高二数学学业水平测试模拟题

合集下载

2023年江苏省高中学业水平合格考数学模拟试卷二(含答案详解)

2023年江苏省高中学业水平合格考数学模拟试卷二(含答案详解)

2023江苏普通高中学业水平合格性考试模拟试卷二一、单选题(本大题共28小题,每题3分,共84分)1.已知集合{}{}1,2,3,1,3A B ==-,那么集合A B ⋃等于()A .{}3B .{}1,1,2,3-C .{}1,1-D .{}13x x -≤≤2.函数()f x =)A .{}2x x >-B .{}2x x <-C .{}2x x ≠-D .{}2x x ≠3.设i 是虚数单位,若复数(2+a i)i 的实部与虚部互为相反数,则实数a 的值为()A .1B .2C .3D .44.下列函数中,在区间(0,1)上是增函数的是()A .sin y x=B .2y x=C .24y x =-+D .3y x=-5.若0a b >>,则下列不等式一定成立的是()A .11b b a a +>+B .11a b a b+>+C .b a a b a b->-D .22a b aa b b+>+6.命题“21,0x x x ∃>->”的否定是()A .21,0x x x ∃≤->B .21,0x x x ∀>-≤C .21,0x x x ∃>-≤D .21,0x x x ∀≤->7.若a >0,b >0,a +2b =5,则ab 的最大值为()A .25B .252C .254D .2588.已知3cos 5α=,π,02α⎛⎫∈- ⎪⎝⎭,则sin 2α的值为().A .2425-B .2425C .725-D .7259.函数sin 2cos 2y x x =是()A .周期为2π的奇函数B .周期为2π的偶函数C .周期为π的奇函数D .周期为π的偶函数10.下列各组函数中,表示同一函数的是()A .293x y x -=-与3y x =+B.y =1y x =-C .()00y xx =≠与()10y x =≠D .21,y x x Z =+∈与21,y x x Z=-∈11.设()1232,2()log 1,2x x f x x x -⎧<⎪=⎨-≥⎪⎩,则((2))f f 的值为()A .0B .1C .2D .312.函数1π()cos 26f x x ⎛⎫=+ ⎪⎝⎭的最小正周期为()A .π2B .πC .2πD .4π13.在平行四边形ABCD 中,AB BD AC +-=()A .DCB .BAC .BCD .BD14.函数()y f x =的图象如图所示,则不等式()0f x >的解集为()A .(1,0)-B .()0,1C .(1,2)D .(2,3)15.已知函数()f x 是定义在[]3,3-上的奇函数,当0x >时,()()1f x x x =-+,则()3f -=()A .-12B .12C .9D .-916.在下列区间中,函数()33x f x x =--的一个零点所在的区间为().A .()0,1B .(1,2)C .(2,3)D .(3,4)17.已知tan 2θ=-,则sin 2cos 2θθ-的值为()A .34-B .23C .25D .15-18.将函数2sin()3y x π=+的图象上所有点的横坐标缩短到原来的12(纵坐标不变),所得图象对应的表达式为()A .12sin(23y x π=+B .12sin()26y x π=+C .2sin(2)3y x π=+D .22sin(2)3y x π=+19.若平面向量a 与b的夹角为120°,2a =,()()233a b a b -⋅+=,则b =()A .12B .13C .2D .320.已知两个单位向量a 与b的夹角为θ,则“60θ=︒”是“12a b ⋅= ”的()A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件21.sin110cos 40cos 70sin 40-= ()A .B .12-C .12D .222.在同一个坐标系下,函数2x y =与函数12log y x =的图象都正确的是()A .B .C .D .23.函数()12020(1x f x a a +=+>,且1a ≠)恒过定点()A .()0,1B .()0,2021C .()1,2022-D .(1,0)-24.已知1a b ==r r ,向量a 与b的夹角为60︒,则34a b -= ()A .5B C .D 25.函数π2πsin 63y x x ⎛⎫=≤≤ ⎪⎝⎭,的值域是().A .[1,1]-B .1,12⎡⎤⎢⎥⎣⎦C .122⎡⎢⎣⎦D .2⎤⎥⎣⎦26.已知向量()1,2a =- ,(),1b m =- ,若()R a b λλ=∈,则m =()A .-2B .12-C .12D .227.若7sin cos 5θθ+=,则sin cos θθ=()A .2425B .1225C .2425±D .2425-28.已知0.2log 2a =,20.3b =,0.32c =,则()A .c<a<bB .a c b<<C .b<c<a D .a b c<<二、解答题(本大题共2小题,共16分)29.已知二次函数()f x 的最小值为1,且()()023f f ==.(1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数a 的取值范围.30.已知函数()πcos 26f x x ⎛⎫=-- ⎪⎝⎭.(1)求函数()f x 的最小值及取得最小值时x 的值;(2)求函数()f x 的单调递减区间.参考答案:1.B【分析】由并集的定义求解即可【详解】因为{}{}1,2,3,1,3A B ==-,所以A B ⋃{}1,1,2,3=-故选:B 2.A【详解】分析:由函数()f x 中被开方数大于或等于0,且分母不等于0,可以求得()f x 的定义域.解析: 函数()12f x x =+,∴2020x x +≥+≠,∴2x >-.故选:A.点睛:(1)给出解析式的函数的定义域是使解析式中各个部分都有意义的自变量的取值集合,在求解时,要把各个部分自变量的限制条件列成一个不等式(组),这个不等式(组)的解集就是这个函数的定义域,函数的定义域要写成集合或者区间的形式.(2)①若f (x )的定义域为[a ,b ],则f (g (x ))的定义域为a ≤g (x )≤b 的解集;②若f (g (x ))的定义域为[a ,b ],则f (x )的定义域为y =g (x )在[a ,b ]上的值域.3.B【分析】根据复数的乘法及复数的概念即得.【详解】因为()2i i 2i a a +=-+,又其实部与虚部互为相反数,所以20a -+=,即2a =.故选:B.4.A【详解】由题意得函数sin y x =在()0,1上为增函数,函数22,4,3y y x y x x==-+=-在()0,1上都为减函数.选A .5.C【分析】对A ,B ,C ,D 选项作差与0比较即可得出答案.【详解】对于A ,因为0a b >>,故101(1)b b b a a a a a +--=<++,即11b b a a +<+,故A 错误;对于B ,111()1a b a b a b ab ⎛⎫⎛⎫+-+=-- ⎪ ⎪⎝⎭⎝⎭,无法判断,故B 错误;对于C ,因为0a b >>,()10b a a b a b a b a b ab +⎛⎫⎛⎫---=-+> ⎪ ⎪⎝⎭⎝⎭,故C 正确;对于D ,因为0a b >>,故2()()02(2)a b a b a b a a b b a b b ++--=<++,即22a b aa b b+<+,故D 错误.故选:C .6.B【分析】本题从存在量词的否定为全称量词出发即可得出答案.【详解】 存在量词命题的否定是全称量词命题,即先将量词“∃"改成量词“∀”,再将结论否定,∴该命题的否定是“21,0x x x ∀>-”.故选:B.7.D【分析】由a >0,b >0知,结合基本不等式有目标式21122()222a b ab a b +=⋅≤⋅,又a +2b =5即可求最大值【详解】a >0,b >0,a +2b =5而2112252()2228a b ab a b +=⋅≤=,当且仅当55,24a b ==时取等号故选:D【点睛】本题考查了基本不等式的应用,找到目标式与已知等式中代数式的关系,应用基本不等式的知识转化为不等式形式且让不等号的一边含已知等式的代数式部分即可求最值,另外注意基本不等式使用前提“一正二定三相等”8.A【详解】∵3cos 5α=,π,02α⎛⎫∈- ⎪⎝⎭,∴45sin α=-,∴24sin 22sin cos 25ααα==-.故选A .9.A【分析】化简函数1sin 42y x =,即可求出函数的周期,再由奇偶性的定义即可得出答案.【详解】函数1sin 2cos 2sin 4,2y x x x ==∴函数的周期242T ππ==,()()()11sin 4sin 422f x x x f x -=-=-=- ,∴函数是奇函数,所以函数sin2cos2y x x =是周期为2π的奇函数.故选:A.10.C【分析】当两函数的定义域相同,对应关系相同时,两个函数是同一个函数,由此分析判断即可【详解】对于A ,因为293x y x -=-的定义域为{}3x x ≠,3y x =+的定义域为R ,两个函数的定义域不相同,所以这两个函数不是同一个函数,所以A 错误,对于B,y =(,1][1,)∞∞--⋃+,1y x =-的定义域为R ,两个函数的定义域不相同,所以这两个函数不是同一个函数,所以B 错误,对于C ,两个函数的定义域为{}0x x ≠,因为01y x ==,所以对应关系也相同,所以这两个函数是同一个函数,所以C 正确,对于D ,两个函数的对应关系不相同,所以这两个函数不是同一个函数,所以D 错误,故选:C 11.B【分析】根据分段函数,先求得(2)f ,再求((2))f f 即可.【详解】因为()1232,2()log 1,2x x f x x x -⎧<⎪=⎨-≥⎪⎩,所以()23(2)log 211f =-=,所以()11((2))121f f f -===,故选:B 12.D【分析】利用余弦型函数的周期公式进行求解.【详解】∵1π()cos 26f x x ⎛⎫=+ ⎪⎝⎭,∴()f x 最小正周期2π4π12T ==.故A ,B ,C 错误.故选:D.13.B【分析】根据向量的加减法法则可求出结果.【详解】在平行四边形ABCD 中,AB BD AC AD AC CD BA +-=-== .故选:B .14.C【分析】结合图象确定正确选项.【详解】由图象可知,当()1,2x ∈时,()0f x >.故选:C 15.B【分析】先计算出()3f ,然后利用函数的奇偶性即可完成.【详解】()33412f =-⨯=-,因为函数()f x 是定义在[]3,3-上的奇函数,所以()()3312f f -=-=,故选:B.16.B【分析】根据函数的解析式,利用零点的存在定理,结合选项,即可求解.【详解】由题意,函数()33x f x x =--,可得(0)2,(1)1,(2)4,(3)21,(4)74f f f f f =-=-===,所以()()120f f ⋅<,结合零点的存在定理,可得函数()f x 的一个零点所在的区间为(1,2).故选:B.17.D【分析】利用同角关系计算即可.【详解】222sin 1tan 2,sin 2cos ,sin cos 1,cos cos 5θθθθθθθθ==-∴=-+== ,()221sin 2cos 22sin cos 2cos 16cos 15θθθθθθ-=--=-+=-;故选:D.18.C【分析】根据函数sin()y A x ωϕ=+的图象变换规律,可得结论.【详解】将函数2sin()3y x π=+的图象上所有点的横坐标缩短到原来的12(纵坐标不变),所得图象对应的表达式为2sin(2)3y x π=+,故选:C.【点睛】本题主要考查函数sin()y A x ωϕ=+的图象变换规律,属于基础题.19.B【解析】直接化简()()233a b a b -⋅+ =,求出答案.【详解】化简()()()()222236463a b a b a a b bb b -⋅++⋅-=--==,13b = 或12b =- (舍去).故选:B.20.A【分析】用定义法,分充分性和必要性分别讨论即可.【详解】充分性:若60θ=︒,则由a 、b 是单位向量可知11cos 601122a b a b =⨯⨯︒=⨯⨯= ,即充分性得证;必要性:若12a b ⋅= ,则1cos 2a b a b θ=⨯⨯= 由a 、b 是单位向量可知1cos 2θ=,因为0180θ︒≤≤︒,所以60θ=︒,必要性得证.所以“60θ=︒”是“12a b ⋅= ”的充分必要条件.故选:A 21.C【分析】利用诱导公式以及两角差的正弦公式可求得所求代数式的值.【详解】因为()sin110sin 18070sin 70=-=,所以,()sin110cos 40cos 70sin 40sin 70cos 40cos 70sin 40sin 7040-=-=-1sin 302==.故选:C.22.A【分析】根据函数的单调性判断函数图象.【详解】解:指数函数2x y =是增函数,对数函数12log y x =是减函数,故选:A.23.C【分析】利用指数函数恒过()0,1点即可求解.【详解】当=1x -时,()1120211202120221f a -+=+=+=-,所以函数恒过定点()1,2022-.故选:C 24.D【分析】由已知先求出a b ⋅,然后根据34a b - .【详解】∵1a b ==r r ,向量a 与b的夹角为60︒∴1cos 602a b a b ⋅=︒=∴34a b -=故选:D.25.B【分析】判断sin y x =在π2π63x 上的单调性,确定sin y x =的最大值和最小值,从而确定值域;【详解】sin y x = sin y x ∴=在02π⎡⎤⎢⎥⎣⎦,上单调递增,在2ππ⎡⎤⎢⎥⎣⎦上单调递减π2π63xsin y x ∴=在62ππ⎡⎤⎢⎥⎣⎦,上单调递增,在23π2π⎡⎤⎢⎥⎣⎦,上单调递减∴当=2x π时sin y x =取最大值max sin12y π==min 2sin ,sin 63y ππ⎧⎫=⎨⎬⎩⎭ 且12sin =sin =6232ππ当=6x π时sin y x =取最大值min 1sin62y π==∴函数π2πsin 63y x x ⎛⎫= ⎪⎝⎭,的值域是1,12⎡⎤⎢⎥⎣⎦故选:B 26.C【分析】由向量的坐标运算可求得结果.【详解】因为向量()1,2a =-,(),1b m =-,()R a b λλ=∈,所以()()1,2,1m λ-=-,所以1,2,m λλ-=⎧⎨=-⎩所以12m =.故选:C 27.B【分析】将已知条件两边平方,利用同角三角函数的基本关系式化简后求得sin cos θθ的值.【详解】由7sin cos 5θθ+=两边平方得2249sin 2sin cos cos 25θθθθ++=,即4912sin cos 25θθ+=,解得12sin cos 25θθ=.故选B.【点睛】本小题主要考查同角三角函数的基本关系式,考查运算求解能力,属于基础题.28.D【分析】根据指对数函数的性质判断对数式、指数幂的大小关系.【详解】0.3022.log 20120.3b a c ==<<<<=,∴a b c <<.故选:D29.(1)2()243f x x x =-+;(2)102a <<.【分析】(1)根据二次函数有最小值,可以设出二次函数的顶点式方程,根据()()023f f ==可以求出所设解析式的参数.(2)求出二次函数的对称轴,根据题意可得不等式组,解不等式即可求出实数a 的取值范围.【详解】(1)因为二次函数()f x 的最小值为1,所以设()2()1(0)f x a x h a =-+>,因为()()023f f ==,所以222113()2432(2)13h ah f x x x a a h ⎧=+=⎧⇒⇒=-+⎨⎨=-+=⎩⎩;(2)由(1)可知:函数()f x 的对称轴为:1x =,因为()f x 在区间[]2,1a a +上不单调,所以有121102a a a <<+⇒<<,所以实数a 的取值范围为102a <<.【点睛】本题考查了利用待定系数法求二次函数的解析式,考查了二次函数在区间上不单调求参数取值范围问题.30.(1)最小值为1-,此时ππ,Z 12x x k k ⎧⎫=+∈⎨⎬⎩⎭(2)()5πππ,πZ 1212k k k ⎡⎤-+∈⎢⎥⎣⎦【分析】(1)由条件利用余弦函数的定义域和值域,求得函数()f x 的最小值及取得最值时相应的x 的取值集合;(2)令π2ππ22π,Z 6k x k k -≤-≤∈,求得x 的范围,从而可得函数()f x 的单调递减区间.【详解】(1)当πcos 216x ⎛⎫-= ⎪⎝⎭时,()f x 取得最小值为1-,此时π22π,Z 6x k k -=∈,即ππ,Z 12x k k =+∈,所以函数()f x 的最小值为1-,x 的取值集合为ππ,Z 12x x k k ⎧⎫=+∈⎨⎬⎩⎭.(2)由π2ππ22π,Z 6k x k k -≤-≤∈,可得5ππππ,Z 1212k x k k -≤≤+∈,所以()f x 单调减区间()5πππ,πZ 1212k k k ⎡⎤-+∈⎢⎥⎣⎦。

