaning that all its entries above the main diagonal are 0,then det ( A ) turns out to be exactly the product of the diagonal entries.意思是:如果方阵是三角形的,即所有在主对角线上方的元素均为零,那末det( A ) 刚好就是对角线元素的乘积.这里meaning that 可用that is to say 代替,turns out to be解为”结果是”.ExerciseI. Answer the following questions:1. How can we define the linear independence of an infinite set?2. Let T be a linear transformation (T: V →W ) whose associated matrix is A.Give a criterion for the non-singularity of the transformation T.3. Where is the entry a45of a m -by- n matrix( m>4; n>5) located ?4. Let A , B be two rectangular matrices.Under what condition is the product matrix well-defined ?II.Translate the following two examples and their proofs into Chinese:1.Example1. Let u k= t k ,k=0,1,2,... and t real. Show that the set {u 0,u1,u2,…}is independent.Proof: By the definition of independence of an infinite set, it suffices to show that for each n ,the n+ 1 polynomials u0,u1,...,u n are independent.A relation of the form ∑n k=0c k u k=0 means ∑n k=0c k t k=0 for all t.When t=0,this gives c0=0.Differentiating both sides of ∑n k=0c k t k=0 and setting t=0,we fi nd that c1=0.Repeating the process,we find that each cocfficient is zero2. Example 2. Let V be afinite dimensional linear space, Then every finite basis for V has the same nu mber of elements.Proof: Let S and T be two finite bases for V. Suppose S consists of k elemnts and T consists of m e lements.Since S is independent and spans V ,every set of k+1 elements in V is dependent.Therefore eve ry set of more than k elements in V is dependent. Since T is an independent set , we must have m<k. The same argument with S and T interchanged shows that k<m. Hence k=m.III.Translate the following sentences into English:1.设 A 是一矩阵。
数学专业英语课后答案
2.1数学、方程与比例词组翻译1.数学分支branches of mathematics,算数arithmetics,几何学geometry,代数学algebra,三角学trigonometry,高等数学higher mathematics,初等数学elementary mathematics,高等代数higher algebra,数学分析mathematical analysis,函数论function theory,微分方程differential equation2.命题proposition,公理axiom,公设postulate,定义definition,定理theorem,引理lemma,推论deduction3.形form,数number,数字numeral,数值numerical value,图形figure,公式formula,符号notation(symbol),记法/记号sign,图表chart4.概念conception,相等equality,成立/真true,不成立/不真untrue,等式equation,恒等式identity,条件等式equation of condition,项/术语term,集set,函数function,常数constant,方程equation,线性方程linear equation,二次方程quadratic equation5.运算operation,加法addition,减法subtraction,乘法multiplication,除法division,证明proof,推理deduction,逻辑推理logical deduction6.测量土地to measure land,推导定理to deduce theorems,指定的运算indicated operation,获得结论to obtain the conclusions,占据中心地位to occupy the centric place汉译英(1)数学来源于人类的社会实践,包括工农业的劳动,商业、军事和科学技术研究等活动。
数学专业英语
MATHS ENGLISHabsolute value 绝对值 acceptable region 接受域 additivity 可加性alternative hypothesis 对立假设 analysis of covariance 协方差分析analysis of variance 方差分析 arithmetic mean 算术平均值 association 相关性 assumption checking 假设检验 availability 有效度 band 带宽bar chart 条形图 beta-distribution 贝塔分布 between groups 组间的binomial distribution 二项分布binomial test 二项检验center of gravity 重心 central tendency 中心趋势 hi-square distribution 卡方分布 chi-square test 卡方检验 classify 分类 cluster analysis 聚类分析coefficient 系数 coefficient of correlation 相关系数 collinearity 共线性 components 构成,分量 compound 复合的 confidence interval 置信区间consistency 一致性continuous variable 连续变量control charts 控制图 correlation 相关 covariance 协方差 covariance matrix 协方差矩阵 critical point 临界点 critical value 临界值 cross tab 列联表 cubic term 三次项 cumulative distribution function 累加分布函数curve estimation 曲线估计 default 默认的 deleted residual 剔除残差density function 密度函数dependent variable 因变量design of experiment 试验设计 df.(degree of freedom) 自由度 diagnostic 诊断discrete variable 离散变量discriminant function 判别函数discriminatory analysis 判别分析 D-optimal design D-优化设计 effects of interaction 交互效应eigenvalue 特征值equal size 等含量estimation of parameters 参数估计 estimations 估计量 exact value 精确值 expected value 期望值 exponential指数的 exponential distribution 指数分布 extreme value 极值 factor analysis 因子分析 factor score 因子得分 factorial designs 析因设计 factorial experiment 析因试验fitted line 拟合线fitted value 拟合值fixed variable 固定变量fractional factorial design 部分析因设计 F-test F检验 full factorial design 完全析因设计 gamma distribution 伽玛分布 geometric mean 几何均值 harmonic mean 调和均值 heterogeneity 不齐性 histogram 直方图homogeneity 齐性homogeneity of variance 方差齐性 hypothesis test 假设检验independence独立independent variable 自变量independent-samples 独立样本index of correlation 相关指数interclass correlation 组内相关 interval estimate 区间估计inverse 倒数的iterate 迭代kurtosis 峰度large sample problem 大样本问题least-significant difference 最小显著差数 least-square estimation 最小二乘估计 least-square method 最小二乘法 level of significance 显著性水平 leverage value 中心化杠杆值 life test 寿命试验likelihood function 似然函数 likelihood ratio test 似然比检验 linear estimator 线性估计linear model 线性模型 linear regression 线性回归 linear relation 线性关系 linear term 线性项 logarithmic 对数的 logarithms 对数 lost function 损失函数 main effect 主效应matrix 矩阵 maximum 最大值maximum likelihood estimation 极大似然估计mean squared deviation(MSD) 均方差 mean sum of square 均方和 measure 衡量 media中位数M-estimator M估计minimum 最小值missing values 缺失值mixed model 混合模型mode 众数 Monte Carle method 蒙特卡罗法 moving average移动平均值 multicollinearity 多元共线性 multiple comparison 多重比较multiple correlation 多重相关multiple correlation coefficient 复相关系数 multiple correlation coefficient 多元相关系数multiple regression analysis 多元回归分析 multiple regression equation 多元回归方程 multiple response 多响应 multivariate analysis 多元分析negative nonadditively 不可加性 nonlinear 非线性 nonlinear regression 非线性回归 noparametric tests 非参数检验 normal distribution 正态分布null hypothesis 零假设number of cases 个案数one-sample 单样本one-tailed test 单侧检验one-way ANOVA 单向方差分析one-way classification 单向分类 optimal 优化的 optimum allocation 最优配制order statistics 次序统计量 origin 原点 orthogonal 正交的 outliers 异常值paired observations 成对观测数据paired-sample 成对样本parameter estimation 参数估计partial correlation 偏相关partial correlation coefficient 偏相关系数 partial regression coefficient 偏回归系 percentiles 百分位数 pie chart 饼图 point estimate 点估计poisson distribution 泊松分布 polynomial curve 多项式曲线 polynomial regression 多项式回归 polynomials 多项式 positive relationship 正相关 power 幂 P-P plot P-P概率图 predicted value 预测值prediction intervals 预测区间principal component analysis 主成分分析proability 概率 probability density function 概率密度函数 quadratic 二次的 Q-Q plot Q-Q概率图 quadratic term 二次项 quality control 质量控制 quantitative 数量的,度量quartiles 四分位数 random sampling 随机取样random seed 随机数种子random variable 随机变量randomization 随机化range 极差rank correlation 秩相关rank statistic 秩统计量regression analysis 回归分析regression coefficient 回归系数 regression line 回归线rejection region 拒绝域residual 残差 residual sum of squares 剩余平方和 risk function 风险函数 robustness 稳健性 root mean square 标准差 row 行 run test 游程检验sample size 样本容量 sample space 样本空间 sampling 取样sampling inspection 抽样检验 scatter chart 散点图 S-curve S形曲线sets 集合sign test 符号检验significance level 显著性水平significance testing 显著性检验significant digits 有效数字skewed distribution 偏态分布 small sample problem 小样本问题 sort 排序sources of variation 方差来源 ion 标准离差 standard error of mean 均值的标准误差 statistical quality control 统计质量控制 std. residual 标准残差 stepwise regression analysis 逐步回归 strong assumption 强假设 stud. deleted residual 学生化剔除残差 stud. residual 学生化残差subsamples 次级样本 sufficient statistic 充分统计量 sum of squares 平方和t-distribution t分布test criterion 检验判据test for linearity 线性检验test of goodness of fit 拟合优度检验test of homogeneity 齐性检验 test of independence 独立性检验 test rules 检验法则test statistics 检验统计量 testing function 检验函数 timeseries 时间序列 tolerance limits 容许限 trimmed mean 