2.6 胶体的稳定与聚沉解析

合集下载

胶体粒子的结构与胶体的聚沉

胶体粒子的结构与胶体的聚沉

胶体粒子的结构与胶体的聚沉一,胶体的结构以AgI胶体为例说明胶体的形成及结构:1.胶核及吸附①胶核的形成若将稀溶液与KI稀溶液混合后,将发生如下的化学反应:生成m个AgI分子聚集成直径为1nm~100nm范围内的微晶粒子是分散质的核心,称之为胶核.②胶核的选择性吸附体系中有多种离子,如等,胶核吸附何者实验表明胶核选择性吸附与其组成有关,浓度较大的离子,例如制备AgI时,如果KI过量,胶核就优先吸附了n个而带负电荷,反之,若过量,则吸附了n个而带正电荷.③反离子的分布与体系中的胶核所带电荷电性相反的离子称为反离子,如KI过量时的或过量时的就是反离子,体系中的反离子受到两种相反的作用力.静电作用力:由于反离子带有与胶核表面电荷电性相反的电荷,所以反离子与胶核间将产生静电作用,使反离子尽量靠近胶核分布.分子热运动:反离子在不停地运动之中,这种运动驱使反离子趋向均匀分布.静电作用和分子热运动共同作用的结果,使体系反离子按一定的梯度分布,即自胶核表面向外,单位体积的反离子数目越来越少.2.胶粒与胶团靠近胶粒表面的n-x个反离子,由于受到较强的静电作用,因而较紧密地束缚在胶核周围,与胶核表面吸附的离子共同组成吸附层,吸附层与胶核构成胶粒.胶粒与扩散层包括在一起称为胶团.较外层的x个反离子,由于受到静电作用力很弱,很疏松地分布在胶粒的周围,称为扩散层.从胶团的结构可知,由于吸附层内离子或离子数目少于或,因此胶粒是带电的,但整个胶团是电中性的.由于扩散层并不与胶粒一起运动,因此,在外电场作用下,胶粒作为一个整体而向某一电极移动,而扩散层的离子移向另一电极.二,胶体的稳定性与聚沉1.胶体的稳定性从理论上讲,胶体是热力学不稳定体系,胶粒有相互聚集成大颗粒而沉降析出的趋势.然而实际上经过纯化的胶体往往可以保存数日甚至更长时间也不会沉降析出.其原因主要有以下两点:①胶粒的静电作用同一体系胶粒带有同种电荷,相互排斥,阻止了胶粒的靠近,聚集.②水化膜的保护作用胶粒中的吸附离子和反离子都是水化的(即离子外围包裹着水分子),所以胶粒是带水化膜的粒子.水化膜犹如一层弹性隔膜,起到了防止运动中的胶粒在碰撞时相互聚集变大的作用. 2.胶体的聚沉胶体的稳定性是相对的,是有条件的.只要减弱或消除使胶体稳定的因素,就能使胶体胶粒聚集成较大的颗粒而沉降,这种使胶粒聚集成较大颗粒而沉降的现象称为聚沉.(1)电解质对胶体的聚沉作用在胶体体系中,加入少量电解质后,增加了体系中离子的浓度,将有较多的反离子挤入吸附层,从而减少甚至完全中和了胶粒所带的电荷,使胶粒之间的相互斥力减少甚至丧失,导致胶粒聚集合并变大,最终从胶体中聚沉下来.聚沉规律有以下两点:①电解质对胶体的聚沉作用,主要是由与胶粒电性相反的离子引起的,这种离子的价数越高,其聚沉值越大.②同价离子的聚沉能力虽相近,但也略有不同,半径大的离子聚沉能力强.(2)胶体的相互聚沉作用将两种带相反电荷的胶体以适当的比例混合也会发生聚沉.如所带电荷相互抵消,形成较大颗粒,产生聚沉.由蛋白质离心想到的一种或几种物质分散在另一种介质中所形成的体系称为分散系。

关于胶体稳定性问题的疑难解析

关于胶体稳定性问题的疑难解析

关于胶体稳定性问题的疑难解析胶体稳定性问题是高中化学胶体部分的重要内容。

课程标准要求学生从分类的角度认识胶体分散系,了解胶体这种常见的分散系的本质特点和基本性质。

而胶体稳定性是胶体分散系的重要性质之一,对于学生理解胶体分散系和胶体其他性质具有重要作用。

学业水平测试也要求学生识记并理解胶体的稳定性。

随着胶体化学的发展,人类对胶体稳定性的本质和原因的认识不断完善,教师理应把握胶体发展现状,明确胶体稳定性有关内容,正确引导学生认识胶体及其稳定性,以免造成学生的一些认识误区,不利于中学化学与大学化学之间的衔接。

通过分析目前“胶体”教学中涉及胶体稳定性的有关问题发现,很多教师和学生对胶体稳定性的了解并不深入和全面,尤其在胶体稳定性的探讨范围、胶体稳定存在的原因、稳定胶体制备等问题上存在错误认识。

因此,有必要结合相关文献和专业参考书,对上述问题作一些解读和澄清,以期为中学化学教学提供参考。

1胶体稳定性探讨范围的界定胶体又称胶状分散体,是一种均匀的混合物,分散质粒子直径介于粗分散系和溶液之間,即介观范围的一类分散体系,是一种高度分散的多相不均匀体系。

其种类有很多,而中学和大学化学中涉及的所谓“胶体”其实只是由难溶无机盐粒子构成的胶体,其中粒子以介观尺度分散在溶剂中且具有相界面,这是一种处于热力学不稳定、动力学稳定的体系。