浙江省高二上学期学业水平合格性模拟考试数学试题(解析版)

浙江省高二上学期学业水平合格性模拟考试数学试题(解析版)

高二上学期学业水平合格性模拟考试数学试题一、单选题1.设集合,,则( ){}1A x x =≥{}12B x x =-<<A B = A .B .C .D . {}1x x >-{}1x x ≥{}11x x -<<{}12x x ≤<【答案】D【分析】由题意结合交集的定义可得结果.【详解】由交集的定义结合题意可得:.{}|12A B x x =≤< 故选:D.2.命题“存在实数x,,使x > 1”的否定是( )A .对任意实数x, 都有x > 1B .不存在实数x ,使x 1 ≤C .对任意实数x, 都有x 1D .存在实数x ,使x 1 ≤≤【答案】C【详解】解:特称命题的否定是全称命题,否定结论的同时需要改变量词.∵命题“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”故选C .3.已知i 是虚数单位,则= 31i i +-A .1-2iB .2-iC .2+iD .1+2i 【答案】D【详解】试题分析:根据题意,由于,故可知选D. 33124121112i i i i i i i i ++++=⨯==+--+【解析】复数的运算点评:主要是考查了复数的除法运算,属于基础题.4.等于( )()sin πα-A .-B .C .-D . sin αsin αcos αcos α【答案】B【分析】利用诱导公式即可求解.【详解】. ()sin sin παα-=故选:B5.函数f (x )=+lg(1+x )的定义域是( ) 11x-A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞) 【答案】C【解析】根据函数解析式建立不等关系即可求出函数定义域.【详解】因为f (x )=+lg(1+x ), 11x-所以需满足, 1010x x -≠⎧⎨+>⎩解得且,1x >-1x ≠所以函数的定义域为(-1,1)∪(1,+∞),故选:C【点睛】本题主要考查了函数的定义域,考查了对数函数的概念,属于容易题.6.不等式4-x 2≤0的解集为( )A .B .或 {}|22x x -≤≤{2x x ≤-}2x ≥C .D .或 {}|44x x -≤≤{4x x ≤-}4x ≥【答案】B【分析】根据一元二次不等式的求解方法直接求解即可.【详解】不等式即,解得或,240x -≤()()220x x -+≥2x ≤-2x ≥故不等式的解集为或.{2x x ≤-}2x ≥故选:B. 7.“”是“一元二次方程”有实数解的 14m <20x x m ++=A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分必要条件【答案】A 【详解】试题分析:方程有解,则.是的充分不必20x x m ++=11404m m ∆=-≥⇒≤14m <14m ≤要条件.故A 正确.【解析】充分必要条件8.已知 是空间三个不重合的平面,是空间两条不重合的直线,则下列命题为真命题的,,αβγ,m n 是( )A .若,,则B .若,,则 αβ⊥βγ⊥//αγαβ⊥//m βm α⊥C .若,,则D .若,,则 m α⊥n α⊥//m n //m α//n α//m n 【答案】C【分析】根据空间中线线、线面、面面的位置关系的性质定理与判定定理一一判断即可;【详解】解:由,,得或与相交,故A 错误;αβ⊥βγ⊥//αγαγ由,,得或或与相交,故B 错误;αβ⊥//m β//m αm α⊂m α由,,得,故C 正确;m α⊥n α⊥//m n 由,,得或与相交或与异面,故D 错误.//m α//n α//m n m n m n 故选:C .9.设函数,则( ) 331()f x x x =-()f x A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减 【答案】A【分析】根据函数的解析式可知函数的定义域为,利用定义可得出函数为奇函数, {}0x x ≠()f x 再根据函数的单调性法则,即可解出.【详解】因为函数定义域为,其关于原点对称,而, ()331f x x x =-{}0x x ≠()()f x f x -=-所以函数为奇函数.()f x 又因为函数在上单调递增,在上单调递增, 3y x =()0,+¥(),0-¥而在上单调递减,在上单调递减, 331y x x-==()0,+¥(),0-¥所以函数在上单调递增,在上单调递增. ()331f x x x=-()0,+¥(),0-¥故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.10.已知非零向量满足,且,则与的夹角为 a b ,2a b =ba b ⊥ (–)a b A . B . C . D . π6π32π35π6【答案】B【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即()a b b -⊥ ,a b 可计算出向量夹角.【详解】因为,所以=0,所以,所以=()a b b -⊥ 2()a b b a b b -⋅=⋅- 2a b b ⋅= cos θ22||122||a b b b a b ⋅==⋅ ,所以与的夹角为,故选B . a b 3π【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.[0,]π11.下列函数中,既是偶函数又区间上单调递增的是 A .B .C .D . 3y x =1y x =+21y x =-+2x y -=【答案】B【详解】试题分析:因为A 项是奇函数,故错,C ,D 两项项是偶函数,但在上是减函数,(0,)+∞故错,只有B 项既满足是偶函数,又满足在区间上是增函数,故选B .(0,)+∞【解析】函数的奇偶性,单调性.12.已知函数在区间(-∞,1]是减函数,则实数a 的取值范围是( ) 2()2f x x ax b =-+A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]【答案】A【分析】由对称轴与1比大小,确定实数a 的取值范围.【详解】对称轴为,开口向上,要想在区间(-∞,1]是减函数,所以2()2f x x ax b =-+x a =. [)1,a ∈+∞故选:A13.把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平()y f x =12移个单位长度,得到函数的图像,则( ) 3πsin 4y x π⎛⎫=- ⎪⎝⎭()f x =A . B . 7sin 212x π⎛⎫- ⎪⎝⎭sin 212x π⎛⎫+ ⎪⎝⎭C . D . 7sin 212x π⎛⎫- ⎪⎝⎭sin 212x π⎛⎫+ ⎪⎝⎭【答案】B 【分析】解法一:从函数的图象出发,按照已知的变换顺序,逐次变换,得到()y f x =,即得,再利用换元思想求得的解析表达式; 23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()y f x =解法二:从函数出发,逆向实施各步变换,利用平移伸缩变换法则得到的sin 4y x π⎛⎫=- ⎪⎝⎭()y f x =解析表达式.【详解】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到()y f x =12的图象,再把所得曲线向右平移个单位长度,应当得到的图象, (2)y f x =3π23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦根据已知得到了函数的图象,所以, sin 4y x π⎛⎫=- ⎪⎝⎭2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令,则, 23t x π⎛⎫=- ⎪⎝⎭,234212t t x x πππ=+-=+所以,所以; ()sin 212t f t π⎛⎫=+ ⎪⎝⎭()sin 212x f x π⎛⎫=+ ⎪⎝⎭解法二:由已知的函数逆向变换, sin 4y x π⎛⎫=- ⎪⎝⎭第一步:向左平移个单位长度,得到的图象, 3πsin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象, sin 212x y π⎛⎫=+ ⎪⎝⎭即为的图象,所以. ()y f x =()sin 212x f x π⎛⎫=+ ⎪⎝⎭故选:B.14.函数的图象大致为( ) 241x y x =+A . B .C .D .【答案】A【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:,则函数为奇函数,其图象关于坐标()()241x f x f x x --==-+()f x 原点对称,选项CD 错误;当时,,选项B 错误. 1x =42011y ==>+故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 15.若定义在的奇函数f (x )在单调递减,且f (2)=0,则满足的x 的取值范围是R (,0)-∞(10)xf x -≥( )A .B . [)1,1][3,-+∞ 3,1][,[01]--C .D .[1,0][1,)-⋃+∞[1,0][1,3]-⋃【答案】D【分析】首先根据函数奇偶性与单调性,得到函数在相应区间上的符号,再根据两个数的乘积()f x 大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在上的奇函数在上单调递减,且,R ()f x (,0)-∞(2)0f =所以在上也是单调递减,且,,()f x (0,)+∞(2)0f -=(0)0f =所以当时,,当时,,(,2)(0,2)x ∈-∞-⋃()0f x >(2,0)(2,)x ∈-+∞ ()0f x <所以由可得: (10)xf x -≥或或 0210x x <⎧⎨-≤-≤⎩0012x x >⎧⎨≤-≤⎩0x =解得或,10x -≤≤13x ≤≤所以满足的的取值范围是,(10)xf x -≥x [1,0][1,3]-⋃故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.16.若,则的最小值为( ) 0,0,2a b a b >>+=41y a b =+A . B . C .5 D .4 7292【答案】B【分析】利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的y ()()241a b a b++y最小值.【详解】解:,2a b += ∴12a b +=(当且仅当时等号成立) ∴41415259()()222222a b b a y a b a b a b +=+=+=+++=…2b a =故选:B . 17.如图所示,在三棱锥A -BCD 中,AC =AB =BD =CD =2,且∠CDB =90°.取AB 中点E 以及CD 中点F ,连接EF ,则EF 与AB 所成角的正切值取值范围为( )A .B .C .D . 1[21[2【答案】C 【分析】由题意可得当平面平面时,张角最大,即EF 与AB 所成角最大,从而可得最ABC ⊥BCD 大值,当平面与平面重合时,张角最小,即EF 与AB 所成角最小,从而可得最小值,又ABC BCD 平面与平面不能重合,即可求得EF 与AB 所成角的正切值取值范围.ABC BCD 【详解】解:如图,作于H ,EH BC ⊥因为,当平面平面时,张角最大,即EF 与AB 所成角最大, 112BE AB ==ABC ⊥BCD 如图①,作与M ,HM CD ⊥BF==EF==因为,所以,BC==222AB AC BC+=90BAC∠=︒所以EF与AB的夹角为或其补角,BEF∠,所以cos∠sin BEF∠=tan∠故EF与AB,当平面与平面重合时,张角最小,即EF与AB所成角最小,ABC BCD如图②所示,即为EF与AB所成角的平面角,45FEA∠=︒,tan1FEA∠=又平面与平面不能重合,ABC BCD所以EF与AB所成角的正切值取值范围为.故选:C.18.在△ABC中,D是BC边上一点,且BD=2DC=4,,则AD的最大值为()60BAC∠=︒A.B.4 C D.221【答案】A【分析】由正弦定理可得,再在中由余弦定理化简得出AB C=ABD△,即可求出.2216AD C=+【详解】因为,所以,24BD DC==6BC=在中,由正弦定理可得,则,ABCA sin sinAB BCC BAC===∠AB C=在中,由余弦定理得ABD△2222cosAD AB BD AB BD B=+-⋅⋅248sin1624cosC C B =+-⨯⨯()248sin16cosC C A C=+++2148sin16cos2C C C C⎛⎫=++-⎪⎝⎭,cos16216C C C=+=+因为,所以,0120C︒<<︒02240C︒<<︒则当,即时,290C=︒45C=︒.AD2==+故选:A.二、填空题19.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间内,其频率分布直方图如图所示.(Ⅰ)直方图中的_________;=a(Ⅱ)在这些购物者中,消费金额在区间内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【详解】由频率分布直方图及频率和等于1可得,0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=解之得.于是消费金额在区间内频率为,所以消3a =[0.5,0.9]0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=费金额在区间内的购物者的人数为:,故应填3;6000.[0.5,0.9]0.6100006000⨯=【解析】本题考查频率分布直方图,属基础题.20.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____. 【答案】. 710【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有种情况.2510C =若选出的2名学生恰有1名女生,有种情况,11326C C =若选出的2名学生都是女生,有种情况,221C =所以所求的概率为. 6171010+=【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”. 21.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC那么P 到平面ABC 的距离为___________..【分析】本题考查学生空间想象能力,合理画图成为关键,准确找到在底面上的射影,使用线面P 垂直定理,得到垂直关系,勾股定理解决.【详解】作分别垂直于,平面,连,,PD PE ,AC BC PO ⊥ABC CO 知,,,CD PD CD PO ⊥⊥=PD OD P 平面,平面,CD \^PDO OD ⊂PDOCD OD ∴⊥,., PD PE ==∵2PC =sin sin PCE PCD ∴∠=∠=, 60PCB PCA ︒∴∠=∠=,为平分线, PO CO ∴⊥CO ACB ∠,451,OCD OD CD OC ︒∴∠=∴===2PC =.PO ∴==【点睛】画图视角选择不当,线面垂直定理使用不够灵活,难以发现垂直关系,问题即很难解决,将几何体摆放成正常视角,是立体几何问题解决的有效手段,几何关系利于观察,解题事半功倍.22.若函数恰有两个零点,则实数的范围是________ 2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩a 【答案】 1[,1)[2,)2+∞ 【分析】分别设,分两种情况讨论,即可求出的范围.()2,()4()(2)x h x a g x x a x a =-=--a 【详解】解:设,()2,()4()(2)x h x a g x x a x a =-=--若在时,与轴有一个交点,1x <()2x h x a =-x 所以,并且当时, ,所以,0a >1x =(1)20h a =->02a <<而函数有一个交点,所以,且,()4()(2)g x x a x a =--21a ≥1a <所以, 112a ≤<若函数在时,与轴没有交点,()2x h x a =-1x <x 则函数有两个交点,()4()(2)g x x a x a =--当时,与轴无交点,无交点,所以不满足题意(舍去),0a ≤()h x x ()g x 当时,即时,的两个交点满足,都是满足题意的, (1)20h a =-≤2a ≥()g x 12,2x a x a ==综上所述的取值范围是,或. a 112a ≤<2a ≥故答案为:. 1[,1)[2,)2+∞ 【点睛】本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.三、解答题23.已知函数 ()21sin cos cos 2,2f x x x x x x R =+-∈(1)求函数的单调减区间;()f x (2)求当时函数的最大值和最小值. 0,2x π⎡⎤∈⎢⎥⎣⎦()f x 【答案】(1);(2). 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦()()min max 15,22f x f x =-=【分析】(1)将化为,然后解出不等式()f x ()12sin 262f x x π⎛⎫=-+ ⎪⎝⎭3222262k x k πππππ+≤-≤+即可;(2)当时,,然后可求出答案. 0,2x π⎡⎤∈⎢⎥⎣⎦52,666x πππ⎡⎤-∈-⎢⎥⎣⎦【详解】(1)()211cos 211sin cos cos 22cos 22cos 22222x f x x x x x x x x x -=+-=-=-+ 12sin 262x π⎛⎫=-+ ⎪⎝⎭令,可得 3222262k x k πππππ+≤-≤+5,36k x k k Z ππππ+≤≤+∈所以函数的单调减区间为 ()f x 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)当时,, 0,2x π⎡⎤∈⎢⎥⎣⎦52,666x πππ⎡⎤-∈-⎢⎥⎣⎦1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦所以 ()15,22f x ⎡⎤∈-⎢⎥⎣⎦即 ()()min max 15,22f x f x =-=24.如图,已知四边形ABCD 是菱形,,绕着BD 顺时针旋转得到60BAD ∠=︒ABD △120︒PBD △,E 是PC 的中点.(1)求证:平面BDE ;//PA (2)求直线AP 与平面PBC 所成角的正弦值.【答案】(1)证明见解析;【分析】(1)连接交于,连接,利用中位线可得到,再利用直线与平面平行AC BD F EF //EF PA 的判定即可证明;(2)先根据(1)得到直线AP 与平面PBC 所成的角为直线与平面PBC 所成的角,然后过EF F 作,利用面面垂直的性质定理得到平面,进而得到为直线与平面FQ BE ⊥FQ ⊥PBC QEF ∠EF PBC 所成的角,最后求的正弦值即可.QEF ∠【详解】(1)连接交于,连接,因为四边形ABCD 是菱形,AC BD F EF 所以为的中点,又因为是的中点,所以,F AC E PC //EF PA 平面,平面,所以平面. EF ⊂BDE PA ⊄BDE //PA BDE(2)过作,垂足为,连接,F FQ BE ⊥Q FP由(1)知:,//EF PA 则直线AP 与平面PBC 所成的角为直线与平面PBC 所成的角,EF 易知,又是的中点,所以,同理,BP BC =E PC BE PC ⊥DE PC ⊥又,面,所以面,又面,BE DE E ⋂=,BE DE ⊂BDE PC ⊥BDE PC ⊂PBC 所以面面,面面,面,,PBC ⊥BDE PBC =BDE BE FQ ⊂BDE FQ BE ⊥所以面,所以为直线与平面PBC 所成的角,FQ ⊥PBC QEF ∠EF 由△绕着BD 顺时针旋转得到△,可得到,ABD 120︒PBD 120AFP ∠=︒假设,则,2AB a =,AF FP ===在中,由余弦定理可得:,AFP A 22222cos1209AP AF FP AF FP a =+-⋅︒=所以,3AP a =因为,所以,又为的中点,所以,PDC PCB ≅A A DE BE =F BD EF BD ⊥则在中,, Rt EFB △13,,22EF AP a FB a BE =====所以, sin FB FEB BE ∠==所以直线AP 与平面PBC 25.已知函数f (x )=x 2﹣2x +1+a 在区间[1,2]上有最小值﹣1.(1)求实数a 的值;(2)若关于x 的方程f (log 2x )+1﹣2k log 2x =0在[2,4]上有解,求实数k 的取值范围; ⋅(3)若对任意的x 1,x 2∈(1,2],任意的p ∈[﹣1,1],都有|f (x 1)﹣f (x 2)|≤m 2﹣2mp ﹣2成立,求实数m 的取值范围.(附:函数g (t )=t 在(0,1)单调递减,在(1,+∞)单调递增.) 1t+【答案】(1)﹣1;(2)0≤t ;(3)m ≤﹣3或m ≥3. 14≤【分析】(1)由二次函数的图像与性质即可求解.(2)采用换元把方程化为t 2﹣(2+2k )t +1=0在[1,2]上有解,然后再分离参数法,化为t 与2+2k 在[1,2]上有交点即可求解. ()g t =1t+y =(3)求出|f (x 1)﹣f (x 2)|max <1,把问题转化为1≤m 2﹣2mp ﹣2恒成立,研究关于p 的函数h (p )=﹣2mp +m 2﹣3,使其最小值大于零即可.【详解】(1)函数f (x )=x 2﹣2x +1+a 对称轴为x =1,所以在区间[1,2]上f (x )min =f (1)=a ,由根据题意函数f (x )=x 2﹣2x +1+a 在区间[1,2]上有最小值﹣1.所以a =﹣1.(2)由(1)知f (x )=x 2﹣2x ,若关于x 的方程f (log 2x )+1﹣2k •log 2x =0在[2,4]上有解,令t =log 2x ,t ∈[1,2]则f (t )+1﹣2kt =0,即t 2﹣(2+2k )t +1=0在[1,2]上有解,t 2+2k 在[1,2]上有解, 1t+=令函数g (t )=t , 1t+在(0,1)单调递减,在(1,+∞)单调递增.所以g (1)≤2+2k ≤g (2),即2≤2+2t , 52≤解得0≤t . 14≤(3)若对任意的x 1,x 2∈(1,2],|f (x 1)﹣f (x 2)|max <1,若对任意的x 1,x 2∈(1,2],任意的p ∈[﹣1,1],都有|f (x 1)﹣f (x 2)|≤m 2﹣2mp ﹣2成立,则1≤m 2﹣2mp ﹣2,即m 2﹣2mp ﹣3≥0,令h (p )=﹣2mp +m 2﹣3,所以h (﹣1)=2m +m 2﹣3≥0,且h (1)=﹣2m +m 2﹣3≥0,解得m ≤﹣3或m ≥3.【点睛】本题主要考查了二次函数的图像与性质、函数与方程以及不等式恒成立问题,综合性比较强,需有较强的逻辑推理能力,属于难题.。