截尾均值 true value 真值 t-test t检验 two-tailed test 双侧检验unbiased estimation 无偏估计 unbiasedness 无偏性 uniform distribution 均匀分布 value of estimator 估计值variance 方差 variance components 方差分量 variance ratio 方差比weighted average 加权平均值 within groups 组内的 Z score Z分数 active constraint 活动约束 active set method 活动集法 analytic gradient 解析梯度 approximate 近似 arbitrary 强制性的 argument 变量attainment factor 达到因子 bandwidth 带宽 be equivalent to 等价于best-fit 最佳拟合 coefficient 系数 complex-value 复数值 component 分量constrained 有约束的 constraint function 约束函数 converge 收敛cubic polynomial interpolation method 三次多项式插值法 curve-fitting 曲线拟合 data-fitting 数据拟diagonal 对角的 direct search method 直接搜索法direction of search 搜索方向eigenvalue 特征值empty matrix 空矩阵exceeded 溢出的feasible solution 可行解finite-difference 有限差分 first-order 一阶 Gauss-Newton method 高斯-牛顿法 goal attainment problem 目标达到问题 gradient method 梯度法 handle 句柄 Hessian matrix 海色矩阵 independent variables 独立变量inequality 不等式infeasibility 不可行性initial feasible solution 初始可行解 initialize 初始化 invoke 激活 iteration 迭代Jacobian 雅可比矩阵 Lagrange multiplier 拉格朗日乘子 large-scale 大型的least square 最小二乘least squares sense 最小二乘意义上的Levenberg-Marquardt method 列文伯格-马夸尔特法 line search 一维搜索linear equality constraints 线性等式约束 linear programming problem 线性规划问题local solution 局部解 medium-scale 中型的 mixed quadratic and cubic polynomial interpolation and extrapolation method 混合二次、三次多项式内插、外插法 multi objective 多目标的 norm 范数 observed data 测量数据optimization routine 优化过程optimizer 求解器over-determined system 超定系统 partial derivatives 偏导数polynomial interpolation method 多项式插值法quadrati二次的quadratic interpolation method 二次内插法quadratic programming 二次规划real-value 实数值 residuals 残差robust 稳健的robustness 稳健性,鲁棒性scalar 标量semi-infinitely problem 半无限问题Sequential Quadratic Programming method 序列二次规划法 simplex search method 单纯形法sparse matrix 稀疏矩阵 sparsity pattern 稀疏模式 sparsity structure 稀疏结构 starting point 初始点 step length 步长 subspace trust region method 子空间置信域法symmetric matrix 对称矩阵termination message 终止信息 termination tolerance 终止容限 the exit condition 退出条件 the method of steepest descent 最速下降法 transpose 转置unconstrained 无约束的under-determined system 负定系统weighting matrix 加权矩阵approximation 逼近a spline in b-form/b-spline b样条 a spline of polynomial piece /ppform spline 分段多项式样条bivariate spline function 二元样条函数break/breaks 断点coefficient/coefficients 系数cubic interpolation 三次插值/三次内插cubic polynomial 三次多项式cubic smoothing spline 三次平滑样条cubic spline 三次样条 cubic spline interpolation 三次样条插值/三次样条内插 curve 曲线 degree of freedom 自由度 end conditions 约束条件input argument 输入参数 interpolation 插值/内插 interval 取值区间knot/knots 节点least-squares approximation 最小二乘拟合 multiplicity 重次 multivariate function 多元函数 optional argument 可选参数 output argument 输出参数point/points 数据点rational spline 有理样条rounding error 舍入误差(相对误差)sequence 数列(数组spline approximation 样条逼近/样条拟合spline function 样条函数spline curve 样条曲线 spline interpolation 样条插值/样条内插 spline surface 样条曲面 smoothing spline 平滑样条 tolerance 允许精度univariate function 一元函数 absolute error 绝对误差 absolute tolerance 绝对容限adaptive mesh 适应性网格 boundary condition 边界条件 contour plot 等值线图coordinate 坐标系decomposed geometry matrix 分解几何矩阵diagonal matrix 对角矩阵Dirichlet boundary conditions 边界条件eigenvalue 特征值 elliptic 椭圆形的 error estimate 误差估计exact solution 精确解 generalized Neumann boundary condition 推广的Neumann 边界条件geometry description matrix 几何描述矩阵 geometry matrix 几何矩阵 graphical user interface(GUI)图形用户界面 hyperbolic 双曲线的 initial mesh 初始网格 jiggle 微调Lagrange multipliers 拉格朗日乘子 Laplace equation 拉普拉斯方程 linear interpolation 线性插值machine precision 机器精度mixed boundary condition 混合边界条件Neuman boundary condition Neuman边界条件 node point 节点 nonlinear solver 非线性求解器normal vector 法向量Parabolic 抛物线型的partial differential equation 偏微分方程plane strain 平面应变 plane stress 平面应力 Poisson's equation 泊松方程 polygon 多边形positive definite 正定refined triangular mesh 加密的三角形网格relative tolerance 相对容限 relative tolerance 相对容限 residual norm 残差范数 singular 奇异的postulate假定, 基本条件, 基本原理,要求, 假定,要求conic, conical圆锥的;圆锥形的ellipse椭圆, 椭圆形ellipt hyperbolic 双曲线的parabolic用寓言表达的: 抛物线的,像抛物线的algebraic代数的, 关于代数学的mineralogy 矿物学axiom公理collinear在同一直线上的同线的convex 凸出的;凸面的triangle三角形, 三人一组, 三角关系parallelogram平行四边形straight angle平角right angle 直角acute angle锐角obtuse angle钝角reflex angle优角rectilinear直线的;由直线组成的;循直线进行的isosceles triangle等腰三角形equilateral triangle等边三角形right triangle n. 直角三角形obtuse triangle钝角三角形acute triangle锐角三角形equiangular triangle正三角形,等角三角形hypotenuse(直角三角形的)斜边infinitesimal 无穷小的, 极小的, 无限小的calculus 微积分学, 结石inscribe 记下polygon多角形, 多边形curvilinear曲线的, 由曲线组成的intuition 直觉, 直觉的知识integral积分, 完整, 部分defective有缺陷的, (智商或行为有)欠缺的differential coefficient 微分系数irrational numbers无理数domain 定义域contradiction 矛盾continuous variable 连续变量;[连续变数]variation 变分, 变化independent variable 自变量dependent variable 应变量rectangular coordinate 直角坐标abscissa〈数〉横坐标ordinate纵线, 纵座标differential 微分的,微分(differentiation)Integral 积分, 完整, 部分(integration) trigonometry 三角法exponential 指数的, 幂数的logarithm 对数derivative导数;微商tangent 切线正切definite integral 定积分culminate 达到顶点differential equation 微分方程extreme value 极值multiple integral 多重积分functional analysis 泛函分析cardinal number 基数(如:1, 2, 3, ... 有别于序数)denumerable可数的aggregate 合计, 总计, 集合体,合计的, 集合的, 聚合的,聚集, 集合, 合计purport主旨,声称superior 长者, 高手, 上级,较高的, 上级的, 上好的, 出众的, 高傲的cumbersome 讨厌的, 麻烦的, 笨重的drastically 激烈地, 彻底地conservation 守衡律quadrature求积, 求积分interpolation插值extrapolation外推法, 推断internal point 内点generalized solution 广义解hydrodynamics 流体力学,水动力学divergence 发散(性),梯度,发散integro-interpolation method 积分插值法Variational method 变分方法comparatively 比较地, 相当地self-adjoint (nonself-adjoint) 自治的,自伴的,自共轭的finite element method 有限元法spline approximation 样条逼近Particles-in-the-Cell 网格质点法herald 使者, 传令官, 通报者, 先驱, 预兆,预报, 宣布, 传达, 欢呼advection水平对流fluctuation波动, 起伏mean-square 均方dispersion离差, 差量nterpolation 插值divisible 可分的dice, die 骰子pitfall 缺陷celestial天上的macroscopic肉眼可见的, 巨观的classical field theory 经典场理论rigit 刚硬的, 刚性的, 严格的quantum量, 额, [物] 量子, 量子论inception 起初, 获得学位pertain 适合, 属于encompass 包围, 环绕, 包含或包括某事物ingredient 成分, 因素acquainted有知识的, 知晓的 synonymous同义的configuration 构造, 结构, 配置, 外形inertia 惯性, 惯量attribute 特性momentum动量designate 指明projectile 射弹,发射的ballistics 弹道学, 发射学intractable 难处理的furnish 供应, 提供, 装备, 布置torque n. 扭矩, 转矩moment 力矩的dissipation 消散, 分散, 挥霍, 浪费, 消遣, 放荡, 狂饮constitutive构成的, 制定的continuum mechanics 连续介质力学superposition重叠, 重合, 叠合reckon 计算, 总计, 估计, 猜想,数, 计算, 估计, 依赖, 料想strength 强度load 载荷empirical 以经验为依据的insofar 在……范围cohesive 内聚性的stiffness 硬度furnish 供给turbulent 湍流laminar 层流isothermal 等温isotropic 各向同性eddy 旋涡viscosity 粘性、粘度adiabatic 绝热的reversible 可逆的 isentropic 等熵的stream tube 流管 tangential 切线的incompressible 不可压缩的similitude 相似性hydraulic 水力的,水力学的spillway (河或水坝的)放水道,泄洪道prototype 原型,样板vibratory 振动的,摆动的propagation 传播acoustic 听觉的,声学的damp 阻尼,衰减restore 复职,归还neutral 平衡 exciting force 激励力resonant共振的,谐振的stiffness 刚度,刚性magnitude 数值,大小substantially实质上的perturb 干扰,扰乱Fourier series 傅里叶级数shredder 切菜器metropolitan 大都市的at-grade 在同一水平面上elevated 高架的guide way 导轨rigid body 刚体medium 介质aging 老化polymeric聚合(物)的consolidate 把…联合为一体,统一radically 根本地,本质上deliberate 从容不迫的,深思熟虑Attribute赋予medieval 中世纪的etch 蚀刻,蚀镂fingernail 指甲bar chart 直方图joystick 游戏杆trial-error 试制, 试生产junction n. 连接, 接合, 交叉点, 汇合处contrive v. 