集合的基本运算-课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
11、越是没有本领的就越加自命不凡 。2021/3/62021/3/62021/3/6M ar-216- Mar-21
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/62021/3/62021/3/6Saturday, March 06, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/62021/3/62021/3/62021/3/63/6/2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/62021/3/62021/3/62021/3/6
谢谢观赏
You made my day!
我们,还在路上……
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月6日星期 六2021/3/62021/3/62021/3/6
•
15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/62021/3/62021/3/63/6/2021
•
16、业余生活要有意义,不要越轨。2021/3/62021/3/6Marc h 6, 2021
1.1.3 集合的基本运算(1)
观察集合A,B,C元素间的关系:
(1) A={4,5,6,8},B={3,5,7,8}, C={3,4,5,6,7,8}
(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}
定义
一般地,由属于集合A或属于集合 B的所有元素组成的集合叫做A与 B的并集,
作业布置
1.教材P12 A组6,7,8 B组3 2 补.P={a2,a+2,-3}, Q={a-2,2a+1,a2+1},P ∩Q={-3}, 求a.
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/62021/3/6Saturday, March 06, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/62021/3/62021/3/63/6/2021 10:07:33 AM
例5.设集合A={-4,2m-1,m2},B={9,m-5,1-m}, 又A∩B={9},
求实数m的值.
课堂练习
教材P11练习T1~3.
课堂小结
1. 理解两个集合交集与并集的概念 bb和性质. 2. 求两个集合的交集与并集,常用 bbb数轴法和图示法. 3.注意灵活、准确地运用性质解题;
4. 注意对字母要进行讨论 .
A={4,5,6,8}, B={3,5,7,8}, C={5,8}
定义
一般地,由既属于集合A又属于
集合B的所有元素组成的集合叫
做A与B的交集.
记作 A∩B 读作 A交 B
A
B
即 A∩B={x |x∈A,且x∈B}
A∩B
性 质2 性 质3
A∩A = A A∩φ = φ A∩B = B∩A
A∩B A A A∪B
记作 A∪B 读作 A并 B
A
B
即A∪B={x | x∈A,或x∈B}
A∪B
例1. A={4,5,6,8},B={3,5,7,8}, 求A∪B.
例2.设A={x|-1<x<2},B={x|1<x<3}, 求A∪B.
性 质1
A∪A = A A∪φ = A A∪B = B∪A
观察集合A,B,C元素间的关系:
A∩B B B A∪B
性 质4 若A∩B=A,则A B. 反之亦然.
若A∪B=A,则AB. 反之亦然.
例3.新华中学开运动会,设 A={x|x是新华中学高一年级Baidu Nhomakorabea加百米赛跑的同学} B={x|x是新华中学高一年级参加跳高比赛的同学} 求:A∩B
例4.设平面内直线l1上点的集合为L1,直线l2 上点的集合为L2试用集合的运算表示l1,l2的 位置关系。