浙江省温州市2024年6月普通高中学业水平模拟测试数学试题

浙江省温州市2024年6月普通高中学业水平模拟测试数学试题

浙江省温州市2024年6月普通高中学业水平模拟测试数学试

学校:___________姓名:___________班级:___________考号:___________
二、多选题
13.下列选项中正确的是( )
A .33log 1.1log 1.2
<B .
()
()
3
3
1.1 1.2-<-C . 1.1 1.2
0.990.99<D .30.99
0.993<14.某不透明盒子中共有5个大小质地完全相同的小球,其中有3个白球2个黑球,现从
20.在ABC V 中,已知4BC =,4BC BD =uuu r uuu r ,连接AD ,满足
sin sin DB ABD DC ACD ×Ð=×Ð,则ABC V 的面积的最大值为四、解答题
21.某校为了解高二段学生每天数学学习时长的分布情况,随机抽取了100名高二学生进行调查,得到了这100名学生的日平均数学学习时长(单位:分钟),并将样本数据分成
[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100六组,绘制如图所示的频率分布
直方图.
20.3
【分析】分别在ADB
V和
由角平分线定理得到AB AC
cos BAC
Ð,即可得到sin
ADB
V。

安徽省2024届普通高中学业水平合格考试数学模拟试题

安徽省2024届普通高中学业水平合格考试数学模拟试题

安徽省2024届普通高中学业水平合格考试数学模拟试题一、单选题1.设集合{}3,5,6,8A =,{}4,5,8B =,则A B =I ( ) A .{}3,6B .{}5,8C .{}4,6D .{}3,4,5,6,82.在复平面内,(3i)i +对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.某学校高一、高二、高三分别有600人、500人、700人,现采用分层随机抽样的方法从该校三个年级中抽取18人参加全市主题研学活动,则应从高三抽取( ) A .5人B .6人C .7人D .8人4.“a b >”是“ac bc >”的什么条件( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件5.已知(),4a x =r ,()2,1b =-r ,且a b ⊥r r ,则x 等于( ) A .4B .-4C .2D .-26.已知角α的始边在x 轴的非负半轴上,终边经过点()3,4-,则cos α=( ) A .45B .35C .45-D .35-7.下列关于空间几何体结构特征的描述错误的是( ) A .棱柱的侧棱互相平行B .以直角三角形的一边为轴旋转一周得到的几何体不一定是圆锥C .正三棱锥的各个面都是正三角形D .棱台各侧棱所在直线会交于一点8.某地一年之内12个月的降水量分别为:71,66,64,58,56,56,56,53,53,51,48,46,则该地区的月降水量75%分位数( ) A .61B .53C .58D .649.已知函数πsin ,1()6ln ,1x x f x x x ⎧⎛⎫≤⎪ ⎪=⎝⎭⎨⎪>⎩,则()(e)f f =( )A .1B .12CD10.抛掷两个质地均匀的骰子,则“抛掷的两个骰子的点数之和是6”的概率为( )A .17B .111C .536D .11211.在ABC V 中,13BD BC =u u u r u u u r ,设,AB a AC b ==u u u r u u u r r r ,则AD =u u u r( )A .2133a b +r rB .2133a b -+r rC .4133a b -r rD .4133a b +r r12.设0.20.10.214,,log 42a b c ⎛⎫=== ⎪⎝⎭,则( )A .a b c <<B .c b a <<C .<<c a bD .a c b <<13.在ABC V 中,下列结论正确的是( )A .若AB ≥,则cos cos A B ≥ B .若A B ≥,则tan tan A B ≥C .cos()cos +=A B CD .若sin A ≥sin B ,则A B ≥14.已知某圆锥的母线长为4,高为 )A .10πB .12πC .14πD .16π15.若函数()()2212f x x a x =+-+在区间(],4-∞-上是减函数,则实数a 的取值范围是A .[)3,-+∞B .(],3-∞-C .(],5-∞D .[)3,+∞16.已知幂函数()f x 为偶函数,且在(0,)+∞上单调递减,则()f x 的解析式可以是( )A .12()f x x = B .23()f x x = C .2()f x x -=D .3()f x x -=17.从装有2个红球和2个黑球的袋子内任取2个球,下列选项中是互斥而不对立的两个事件的是( )A .“至少有1个红球”与“都是黑球”B .“恰好有1个红球”与“恰好有1个黑球”C .“至少有1个黑球”与“至少有1个红球”D .“都是红球”与“都是黑球”18.已知函数()f x 是定义域为R 的偶函数,且在(],0-∞上单调递减,则不等式()()12f x f x +>的解集为( )A .1,03⎛⎫- ⎪⎝⎭B .1,3∞⎛⎫+ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .1,13⎛⎫- ⎪⎝⎭二、填空题19.已知i 是虚数单位,复数12iiz -=,则||z =. 20.已知()()321f x x a x =+-为奇函数,则实数a 的值为.21.已知非零向量a r ,b r 满足||2||a b =r r ,且()a b b -⊥rr r ,则a r 与b r 的夹角为.22.在对树人中学高一年级学生身高(单位:cm )调查中,抽取了男生20人,其平均数和方差分别为174和12,抽取了女生30人,其平均数和方差分别为164和30,根据这些数据计算出总样本的方差为.三、解答题23.已知函数()f x 是二次函数,且满足(0)2f =,(1)()2f x f x x +=+. (1)求函数()f x 的解析式; (2)当x >0时,求函数()f x xy x+=的最小值. 24.如图,四棱锥P —ABCD 中,P A ⊥底面ABCD ,底面ABCD 为菱形,点F 为侧棱PC 上一点.(1)若PF =FC ,求证:P A ∥平面BDF ; (2)若BF ⊥PC ,求证:平面BDF ⊥平面PBC . 25.已知()π2sin 23f x x ⎛⎫=- ⎪⎝⎭.f x的最小正周期及单调增区间;(1)求()(2)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若()f A △ABC的外接圆半径为2,求△ABC面积的最大值.。

高二数学学业水平模拟试卷(一)

高二数学学业水平模拟试卷(一)

1 高中学业水平考试《数学》模拟试卷(一)一、选择题(本大题共25小题,第1~15题每小题2分,第16~25题每小题3分,共60分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1. 已知集合P ={0,1},Q ={0,1,2},则P ∩Q =( )A. {0}B. {1}C. {0,1}D. {0,1,2}2. 直线x =1的倾斜角为( )A. 0°B. 45°C. 90°D. 不存在3. 下列几何体各自的三视图中,有且仅有两个视图相同的几何体是( )(第3题)A. 圆锥B. 正方体C. 正三棱柱D. 球4. 下列函数中,为奇函数的是( )A. y =x +1B. y =1xC. y =log 3xD. y =(12)x5. 下列函数中,在区间(0,+∞)内单调递减的是( )A. y =1xB. y =x 2C. y =2xD. y =x 36. 若直线l 的方程为2x +y +2=0,则直线l 在x 轴与y 轴上的截距分别为( )A. -1,2B. 1,-2C. -1,-2D. 1,27. 已知平面向量a =(1,2),b =(-3,x ).若a ∥b ,则x 等于( )A. 2B. -3C. 6D. -68. 已知实数a ,b ,满足ab >0,且a >b ,则( )A. ac 2>bc 2B. a 2>b 2C. a 2<b 2D. 1a <1b9. 求值:sin 45°cos 15°+cos 45°sin 15°=( )A. -32 B. -12 C. 12 D. 3210. 设M =2a (a -2)+7,N =()a -2()a -3,则有( )A. M >NB. M ≥NC. M <ND. M ≤N11. 已知sin α=35,且角的终边在第二象限,则cos α=( )A. -45 B. -34 C. 45 D. 3412. 已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则a 5+a 7=( )A. 16B. 18C. 22D. 2813. 下列有关命题的说法正确的个数是( )①命题“同位角相等,两直线平行”的逆否命题为“两直线不平行,同位角不相等”;②“若实数x ,y 满足x +y =3,则x =1且y =2”的否命题为真命题;③若p ∧q 为假命题,则p ,q 均为假命题;④对于命题p :∃x 0∈R ,x 02+2x 0+2≤0, 则p :∀x ∈R ,x 2+2x +2>0 .A. 1个B. 2个C. 3个D. 4个14. 已知()3,2在椭圆x 2a 2+y 2b 2=1上,则( )A. 点()-3,-2不在椭圆上B. 点()3,-2不在椭圆上C. 点()-3,2在椭圆上D. 无法判断点()-3,-2,()3,-2,()-3,2是否在椭圆上15. 设a ∈R ,则“a =1”是“直线l 1:ax +2y =0与直线l 2:x +(a +1)y +4=0平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件16. 下列各式:①(log 23)2=2log 23; ②log 232=2log 23;③log 26+log 23=log 218; ④log 26-log 23=log 23.其中正确的有( )A. 1个B. 2个C. 3个D. 4个17. 下列函数中只有一个零点的是( )A. y =x -1B. y =x 2-1C. y =2xD. y =lg x18. 下列各式中,值为32的是( )A. sin 215°+cos 215°B. 2sin15°cos15°C. cos 215°-sin 215°D. 2sin 215°-119. 在△ABC 中,已知AB →·AC →=23,且∠BAC =30°,则△ABC 的面积为( )A. 1B. 2C. 3D. 420. 已知实数a 1,a 2,a 3,a 4,a 5构成等比数列,其中a 1=2,a 5=8,则a 3的值为( )A. 5B. 4C. -4D. ±421. 已知θ∈⎣⎢⎡⎦⎥⎤0,π2,则直线y =x sin θ+1的倾斜角的取值范围是( )A. [0,π2] B. [0,π6] C. [0,π3] D. [0,π4](第22题)22. 如图,在正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 为CC 1的中点,那么异面直线OE 与AD 1所成角的余弦值等于()A. 62 B. 63C. 33D. 2223. 若直线ax +by -3=0与圆x 2+y 2+4x -1=0切于点P (-1,2),则ab 积的值为( )A. 3B. 2C. -3D. -224. 已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确( )A. a ∥bB. a ⊥bC. |a |=|b |D. a +b =a -b25. 已知平面α内有两定点A ,B ,||AB =3,M ,N 在α的同侧且MA ⊥α,NB ⊥α,||MA =1,||NB =2.在α上的动点P 满足PM ,PN 与平面α所成的角相等,则点P 的轨迹所包围的图形的面积等于( )A. 9πB. 8πC. 4πD. π二、填空题(本大题共5小题,每小题2分,共10分)26. 若菱形ABCD 的边长为2,则|AB →-CD →+CD →|=________.27. 函数y =x +1x (x >0)的值域是________. 28. 若直线2()a +3x +ay -2=0与直线ax +2y +2=0平行,则a =________.29. 若双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为________.30. 已知数列{a n }是非零等差数列,且a 1,a 3,a 9组成一个等比数列的前三项,则a 1+a 3+a 9a 2+a 4+a 10的值是________. 三、解答题(本大题共4小题,第31,32题每题7分,第33,34题每题8分,共30分)31. (本题7分)已知cos α=35,3π2<α<2π,,求cos 2α,sin 2α的值.32. (本题7分,有A 、B 两题,任选其中一题完成,两题都做,以A 题计分)[第32题(A)](A)如图所示 ,四棱锥P -ABCD 的底面为一直角梯形,BA ⊥AD, CD ⊥AD ,CD =2AB ,PA ⊥ 底面ABCD ,E 为PC 的中点.(1)求证:EB ∥平面PAD ;(2)若PA =AD ,证明:BE ⊥平面PDC .(B)如图,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .[第32题(B)](1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角E -DF -C 的余弦值.33. (本题8分)已知抛物线y 2=4x 截直线y =2x +m 所得弦长AB =3 5.(1)求m 的值;(2)设P 是x 轴上的一点,且△ABP 的面积为9,求点P 的坐标.34. (本题8分)定义在D 上的函数f (x ),如果满足:对任意的x ∈D ,存在常数M >0,都有||f (x )≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x. (1)当a =1时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围.1 2014高中学业水平考试《数学》模拟试卷(一)1. C2. C3. A4. B5. A6. C7. D8. D 9. D 10. A 11. A 12. C 13. C 14. C15. A 16. B 17. D 18. C 19. A 20. B21. D 22. B 23. B 24. B25. C [提示:由题意知△AMP ∽△BNP ,所以|PB |=2|PA |,不妨以AB 所在直线为x 轴,中点为原点建立直角坐标系,设P (x ,y ),则(x -32)2+y 2=4[(x +32)2+y 2]⇒(x +52)2+y 2=4,所以P 的轨迹是半径为2的圆,因此面积为4π.] 26. 2 27. [2,+∞) 28. 629. -14 [提示:因为是双曲线,所以m <0,-1m =4,得m =-14.] 30. 1或1316 [提示:设公差为d ,则a 1·(a 1+8d )=(a 1+2d )2⇒a 1d =d 2,∴若d =0,a 1+a 3+a 9a 2+a 4+a 10=1;若d ≠0,则a 1=d ,∴a 1+a 3+a 9a 2+a 4+a 10=1316.] 31. 解:cos 2α=2cos 2α-1=-725,∵3π2<α<2π,∴sin α=-45,∴sin 2α=2sin αcos α=-1225. 32. (A)证明:(1)取PD 的中点Q ,连接EQ ,AQ ,则QE ∥CD ,CD ∥AB ,∴QE ∥AB .又∵QE =12CD =AB ,∴四边形ABEQ 是平行四边形,∴BE ∥AQ .又∵AQ ⊂平面PAD ,∴BE ∥平面PAD .(2)PA ⊥底面ABCD ,∴CD ⊥PA .又∵CD ⊥AD ,∴CD ⊥平面PAD ,∴AQ ⊥CD .若PA =AD ,∴Q 为PD 中点,∴AQ ⊥PD ∴AQ ⊥平面PCD .∵BE ∥AQ ,∴BE ⊥平面PCD .(第32题)(B)(1)如图:在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF //AB ,又AB ⊄平面DEF ,EF ⊂平面DEF ,所以AB //平面DEF . (2)以点D 为坐标原点,直线DB ,DC 为x 轴,y 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,2 3,0),E (0,3,1),F (1,3,0).平面CDF 的法向量为DA →=(0,0,2),设平面EDF 的法向量为n =(x ,y ,z ),⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →||n |=217,所以二面角E -DF -C 的余弦值为217. 33. 解:(1)由⎩⎪⎨⎪⎧y 2=4x ,y =2x +m ,得4x 2+4(m -1)x +m 2=0,由根与系数的关系得x 1+x 2=1-m ,x 1·x 2=m 24,|AB |=1+k 2(x 1+x 2)2-4x 1x 2,=1+22(1-m )2-4·m 24=5(1-2m ).由|AB |=35,即5(1-2m )=35⇒m =-4.(第33题)(2)设P (a ,0),P 到直线AB 的距离为d ,则d =|2a -0-4|22+(-1)2=2|a -2|5,又S △ABP =12|AB |·d ,则d =2·S △ABP |AB |,2|a -2|5=2×935⇒|a -2|=3⇒a =5或a =-1,故点P 的坐标为(5,0)和(-1,0). 34. 解:(1)当a =1时,f (x )=1+⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x,因为f (x )在(-∞,0)上递减,所以f (x )>f (0)=3,即f (x )在(-∞,0)的值域为(3,+∞),故不存在常数M >0,使得|f (x )|≤M 成立.所以函数f (x )在(-∞,0)上不是有界函数. (2)由题意知,|f (x )|≤3在[1,+∞)上恒成立,即-3≤f (x )≤3,-4-⎝ ⎛⎭⎪⎫14x ≤a ·⎝ ⎛⎭⎪⎫12x ≤2-⎝ ⎛⎭⎪⎫14x ,所以-4·2x -⎝ ⎛⎭⎪⎫12x ≤a ≤2·2x -⎝ ⎛⎭⎪⎫12x在[0,+∞)上恒成立.⎣⎢⎡⎦⎥⎤-4·2x -⎝ ⎛⎭⎪⎫12x max ≤a ≤⎣⎢⎡⎦⎥⎤2·2x -⎝ ⎛⎭⎪⎫12x min ,设2x =t ,g (t )=-4t -1t ,h (t )=2t -1t ,由x ∈[0,+∞)得t ≥1,所以g (t )在[1,+∞)上递减,h (t )在[1,+∞)上递增,g (t )max =g (1)=-5,h (t )min =h (1)=1,所以 a ∈[-5,1].。