发明, 设计, 图谋snooker (=snooker pool)彩色台球, 桌球****公理 axiom 命题 proposition 被加数augend , summand 加数addend 被减数minuend 减数subtrahend 差remainder 被乘数multiplicand, faciend 乘数multiplicator 积 product 被除数 dividend 除数 divisor 商 quotient 大于等于 is equal or greater than 小于等于 is equal or lesser than 运算符operator 算术平均数geometric mean n个数之积的n次方根(reciprocal) x的倒数为1/x 有理数 rational number 无理数irrational number 整数 integer小数点 decimal point分数 fraction 分子 numerator 分母 denominator 比 ratio 十进制 decimal system 二进制binary system 十六进制 hexadecimal system 权 weight, significance 截尾 truncation 四舍五入 round 下舍入 round down 上舍入 round up 有效数字significant digit 无效数字 insignificant digit 代数 algebra 单项式monomial 多项式polynomial, multinomial 系数coefficient 未知数 unknown, x-factor, y-factor, z-factor 等式,方程式 equation 一次方程simple equation 二次方程quadratic equation 三次方程cubic equation 四次方程 quartic equation 阶乘 factorial 对数logarithm 指数,幂 exponent 乘方 power 二次方,平方 square 三次方,立方 cube 四次方 the power of four, the fourth power n次方 the power of n, the nth power 开方 evolution, extraction 二次方根,平方根 square root 三次方根,立方根 cube root 四次方根 the root of four, the fourth root n次方根 the root of n, the nth root 坐标系coordinates 坐标轴 x-axis, y-axis, z-axis 横坐标 x-coordinate 纵坐标y-coordinate 原点origin 象限quadrant 截距(有正负之分)intercede (方程的)解solution 线段 segment 射线 radial 平行parallel 相交intersect 角度degree 弧度radian 钝角obtuse angle 平角 straight angle 周角 perigon 底 base 锐角三角形 acute triangle 直角边 leg 斜边 hypotenuse 勾股定理 Pythagorean theorem 钝角三角形 obtuse triangle 不等边三角形 scalene triangle 等腰三角形isosceles triangle 等边三角形equilateral triangle 四边形quadrilateral 平行四边形parallelogram 周长perimeter 全等congruent 三角 trigonometry 正弦 sine 余弦 cosine 正切 tangent 余切 cotangent 正割 secant 余割 cosecant 反正弦 arc sine 反余弦 arc cosine 反正切 arc tangent 反余切 arc cotangent 反正割arc secant 反余割 arc cosecant 集合aggregate 空集 void 子集subset 交集intersection 并集union 补集complement 映射mapping 定义域 domain, field of definition 值域 range 单调性monotonicity 图象 image 数列,级数 series 导数 derivative 无穷小infinitesimal 复数complex number 矩阵matrix 行列式determinant 半圆 semicircle 扇形 sector 环 ring 椭圆 ellipse 圆周 circumference 轨迹 locus, loca(pl.) 平行六面体 parallelepiped 立方体 cube 七面体 heptahedron 八面体 octahedron 九面体 enneahedron 十面体 decahedron 十一面体 hendecahedron 十二面体 dodecahedron 二十面体 icosahedron 多面体 polyhedron 四面体 tetrahedron 五面体pentahedron 六面体hexahedron 菱形rhomb, rhombus, rhombi(pl.), diamond 正方形 square 梯形 trapezoid 直角梯形 right trapezoid 等腰梯形 isosceles trapezoid 五边形 pentagon 六边形 hexagon 七边形heptagon 八边形 octagon 九边形 enneagon 十边形 decagon 十一边形hendecagon 十二边形dodecagon 多边形polygon 正多边形equilateral polygon 相位 phase 振幅 amplitude 内心 incentre(BrE), incenter(AmE) 外心 excentre(BrE), excenter(AmE) 旁心 escentre(BrE), escenter(AmE) 垂心orthocentre(BrE), orthocenter(AmE) 重心barycentre(BrE), barycenter(AmE) 内切圆 inscribed circle 外切圆circumcircle 方差variance 标准差root-mean-square deviation, standard deviation 百分点 percentage 百分位数 percentile 排列permutation 分布 distribution 正态分布 normal distribution 非正态分布abnormal distribution 条形统计图bar graph 柱形统计图histogram 折线统计图 broken line graph 曲线统计图 curve diagram 扇形统计图pie diagram**** mutually disjoint events 互不相交事件mutually disjoint subsets 互不相交子集 mutually independent events 互相独立事件myria 万 myriad 无数的 multiplicity 重数 mid square method 平方取中法 midperpendicular 中垂线 minor 子式 minor arc 劣弧 mixed number 带分数 regular convergence 正则收敛 relative discriminant 相对判别式relative error 相对误差 relative extremum 局部极值 ricci equatoin 李奇恒等式ricci identity 李奇恒等式riemann function 黎曼函数riemann integral 黎曼积分 right direct product 右直积 right endpoint 右端点 right inner product 右内积 ring of integers 整数环 ring of matrices 矩阵环 root mean square error 均方根差 root of equation 方程式的根 rotation of axes 坐标轴的旋转 rotation of co ordinate system 坐标轴的旋转 round off error 舍入规则 round up error 舍入规则 runge kutta method 龙格库塔法 n disk n维圆盘 nth member 第n项 nth partial quotient 第n偏商 nth power operation n次幂运算 nth root n次根 nth term 第n项 n times continuously differentiable n次连续可微的natural injection 自然单射natural isomorphism 自然等necessary and sufficient conditions 必要充分的条件necessary and sufficient statistic 必要充分统计量 neutral element 零元素 neutral line 中线 nonhomogeneous linear boundary value problem 非齐次线性边值问题 nonhomogeneous linear differential equation 非齐次线性微分方程nonhomogeneous linear system of differential equations 非齐次线性微分方程组interval algebra 区间代数 interval analysis 区间分析 interval closed at the right 右闭区间 interval estimation 区域估计 intervalfunction 区间函数 interval graph 区间图 interval of convergence 收敛区间 interval of definition 定义区间 interval topology 区间拓扑irreducible set 不可约集 irreducible r module 不可约r模 periodical decimal fraction 循环十进小数 pentad 拼五小组 pentadecagon 十五边形pentagon 五角形 pentagonal number 五角数 pentagonal pyramid 五角锥pentagram 五角星 pentahedron 五面体 pentaspherical coordinates 五球坐标 penalty method 补偿法 pascal distribution 帕斯卡分布 partition function 分折函数 partial differential equation of elliptic type 椭圆型偏微分方程 partial differential equation of first order 一阶偏微分方程 partial differential equation of hyperbolic type 双曲型偏微分方程 partial differential equation of mixed type 混合型偏微分方程partial differential equation of parabolic type 抛物型偏微分方程partial differential operator 偏微分算子parametric test 参数检验particular solution 特解parallelogram axiom 平行四边形公理orthogonality relation 正交关系 ordinary differential equation 常微分方程optimal value function 最优值函数opposite angles 对角opposite category 对偶范畴 one to one mapping 一一映射 onto mapping 满射 open mapping theorem 开映射定理 one to many mapping 一对多映射one sided limit 单侧极限 numerical solution of linear equations 线性方程组的数值解法 null set 空集 null solution 零解 third boundary condition 第三边界条件two sided neighborhood 双侧邻域unbiased estimating equation 无偏估计方程unbounded function 无界函数unbounded quantifier 无界量词uncertainty principle 测不准原理uncorrelated random variables 不相关随机变量 undetermined coefficient 末定系数 velocity distribution 速度分布 velocity optimal 速度最优的weak approximation theorem 弱逼近定理 weak completeness 弱完备性weak continuity 弱连续性 weak convergence 弱收敛 wiener measure 维纳测度word group 自由群 sample correlation coefficient 样本相关系数sample covariance 样本协方差schwarz inequality 施瓦尔兹不等式second boundary condition 诺伊曼边界条件second comparison test 第二比较检验second limit theorem 第二极限定理 self adjoint differential equation 自伴微分方程 semimajor axis 半长轴semiminor axis 半短轴 sentential calculus 命题演算 set of measure zero 零测度集 set topology 集论拓扑simple connectedness 单连通性slope function 斜率函数 solution curve 积分曲线 solution domain 解域solution set of equation 方程的解集spatial co ordinate 空间坐标specific address 绝对地址spherical bessel function 球贝塞耳函数 spherical cap 球冠 spherical coordinates 球极坐标 spherical curvature 球面曲率 spherical shell 球壳 spherical zone 球带spline function 样条函数spline interpolation 样条内插stability conditions 稳定条件 statistical hypothesis testing 统计假设检验strict inequality 严格不等式strict isotonicity 严格保序性strict isotony 严格保序性strict increasing 严格递增system of partial differential equations 偏微分方程组system of ordinary differential equations 常微分方程组system of linear homogeneousequations 线性齐次方程组 system of linear inhomogeneous equations 线性非齐次方程组system of inequalities 联立不等式system of polarcoordinates 极坐标系system of variational equations 变分方程组system with concentrated parameters 集中参数系统system with distributedparameters 分布参数系统 t1topological space t1拓扑空间 t2topologicalspace t2拓扑空间 t3topological space 分离空间 t4topological space 正则拓扑空间 t5 topological space 正规空间 t6topological space 遗传正规空间 tangent cone 切线锥面 telegraph equation 电报方程 theorem for damping 阻尼定理****充分条件sufficient condition必要条件necessary condition 充要条件sufficient and necessary condition……的充要条件是……… if and only if …****abscissa 横坐标 alternatingseries 交错级数 angle of the sector 扇形角 arbitrary constant 任意常数 augmented matrix 增广矩阵 axis of parabola 拋物线的轴 axis of revolution 旋转轴 axis of rotation 旋转轴 binomial series 二项级数binomial theorem 二项式定理 binomial distribution 二项分布 bisectionmethod 分半法;分半方法 bounded above 有上界的;上有界的 boundedbelow 有下界的;下有界的bounded function 有界函数boundedsequence 有界序列brace 大括号bracket 括号Cartesian coordinates 笛卡儿坐标 certain event 必然事件 