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03(1)

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03(1)

一、单选题1. 已知为虚数单位,复数的共扼复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2. 在梯形中,,,且,若与交于点,则( )A.B.C.D.3. 已知集合,,则等于A.B.C.D.4. 设向量,且,则( )A .0B .1C .2D .35. 设i 是虚数单位,若复数,则z 的共轭复数为( )A.B.C.D.6. 如图l ,在高为h 的直三棱柱容器中,,,现往该容器内灌进一些水,水深为,然后固定容器底面的一边AB 于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为(如图2),则=()A.B.C.D.7. 已知函数的部分图象如图所示,且,,则( ).A.B.C.D.8.函数函数的零点个数为A .3B .2C .1D .0江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03(1)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03(1)二、多选题三、填空题四、解答题9. 高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德,牛顿并列为世界三大数学家,用表示不超过x 的最大整数,则称为高斯函数,例如,.则下列说法正确的是( )A .函数在区间上单调递增B .若函数,则的值域为C.若函数,则的值域为D .,10.已知函数的图象如图所示,令,则下列说法正确的是()A.B.函数图象的对称轴方程为C.若函数的两个不同零点分别为,则的最小值为D .函数的图象上存在点P ,使得在P点处的切线斜率为11. 已知双曲线满足条件:(1)焦点为,;(2)离心率为,求得双曲线C的方程为.若去掉条件(2),另加一个条件求得双曲线C 的方程仍为,则下列四个条件中,符合添加的条件可以为( )A .双曲线C 上的任意点P都满足B .双曲线C 的虚轴长为4C .双曲线C 的一个顶点与抛物线的焦点重合D .双曲线C的渐近线方程为12.如图,已知四棱锥的底面是直角梯形,,,,平面,,下列说法正确的是()A .与所成的角是B.与平面所成的角的正弦值是C .平面与平面所成的锐二面角余弦值是D.是线段上动点,为中点,则点到平面距离最大值为13.已知平面内两单位向量,若满足,则的最小值是___________.14. 在锐角三角形中,,,,则________15. 小张计划从个沿海城市和个内陆城市中随机选择个去旅游,则他至少选择个沿海城市的概率是__________.16. 为了调查某校高二学生是否需要学校提供学法指导,用简单随机抽样的方法从该校高二年级调查了55名学生,结果如下:男女需要2010不需要1015(1)估计该校高二年级学生中,需要学校提供学法指导的学生的比例;(用百分数表示,保留两位有效数字)(2)能否有95%的把握认为该校高二年级学生是否需要学校提供学法指导与性别有关?17. 中的内角的对边分别为,已知.(1)求角的大小;(2)求的最大值,并求出取得最大值时角的值.18. 已知等差数列的前n项和为,又对任意的正整数,都有,且.(1)求数列的通项公式;(2)设,求数列的前n项和.19. 已知函数,其中且的最小值为0.(1)求的值;(2)证明:当时,.20. 已知椭圆的长轴长为,离心率为,其中左顶点为,右顶点为,为坐标原点.(1)求椭圆的标准方程;(2)直线与椭圆交于不同的两点,,直线,分别与直线交于点,. 求证:为定值.21. 如图,在长方体中,相交于点,是线段的中点,已知.(1)求证:;(2)若是线段上异于端点的点,求过三点的平面被长方体所截面积的最小值.。

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01

一、单选题1. 函数的部分图像大致为( )A.B .C.D.2. 设全集,集合,则( )A.B.C.D.3. 已知点F 为双曲线(,)的左焦点,过原点O 的直线与双曲线交于A 、B 两点(点B 在双曲线左支上),连接BF 并延长交双曲线于点C ,且,AF ⊥BC ,则该双曲线的离心率为( )A.B.C.D.4.设是首项大于零的等比数列,则“”是“数列是递增数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5. 已知均为实数,下列不等式恒成立的是( )A .若,则B.若,则C .若,则D .若,则6. 下列有关命题的说法正确的是( ).A .命题“若,则”的否命题为:“若,则”B .“”是“”的必要不充分条件C .命题“,使得”的否定是:“,均有”D .命题“若,则”的逆否命题为真命题7. 已知函数为的导函数,则的大致图象是( )A. B.江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01二、多选题三、填空题C. D.8. 设集合A={1,2,3},B={x |x 2-2x +m=0},若A ∩B={2},则B=( )A.B.C.D.9. 如图,在直三棱柱中,,,则()A .平面B.平面平面C .异面直线与所成的角的余弦值为D .点,,,均在半径为的球面上10. 已知,且,则( )A.B.C.D.11. 已知直线与椭圆交于两点,点为椭圆的下焦点,则下列结论正确的是( )A .当时,,使得B.当时,,C .当时,,使得D .当时,,12. 如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形,其中,则()A.B.C.D.四、解答题13. 已知函数,其中为常数,且,将函数的图象向左平移个单位所得的图象对应的函数在取得极大值,则的值为_____________________.14. 已知函数在处有极值8,则等于______.15. 样本数据的众数是______.16. 2024年1月,某市的高二调研考试首次采用了“”新高考模式.该模式下,计算学生个人总成绩时,“”的学科均以原始分记入,再选的“2”个学科(学生在政治、地理、化学、生物中选修的2科)以赋分成绩记入.赋分成绩的具体算法是:先将该市某再选科目原始成绩按从高到低划分为五个等级,各等级人数所占比例分别约为.依照转换公式,将五个等级的原始分分别转换到五个分数区间,并对所得分数的小数点后一位进行“四舍五入”,最后得到保留为整数的转换分成绩,并作为赋分成绩.具体等级比例和赋分区间如下表:等级比例赋分区间已知该市本次高二调研考试化学科目考试满分为100分.(1)已知转换公式符合一次函数模型,若学生甲、乙在本次考试中化学的原始成绩分别为84,78,转换分成绩为78,71,试估算该市本次化学原始成绩B 等级中的最高分.(2)现从该市本次高二调研考试的化学成绩中随机选取100名学生的原始成绩进行分析,其频率分布直方图如图所示,求出图中的值,并用样本估计总体的方法,估计该市本次化学原始成绩等级中的最低分.17. 北京时间2022年11月21日0时,卡塔尔世界杯揭幕战在海湾球场正式打响,某公司专门生产世界杯纪念品,今年的订单数量再创新高,为回馈球迷,该公司推出了盲盒抽奖活动,每位成功下单金额达500元的顾客可抽奖1次.已知每次抽奖抽到一等奖的概率为10%,奖金100元;抽到二等奖的概率为30%,奖金50元;其余视为不中奖.假设每人每次抽奖是否中奖互不影响.(1)任选2名成功下单金额达500元的顾客,求这两名顾客至少一人中奖的概率;(2)任选2名成功下单金额达500元的顾客,记为他们获得的奖金总数,求的分布列和数学期望.18. “学习强国”学习平台软件主要设有“阅读文章”“视听学习”两个学习模块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题模块,还有“四人赛”“双人对战”两个比赛模块.“四人赛”积分规则为首局第一名积3分,第二、三名积2分,第四名积1分;第二局第一名积2分,其余名次积1分;每日仅前两局得分.“双人对战”积分规则为第一局获胜积2分,失败积1分,每日仅第一局得分.某人在一天的学习过程中,完成“四人赛”和“双人对战”.已知该人参与“四人赛”获得每种名次的概率均为,参与“双人对战”获胜的概率为,且每次答题相互独立.(1)求该人在一天的“四人赛”中积4分的概率;(2)设该人在一天的“四人赛”和“双人对战”中累计积分为,求的分布列和.19. 已知,求的值.20. 近段时间,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取120名学生对线上教学进行调查,其中男生与女生的人数之比为,男生中喜欢上网课的为,女生中喜欢上网课的为,得到如下列联表.喜欢上网课不喜欢上网课合计男生女生合计(1)请将列联表补充完整,试判断能否有的把握认为喜欢上网课与否与性别有关;(2)从不喜欢上网课的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,若所选2名学生中的女生人数为X,求X的分布列及数学期望.附:,其中.0.1500.1000.0500.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.82821. 函数f(x)=的定义域为集合,关于的不等式的解集为,求使的实数的取值范围.。

云南省2025届高二上数学期末学业水平测试模拟试题含解析

云南省2025届高二上数学期末学业水平测试模拟试题含解析

云南省2025届高二上数学期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知过抛物线24x y =焦点F 的直线l 交抛物线于M ,N 两点,则94||||MF NF -的最小值为()A.-B.2C.D.32.圆C :22226430x y x y ++--=的圆心坐标和半径分别为( ) A.3,12⎛⎫- ⎪⎝⎭和4B.(-3,2)和4C.3,12⎛⎫- ⎪⎝⎭和2D.3,12⎛⎫- ⎪⎝⎭3.已知,x y 满约束条件20201x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,则2z x y =-的最大值为( )A.0B.1C.2D.34.已知数列{}n a 满足122n n a a +=+且11a =,则() A.{}n a 是等差数列 B.{}n a 是等比数列 C.{}1n a +是等比数列D.{}2n a +是等比数列5.Rt ABC △绕着它的一边旋转一周得到的几何体可能是() A.圆台B.圆台或两个圆锥的组合体C.圆锥或两个圆锥的组合体D.圆柱6.下列数列是递增数列的是( ) A.{12}n -B.12n n +⎧⎫⎨⎬⎩⎭C.1352n -⎧⎫⎪⎪⎛⎫⋅⎨⎬ ⎪⎝⎭⎪⎪⎩⎭D.213n n -+⎧⎫⎨⎬⎩⎭7.在等差数列{a n }中,a 1=2,a 5=3a 3,则a 3等于( ) A.-2 B.0 C.3D.68.过点()1,3P -且平行于直线230x y -+=的直线方程为() A.270x y -+= B.250x y +-= C.250x y +-=D.210x y +-=9.已知直线)(1:120l x a y a +++-=与2:280l ax y ++=平行,则a 的值为( ) A.1 B.﹣2C.23-D.1或﹣210.已知圆2221:210C x y mx m +-+-=和圆2222:290C x y ny n +-+-=恰有三条公共切线,则22(6)(8)m n -+-的最小值为()A.6B.36C.1011.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则4a =( ) A.274B.94C.278D.9812.点F 是抛物线28y x =的焦点,点(4,2)A ,P 为抛物线上一点,P 不在直线AF 上,则△PAF 的周长的最小值是() A.4 B.6C.6+D.6二、填空题:本题共4小题,每小题5分,共20分。

高二年级学业水平考试模拟考数学试卷有参考答案

高二年级学业水平考试模拟考数学试卷有参考答案

高二年级学业水平考试模拟考数学试卷(考试时间:100分钟; 试卷满分:100分)【注意事项】1.答题前,考生务必用黑色碳素笔将自己的学校、姓名、准考证号、考场号、座位号填写在答题卡上。