circumcentre 外心;外接圆心 circumcircle 外接圆 classical theory of probability 古典概率论 cofactor 余因子; 余因式 common denominator 同分母;公分母 commondifference 公差 common divisor 公约数;公约 common logarithm 常用对数 common multiple 公位数;公倍 common ratio 公比 commutative law 交换律 compasses 圆规 Cauchy-Schwarz inequality 柯西 - 许瓦尔兹不等式central limit theorem 中心极限定理 centripedal acceleration 向心加速度concave downward 凹向下的concurrent 共点concyclic 共圆concyclic points 共圆点Euclidean geometry 欧几里德几何Euler'sformula 尤拉公式;欧拉公式 even function 偶函数 even number 偶数(2)博奕 Gaussian distribution 高斯分布 greatest term 最game (1)对策;大项 greatest value 最大值 harmonic mean (1) 调和平均数; (2) 调和中项 harmonic progression 调和级数 higher order derivative 高阶导数improper fraction 假分数improper integral 广义积分; 非正常积分implicit function 隐函数 incircle 内切圆 inclined plane 斜 included angle 夹角 indefinite integral 不定积分 initial condition 原始条件;初值条件 initial-value problem 初值问题 interior angles on the same side of the transversal 同旁内角interior opposite angle 内对角isosceles triangle 等腰三角形 iterate (1)迭代值; (2)迭代 Lagrange interpolating polynomial 拉格朗日插值多项代Laplace expansion 拉普拉斯展式 lemniscate 双纽线 left hand limit 左方极限 limiting case 极限情况limiting position 极限位置line of best-fit 最佳拟合line segment 线段 logarithmic equation 对数方程 mathematical analysis 数学分析mathematical induction 数学归纳法monotonic decreasing function 单调递减函数 monotonic convergence 单调收敛性 monotonic increasing function 单调递增函数multiple-angle formula 倍角公式multiple root 多重根 mutually disjoint 互不相交 mutually exclusive events 互斥事件mutually independent 独立; 互相独立mutually perpendicular lines 互相垂直 numerical method 计算方法;数值法oblique cone 斜圆锥 orthogonal circles 正交圆 orthogonality 正交性oscillatory convergence 振动收敛性 ordinary differential equation 常微分方程pairwise mutually exclusive events 两两互斥事件place holder 补位数字 point of inflection (inflexion) 拐点; 转折点Pisson distribution 泊松分布point-slope form 点斜式polar coordinate plane 极坐标平面polynomial equation 多项式方程posterior probability 后验概率; 事后概率premultiply 前乘; 自左乘prime factor 质因子;质因素 prime number 素数;质数 principal angle 主角principal axis 主轴 principal value 主值 prior probability 先验概率; 事先概率 probability density function 概率密度函数 product and sum formula 和积互变公式 product sample space 积样本空间 product to sum formula 积化和差公式 proof by contradiction 反证法; 归谬法 proper fraction 真分数proper integral 正常积分proper subset 真子集propositional calculus 命题演算propositional inference 命题推演protractor 量角器Pythagoras' theorem 勾股定理Pythagorean triplet 毕氏三元数组 quadratic convergence 二阶收敛性 quadrature 求积法 quotient set 商集 radial component 沿径分量 radical axis 根轴range 值域;区域;范围;极差;分布域 rationalization 有理化 raw data 原始数据 rectifiable 可求长的 reciprocal 倒数 rectangular coordinate plane 直角坐标平面 recurrence formula 递推公式 reducibility 可约性; 可化简性 reflexive relation 自反关系 reference angle 参考 reference line 基准线 reflex angle 优角;反角 region of acceptance 接受区域region of convergency 收敛区域 region of rejection 否定区域 right circular cone 直立圆锥(体) resolution of vector 向量分解; 矢量分解right hand limit 右方极限 right prism 直立棱柱;直立角柱(体) right pyramid 直立棱锥;直立角锥(体) right-angled triangle 直角二角形scalene triangle 不等边三角形;不规则三角形 scatter diagram 散点图scientific notation 科学记数法semi-conjugate axis 半共轭轴semi-transverse axis 半贯轴semi-vertical angle 半顶角separable differential equation 可分微分方程septic equation 七次方程set square 三角尺;三角板 shaded portion 有阴影部分 significance level 显著性水平 significant figure 有效数字 similar triangles 相似三角形simple iteration method 简单迭代法simple pendulum 单摆Simpson's integral 森逊积分 standard deviation 标准差;标准偏离 standard normal distribution 标准正态分布; 标准常态分布 stationary point 平稳点; 逗留点; 驻点 strictly monotonic 严格单调 statistical chart 统计分析submultiple angle formula 半角公式subsidiary angle 辅助角substitution 代入; 代入法successive approximation 逐次逼近法successive derivative 逐次导数 successive differentiation 逐次微分法suffix 下标 sum to infinity 无限项之和 sum to product formula 和化积公式 superimposing 迭合 supplementary angle 补角 surjection 满射symmetric relation 对称关系 tautology 恒真命题;恒真式 Taylor’s expansion 泰勒展开式 Taylor’s series 泰勒级数 Taylor’s theorem 泰勒定理 test criterion 检验标准 test of significance 显著性检验 to the nearest 至最接近之torque 转矩torus 环面transcendental function 超越函数 transformation of variable 变数转换 transitive 可传递的 transpose of matrix 倒置矩阵;转置矩阵 transversal 截 ;横截的 triangle law of addition 三角形加法 travel graph 行程图 tree diagram 树形图trapezoidal integral 梯形积分truncated Taylor’s series 截断泰勒级数 two-tailed test 双尾检验;只端检验 type I error I 型误差type II error II型误差unbiased estimator 无偏估计量undetermined coefficient 待定系数 unique solution 唯一解 vertical asymptote 垂直渐近线 vertically opposite angles 对顶角 without loss of generality 不失一般性****分子Numerator 分母Denominator 阿拉伯数字Hindu-Arabic numeral假分数Improper fraction 最大公因子Highest Common Factor (H.C.F.) 最小公倍数 Lowest Common Multiple (L.C.M.) 行列式 determinant****interval closed at the right 右闭区间 interval of convergence 收敛区间interval of definition 定义区间invariance theorem 不变性定理 invariant of an equation 方程的不变量 inverse circular function 反三角函数 inverse hyperbolic function 反双曲函数inversion formula 反演公式 isotonic injective mapping 保序单射映射jacobi identity 雅可比恒等式 jump point 跳跃点 law of double negation 双重否定律 law of inertia 惯性律law of large numbers 大数定律 leading ideal 猪想 liouville theorem 刘维尔定理 lipschitz condition 李普希茨条件 markov transform 马尔可夫变换 mathematical approximation 数学近似法 mathematical model 数学模型 maximum condition 极大条件 maximum deviation 最大偏差 mean square deviation 方差 mean square of error 误差的均方 meromorphic function 亚纯函数柱形统计图 histogram 折线统计图 broken line graph 曲线统计图 curve diagram 扇形统计图 pie diagram排列 permutatio内切圆 inscribed circle 外切圆 circumcircle正多边形 equilateral polygon metric space 度量空间 metric subspace 度量子空间method of runge kutta type 朗格库塔型的方法 method of steepest ascent 最速上升法 method of steepest descent 最速下降法method of finite elements 有限元法method of fractional steps 分步法method of exhaustion 穷竭法 method of approximation 近似法 method of artificial variables 人工变量法method of balayage 扫除法method of characteristic curves 特者法 method of comparison 比较法 method of conjugate gradients 共轭梯度法lateral area 侧面积 last multiplier 最后乘子large sample test 大样本检验lattice constant 点阵常数lattice design 格子设计method of difference 差分法method of elimination 消元法method of estimation 估计法meromorphic differential 亚纯微分 median 中位数 measuring rule 量尺 mean term 内项mean term 内项mean term 内项irreducibility criterion 不可约性判别准则irreducible polynomial 不可约多项式 irreducible generating set 不可约生成集 irregular divisor class 非正则因子类 irregular point 非正则点irregular singular point 非正则奇点isometric circle 等距圆isometric embedding 等距嵌入isomorphic field 同构域isomorphic graph 同构图isomorphic group 同构群isomorphic image 同构象isothermal parameter 等温参数iterated function 叠函数iterated integral 累积分joint distribution 联合分布 jordan algebra 约当代数kernel of an integral equation 积分方程的核l'hospital rule 洛必达规则laboratory system of coordinates 实验室坐标系 labyrinth 迷宫lacation principle 介值定理lag correlation coefficient 滞后相关系数lag regression 落后回归laguerre differential equation 拉盖尔微分方程lame equation 拉梅方程language of formula 公式语言 laplace beltrami operator 拉普拉斯贝尔特拉米算子lateral area 侧面积 last multiplier 最后乘子large sample test 大样本检验lattice constant 点阵常数lattice design 格子设计 left adjoint 左伴随的 left derivative 左导数left differential 左微分 left direct product 左直积 left end point 左端点 left length 左长 left limit value 左极限值left multiplication ring 左乘环length of curve 曲线的长 length of normal 法线的长 levi decomposition 列维分解 limes inferior 下极限 limes superior 上极限limit circle 极限圆 limit circle type 极限圆型logarithm to the base 10 常用对数logarithmic normal distribution 对数正态分布logic of relations 关系逻辑magic circle 幻圆magic cube 幻立方manifold without boundary 无边廖many valued mapping 多值映射marginal distribution density function 边缘分布密度函数 marginal distribution function 边缘分布函数mathematical programming 数学规划 mathematical random sample 数学随机样本 mathematical statistics 数理统计 maximum likelihood estimating function 极大似然估计量 independent variable 自变量 dependent variable 应变量equiangular triangle 正三角形,等角三角形命题proposition 差remainder 积product 除数divisor 商quotient 截尾truncation 未知数unknown, x-factor, y-factor, z-factor 阶乘 factorial 集合 aggregate 空集 void 子集 subset 交集 intersection 并集 union 补集 complement 映射 mapping 勾股定理 Pythagorean theorem 菱形 rhomb, rhombus, rhombi(pl.), diamond 双曲线 hyperbola 抛物线 parabola topology of bounded convergence 有界收敛拓扑toroid 超环面 toroidal coordinates 圆环坐标trace of dyadic 并向量的迹transcendental integral function 超越整函数transformation formulas of the coordinates 坐标的变换公式 transformation to principal axes 轴变换 transversal lines 截线trapezoid method 梯形公式trefoil knot 三叶形纽结truth function 真值函项two sided test 双侧检定 two sided neighborhood 双侧邻域two sided surface 双侧曲面two termed expression 二项式ultrahyperbolic equation 超双曲型方程。
数学专业英语(Doc版).15
数学专业英语-Notations and Abbreviations (I) Learn to understand N set of natural numbersZ set of integersR set of real numbersC set of complex numbers+ plus; positive-minus; negative×multiplied by; times÷divided by=equals; is equal to≡identically equal to≈,≌approximately equal to>greater than≥greater than or equal to<less than≤less than or equal to》much greater than《much less thansquare rootcube rootnth root│a│ absolute value of an! n factoriala to the power n ; the nth power of a[a] the greatest integer≤athe reciprocal of aLet A, B be sets∈ belongs to ; be a member ofnot belongs tox∈A x os amember of A∪ unionA∪B A union B∩ intersectionA∩B A intersection BA B A is a subset of B;A is contained in B A B A contains Bcomplement of Athe closure of Aempty set( ) i=1,2,…,r j=1,2,…,s r-by-s(r×s)matrix││I,j=1,2,…,n determinant of order ndet( ) the determinant of the matrix ( )vector Fx=( , ,…, ) x is an n-tuple of‖‖the norm of …‖ parallel to┴ perpendicular tothe exponential function of xlin x the logarithmic function of xsie sinecos cosinetan tangentsinh hyperbolic sinecosh hyperbolic cosinethe inverse of ff is the composite or the composition of u and vthe limit of …as n approaches ∞(as x approaches )x a x approaches a, the differential coefficient of y; the 1st derivative of y , the nth derivative of ythe partial derivative of f with respect to xthe partial derivative of f with respect to ythe indefinite integral of fthe definite integral of f between a and b (from a to b) the increment of xdifferential xsummation of …the sum of the terms indicated∏the product of the terms indicated=> impliesis equivalent to()round brackets; parantheses[ ] square brackets{ } braces。
数学专业英语重点词汇
(一)数学专业英语课件词汇:2.1 数学、方程与比例Mathematics, Equation and Ratio algebra 代数学geometrical 几何的algebraic 代数的identity 恒等式arithmetic 算术, 算术的measure 测量,测度axiom 公理numerical 数值的, 数字的conception 概念,观点operation 运算constant 常数postulate 公设logical deduction 逻辑推理proposition 命题division 除,除法subtraction 减,减法formula 公式term 项,术语trigonometry 三角学variable 变化的,变量2.2 几何与三角Geometry and Trigonologyangle 角cube 立方体arc 弧curved line 曲线major arc 优弧cylinder 柱体minor arc 劣弧diameter 直径architect 建筑师dimention 维数,大小breadth 宽度endpoint 端点chord 弦equidistant 等距离的circumference 周长line segment 直线段cone 圆锥radius 半径critical 临界的pyramid 棱锥2.3 集合论的基本概念Basic Concepts of the Theory of Sets brace 大括号roster 名册consequence 结论,推论roster notation 枚举法designate 标记,指定rule out 排除,否决diagram 图形,图解subset 子集distinct 互不相同的the underlying set 基础集distinguish 区别,辨别universal set 全集divisible 可被除尽的validity 有效性dummy 哑的,哑变量visual 可视的even integer 偶数visualize 可视化irrelevant 无关紧要的void set(empty set) 空集2.4 整数、有理数与实数Integers, Rational Numbers and Real Numbers conversely 反之geometric interpretation 几何意义correspond 对应induction 归纳法deducible 可推导的proof by induction 归纳证明difference 差inductive set 归纳集distinguished 著名的 inequality 不等式entirely complete 完整的 integer 整数Euclid 欧几里得interchangeably 可互相交换的Euclidean 欧式的 intuitive直观的the field axiom 域公理irrational 无理的2.5 笛卡儿几何学的基本概念Basic Concepts of Cartesian Geometry abscissa 横坐标horizontal 水平的analytic geometry 解析几何hypotenuse 斜边arbitrary 任意的integral 整数的,积分的,积分Cartesian 笛卡儿的 intersect 相交Rene Descartes 笛卡儿intertwine 融合,结合circular 圆的,圆周的leg 侧边,直角边coordinate 坐标ordinate 纵坐标2.6 函数的概念与函数思想Function concept and function idea alphabet 字母表prime 素数,质数displacement 位移proportional 成比例的domain 定义域the real-valued function实值函数edge 棱,边 spring constant 弹性系数graph 图,图形limit 极限stretch 拉伸volume 体积,容积,卷2.7 序列及其极限Sequences and Their Limitsassume 假定sequence 序列,数列converge 收敛series 级数,序列diverge 发散subscript 下标imaginary part 虚部succession 连贯性imply 蕴含,推出successor 后继recursion formula 递推公式2.8 函数的导数和它的几何意义The Derivative of a Function and Its Geometric interpretation acceleration 加速度 interval 区间altitude 高度numerator 分子approach 趋于rectilinear motion 直线运动bound 界,限slope 斜率derivative 导数 tangent 正切,切线fraction 分数,分式velocity 速度2.9 微分方程简介Introduction to Differential Equations approximate evaluation 近似估计 initial 初始的disintegrate 解体,衰变integrate 求积分differentiable 可微的polynomial 多项式exponential 指数的rational function 有理函数。
数学专业英语词汇
1. 基本数学概念arithmetic mean 算术平均值weighted average 加权平均值geometric mean 几何平均数exponent 指数,幂base 乘幂的底数,底边cube 立方数,立方体square root 平方根cube root 立方根common logarithm 常用对数digit 数字constant 常数variable 变量inverse function 反函数 complementary function 余函数linear 一次的,线性的factorization 因式分解absolute value 绝对值,e.g.|-32|=32 round off 四舍五入2 有关数论natural number 自然数positive number 正数negative number 负数odd integer, odd number 奇数even integer, even number 偶数integer, whole number 整数positive whole number 正整数negative whole number 负整数 consecutive number 连续整数real number, rational number 实数,有理数 irrational(number)无理数inverse 倒数composite number 合数 e.g. 4,6,8,9,10,12,14,15……prime number 质数 e.g. 2,3,5,7,11,13,15……注意:所有的质数(2除外)都是奇数,但奇数不一定是质数reciprocal 倒数common divisor 公约数multiple 倍数(least)common multiple (最小)公倍数 (prime) factor (质)因子common factor 公因子ordinary scale, decimal scale 十进制 nonnegative 非负的tens 十位units 个位mode 众数median 中数common ratio 公比7. 数列arithmetic progression(sequence) 等差数列geometric progression(sequence) 等比数列8. 其它approximate 近似(anti)clockwise (逆) 顺时针方向 cardinal 基数ordinal 序数direct proportion 正比distinct 不同的estimation 估计,近似parentheses 括号proportion 比例permutation 排列combination 组合table 表格trigonometric function 三角函数unit 单位,位几何部分1. 所有的角alternate angle 内错角corresponding angle 同位角vertical angle 对顶角central angle 圆心角interior angle 内角exterior angle 外角supplementary angles 补角 complementary angle 余角adjacent angle 邻角acute angle 锐角obtuse angle 钝角right angle 直角round angle 周角straight angle 平角included angle 夹角2. 所有的三角形equilateral triangle 等边三角形 scalene triangle 不等边三角形 isosceles triangle 等腰三角形right triangle 直角三角形oblique 斜三角形inscribed triangle 内接三角形3. 有关收敛的平面图形,除三角形外semicircle 半圆concentric circles 同心圆 quadrilateral 四边形pentagon 五边形hexagon 六边形heptagon 七边形octagon 八边形nonagon 九边形decagon 十边形polygon 多边形parallelogram 平行四边形equilateral 等边形plane 平面square 正方形,平方rectangle 长方形regular polygon 正多边形rhombus 菱形trapezoid 梯形4. 其它平面图形arc 弧 line, straight line 直线line segment 线段parallel lines 平行线segment of a circle 弧形5. 有关立体图形cube 立方体,立方数rectangular solid 长方体regular solid/regular polyhedron 正多面体 circular cylinder 圆柱体cone 圆锥sphere 球体solid 立体的6. 有关图形上的附属物altitude 高depth 深度side 边长circumference, perimeter 周长radian 弧度surface area 表面积volume 体积arm 直角三角形的股cross section 横截面center of a circle 圆心chord 弦radius 半径angle bisector 角平分线diagonal 对角线diameter 直径edge 棱face of a solid 立体的面hypotenuse 斜边included side 夹边leg 三角形的直角边median of a triangle 三角形的中线base 底边,底数(e.g. 2的5次方,2就是底数)opposite 直角三角形中的对边midpoint 中点endpoint 端点vertex (复数形式vertices)顶点tangent 切线的transversal 截线intercept 截距7. 有关坐标coordinate system 坐标系 rectangular coordinate 直角坐标系 origin 原点abscissa 横坐标ordinate 纵坐标number line 数轴quadrant 象限slope 斜率complex plane 复平面8. 其它plane geometry 平面几何 trigonometry 三角学bisect 平分circumscribe 外切inscribe 内切intersect 相交perpendicular 垂直 pythagorean theorem 勾股定理 congruent 全等的multilateral 多边的其它1. 单位类cent 美分penny 一美分硬币nickel 5美分硬币dime 一角硬币dozen 打(12个)score 廿(20个)Centigrade 摄氏Fahrenheit 华氏quart 夸脱gallon 加仑(1 gallon = 4 quart) yard 码 meter 米micron 微米inch 英寸foot 英尺minute 分(角度的度量单位,60分=1度) square measure 平方单位制cubic meter 立方米pint 品脱(干量或液量的单位)2. 有关文字叙述题,主要是有关商业intercalary year(leap year) 闰年(366天) common year 平年(365天) depreciation 折旧down payment 直接付款discount 打折margin 利润profit 利润interest 利息simple interest 单利compounded interest 复利dividend 红利decrease to 减少到decrease by 减少了increase to 增加到increase by 增加了denote 表示list price 标价markup 涨价per capita 每人ratio 比率retail price 零售价tie 打。