2.请在答题卡指定位置按规定要求作答,答在试卷上一律无效。

参考公式∶如果事件 A 、B 互斥,那么P (AUB )= P (A )+P (B ).球的表面积公式:S=4πR 2,体积公式;V =43πR 3,其中R 表示球的半径. 柱体的体积公式∶V= Sh ,其中S 表示柱体的底面面积,h 表示柱体的高. 锥体的体积公式∶V=13Sh ,其中S 表示锥体的底面面积,h 表示锥体的高.第Ⅰ卷(选择题 共66分)一、选择题:本大题共22个小题,每小题3分,共66分.在每个小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应的位置上填涂.1. 已知集合S ={0,1,2},T ={2,3},则S ∪T =( ).A. {0,1,2}B. {0,2}C. {0,1,2,3}D. {2}2. 数学中,圆的黄金分割的张角是137.5°,这个角称为黄金角,黄金角在植物界受到广泛青睐,例如车前草的轮生叶片之间的夹角正好是137.5°,按这一角度排列的叶片,能很好的镶嵌而又互不重叠,这是植物采光面积最大的排列方式,每片叶子都可以最大限度的获得阳光,从而有效提高植物光合作用的效率。

那么,黄金角所在的象限是( ).A.第一象限B. 第二象限C. 第三象限D. 第四象限3. 一元二次不等式的解集为( ).A. B. C. D.4. 已知向量a =(1,2),b =(-2,0),则a b ⋅的值等于( ).A. -4B. -3C. -2D. 1 5. 已知i 是虚数单位,复数5−i 1+i 的虚部是( ). A. -3 B. -3iC. 2D. 2i 220x x -<{}02x x <<{}20x x -<<{}22x x -<<{}11x x -<<6. 下列函数中,在R 上为增函数的是( ).7. 224log log 55+的值为( ). A. 12 B. 2 C. 1029 D. 29108. 0000sin 79cos34cos79sin34-的值为( ).A. 1B. 2C. 2D. 129. 已知角α的终边过点P (−1,√3),则cosα的值为( ).A. √32B. 12C. −12D. −√3210. 在ABC ∆中, A 、B 、C 所对的边分别为a 、b 、c ,已知三个内角的度数之比A:B:C= 1:2:3,那么三边长之比a:b:c 等于( ).A. 1:2:3B. 2C. 2D. 3:2:1 11.为了得到函数的图像,只需把的图像上所有的点( ).A.向左平移个单位B. 向右平移个单位C.横坐标变为原来的π3倍,纵坐标不变D. 纵坐标变为原来的π3倍,横坐标不变12. 已知,若,则的最小值为( ). A. 1 B. C. 2 D.13. 函数()ln 26f x x x =+-的零点一定位于区间( ).A. ()1,2B. ()2,3C. ()3,4D. ()4,5. 2x A y =. B y x =-1. C y x =0.5. log D y x =sin(),3y x x R π=-∈sin ,y x x R =∈3π3π0,0x y >>2xy =12x y+214. 如图,在正方体1111ABCD A B C D -中,对角线1A C 与平面ABCD 所成角的正弦值为( ). A. 3 B. 22 C. 6 D. 315. 已知sinθ=−45,且θ为第四象限的角,则tan θ的值等于( ). A. 35 B. 34- C. 35 D. 43- 16. 先后抛掷一枚质地均匀的硬币,则两次均正面向上的概率为( ). A .14 B .12 C .34D .1 17. 函数2()log f x x =在区间[2,8]上的值域为( ).A. (-∞,1]B. [2,4]C. [1,3]D. [1, +∞) 18. 设50.31,0.3,5a b c ===,则下列不等式正确的是( ).A .a b c >>B .b a c >> C.c a b >> D .a c b>> 19 .已知向量a =(2,3),b =(4,x ),若a ⃗∥b⃗⃗,则实数x 的值为( ). A.−6 B. 6 C. 83 D. −8320. 一个圆锥的底面直径和高都等于一个球的直径,那么圆锥与球的体积之比是( ).A. 1:3B. 2:3C. 1:2D. 2:921.已知)(x f 是定义在R 上的偶函数,且在区间(]0,∞-上为减函数,则)1(f 、)2(-f 、)3(f 的大小关系是( ).)A ()3()2()1(f f f >-> )B ()3()1()2(f f f >>-)C ()2()3()1(-<<f f f )D ()3()2()1(f f f <-<22. 已知函数()123,0,log ,0x x f x x x +⎧≤=⎨>⎩若f (x 0)>3,则x 0的取值范围是( ). A. (8,,∞) B. (,∞,0)∪(8,,∞) C. (0,8) D. (,∞,0)∪(0,8)第Ⅱ卷(非选择题共34分)二、填空题:本大题共4个小题,每小题4分,共16分.请把答案写在答题卡相应的位置上.23. 昆明市某公司有高层管理人员、中层管理人员、一般员工共1000名,现用分层抽样的方法从公司的员工中抽取80人进行收入状况调查.若该公司有中层管理人员100名,则从中层管理人员中应抽取的人数为______.24. 已知向量a=(2,1),b=(3,λ),若a⃗⊥b⃗⃗,则λ=25. 函数1lg(2)y x x的定义域是 .f-的值是________________.26. 若函数()f x为奇函数,当0x>时,()10xf x=,则(1)三、解答题:本大题共3个小题,第27题5分,第28题6分,第29题7分,共18分.解答应写出文字说明、证明过程或演算步骤.27. 小李到某商场购物,并参加了一次购物促销的抽奖活动,抽奖规则是:一个袋子中装有大小相同的红球3个、白球2个,每个球被取到的概率相等,红球上分别标有数字1、2、3,每个红球上只标有一个数字.一次从袋中随机取出2个球,如果2个球都是红球则中奖(其他情况不中奖),而且2个红球上标记的数字之和表示所得奖金数(单位:元).求小李所得奖金数为3元或者5元的概率.28. 已知∆ABC的内角A,B,C的对边分别是a,b,c,a=bcosC+csinB.(1)求角B;(2)若b=2,求三角形∆ABC面积的最大值.29. 如图,点P为菱形ABCD所在平面外一点,PA⊥平面ABCD,点E为PA的中点.(1)求证: PC//平面BDE;(2)求证: BD⊥平面PAC.第五次学业水平测试模拟考试参考答案二、填空题23、 8 24、 -6 25、 [1,2) 26、 -10三、解答题27、解:设袋子中的两个白球标号为A、B,三个红球的标号为上面的数字,即为1、2、3;一次从袋子中随机取出2个球的结果用(x,y)表示,则所有可能的结果有:(A,B),((A,1),(A,2),(A,3),(B,1),(B,2),(B,3),(1,2),(1,3),(2,3),共10种。

安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷

安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷

安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷一、单选题1.已知集合{}{}21,0,1,2,3,230M N x x x =-=--<,则M N =I ( )A .{}1,0,1-B .{}1,0,1,2,3-C .{}0,1,2D .{}1-2.下列图象中,表示定义域和值域均为[0,1]的函数是( )A .B .C .D .3.已知向量()()1,3,3,a b m =-=r r ,若a b r r∥,则m =( ) A .9B .9-C .1D .1-4.已知函数()()222,22,2x x x f x f x x ⎧-++≤⎪=⎨->⎪⎩,则()3f =( )A .1-B .1C .2D .35.若函数()25742xy a a a a =-++-是指数函数,则有( )A .2a =B .3a =C .2a =或3a =D .2a >,且3a ≠6.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点1,12⎛⎫- ⎪⎝⎭,则πtan 4α⎛⎫+= ⎪⎝⎭( )A .3-B .3C .13-D .137.水平放置的ABC V 的斜二测直观图如图所示,已知3,2A C B C ''''==,则ABC V 的面积是( )A .4B .5C .6D .78.命题“21,10x x ∀≥-≤”的否定是( ) A .21,10x x ∃<-> B .21,10x x ∃≥-> C .21,10x x ∀<-≤D .21,10x x ∀-<>9.函数π2sin 26y x ⎛⎫=+ ⎪⎝⎭的图象的一条对称轴是( )A .π6x =- B .π2x =C .2π3x =D .5π6x =10.已知复数z 满足()34i i z +=,则z =( )A .34i 55-B .34i 55+C .43i 55+D .43i 55-11.“今有城,下广四丈,上广二丈,高五丈,袤两百丈.”这是我国古代数学名著《九章算术》卷第五“商功”中的问题.意思为“现有城(如图,等腰梯形的直棱柱体),下底长4丈,上底长2丈,高5丈,纵长200丈(1丈=10尺)”,则该问题中“城”的体积等于( )A .5310⨯立方尺B .5610⨯立方尺C .6610⨯立方尺D .6310⨯立方尺12.抛掷一枚质地均匀的骰子,记随机事件:E =“点数为奇数”,F =“点数为偶数”,G =“点数大于2”,H =“点数小于2”,R =“点数为3”.则下列结论不正确的是( )A .,E F 为对立事件B .,G H 为互斥不对立事件C .,E G 不是互斥事件D .,G R 是互斥事件13.ABC V 的内角,,A B C 的对边分别为,,,a b c ABC V 且π1,3b C ==,则边c =( )A .7B .3C D 14.已知,,αβγ是空间中三个不同的平面,,m n 是空间中两条不同的直线,则下列结论错误的是( )A .若,,m n αβα⊥⊥//β,则m //nB .若,αββγ⊥⊥,则α//γC .若,,m n m n αβ⊥⊥⊥,则αβ⊥D .若α//,ββ//γ,则α//γ15.若不等式2430ax x a -+-<对所有实数x 恒成立,则a 的取值范围为( )A .()(),14,-∞-⋃+∞B .(),1∞--C .(][),14,-∞-⋃+∞D .(],1-∞-16.已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的小学生近视人数分别为( )A .100,30B .100,21C .200,30D .200,717.已知向量a r 与b r 的夹角为π,2,16a b ==rr ,则向量a r 与b r 上的投影向量为( )A .b rBC .a rD r18.若函数()22log 3y x ax a =-+在(2,)+∞上是单调增函数,则实数a 的取值范围为A .(,4]-∞B .(,4)-∞C .(4,4]-D .[4,4]-二、填空题19.已知5sin cos 4αα-=,则sin 2α=. 20.已知单位向量a r 与单位向量b r的夹角为120︒,则3a b +=r r .21.某学校举办作文比赛,共设6个主题,每位参赛同学从中随机抽取一个主题准备作文.则甲、乙两位参赛同学抽到的主题不相同的概率为.22.某服装加工厂为了适应市场需求,引进某种新设备,以提高生产效率和降低生产成本.已知购买x 台设备的总成本为()21800200f x x x =++(单位:万元).若要使每台设备的平均成本最低,则应购买设备台.三、解答题23.已知()f x a b =⋅r r,其中向量())()sin2,cos2,R a x x b x ==∈r r ,(1)求()f x 的最小正周期;(2)在ABC V 中,角、、A B C 的对边分别为a b c 、、,若224A f ⎫⎛== ⎪⎝⎭,求角B 的值.24.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,点D 是AB 的中点.(1)证明:1AC BC ⊥; (2)证明:1//AC 平面1CDB . 25.已知函数()[]()211,1x b f x x x a+-=∈-+是奇函数,且()112f = (1)求,a b 的值;(2)判断函数()f x 在[]1,1-上的单调性,并加以证明;(3)若函数()f x 满足不等式()()12f t f t -<-,求实数t 的取值范围.。