数学专业英语词汇
数学专业英语词汇摘要数学是一门广泛的学科,涉及到各种概念、理论和方法。
为了有效地学习和交流数学,我们需要掌握一些基本的数学专业英语词汇。
本文根据不同的数学分支,列出了一些常见的数学术语及其中英文对照,包括算术、代数、几何、三角学、微积分、概率论和统计学等。
本文旨在帮助数学专业的考研复试者和其他对数学感兴趣的人士提高英语水平,增强数学素养。
算术(Arithmetic)算术是数学的基础,主要研究数字和基本运算。
以下是一些常用的算术术语及其中英文对照:中文英文数字number整数integer自然数natural number偶数even number奇数odd number质数prime number合数composite number分数fraction小数decimal有理数rational number无理数irrational number实数real number复数complex number运算operation加法addition减法subtraction乘法multiplication除法division指数exponentiation对数logarithm四则运算arithmetic operations平方根square root立方根cube root四次根fourth rootn次根nth root代数(Algebra)代数是研究符号和规则的一门数学分支,主要用于解决方程和不等式。
以下是一些常用的代数术语及其中英文对照:中文英文符号symbol变量variable常量constant系数coefficient项term表达式expression方程equation不等式inequality解solution根root一元方程equation in one variable二元方程equation in two variables多元方程equation in more than two variables一次方程linear equation二次方程quadratic equation高次方程higher degree equation方程组system of equations代数式algebraic expression多项式polynomial单项式monomial二项式binomial几何(Geometry)几何是研究形状、大小和位置的一门数学分支,主要用于描述空间中的对象。
数学专业英语词汇
数学专业英语词汇Aabelian group:阿贝尔群;absolute geometry:绝对几何;absolute value:绝对值;abstract algebra:抽象代数;addition:加法;algebra:代数;algebraic closure:代数闭包;algebraic geometry:代数几何;algebraic geometry and analytic geometry:代数几何和解析几何;algebraic numbers:代数数;algorithm:算法;almost all:绝大多数;analytic function:解析函数;analytic geometry:解析几何;and:且;angle:角度;anticommutative:反交换律;antisymmetric relation:反对称关系;antisymmetry:反对称性;approximately equal:约等于;Archimedean field:阿基米德域;Archimedean group:阿基米德群;area:面积;arithmetic:算术;associative algebra:结合代数;associativity:结合律;axiom:公理;axiom of constructibility:可构造公理;axiom of empty set:空集公理;axiom of extensionality:外延公理;axiom of foundation:正则公理;axiom of pairing:对集公理;axiom of regularity:正则公理;axiom of replacement:代换公理;axiom of union:并集公理;axiom schema of separation:分离公理;axiom schema of specification:分离公理;axiomatic set theory:公理集合论;axiomatic system:公理系统;BBaire space:贝利空间;basis:基;Bézout's identity:贝祖恒等式;Bernoulli's inequality:伯努利不等式;Big O notation:大O符号;bilinear operator:双线性算子;binary operation:二元运算;binary predicate:二元谓词;binary relation:二元关系;Boolean algebra:布尔代数;Boolean logic:布尔逻辑;Boolean ring:布尔环;boundary:边界;boundary point:边界点;bounded lattice:有界格;Ccalculus:微积分学;Cantor's diagonal argument:康托尔对角线方法;cardinal number:基数;cardinality:势;cardinality of the continuum:连续统的势;Cartesian coordinate system:直角坐标系;Cartesian product:笛卡尔积;category:范畴;Cauchy sequence:柯西序列;Cauchy-Schwarz inequality:柯西不等式;Ceva's Theorem:塞瓦定理;characteristic:特征;characteristic polynomial:特征多项式;circle:圆;class:类;closed:闭集;closure:封闭性或闭包;closure algebra:闭包代数;combinatorial identities:组合恒等式;commutative group:交换群;commutative ring:交换环;commutativity::交换律;compact:紧致的;compact set:紧致集合;compact space:紧致空间;complement:补集或补运算;complete lattice:完备格;complete metric space:完备的度量空间;complete space:完备空间;complex manifold:复流形;complex plane:复平面;congruence:同余;congruent:全等;connected space:连通空间;constructible universe:可构造全集;constructions of the real numbers:实数的构造;continued fraction:连分数;continuous:连续;continuum hypothesis:连续统假设;contractible space:可缩空间;convergence space:收敛空间;cosine:余弦;countable:可数;countable set:可数集;cross product:叉积;cycle space:圈空间;cyclic group:循环群;Dde Morgan's laws:德·摩根律;Dedekind completion:戴德金完备性;Dedekind cut:戴德金分割;del:微分算子;dense:稠密;densely ordered:稠密排列;derivative:导数;determinant:行列式;diffeomorphism:可微同构;difference:差;differentiablemanifold:可微流形;differential calculus:微分学;dimension:维数;directed graph:有向图;discrete space:离散空间;discriminant:判别式;distance:距离;distributivity:分配律;dividend:被除数;dividing:除;divisibility:整除;division:除法;divisor:除数;dot product:点积;Eeigenvalue:特征值;eigenvector:特征向量;element:元素;elementary algebra:初等代数;empty function:空函数;empty set:空集;empty product:空积;equal:等于;equality:等式或等于;equation:方程;equivalence relation:等价关系;Euclidean geometry:欧几里德几何;Euclidean metric:欧几里德度量;Euclidean space:欧几里德空间;Euler's identity:欧拉恒等式;even number:偶数;event:事件;existential quantifier:存在量词;exponential function:指数函数;exponential identities:指数恒等式;expression:表达式;extended real number line:扩展的实数轴;Ffalse:假;field:域;finite:有限;finite field:有限域;finite set:有限集合;first-countable space:第一可数空间;first order logic:一阶逻辑;foundations of mathematics:数学基础;function:函数;functional analysis:泛函分析;functional predicate:函数谓词;fundamental theorem of algebra:代数基本定理;fraction:分数;Ggauge space:规格空间;general linear group:一般线性群;geometry:几何学;gradient:梯度;graph:图;graph of a relation:关系图;graph theory:图论;greatest element:最大元;group:群;group homomorphism:群同态;HHausdorff space:豪斯多夫空间;hereditarily finite set:遗传有限集合;Heron's formula:海伦公式;Hilbert space:希尔伯特空间;Hilbert's axioms:希尔伯特公理系统;Hodge decomposition:霍奇分解;Hodge Laplacian:霍奇拉普拉斯算子;homeomorphism:同胚;horizontal:水平;hyperbolic function identities:双曲线函数恒等式;hypergeometric function identities:超几何函数恒等式;hyperreal number:超实数;Iidentical:同一的;identity:恒等式;identity element:单位元;identity matrix:单位矩阵;idempotent:幂等;if:若;if and only if:当且仅当;iff:当且仅当;imaginary number:虚数;inclusion:包含;index set:索引集合;indiscrete space:非离散空间;inequality:不等式或不等;inequality of arithmetic and geometric means:平均数不等式;infimum:下确界;infinite series:无穷级数;infinite:无穷大;infinitesimal:无穷小;infinity:无穷大;initial object:初始对象;inner angle:内角;inner product:内积;inner product space:内积空间;integer:整数;integer sequence:整数列;integral:积分;integral domain:整数环;interior:内部;interior algebra:内部代数;interior point:内点;intersection:交集;inverse element:逆元;invertible matrix:可逆矩阵;interval:区间;involution:回旋;irrational number:无理数;isolated point:孤点;isomorphism:同构;JJacobi identity:雅可比恒等式;join:并运算;K格式:Kuratowski closure axioms:Kuratowski 闭包公理;Lleast element:最小元;Lebesgue measure:勒贝格测度;Leibniz's law:莱布尼茨律;Lie algebra:李代数;Lie group:李群;limit:极限;limit point:极限点;line:线;line segment:线段;linear:线性;linear algebra:线性代数;linear operator:线性算子;linear space:线性空间;linear transformation:线性变换;linearity:线性性;list of inequalities:不等式列表;list of linear algebra topics:线性代数相关条目;locally compact space:局部紧致空间;logarithmic identities:对数恒等式;logic:逻辑学;logical positivism:逻辑实证主义;law of cosines:余弦定理;L??wenheim-Skolem theorem:L??wenheim-Skolem 定理;lower limit topology:下限拓扑;Mmagnitude:量;manifold:流形;map:映射;mathematical symbols:数学符号;mathematical analysis:数学分析;mathematical proof:数学证明;mathematics:数学;matrix:矩阵;matrix multiplication:矩阵乘法;meaning:语义;measure:测度;meet:交运算;member:元素;metamathematics:元数学;metric:度量;metric space:度量空间;model:模型;model theory:模型论;modular arithmetic:模运算;module:模;monotonic function:单调函数;multilinear algebra:多重线性代数;multiplication:乘法;multiset:多样集;Nnaive set theory:朴素集合论;natural