安徽省合肥市2023-2024学年高二下学期学业水平考试数学模拟卷含答案

安徽省合肥市2023-2024学年高二下学期学业水平考试数学模拟卷含答案

普通高中学业水平合格性考试数学(答案在最后)一、选择题:本大题共18小题,每小题3分,满分54分.在每小题给出的四个选项中,只有一项是符合题目要求的1.下列元素与集合的关系中,正确的是()A.*3-∈NB.0∉NC.12∈Z D.R【答案】D 【解析】【分析】由元素与集合的关系即可求解.【详解】由题意*13,0,2-∈∉∉N Z N R .故选:D.2.下列向量关系式中,正确的是()A.MN NM =B.AB AC BC+= C.AB CA BC+= D.MN NP PQ MQ++= 【答案】D 【解析】【分析】由向量加减法的运算规则,验证各选项的结果.【详解】MN NM =-,A 选项错误;BC AC AB=-,B 选项错误;AB CA CA AB CB =+=+,C 选项错误;由向量加法的运算法则,有MN NP PQ MQ ++=,D 选项正确.故选:D.3.已知角α的终边经过点125,1313⎛⎫- ⎪⎝⎭,则tan α=()A.512-B.125-C.1213-D.513【答案】A 【解析】【分析】由三角函数定义即可得解.【详解】由题意5125tan 131312α⎛⎫=÷-=- ⎪⎝⎭.故选:A.4.已知i 为虚数单位,则复数23i i z =-+的虚部为()A.1B.1- C.iD.i-【答案】B 【解析】【分析】由复数四则运算以及虚部的概念即可求解.【详解】由题意2i 3i i 2z =-+=-,所以复数23i i z =-+的虚部为1-.故选:B.5.“21x >”是“1x >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据21x >得到1x >1x <-,从而得到答案.【详解】由21x >,解得1x >或1x <-.所以“21x >”是“1x >”的必要而不充分条件故选:B【点睛】本题主要考查必要不充分条件,同时考查二次不等式的解法,属于简单题.6.已知lg3,lg5x y ==,则用,x y 表示lg45为()A.2xy B.3xyC.2x y+ D.2x y-【答案】C 【解析】【分析】运用对数运算性质计算.【详解】()2lg45lg 53lg 52lg 32x y =⨯=+=+.故选:C.7.已知函数()23f x x x=--,则当0x <时,()f x 有()A .最大值3+ B.最小值3+C.最大值3- D.最小值3-【答案】B 【解析】【分析】由基本不等式即可求解.【详解】由题意当0x <时,()()233f x x x ⎡⎤⎛⎫=+-+-≥+ ⎪⎢⎥⎝⎭⎣⎦,等号成立当且仅当x =.故选:B.8.已知一组样本数据12,,,n x x x 的平均数为3,中位数为4,由这组数据得到新样本数据1y ,2,,n y y ,其中()11,2,3,,i i y x i n =+= ,则12,,,n y y y 的平均数和中位数分别为()A.3,4 B.3,5C.4,4D.4,5【答案】D 【解析】【分析】由平均数的定义及12,,,n x x x 的大小排列顺序与变化后的12,,,n y y y 的大小排列顺序一致,即可求出结果.【详解】由题意知,123n x x x n +++= ,则()()()121211134n n x x x y y y n ny n n n++++++++++==== ,又因为()11,2,3,,i i y x i n =+= ,所以12,,,n x x x 的大小排列顺序与变化后的12,,,n y y y 的大小排列顺序一致,由于12,,,n x x x 的中位数为4,则12,,,n y y y 的中位数为5.故选:D.9.已知函数()()ln 2f x x =-,则下列结论错误的是()A.()30f = B.()f x 的零点为3C.()f x 在()0,∞+上为增函数D.()f x 的定义域为()2,+∞【答案】C 【解析】【分析】由函数()()ln 2f x x =-性质依次判断各选项可得出结果.【详解】()()3ln 32=ln1=0f =-,可知函数()f x 的零点为3,可知A,B 正确;()()ln 2f x x =-中,由20x ->,解得:2x >,故函数的定义域为()2,∞+,且函数在()2,∞+为增函数,故C 错误,D 正确.故选:C10.已知i 为虚数单位,复数z 满足13z ≤≤,则复数z 对应的复平面上的点Z 的集合所表示的图形是()A.正方形面B.一条直线C.圆面D.圆环面【答案】D 【解析】【分析】设i,(,)z a b a b =+∈R ,根据模的定义求出轨迹方程即可得解.【详解】设i,(,)z a b a b =+∈R ,则由13z ≤≤可得13≤≤,即2219a b ≤+≤,所以复数z 对应的点在复平面内表示的图形是圆环面.故选:D.11.已知函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭,则下列结论正确的是()A.()f x 的最小正周期为2πB.()f x 的最大值为2C.()f x 的图象关于直线π6x =对称D.()f x 的图象关于坐标原点对称【答案】C 【解析】【分析】根据余弦函数的性质逐一判断即可.【详解】()f x 的最小正周期2ππ2T ==,故A 错误;()f x 的最大值为1,故B 错误;因为πcos 016f ⎛⎫==⎪⎝⎭,所以()f x 的图象关于直线π6x =对称,故C 正确;因为()π10cos 032f ⎛⎫=-=≠ ⎪⎝⎭,所以()f x 的图象不关于坐标原点对称,故D 错误.故选:C .12.某种汽车在水泥路面上的刹车距离(指汽车刹车后,由于惯性往前滑行的距离)S (米)和汽车的刹车前速度x (千米/小时)有如下的关系:211909S x x =-.在一次交通事故中,测得某辆这种汽车的刹车距离为80(米),则这辆汽车在出事故时的速度为()A.90千米/小时B.80千米/小时C.72千米/小时D.70千米/小时【答案】A 【解析】【分析】题意可得,,求解一元二次方程即可.【详解】由题意可得,21180909S x x =-=,化简为21080900x x --⨯=,解得80x =-或90x =,又因为0x ≥,所以90x =.故选:A.13.若π32cos()410α-=,则sin2α=()A.725B.1625C.1625-D.725-【答案】C 【解析】【分析】利用两角差的余弦公式展开,然后平方得到.【详解】由πcos()410α-=得3cos sin 5αα+=,平方得223(cos sin )()5259αα+==,22cos 2sin cos sin 259αααα++=即1sin 2295α+=,得16sin225α=-.故选:C14.甲、乙两名射击运动员进行射击比赛,甲中靶的概率为0.80,乙中靶的概率为0.85,则恰好有一人中靶的概率为()A.0.85B.0.80C.0.70D.0.29【答案】D 【解析】【分析】由对立事件概率、互斥加法以及独立乘法即可求解.【详解】由题意恰好有一人中靶的概率为()()10.800.850.8010.850.170.120.29-⨯+⨯-=+=.故选:D.15.已知函数()log a f x x =与()()0,1xg x aa a =>≠互为反函数.若()ln f x x =的反函数为()g x ,则(2)g =()A.ln 2B.e2 C.2e D.2【答案】C 【解析】【分析】根据题意,得到()x g x e =,代入2x =,即可求解.【详解】由函数()log a f x x =与()()0,1xg x aa a =>≠互为反函数,若()ln f x x =的反函数为()x g x e =,则2(2)e g =.故选:C.16.已知4,a e = 为单位向量,它们的夹角为2π3,则向量a 在向量e 上的投影向量为()A.2eB.2e -C.D.-【答案】B 【解析】【分析】利用投影向量的定义计算可得结果.【详解】根据题意可得向量a 在向量e 上的投影向量为222π41cos 321a e e a e e e e ee e⨯⨯⋅⋅⋅===-;故选:B17.从1,2,3,4,5中任取2个数,设事件A =“2个数都为偶数”,B =“2个数都为奇数”,C =“至少1个数为奇数”,D =“至多1个数为奇数”,则下列结论正确的是()A.A 与B 是互斥事件B.A 与C 是互斥但不对立事件C.B 与D 是互斥但不对立事件D.C 与D 是对立事件【答案】A 【解析】【分析】根据互斥事件和对立事件的定义判断.【详解】根据题意()()()()()()()()()(){}Ω1,2,1,3,1,4,1,5,2,3,2,4,2,5,3,4,3,5,4,5,=(){}()()(){}2,4,1,3,1,5,3,5,A B ==()()()()()()()()(){}1,2,1,3,1,4,1,5,2,3,2,5,3,4,3,5,4,5,C =,()()()()()()(){}1,2,1,4,3,2,3,4,2,5,4,5,2,4,D =则A B ⋂=∅,所以A 与B 是互斥事件,A 正确;,A C A C =∅=Ω ,所以A 与C 是互斥且对立事件,B 错误;,B D B D =∅=Ω ,所以B 与D 是互斥且对立事件,C 错误;()()()()()(){}1,2,1,4,3,2,3,4,2,5,4,5,C D ⋂=所以C 与D 不是对立事件,D 错误.故选:A.18.在三棱锥-P ABC 中,PO ⊥平面ABC ,垂足为O ,且PA PB PC ==,则点O 一定是ABC 的()A.内心B.外心C.重心D.垂心【答案】B 【解析】【分析】根据题意,结合勾股定理,求得OA OB OC ==,即可求得答案.【详解】如图所示,分别连接,,OA OB OC ,因为PO ⊥平面ABC ,可得,,PO OA PO OB PO OC⊥⊥⊥又因为PA PB PC ==,利用勾股定理,可得OA OB OC ==,所以点O 一定是ABC 的外心.故选:B.二、填空题:本大题共4小题,每小题4分,共16分.19.设集合{}()(){}1,2,3,4,140A B x x x ==--=,则A B =ð____________.【答案】{}2,3##{}3,2【解析】【分析】根据补集的定义即可得解.【详解】()(){}{}1401,4B x x x =--==,则{}2,3A B =ð.故答案为:{}2,3.20.设函数()f x 是定义域为R 的奇函数,且()()2f x f x +=,则()4f =____________.【答案】0【解析】【分析】由函数为奇函数可得()00f =,再根据函数的周期性即可得解.【详解】因为函数()f x 是定义域为R 的奇函数,所以()00f =,因为()()2f x f x +=,所以函数()f x 是以2为周期的周期函数,所以()()400f f ==.故答案为:0.21.已知,a b 是两个不共线的向量,若,AB a b AC a b λ=+=-,且AC AB μ=,则λ=____________.【答案】1-【解析】【分析】由平面向量基本定理列出方程组,1μλμ==-即可求解.【详解】由题意()AC a b AB a b a b λμμμμ=-=++== ,且,a b是两个不共线的向量,所以,1μλμ==-,所以1λ=-.故答案为:1-.22.已知ABC 内角A,B,C 的对边分别为a,b,c,设其面积为S,若)2224S b c a =+-,则角A 等于______.【答案】60 【解析】【分析】由已知利用三角形面积公式,同角三角函数基本关系式及余弦定理化简tan A =,结合A 的范A 的值.【详解】由题意,因为)2224S b c a =+-,所以14sin 2cos 2bc A bc A ⋅=,即tan A =,又由000180A <<,所以060A =,故答案为060【点睛】本题主要考查了三角形面积公式,同角三角函数基本关系式及余弦定理,特殊角的三角函数值在解三角形中的综合应用,其中解答中熟记正、余弦定理和三角形的面积公式,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题:本大题共3小题,每题10分,满分30分.解答应写出文字说明、证明过程或演算步骤.23.从甲、乙两班某次学业水平模拟考试成绩中各随机抽取8位同学的数学成绩.甲班:78,69,86,58,85,97,85,98乙班:66,78,56,86,79,95,89,99规定考试成绩大于或等于60分为合格.(1)求甲班这8位同学数学成绩的极差,并估计甲班本次数学考试的合格率;(2)估计乙班本次考试数学成绩的平均分,并计算乙班这8名同学数学成绩的方差.【答案】(1)极差为40;87.5%;(2)平均分为81分;方差184.【解析】【分析】(1)根据极差定义计算可得结果,由成绩可知这8名同学中有7人合格,可得合格率为87.5%;(2)根据平均数以及方差的定义计算可得平均分为81分,方差为184.【小问1详解】甲班这8位同学数学成绩的极差为985840-=;因为甲班这8名同学中合格的有7人,所以可以估计甲班本次数学考试的合格率为787.5%8=;【小问2详解】因为乙班这8名同学的数学平均分为5666787986899599818+++++++=,所以可以估计乙班本次考试数学成绩的平均分为81分;乙班这8名同学本次考试数学成绩的方差为2222222221(5681)(6681)(7881)(7981)(8681)(8981)(9581)(9981)8s ⎡⎤=-+-+-+-+-+-+-+-⎣⎦14721848==.24.如图,四棱锥1D ABCD -的底面ABCD 是边长为3的正方形,E 为侧棱1D D 的中点.(1)证明:1//BD 平面ACE ;(2)若1D D ⊥底面ABCD ,且14D D =,求四棱锥1D ABCD -的表面积.【答案】(1)证明见解析(2)36.【解析】【分析】(1)利用直线与平面平行的判定定理容易证出;(2)容易推导出四个侧面都是直角三角形,进而1D ABCD -表面积可求.【小问1详解】如下图,连接BD ,设BD 与AC 相交与点M ,连接EM .因为底面ABCD 是边长为3的正方形,所以M 为BD 中点,又因为E 为侧棱1D D 的中点,所以1//BD EM ,又1BD ⊄平面ACE ,EM ⊂平面ACE ,所以1//BD 平面ACE .【小问2详解】因为1D D ⊥底面ABCD ,AB ⊂平面ABCD ,所以1D D AB ⊥,又AB AD ⊥,11,,DD AD D DD AD ⋂=⊂平面1D AD ,所以AB ⊥平面1D AD ,而1AD ⊂平面1D AD ,所以1AB AD ⊥,同理可证1BC CD ⊥,所以1111,,,D AD D AB D BC D CD △△△△均为直角三角形,则四棱锥1D ABCD -的表面积为()111112S D D AD D D CD D A AB D C BC AB CB =⨯+⨯+⨯+⨯+⨯()212342353362=⨯⨯+⨯⨯+=,所以四棱锥1D ABCD -的表面积为36.25.如图,OABC 为正方形,()()2,0,0,2A C ,点()()2cos ,2sin P θθθ++∈R 为直角坐标平面内的一点,M 为线段AB 的中点,设()f PO PM θ=⋅ .(1)求点B 的坐标;(2)求()fθ的表达式;(3)当()f θ取最大值时,求sin θ的值.【答案】(1)()2,2;(2)()33sin 2cos f θθθ=++;(3)313sin 13θ=.【解析】【分析】(1)由OA CB = 和向量的坐标运算可解;(2)由数量积的坐标运算求解;(3)化简()f θ得()()13sin 3f θθϕ=++,由正弦函数最值求解.【小问1详解】设(),B x y ,因为ABCD 为正方形,所以OA CB = ,又()()2,0,,2OA CB x y ==- ,所以2,2x y ==,所以点B 的坐标为()2,2;【小问2详解】因为M 为线段AB 的中点,所以()2,1M ,因为()()2cos ,2sin ,cos ,1sin PO PM θθθθ=----=--- ,所以()()()()2cos cos 2sin 1sin 33sin 2cos PO PM θθθθθθ⋅=---+----=++ ,所以()33sin 2cos f θθθ=++;【小问3详解】因为()()33sin 2cos 3f θθθθϕ=++=++,其中sinϕϕ==所以当()π2π2k k θϕ+=+∈Z ,即π2π2k θϕ=+-时,()f θ有最大值3+,此时πsin sin 2πcos 213k θϕϕ⎛⎫=+-== ⎪⎝⎭,故当()f θ取最大值3+313sin 13θ=.。

2024年广东省普通高中学业水平合格性考试数学模拟卷(二)(含答案)

2024年广东省普通高中学业水平合格性考试数学模拟卷(二)(含答案)

数 2024年第一次广东省普通高中学业水平合格性考试模拟卷(二)学位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”本试卷共22小题,满分150分。

考试用时90分钟。

注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号、考场号和座。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

─、选择题:本大题共12小题,每小题6分,共72分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U =R ,集合{}|13Ax x =<<,则CC UU AA =( )A .{|1x x <或3}x >B .{}|3x x ≥C .{|1x x ≤或3}x ≥D .{}|1x x ≤2.下列函数中,在区间(0,+∞)上是减函数的是( )A .y =x 2B .y =1x C .y =2x D .y =lg x 3. 已知角α的终边过点()1,2P −,则tan α等于( )A. 2B. 12−C. 2−D.124.函数lg y x =+的定义域是( )A .{1x x >或}0x <B .{}01x x <<C .{1x x ≥或}0x ≤D .{}01x x <≤5.已知R a ∈,则“1a >”是“11a<”的( ) A .充分不必要条件B .必要不充分条件6.不等式(2x −1)(x +2)>0的解集是(A .){2x x <−∣,或12x>B .12∣ >xx C .122xx−<<∣ D .{2}xx <−∣ 7.已知平面向量a =(-2,4),b =(n ,6),且a ∥b ,则n =( )A. 3 B .2C .1D .-18.已知,0x y >且xy =36,则x y +的最小值为( )A. B .4C .6D .129. 要得到函数4y sin x =−(3π)的图象,只需要将函数4y sin x =的图象( )A. 向左平移12π个单位 B. 向右平移12π个单位 C. 向左平移3π个单位 D. 向右平移3π个单位10. 已知函数()122,0,log ,0,x x f x x x ≤= > 则()()2f f −=( )A. -2B. -1C. 1D. 211.如图1,在正方体1111ABCD A B C D −中,E ,F 分别是AB ,AD 的中点,则异面直线1B C 与EF 所成的角的大小为( ) A .90° B .60°C .45°D .30°12. 某同学计划2023年高考结束后,在A ,B ,C ,D ,E 五所大学中随机选两所去参观,则A 大学恰好被选中的概率为( ) A.45B.35C.25 D. 15二、填空题:本大题共6小题,每小题6分,共36分。

高二数学学业水平测试模拟考试试题

高二数学学业水平测试模拟考试试题

智才艺州攀枝花市创界学校第十一二零二零—二零二壹高二数学学业程度测试模拟考试试题一. 选择题〔本大题一一共18小题,每一小题3分,总分值是54分〕1.集合{}1,3,5A ={},(1)(3=0B x x x =--),那么A B =A.∅B.{}1C.{}3D.{}1,32.如图是由圆柱与圆锥组合而成的几何体的三视图,那么该几何体的外表积为A.20πB.32πC.24πD.28π 3.2sin()3π-= A.32- B.12- C.32 D.124.某社区对社区内居民的“幸福指数〞进展抽样调查,按样本容量与总体容量的比为1:100,分层抽取了160名居民代表,其中老年人约占25%,那么该社区内老年人的人数约为A.1600B.2500C.4000D.64005.函数)2lg(-=x y 的定义域为A.),0(+∞B.),2(+∞C.),0[+∞D.),2[+∞ 6.A.假设一个平面内有无数条直线与另一个平面平行,那么这两个平面平行B.假设两个平面垂直于同一个平面,那么这两个平面平行C.假设一条直线与平面内的一条直线平行,那么该直线与此平面平行D.假设两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直7.从奥运会的一张贵宾票和两张普通票中随机抽取一张,抽到贵宾票的概率是 A.32B.21C.31D.618.圆014222=+-++y x y x 的半径为 A.1B.2C.2D.49. 63sin 72cos 63cos 72sin +的值是 A.21- B.21C.22- D.22 10.当0>a 时,aa 12+的最小值为 A.3B.22 C.2D.211.以下函数为奇函数的是A.2x y =B.sin ,[0,2]y x x π=∈C.3y x =D.lg y x =12.数列}{n a 满足),2(2,111*-∈≥==N n n a a a n n ,那么数列}{n a 的前n 项和等于 A.12-n B.12-n C.12+n D.12+n13.直线经过点A 〔3,4〕,斜率为43-,那么其方程为 A.3x+4y -25=0B.3x+4y+25=0C.3x -4y+7=0D.4x+3y -24=014.函数1(0,1)x y a a a a=->≠的图象可能是 ABCD15.ΔABC 中, 60,3,1=∠==B AC AB ,那么边BC 的长为A.1B.2C.2D.32 16.两条平行直线02)1(:1=-++y m x l 和042:2=++y mx l 之间的间隔为 A.556B 554 C.6D.4 17.如图,F E ,分别是平行四边形ABCD 的边BC ,CD 的中点,且b AF a AE ==,,那么=BDA.)(21a b - B.)(21b a-C.)(2b a- D.)(2a b-18.关于函数,1)(2-=x x f 给出以下结论:)(x f 是偶函数;假设函数m x f y -=)(有四个零点,那么实数m 的取值范围是)1,0()(x f 在区间),0(+∞内单调递增;假设)0)(()(b a b f a f <<=,那么10<<ab .其中正确的选项是A. B.C.D.二、填空题〔本大题一一共4小题,每一小题4分,总分值是16分,把答案填在题中的横线上.〕19.,3tan =α那么=+)(4tan πα20.经过点)0,1(-,且与直线y x +=0垂直的直线方程是21.如图,假设输入的x 的值是2,那么输出的y =22.ABC ∆内角C B A ,,的对边分别是c b a ,,,假设1cos ,34B b ==,A C sin 2sin =,那么ABC ∆的面积为.三、解答题〔本大题一一共3小题,总分值是30分.解答题应写出文字说明及演算步骤.〕 23. 〔此题总分值是10分〕圆02:22=+-+my x y x C ,其圆心C 在直线y =x 上. 〔Ⅰ〕求m 的值;〔Ⅱ〕假设过点)1,1(-的直线l 与圆C 相切,求直线l 的方程.。