logarithm:自然对数;natural number:自然数;natural science:自然科学;negative number:负数;neighbourhood:邻域;New Foundations:新基础理论;nine point circle:九点圆;non-Euclidean geometry:非欧几里德几何;nonlinearity:非线性;non-singular matrix:非奇异矩阵;nonstandard model:非标准模型;nonstandard analysis:非标准分析;norm:范数;normed vector space:赋范向量空间;n-tuple:n 元组或多元组;nullary:空;nullary intersection:空交集;number:数;number line:数轴;Oobject:对象;octonion:八元数;one-to-one correspondence:一一对应;open:开集;open ball:开球;operation:运算;operator:算子;or:或;order topology:序拓扑;ordered field:有序域;ordered pair:有序对;ordered set:偏序集;ordinal number:序数;ordinary mathematics:一般数学;origin:原点;orthogonal matrix:正交矩阵;Pp-adic number:p进数;paracompact space:仿紧致空间;parallel postulate:平行公理;parallelepiped:平行六面体;parallelogram:平行四边形;partial order:偏序关系;partition:分割;Peano arithmetic:皮亚诺公理;Pedoe's inequality:佩多不等式;perpendicular:垂直;philosopher:哲学家;philosophy:哲学;philosophy journals:哲学类杂志;plane:平面;plural quantification:复数量化;point:点;Point-Line-Plane postulate:点线面假设;polar coordinates:极坐标系;polynomial:多项式;polynomial sequence:多项式列;positive-definite matrix:正定矩阵;positive-semidefinite matrix:半正定矩阵;power set:幂集;predicate:谓词;predicate logic:谓词逻辑;preorder:预序关系;prime number:素数;product:积;proof:证明;proper class:纯类;proper subset:真子集;property:性质;proposition:命题;pseudovector:伪向量;Pythagorean theorem:勾股定理;QQ.E.D.:Q.E.D.;quaternion:四元数;quaternions and spatial rotation:四元数与空间旋转;question:疑问句;quotient field:商域;quotient set:商集;Rradius:半径;ratio:比;rational number:有理数;real analysis:实分析;real closed field:实闭域;real line:实数轴;real number:实数;real number line:实数线;reflexive relation:自反关系;reflexivity:自反性;reification:具体化;relation:关系;relative complement:相对补集;relatively complemented lattice:相对补格;right angle:直角;right-handed rule:右手定则;ring:环;Sscalar:标量;second-countable space:第二可数空间;self-adjoint operator:自伴随算子;sentence:判断;separable space:可分空间;sequence:数列或序列;sequence space:序列空间;series:级数;sesquilinear function:半双线性函数;set:集合;set-theoretic definition of natural numbers:自然数的集合论定义;set theory:集合论;several complex variables:一些复变量;shape:几何形状;sign function:符号函数;singleton:单元素集合;social science:社会科学;solid geometry:立体几何;space:空间;spherical coordinates:球坐标系;square matrix:方块矩阵;square root:平方根;strict:严格;structural recursion:结构递归;subset:子集;subsequence:子序列;subspace:子空间;subspace topology:子空间拓扑;subtraction:减法;sum:和;summation:求和;supremum:上确界;surreal number:超实数;symmetric difference:对称差;symmetric relation:对称关系;system of linear equations:线性方程组;Ttensor:张量;terminal object:终结对象;the algebra of sets:集合代数;theorem:定理;top element:最大元;topological field:拓扑域;topological manifold:拓扑流形;topological space:拓扑空间;topology:拓扑或拓扑学;total order:全序关系;totally disconnected:完全不连贯;totally ordered set:全序集;transcendental number:超越数;transfinite recursion:超限归纳法;transitivity:传递性;transitive relation:传递关系;transpose:转置;triangle inequality:三角不等式;trigonometric identities:三角恒等式;triple product:三重积;trivial topology:密着拓扑;true:真;truth value:真值;Uunary operation:一元运算;uncountable:不可数;uniform space:一致空间;union:并集;unique:唯一;unit interval:单位区间;unit step function:单位阶跃函数;unit vector:单位向量;universal quantification:全称量词;universal set:全集;upper bound:上界;Vvacuously true:??;Vandermonde's identity:Vandermonde 恒等式;variable:变量;vector:向量;vector calculus:向量分析;vector space:向量空间;Venn diagram:文氏图;volume:体积;von Neumann ordinal:冯·诺伊曼序数;von Neumann universe:冯·诺伊曼全集;vulgar fraction:分数;ZZermelo set theory:策梅罗集合论;Zermelo-Fraenkel set theory:策梅罗-弗兰克尔集合论;ZF set theory:ZF 系统;zero:零;zero object:零对象;。
(抱佛脚必备)数学专业英语重点词汇
【Mathematical analysis】1 、上确界(supremum value) 下确界(infimum value)2 、极限(limit) 导数(derivative) 一阶导数(firstderivative) 二阶导数(second derivate)偏导数(partialderivative)方向导数(directional derivative)3 、泰勒展式(Taylor’s expansion) 洛必达法则(L’Hopital’srule) 链式法则(chain rule)连续可微(continuouslydifferentiable)4、微积分 (calculus)微分(differential)级数(series)积分(integral)原函数 (antiderivative)不定积分(indefinite integral)定积分(definite integral)5 、调和级数(harmonic series)马克劳林级数(Maclaurin series)交错级数 (alternating series)傅里叶级数(Fourier series)6 、二重积分(double integral)三重积分(triple integral)多重积分(multiple integral) 格林公式(Green’s formula)斯托克斯定理(Stokes’ theorem)7、收敛(convergence)发散(divergence)一致收敛(uniformly convergent)绝对收敛(absolutely convergent)条件收敛(conditionally convergent) 连续(continuity) 一致连续(uniformly continuous)8 、指数函数(exponential function)对数函数(logarithmicfunction)幂函数(power function)初等函数(elementary function)三角函数(trigonometric function) 调和函数(harmonic function) 周期函数(periodic function) 可微函数(differential function)单调函数(monotonefunction)9 、素数(prime number) 正数(positive number) 负数(negative number) 相反数(opposite number) 自然数(natural number) 有理数(rational number)无理数(irrational number)实数(real number)虚数(imaginarynumber)复数(complex number) 10、等式(equality)不等式(inequality)三角不等式(triangle inequality)勾股定理(Pythagorean theorem)无穷大(infinity)无穷小(infinitesimal)【Linear algebra】1、向量(vector)秩(rank)行列式(determinant)线性方程(linear equation)2 、奇异矩阵(singular matrix)可逆矩阵(invertible matrix)逆矩阵(inverse matrix) 转置矩阵(transposed matrix)酉矩阵(unitary matrix)对称矩阵(symmetric matrix)正定矩阵(positive definite matrix)负定矩阵(negative definitematrix) 雅克比矩阵(Jacobian matrix)3 、迹(trace)主子式(principle minor)代数余子式(algebraic cofactor)4 、二次型(quadratic form)标准型(normal form)最小多项式(minimal polynomial) 特征多项式(characteristicpolynomial)约当块(Jordan block)5 、特征值(eigenvalue)特征向量(eigenvector)约当标准型(Jordan canonical form)6 、几何重数(geometric multiplicity)可对角矩阵(diagonalizable matrix) 【Analytic Geometry】1 、平面几何(plane geometry) 立体几何(solid geometry)射影几何(projective geometry)代数几何(algebraicgeometry)黎曼几何(Riemann geometry)微分几何(differential geometry)几何分析(geometryanalysis)分形几何(fractal geometry)2 、平行线(parallel line) 中线(median line) 直线(straightline) 垂直线(vertical line)水平线(horizontal line)切线(tangent line)法线(normal line)3 、抛物线(parabola)椭圆(ellipse)双曲线(hyperbola)斜率(slope) 【Complex analysis】1 、解析函数(holomorphic function) 留数定理(residualtheorem) 柯西积分公式 (Cauchy’s integral formula)2 、定义域(domain) 值域(range) 像(image) 中值定理(mean value theorem)3 、凸函数(convex function) 凸集(convex set) 变分不等式(variational inequality) 变分法(calculus of variation)线性规划(linear programming)【Real analysis】1 、测度(measure) 可测函数(measure function) 可积函数(integrable function) 平方可积函数(square integrablefunction)黎曼积分(Riemann integral) 勒贝格积分(Lebesgue integral)【Functional analysis】1 、内积(inner product) 向量积(cross product)范数(norm)2 、向量空间(vector space)距离空间(distance space)拓扑空间(topological space) 测度空间(measure space)线性空间(linear space)内积空间(inner product space) 希尔伯特空间(Hilbert space) 赋范空间(normed space) 巴拿赫空间(Banach space)完备空间(complete space)可分空间(separable space) 概率空间(probability space)3 、有穷维的(finite dimensional)无穷维的(infinitedimensional)基底(basis) 线性相关(linear dependence) 线性无关(linear independence) 最佳逼近(bestapproximation ) 最大值原理( maximum principle) 比较原理( comparison principle)最小二乘(least squares)4、泛函(functional)线性算子(linear operator)有界线性算子(bounded linear operator) 有界线性泛函(boundedlinear functional) 闭图像定理(closed graph theorem)一致有界定理(uniform boundedness principle)不动点定理(fixed point theorem)压缩映照定理(contraction mapping theorem)【Supplements】1 、引理(lemma)推论(corollary)公理(axiom)命题(proposition)猜想(conjecture) 数学归纳法(mathematical induction) 充分性(sufficiency) 必要性(necessity) 反例(counterexample)2、加法(addition)减法(subtraction)乘法(multiplication)除法(division)3、理想(ideal)环(ring)单位(unit)陪集(coset)群(group)域(field)置换群(permutation group)有限群(finite group)同态(homomorphism) 同构(isomorphism)维数(dimension)4 、抽象代数(abstract algebra) 广义函数论(theory of distribution) 弦理论(stringtheory) 随机变量(random variable) 动力系统(dynamical system) 偏微分方程(partial differentialequation)。
2023大学_数学专业英语试题及参考答案
2023数学专业英语试题及参考答案数学专业英语试题一、词汇及短语1. For a long period of the history of mathematics, the centric place of mathematical methods was occupied by the logical deductions “在数学史的很长的时期内,是逻辑推理一直占据数学方法的中心地位”2. An equation is a statement of the equality between two equal numbers or number symbols.equation :“方程”“等式”等式是关于两个数或数的符号相等的'一种陈述3. In such an equation either the two members are alike, or become alike on performance of the indicated operation. 这种等式的两端要么一样,要么经过执行指定的运算后变成一样。
注“two members”表等号的两端alike 相同的一样的On the performance of …中的“on”引导一个介词短语做状语Either…or…4. is true “成立”5. to more and change the terms移次和变形without making the equation untrue 保持方程同解数学专业英语试题二、句型及典型翻译1. change the terms about 变形2. full of :有许多的充满的例 The streets are full of people as on a holiday(像假日一样,街上行人川流不息)3. in groups of ten…4. match something against sb. “匹配”例 Long ago ,when people had to count many things ,they matched them against their fingers. 古时候,当人们必须数东西时,在那些东西和自己的手指之间配对。
数学专业英语(Doc版).Word2
数学专业英语-(a) How to define a mathematical term?数学术语的定义和数学定理的叙述,其基本格式可归纳为似“if …then …”的格式,其他的格式一般地说可视为这一格式的延伸或变形。
如果一定语短语或定语从句,以界定被定义的词,所得定义表面上看虽不是“If ……then ……”的句型,而实际上是用“定语部分”代替了“If ”句,因此我们可以把“定语部分”写成If 句,从而又回到“If ……then ……”的句型。
至于下面将要叙述的“Let …if …then ”,“Let and assume …, If …then …”等句型,其实质也是基本句型“If ……then ……”的延伸。
有时,在定义或定理中,需要附加说明某些成份,我们还可在“if …then …”句中插入如“where …”等的句子,加以延伸(见后面例子)。
总之,绝大部分(如果不是全部的话)数学术语的定义和定理的叙述均可采用本附录中各种格式之。
(a )How to define a mathematical term?Something something The union of A and B is defined as the set of those elements which are in A, inBor in both.The mapping , ad-bc 0, is called a Mobius transformation.Something something(or adjective) The difference A-B is defined tobe the set of all elements of A which are notin B.A real number that cannot be expressed as the ratio of two integers is said to be an irrational number.Real numbers which are greater than zero are said to be positive.3. We something to be something.We define the intersection of A and B to be the set of those elements common to both A and B. We call real numbers that are less than zero (to be) negative numbers.4. 如果在定义某一术语之前,需要事先交代某些东西(前提),可用如下形式:, then…) be an n-tuple of real numbers. Then the set of all such n-tuples is definthe Euclidean n-space R.Let d(x,y) denote the distance between two points x and y of a set A. Then the numberD=is called the diameter of A.5.如果被定义术语,需要满足某些条件,则可用如下形式:If…, then…If the number of rows of a matrix A equals the number of its columns, thenis called a square matrix.If a function f is differentiable at every point of a domain D, then it is said to be analytic in D.6.如果需要说明被定义术语应在什么前提下,满足什么条件,则可用下面形式:is calledis said to beLetSuppose…. If…then……Let f(z) be an analytic function defined on a domain D (前提条件). If for every pair or points , and in D with , we have f( ) f( ) (直接条件),then f(z) is called a schlicht function or is said to be schlicht i n D.7. 如果被定义术语需要满足几个条件(大前提,小前提,直接条件)则可用如下形式:supposeassumeLet…and …. If…then…is called…Let D be a domain and suppose that f(z) is analytic in D. If for every pair of points and in D with , we have f( ) f( ), then f(z) is called a schlicht function.Notes:(a) 一种形式往往可写成另一种形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The rapid development of industry in 17th century promoted the progress of economics and technology and required dealing with variable quantities. The leap from constants to variable quantities brought about two new branches of mathematics----analytic geometry and calculus, which belong to the higher mathematics.
2.1 数学、方程与比例 Mathematics, Equation and Ratio
New Words & Expressions:
algebra 代数学
geometrical 几何的
algebraic 代数的
identity 恒等式
arithmetic 算术, 算术的 measure 测量,测度
17世纪工业的快速发展推动了经济技术的进步, 从而遇到需 要处理变量的问题。从常量到变量的跳跃产生了两个新的数 学分支-----解析几何和微积分,他们都属于高等数学。
现在高等数学里面有很多分支,其中有数学分析,高等代数, 微分方程,函数论等。
Mathematicians study conceptions and propositions, Axioms, postulates, definitions and theorems are all propositions. Notations are a special and powerful tool of mathematics and are used to express conceptions and propositions very often.
1-A What is mathematics
回顾: 1. 如果没有运用数学, 任何一个科学技术分支都不可能
正常的发展 。 2. 符号在数学中起着非常重要的作用,它常用于表示概
念和命题。
1-B Equation
An equation is a statement of the equality between two equal numbers or number symbols.
Equations are of two kinds---- identities and equations of condition. An arithmetic or an algebraic identity is an equation. In such an equation either the two members are alike, or become alike on the performance of the indicated operation.
数学来源于人类的社会实践,比如工农业生产,商业活动, 军事行动和科学技术研究。
反过来,数学服务于实践,并在各个领域中起着非常重要的作 用。 没有应用数学,任何一个现在的科技的分支都不能正常 发展。
From the early need of man came the concepts of numbers and forms. Then, geometry developed out of problems of measuring land , and trigonometry came from problems of surveying. To deal with some more complex practical problems, man established and then solved equation with unknown
Now , since electronic computers are developed promptly and used widely, the role of computation becomes more and more important. In our times, computation is not only used to deal with a lot of information and data, but also to carry out some work that merely could be done earlier by logical deductions, for example, the proof of most of geometrical theorems. 数学结论主要由逻辑推理和计算得到。在数学发展历史的 很长时间内,逻辑推理一直占据着数学方法的中心地位。 现在,由于电子计算机的迅速发展和广泛使用,计算机的地 位越来越重要。现在计算机不仅用于处理大量的信息和数据, 还可以完成一些之前只能由逻辑推理来做的工作,例如,证 明大多数的几何定理。
Formulas ,figures and charts are full of different symbols. Some of the best known symbols of mathematics are the Arabic numerals 1,2,3,4,5,6,7,8,9,0 and the signs of addition
term 项,术语
trigonometry 三角学
variable 变化的,变量
1-A What is mathematics
Mathematics comes from man’s social practice, for example, industrial and agricultural production, commercial activities, military operations and scientific and technological researches.
含有字母的恒等式对其中字母的任一组数值都成立。
一个等式若仅仅对其中一个字母的某些值成立,或对其中两个 或者多个字母的若干组相关的值成立,则它是一个条件等式, 简称方程。因此3x-5=7仅当x=4 时成立,而2x-y=0,当x=6,y=2 时成立,且对x, y的其他许多对值也成立。
A root of an equation is any number or number symbol which satisfies the equation. To obtain the root or roots of an equation is called solving an equation.
There are various kinds of equations. They are linear equation, quadratic equation, etc.
方程的根是满足方程的任意数或者数的符号。求方程根的过程 被称为解方程。
方程有很多种,例如: 线性方程,二次方程等。
To solve an equation means to find the value of the unknown term. To do this , we must, of course, change the terms about until the unknown term stands alone on one side of the equation, thus making it equal to something on the other side. We then obtain the value of the unknown and the answer to the question.
The conclusions in mathematics are obtained mainly by logical deductions and computation. For a long period of the history of mathematics, the centric place of mathematics methods was occupied by the logical deductions.
等式是关于两个数或者数的符号相等的一种描述。
等式有两种-恒等式和条件等式。算术或者代数恒等式都是等 式。这种等式的两端要么一样,要么经过执行指定的运算后变 成一样。
An identity involving letters is true for any set of numerical values of the letters in it. An equation which is true only for certain values of a letter in it, or for certain sets of related values of two or more of its letters, is an equation of condition, or simply an equation. Thus 3x-5=7 is true for x=4 only; and 2x-y=10 is true for x=6 and y=2 and for many other pairs of values for x and y.
om 公理
numerical 数值的, 数字的
conception 概念,观点 operation 运算
constant 常数
postulate 公设
logical deduction 逻辑推理 proposition 命题
division 除,除法
subtraction 减,减法
formula 公式
numbers , thus algebra occurred.