2023-2024学年福建省普通高中高二学业水平合格性考试数学质量检测模拟试题(含解析)

2023-2024学年福建省普通高中高二学业水平合格性考试数学质量检测模拟试题(含解析)

2023-2024学年福建省普通高中高二学业水平合格性考试数学模拟试题参考公式:样本数据1x ,2x ,L ,n x 的标准差s =其中x 为样本平均数柱体体积公式VSh =,其中S 为底面面积,h 为高台体体积公式()13V S S h '=,其中S ',S 分别为上、下底面面积,h 为高锥体体积公式13V Sh=,其中S 为底面面积,h 为高球的表面积公式24S R π=,球的体积公式343V R π=,其中R 为球的半径第I 卷(选择题57分)一、单项选择题:本题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}1,2,3A =,{}2,3,4B =,则A B = ()A.{}1,2,3 B.{}1,2,3,4 C.{}2,3,4 D.{}2,3【正确答案】D【分析】根据给定的条件,利用交集的定义求解作答.【详解】集合{}1,2,3A =,{}2,3,4B =,则{}2,3A B ⋂=.故选:D2.已知角的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,那么,下列各角与380︒角终边相同的是()A.20︒B.30︒C.40︒D.50︒【正确答案】A【分析】利用终边相同的角的集合逐一对各个选项分析判断即可求出结果.【详解】因为与380︒角终边相同的角的集合为{}|380360,Z k k ββ=︒+⋅︒∈,当1k =-时,得到20β=︒,又Z k ∈,所以易知BCD 均不符合题意.故选:A .3.函数()()ln 2f x x =-的定义域是()A.()0,2 B.()2,+∞ C.[2,)+∞ D.(,2)-∞【正确答案】B【分析】解20x ->,即可得出函数的定义域.【详解】解20x ->,可得2x >,所以,函数()()ln 2f x x =-的定义域是()2,+∞.故选:B.4.函数()27xf x x =+-的零点所在的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,4【正确答案】C【分析】由函数可得f (2)•f (3)<0,再利用函数的零点的判定定理可得函数f (x )=2x +x ﹣7的零点所在的区间.【详解】∵函数f (x )=2x +x ﹣7,∴f (2)=﹣1<0,f (3)=4>0,f (2)•f (3)<0,根据函数的零点的判定定理可得,函数f (x )=2x +x ﹣7的零点所在的区间是(2,3),故选C .本题主要考查函数的零点的判定定理的应用,属于基础题.5.计算1ln 3ln 3+=()A.1- B.0C.2D.3【正确答案】B【分析】利用对数的运算法则即可求出结果.【详解】因为11ln 3ln ln 3ln 3ln 3ln 303-+=+=-=,故选:B.6.已知0x >,则4x x+的最小值为()A.2B.3C.4D.5【正确答案】C【分析】根据题意,利用基本不等式,即可求解.【详解】因为0x >,所以44x x +≥=,当且仅当4x x =时,即2x =时,等号成立,所以4x x+的最小值为2.故选:C.7.下列向量组中,可以用来表示该平面内的任意一个向量的是()A.()1,2a =r,()0,0b = B.()1,2a =r,()1,2b =-- C.()1,2a =r,()5,10b = D.()1,2a =r,()1,2b =- 【正确答案】D【分析】根据平面向量基本定理可知,表示平面内的任意向量的两个向量不能共线,结合选项,即可判断.【详解】表示平面内的任意一个向量的两个向量不能共线,A.向量b是零向量,所以不能表示平面内的任意向量,故A 错误;B.a b =-,两个向量共线,所以不能表示平面内的任意向量,故B 错误;C.5b a =,两个向量共线,所以不能表示平面内的任意向量,故C 错误;D.不存在实数λ,使b a λ=,所以向量,a b 不共线,所以可以表示平面内的任意向量,故D 正确.故选:D8.ABC 的内角A 、B 、C 所对的边分别为a 、b 、c,且a =60A = ,45C = ,则边c的值为()A.1B.C.D.2【正确答案】B【分析】利用正弦定理可求得边c 的长.【详解】因为a =60A = ,45C = ,由正弦定理sin sin c aC A=,可得2sin 2sin 32a Cc A===.故选:B.9.甲、乙两人进行投篮比赛,他们每次投中的概率分别为0.5,0.6,且他们是否投中互不影响.若甲、乙各投篮一次,则两人都投中的概率为()A.0.2 B.0.3C.0.4D.1.1【正确答案】B【分析】根据独立事件同时发生的概率公式,即可求解.【详解】设甲投中为事件A ,乙投中为事件B ,两事件相互独立,所以()()()0.50.60.3P AB P A P B ==⨯=.故选:B10.为了得到y =sin(x+13),x R ∈的图象,只需把曲线y=sinx 上所有的点A.向左平行移动3π个单位长度B.向左平行移动13个单位长度C.向右平行移动3π个单位长度 D.向右平行移动13个单位长度【正确答案】B【详解】需把曲线y=sinx 上所有的点向左平行移动13个单位长度,得到y =sin(x+13),x R ∈的图象.故选B.11.不等式()20x x ->的解集为()A.{2x x <-或0}x >.B.{0x x <或2}x >.C.{}|02x x << D.{}|20x x -<<【正确答案】B【分析】根据一元二次不等式的解法,即可求解.【详解】不等式()20x x ->,解得:2x >或0x <,所以不等式的解集为{0x x <或2}x >.故选:B12.设134a =,132b =,13log 2c =,则a ,b ,c 的大小关系是()A.a b c >>B.a c b >>C.c b a >>D.b c a>>【正确答案】A【分析】根据指数幂以及对数的运算性质,可得232a =,3log 2c =-,进而根据指数函数以及对数函数的性质,即可得出答案.【详解】因为1213334220a b ==>=>,133log 2log 20c ==-<,所以,a b c >>.故选:A.13.函数||2x y =的图象大致是()A. B.C. D.【正确答案】D【分析】设()||2x f x =,根据解析式得出函数的奇偶性以及单调性,即可得出答案.【详解】设()||2x f x =,则()()||2x f x f x --==,所以()f x 为偶函数,所以A 、B 项错误.又当0x ≥时,()2xf x =为增函数,所以C 项错误,故D 项正确.故选:D.14.“a c b c >”是“a b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【正确答案】A【分析】根据条件,利用充分条件和必要条件的判断方法即可得出结果.【详解】若a c b c >,则()0a c b c a b c -=->,又因为0c ≥,所以0a b ->,即a b >,若a b >,因为0c ≥,当0c =时,a c b c >不成立,所以“a c b c >”是“a b >”的充分不必要条件.故选:A.15.某学校新建的天文观测台可看作一个球体,其半径为3m .现要在观测台的表面涂一层防水漆,若每平方米需用0.5kg 涂料,则共需要涂料(单位:kg )()A.1.5πB.4.5πC.6πD.18π【正确答案】D【分析】先利用球的表面积公式求出表面积,再根据条件即可求出结果.【详解】因为3r =,所以球的表面积为24π36πS R ==,又每平方米需用0.5kg 涂料,所以共需36π0.518π⨯=kg 涂料.故选:D二、多项选择题:本题共4小题,每小题3分,共12分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得3分,部分选对的得2分,有选错的得0分.16.下列函数中,是偶函数的有()A.21y x =+B.2log y x= C.2xy = D.cos y x=【正确答案】AD【分析】先求出函数的定义域,然后将x -代入,结合偶函数的性质,即可得出答案.【详解】对于A 项,设()21f x x =+,函数()f x 定义域为R ,且()()21f x x f x -=+=,所以函数21y x =+为偶函数,故A 正确;对于B 项,因为函数2log y x =的定义域为()0,∞+,不关于原点对称,所以函数2log y x =为非奇非偶函数,故B 错误;对于C 项,设()2xg x =,函数()g x 定义域为R ,但()22xx g x --=≠,所以函数2x y =不是偶函数,故C 错误;对于D 项,设()cos h x x =,函数()h x 定义域为R ,且()()()cos cos h x x x h x -=-==,所以函数cos y x =为偶函数,故D 正确.故选:AD.17.袋中有大小和质地均相同的5个球,其中2个红球,3个黑球.现从中随机摸取2个球,下列结论正确的有()A.“恰有一个红球”和“都是红球”是对立事件B.“恰有一个黑球”和“都是黑球”是互斥事件C.“至少有一个黑球”和“都是红球”是对立事件D.“至少有一个红球”和“都是红球”是互斥事件【正确答案】BC【分析】以黑球的个数为切入点,试验的样本空间为{}0,1,2Ω=.将事件用集合表示出来,即可得出答案.【详解】以黑球的个数为切入点,试验的样本空间为{}0,1,2Ω=.对于A 项,“恰有一个红球”可用{}1A =来表示,“都是红球”可用事件{}0B =来表示.所以,事件,A B 互斥,但,A B 不是对立事件,故A 项错误;对于B 项,“恰有一个黑球”可用{}1A =来表示,“都是黑球”可用事件{}2C =来表示.所以事件,A C 互斥,故B 项正确;对于C 项,“至少有一个黑球”可用事件{}1,2D =来表示,“都是红球”可用事件{}0B =来表示.所以,事件,B D 为互斥事件,也是对立事件,故C 项正确;对于D 项,“至少有一个红球”可用事件{}0,1E =来表示,“都是红球”可用事件{}0B =来表示.所以,事件{}0B E = ,即交事件为“都是红球”,故D 项错误.故选:BC .18.如图,在长方体1111ABCD A B C D -中,AB BC =,下列命题正确的有()A.11A B CC ⊥B.11//A B B CC.平面1A BD ⊥平面11AAC CD.平面1//A BD 平面11CB D 【正确答案】CD【分析】根据长方体的性质推得11//AA CC ,即可判断A 项;根据长方体的性质推得四边形11DCB A 是平行四边形,得出11//A D B C ,即可判断B 项;根据长方体的性质以及线面垂直的判定定理,可得出BD ⊥平面11AAC C ,即可得出C 项;根据长方体的性质以及线面平行的判定定理,可得出1//A D 平面11CB D ,//BD 平面11CB D ,然后即可判定面面平行,得出D 项.【详解】对于A 项,由长方体的性质可知11//AA CC .又11,AA A B 不垂直,所以11,A B CC 不垂直,故A 错误;对于B 项,由长方体的性质可知11//A B CD ,11A B CD =,所以,四边形11DCB A 是平行四边形,所以,11//A D B C .因为11,A B A D 不平行,所以11,AB BC 不平行,故B 错误;对于C 项,因为AB BC =,根据长方体的性质可知ABCD 是正方形,所以,BD AC ⊥.根据长方体的性质可知,1CC ⊥平面ABCD ,BD ⊂平面ABCD ,所以,1CC BD ⊥.因为AC ⊂平面11AAC C ,1CC ⊂平面11AAC C ,1AC CC C = ,所以,BD ⊥平面11AAC C .因为BD ⊂平面1A BD ,所以平面1A BD ⊥平面11AAC C ,故C 项正确;对于D 项,由B 知,11//A D B C .因为1B C ⊂平面11CB D ,1A D ⊄平面11CB D ,所以1//A D 平面11CB D .根据长方体的性质可知,11//BB DD ,且11BB DD =,所以,四边形11DBB D 为平行四边形,所以11//B D BD .因为11B D ⊂平面11CB D ,BD ⊄平面11CB D ,所以//BD 平面11CB D .因为1A D ⊂平面1A BD ,BD ⊂平面1A BD ,1A D BD D ⋂=,所以平面1//A BD 平面11CB D ,故D 项正确.故选:CD.19.某简谐运动在一个周期内的图象如图所示,下列判断正确的有()A.该简谐运动的振幅是3cmB.该简谐运动的初相是2π5C.该简谐运动往复运动一次需要2sD.该简谐运动100s 往复运动25次【正确答案】ABD【分析】结合简谐运动在一个周期内的图象可判断A ;设该函数解析式为()()()sin 0,0f x A x A ωϕω=+>>,由简谐运动在一个周期内的图象可得ω,把点()2.2,3-代入解析式可得π33sin 2.22ϕ⎛⎫-=⨯+⎪⎝⎭,可判断BCD.【详解】对于A ,由简谐运动在一个周期内的图象可得该简谐运动的振幅是3cm ,故A 正确;对于B ,设该函数解析式为()()()sin 0,0f x A x A ωϕω=+>>,由简谐运动在一个周期内的图象可得12π3.2 1.22ω=-=T ,可得112π3.2 1.222ω=-=⨯T ,所以π4,2ω==T ,所以()π3sin 2ϕ⎛⎫=+ ⎪⎝⎭f x x ,因为把点()2.2,3-代入解析式可得π33sin 2.22ϕ⎛⎫-=⨯+ ⎪⎝⎭,所以()π1.1π2π2ϕ+=-+∈k k Z ,所以()1.6π2πϕ=-+∈k k Z ,若2π1.6π2π5ϕ=-+=k ,则1k =,故B 正确;对于C ,由B 可知4s T =,故C 错误;对于D ,该简谐运动100s 往复运动100425÷=次,故D 正确.故选:ABD .第II 卷(非选择题43分)(请考生在答题卡上作答)三、填空题:本题共4小题,每小题4分,共16分.20.已知i 为虚数单位,计算()i 1i -=________.【正确答案】1i +##i+1【分析】根据复数的乘法运算,计算即可得出答案.【详解】因为()2i 1i i i 1i -=-=+.故答案为.1i+21.已知函数221,0()log ,0x x f x x x ⎧+≤=⎨>⎩,则((1))f f -=________.【正确答案】1【分析】根据分段函数的表达式由内向外计算即可.【详解】()1112f -=+=,()22log 21f ==,()()11∴-=f f .故1.22.已知向量()1,0a =,b = ,且a 与b的夹角为θ,则cos θ=________.【正确答案】12##0.5【分析】先求向量a 与b 的数量积及a 和b的模,再利用向量夹角公式即得.【详解】向量()1,0a =,(b = ,所以1101⋅=⨯+= a b ,1a = ,2b =,则1cos 1221θ⋅===⨯⋅ a b b a ,故12.23.已知定义在R 上的函数()f x 同时满足下列两个条件:①1x ∀,2R x ∈,()()()1212f x x f x f x +=;②1x ∀,2R x ∈,()()12120f x f x x x -<-.试给出函数()f x 的一个解析式:()f x =________.【正确答案】0.5x (答案不唯一)【分析】根据已知结合指数函数的性质,即可得出答案.【详解】根据指数函数的性质1212x x x x a a a +=,可知指数函数满足①;由②可知,函数为单调递减函数.所以可取()xf x a =()01a <<,即可满足.故答案为.0.5x四、解答题:本题共3小题,共27分.解答应写出文字说明,证明过程或演算步骤.24.已知α为第一象限角,且3cos 5α=.(1)求sin α的值;(2)求)t n(a π2α-的值.【正确答案】(1)45(2)247【分析】(1)根据条件,利用平方关系即可求出结果;(2)先利用(1)中结论求出4tan 3α=,再利用诱导公式和正切的二倍角公式即可求出结果.【小问1详解】因为α为第一象限角,且3cos 5α=,所以4sin 5α==.【小问2详解】由(1)知4tan 3α=,又282tan 243tan(π2)tan2161tan 719αααα-=-=-=-=--.25.如图,三棱锥A BCD -中,E ,F 分别是AC ,BC的中点.(1)求证://EF 平面ABD ;(2)若AD BD ⊥,3AD =,4BD =,5AC =,BC =,30CBD ∠=︒,求三棱锥A BCD -的体积.【正确答案】(1)证明见解析(2)【分析】(1)分别取,AD BD 的中点为,G H ,连结,,GE GH HF .可证明四边形GHFE 为平行四边形,//EF GH ,然后即可根据线面平行的判定定理得出证明;(2)在BCD △中,根据余弦定理求得4CD =.进而在ADC △中,根据勾股定理得出AD CD ⊥.结合已知条件,根据线面垂直的判定定理即可得出AD ⊥平面BCD .根据面积公式求出BCD △的面积,即可根据棱锥的体积公式得出答案.【小问1详解】如图,分别取,AD BD 的中点为,G H ,连结,,GE GH HF .因为,,,E F G H 分别为,,,AC BC AD BD 的中点,所以,//GE CD ,且12GE CD =,//HF CD ,12HF CD =,所以//GE HF ,且GE HF =.所以,四边形GHFE 为平行四边形,所以,//EF GH .因为GH Ì平面ABD ,EF ⊄平面ABD ,所以,//EF 平面ABD .【小问2详解】由已知可得,在BCD △中,有4BD =,BC =,30CBD ∠=︒,根据余弦定理可知,2222cos CD BD BC BD BD CBD =+-⨯∠(223424162=+-⨯⨯=,所以,4CD =.在ADC △中,有22291625AD CD AC +=+==,所以,90ADC ∠=︒,AD CD ⊥.因为AD BD ⊥,CD ⊂平面BCD ,BD ⊂平面BCD ,CD BD D =I ,所以,AD ⊥平面BCD .又1sin 2BCD S BD BC BCD =⨯⨯⨯∠ 11422=⨯⨯=所以,11333A BCD BCD V S AD -=⨯⨯=⨯= .26.某地有农村居民320户,城镇居民180户.为了获得该地居民的户月均用水量的信息,采用分层抽样的方法抽取得样本A ,并观测A 的指标值(单位:t ),计算得农村居民户样本的均值为8.3,方差为10.86,城镇居民户样本的均值为14.1,方差为34.62.(1)根据以上信息,能否求出A 的均值和方差?说明你的依据;(2)如果A 中农村居民户、城镇居民户的样本量都是25,求A 的均值和方差;(3)能否用(2)的结论估计该地居民的户月均用水量的均值和方差?若能,请说明理由;若不能,请给出一个可以用来估计该地居民的户月均用水量的均值和方差的样本.【正确答案】(1)能,理由见解析(2)均值为11.2,方差为31.15(3)不能,样本中农村户数为32,城镇居民户数为18【分析】(1)根据分层抽样求出从农村以及城镇居民抽取的户数,进而即可根据分层抽样的均值以及方差公式,求出结果;(2)根据分层抽样的均值以及方差公式,即可求出结果;(3)根据分层抽样,重新计算分配农村居民以及城镇居民的户数,即可.【小问1详解】能,理由如下:设农村居民均值为8.3x =,方差为210.86x s =,城镇居民均值为14.1y =,方差为234.62y s =.因为320161809=,则可知样本A 的户数为*25,,120k k N k ∈≤≤,其中农村居民的户数为16k ,城镇居民为9k .所以,样本A 的均值为16910.38825k x k y z k +==,方差()(){}22222116925x y s k s x z k s y z k ⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦()(){}2211610.868.310.388934.6214.110.38825k k k ⎡⎤⎡⎤=+-++-⎣⎦⎣⎦27.16425627.16=≈.【小问2详解】样本A 的均值为1252511.250x y z +==,样本方差()(){}222221111252550x y s s x z s y z ⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦()(){}2212510.868.311.22534.6214.111.231.1550⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦.【小问3详解】不能,因为没有按分层抽样抽取样本,样本数据不能客观反映总体.根据分层抽样抽取人数为2550k =,所以2k =,所以,应从农村居民中抽取户数为1632k =,从城镇居民中抽取户数为918k =.。

高二数学学业水平测试模拟题

高二数学学业水平测试模拟题

高二数学学业水平测试模拟试题WORD格式高二数学学业水平测试模拟试题(四)数学一、选择题(每题 4 分,共 40 分)1.已知会合 M0,x,N1,2 ,若 M N2,则 M N()A.0,x,1,2B. 2,0,1,2C. 0,1,2D.不可以确立2.函数 y x 1 的定义域是()A.(,)B.[0,)C.[1,)D.(1,)3.假如等差数列n中,a44,那么1a2a7 等于(){a }aA.14B.21C.28D.354.圆 x2y26x2y80 的周长为()A.2B.4C.2D.225.等差数列 a n中, S10120,那么 a1a10的值是()A.12B. 24C. 36D.486.如图,一个边长为 4 的正方形及其内切圆,若随机向正方形内丢一粒豆子,则豆子落入圆内的概率是()A、B、C、D、8427.已知 x,y R,且 x4y1,则 xy 的最大值为()(A)1(B)16(C)1(D)4 1648.直线 3x4y90与圆 x 2y2 4 的地点关系是()A.订交且过圆心B.相切C.相离D.订交但可是圆心9.与直线 x y20平行且过点 (5,2) 的直线方程为A.xy70B.xy70C.xy30D.xy3010.若 lga,lgb是方程2x24x 1 0 的两个实根,则ab 的值等于()A. 2B.1C.100D.1021专业资料整理WORD格式二、填空题(每题 5 分,共 20 分)11.过点( 2, 1)且与直线y x 1 垂直的直线方程是。

12.函数 y sinx cosx 的最小值是。

13.在长为 10 的线段 AB上任取一点P,并以线段AP为边作正方形,这个正方形的面积介于25 与 49 之间的概率为。

14.到原点的距离等于 2 的动点的轨迹方程是。

15. 4x1(x0)的最小值是。

x三、解答题(共 5 小题,满分40 分)16.己知锐角三角形△ABC的边长AB=10,BC= 8,面积S= 32,求AC。

2023-2024学年福建省普通高中高二6月学业水平合格性考试数学试题+答案解析(附后)

2023-2024学年福建省普通高中高二6月学业水平合格性考试数学试题+答案解析(附后)

一、单选题:本题共19小题,每小题3分,共57分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知,则的值为( )A. 1B.C.D. 22.已知球体O 的半径为2,则球体O 的表面积为( )A.B.C.D.3.已知全集为U ,,则其图象为2023-2024学年福建省普通高中高二6月学业水平合格性考试数学试题( )A. B.C. D.4.已知,则的最小值为( )A. 1 B. 2C. 3D. 45.已知,则下列不等式正确的是( )A. B.C.D.6.已知,,则的值为( )A. 4B. 8C. 16D. 327.下列图象中,最有可能是的图象是( )A. B.C.D.8.厦门中学生小助团队的几名成员考试成绩分别为73 76 81 83 85 88 91 93 95,则这几人考试成绩的中位数是( )A. 76 B. 81C. 85D. 919.的值为( )A. B.C.D.10.已知,,且,则y 的值为( )A. 3B. C. 4D.11.已知角的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点,则值为( )A.B.C.D.12.“敬骅号”列车一排共有A 、B 、C 、D 、F 五个座位,其中A 和F 座是靠窗位,若小曾同学想要坐靠窗位,则购票时选到A 或F 座的概率为( )A. B.C.D.13.已知,则上的所有点全部向右移动个单位的函数解析式是( )A.B. C.D. 14.如图所示,,,M 为AB 的中点,则为( )A. B. C. D.15.下列函数中,既是奇函数又是增函数的是( )A. B. C.D.16.“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件17.已知,,则的周期为( )A. B. C. D.18.已知四棱锥底面为正方形,平面ABCD,则( )A. B. C. 平面ABCD D. 平面SBC19.厦门市实行“阶梯水价”,具体收费标准如表所示不超过的部分3元超过不超过的部分6元超过的部分9元若小曾同学用水量为,则应交水费单位:元( )A. 48B. 60C. 72D. 80二、填空题:本题共4小题,每小题4分,共16分。

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03 (2)

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03 (2)

一、单选题二、多选题1. 已知不等式有实数解,则实数的取值范围为( )A.B.C.D.2. 已知,都是定义在上的函数,对任意,满足,且,则下列说法正确的是( )A.B .若,则C.函数的图像关于直线对称D.3.若为奇函数,则( )A .-8B .-4C .-2D .04. 如图,已知,,,,,则等于A.B.C.D.5. 已知实数集,集合,则( )A.B.C.D.6.已知等比数列的前项和为,,则数列的公比( )A .-1B .1C .1D .27. 设某圆锥的母线长和高分别为,,侧面积和底面积分别为,,若,则( )A.B.C.D.8.已知函数,下列对于函数性质的四个描述:①是的极小值点;②的图像关于点中心对称;③有且仅有三个零点;④若区间上递增,则的最大值为.其中正确的描述的个数是( )A .1B .2C .3D .49. 某高中学校积极响应国家“阳光体育运动”的号召,为确保学生每天一小时的体育锻炼,调查该校2000名高中学生每周平均参加体育锻炼时间的情况,现从高一、高二、高三三个年级学生中按照的比例分层抽样,收集了200名学生每周平均体育运动时间的样本数据(单位:小时),整理后得到如图所示的频率分布直方图,则下列说法中,正确的是()A .估计该校高中学生每周平均体育运动时间不足4小时的人数为500人B .估计该校高中学生每周平均体育运动时间不少于8小时的人数百分比为20%C .估计该校高中学生每周平均体育运动时间的中位数为5小时江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03 (2)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03 (2)三、填空题四、解答题D .估计该校高中学生每周平均体育运动时间为5.8小时10. 双曲线C的两个焦点为,以C 的实轴为直径的圆记为D ,过作D 的切线与C 交于M ,N 两点,且,则C 的离心率为( )A.B.C.D.11.如图,在直三棱柱中,,,,分别为,和的中点,为棱上的一动点,且,则下列说法正确的是()A.B.三棱锥的体积为定值C.D .异面直线与所成角的余弦值为12. 中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关为了建立茶水温度随时间变化的函数模型,小明每隔1分钟测量一次茶水温度,得到若干组数据,,,,绘制了如图所示的散点图.小明选择了如下2个函数模型来拟合茶水温度随时间的变化情况,函数模型一:;函数模型二:,下列说法正确的是()A .变量与具有负的相关关系B .由于水温开始降得快,后面降得慢,最后趋于平缓,因此模型二能更好的拟合茶水温度随时间的变化情况C .若选择函数模型二,利用最小二乘法求得到的图象一定经过点D.当时,通过函数模型二计算得,用温度计测得实际茶水温度为65.2,则残差为0.113.(文)指数方程的解是__________.14. 已知函数的周期为,当时,函数恰有两个不同的零点,则实数的取值范围是__________.15. 若双曲线的渐近线方程为,则双曲线的离心率为________.16. 甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用ε表示甲队的总得分.(Ⅰ)求随机变量分布列;(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).17. 如图,在长方体中,已知,E为BC中点,连接,F为线段上的一点,且.(1)证明:平面;(2)求平面与平面所成的锐二面角的余弦值.18. 已知椭圆C:()的左,右焦点分别为,,上,下顶点分别为A,B,四边形的面积和周长分别为2和.(1)求椭圆C的方程;(2)若直线l:()与椭圆C交于E,F两点,线段EF的中垂线交y轴于M点,且为直角三角形,求直线l的方程.19. 已知函数.(1)若对时,,求正实数a的最大值;(2)证明:;(3)若函数的最小值为m,证明:方程有唯一的实数根,(其中是自然对数的底数)20. 已知正整数数列满足:,,.(1)已知,,求和的值;(2)若,求证;(3)求的取值范围.21.已知抛物线C:的焦点为F,若点在C上,且.(1)求C的方程:(2)P为y轴上一点,过点F的直线l交C于A,B两点,若是以点P为直角顶点的等腰直角三角形,求线段AB的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学学业水平测试
模拟题
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
高二数学学业水平测试模拟题(四)
数 学
一、选择题(每小题4分,共40分)
1.已知集合{}{}2,1,,0==N x M ,若{}2=⋂N M ,则=⋃N M ( )
A .{}2,1,,0x
B .{}2,1,0,2
C .{}2,1,0
D .不能确定 2.函数1+=x y 的定义域是(
) A. ),(+∞-∞ B. ),0[+∞ C. ),1[+∞- D. ),1(+∞-
3.如果等差数列}{n a 中,44=a ,那么721a a a +++ 等于 (

A. 14
B. 21
C. 28
D. 35
4.圆082622=+-++y x y x 的周长为(
) A. π2 B. π4 C. π2 D. π22
5.等差数列{}n a 中,12010=S ,那么101a a +的值是(
) A .12 B .24 C .36 D .48
6.如图,一个边长为4内丢一粒豆子,则豆子落入圆内的概率是( )
A、8π B、4π C、2
π D、π 7.已知+∈R y x , ,且14=+y x ,则xy 的最大值为(
) (A )161 (B )16 (C )4
1 (D )4 8.直线0943=--y x 与圆422=+y x 的位置关系是(
) A .相交且过圆心
B .相切
C .相离
D .相交但不过圆心 9.与直线20x y --=平行且过点(5,2)-的直线方程为
A.70x y +-=
B.70x y --=
C. 30x y --=
D.30x y +-=
10.若b a lg ,lg 是方程01422=+-x x 的两个实根,则ab 的值等于( )
A .2
B .21
C .100
D .10 二、填空题(每小题5分,共20分)
11.过点(2,1)且与直线1y x =+垂直的直线方程是 。

12.函数x x y cos sin +=的最小值是 。

13.在长为10的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25与49之间的概率为 。

14.到原点的距离等于2的动点的轨迹方程是 。

15. )0(14>+x x
x 的最小值是 。

三、解答题(共5小题,满分40分)
16.己知锐角三角形△ABC的边长AB=10,BC=8,面积S=32,求AC。

17.有一批材料可以建成长为m 200的围墙,如果用材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图),则围成的矩形的最大面积是多少?
18.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,E 、F 分别为BC 和PC 的中点.
(1)求证:EF ∥平面PBD ;
(2)如果AB=PD ,求EF 与平面ABCD 所成角的正切值.
19.(14分)己知等比数列{}n a 的各项都是正数,12a =,前3项和为14。

⑴、求{}n a 的通项公式
⑵、设2log n n b a =,求数列{}n b 的前20项的和
第18题图
20. 已知向量3
(sin ,),(cos ,1).2a x b x ==-
(1)当//a b 时,求22cos sin 2x x -的值; (
2)求b b a x f ⋅+=)()(在,02π⎡⎤-⎢⎥⎣⎦上的值域.。

相关文档
最新文档