而其他胶体体系即使其中粒子尺寸在介观范围也不在讨论范围内。

其他胶体体系主要有:(1)高分子溶液:尽管粒子尺度在介观范围,但那是无相界面的真正的溶液,处于热力学稳定的体系;(2)其他热力学稳定的、有相界面的胶体体系,如加表面活性剂的缔合胶体。

这种难溶盐胶体体系,热力学上由于粒子之间巨大的界能,具有相互聚结以减小界能,表现为不稳定;动力学上粒子发生布朗运动,表现为稳定,这两种表现使得胶体具有介稳性的特点,容易受外界条件的干扰发生聚沉。

2胶体稳定性表现的解释人教版化学1中,对胶体的稳定性存在如是描述:“同一种胶体微粒带相同的电荷,相互排斥,不易聚集,因此是比较稳定的分散系,可以长时间保存”,从静电斥力的角度来解释胶体稳定性。

讲-第章-胶体的稳定性

讲-第章-胶体的稳定性
(iii)若H >0,S <0,均可使G >0,此时焓变及 熵变均使系统稳定,为复合稳定。(温度对稳定的影 响不明显)
(ii) 脱水效应—高聚物分子由于亲水,其水化作用较胶粒 水化作用强(憎水),从而高聚物的加入夺去胶粒的水化外壳 的保护作用。
(iii) 电中和效应—离子型高聚物的加入吸附在带电的胶 粒上而中和胶粒表面电荷。
2. 空间稳定理论( steric stabilization)
向溶胶中加入高聚物或非离子表面活性剂,虽降低了电势, 但却显著地提高了溶胶系统的稳定性,这是用DLVO理论所解 释不了的。这种结果可用空间稳定理论加以解释。空间稳定理 论认为这是由于溶胶粒子表面吸附了高聚物,吸附的高聚物层 引起系统的G >0.
可见,聚沉能力是聚沉值的倒数,即聚沉值愈小,该电解 质的聚沉能力就愈大;反之,聚沉值越小的电解质,其聚沉能 力越强。
(1)电解质中与胶粒所带电荷相反的离子是其主要聚沉作用 的离子,并且离子价数越高,电解质的聚沉能力越大。
对某一给定溶胶,一、二、三价反离子聚沉值的比例大约是:
100 :1.6 : 0.14
当x缩小,先出现一 极小值F,则发生粒子的
Born排斥 {U}
聚集称为絮凝(可逆的)。
UR ∝exp{-x} —德拜参量
Umax
当x再缩小,则出现 极大值Umax。只有两胶 粒通过热运动积聚的动 能超过15kT时才有可能
超过此能量值,进而出 现极小值C,在此处发
生粒子间的聚沉(不可 逆)。
势垒
exp( Ze0 ) 1


2kT
exp( Ze0 ) 1
2kT
B:常数; :介电常数;Z:分散离子价数 ; :复合比 (complex ration) ; kB :波尔滋曼常数

胶体聚沉胶体的稳定性和聚沉作用

胶体聚沉胶体的稳定性和聚沉作用

胶体聚沉胶体的稳定性和聚沉作用胶体的稳定性和聚沉作用摘要:化学物品胶体已经广泛应用于现代生活,了解胶体的稳定性和聚沉作用对于我们高效利用有很大帮助。

关键词:稳定性胶体聚沉电解质溶胶的稳定根据胶体的各种性质。

溶胶稳定的原因可归纳为:(1)溶胶的动力稳定性胶粒因颗粒很小,布朗运动较强,能克服重力影响不下沉而保持均匀分散。

这种性质称为溶胶的动力稳定性。

影响溶胶动力稳定性的主要因素是分散度。

分散度越大,颗粒越小,布朗运动越剧烈,扩散能力越强,动力稳定性就越大,胶粒越不溶易下沉。

此外分散介质的粘度越大,胶粒与分散介质的密度差越小,溶胶的动力稳定性也越大,胶粒也越不溶易下沉。

(2) 胶粒带电的稳定作用下图表示的是一个个胶团。

蓝色虚线圆是扩散层的边界,虚线圆以外没有净电荷,呈电中性。

因此,当两个胶团不重迭时,如左图,它们之间没有静电作用力,只有胶粒间的引力,这种引力与它们之间距离的三次方成反比,这和分子之间的作用力(分子之间的作用力与分子之间距离的六次方成反比)相比,是一种远程力,这种远程力驱使胶团互相靠近。

当两个胶团重迭时,如右图,它们之间就产生静电排斥力。

重叠越多,静电排斥力越大。

如果静电排斥力大于胶粒之间的吸引力,两胶粒相撞后又分开,保持了溶胶的稳定。

胶粒必须带有一定的电荷才具有足够的静电排斥力,而胶粒的带电量与 电势的绝对值成正比。

因此,胶粒具有一定的 电势是胶粒稳定的主要原因。

(3) 溶剂化的稳定作用物质和溶剂之间所起的化合作用称为溶剂化,溶剂若为水,则称水化。

憎液溶胶的胶核是憎水的,但它吸附的离子都是水化的,因此增加了胶粒的稳定性。

由于紧密层和分散层中的离子都是水化的,这样在胶粒周围形成了水化层。

实验证明,水化层具有定向排列结构,当胶粒接近时,水化层被挤压变形,它有力图恢复定向排列结构的能力,使水化层具有弹性,这成了胶粒接近时的机械阻力,防止了溶胶的聚沉。

以上影响溶胶稳定的三种因素中,尤以带电因素最重要。

第5章 胶体分散体系的稳定与聚沉

第5章 胶体分散体系的稳定与聚沉
5-2 空间稳定理论 2 吸附聚合物层如何对胶体产生稳定作用? 静电斥力位能 减少Hamaker常数 空间斥力位能
第5章 胶体分散体系的稳定与聚沉
5-2 空间稳定理论 3 空间斥力位能 VRS 的构成
VRS VRe VRE VRO VRH
第5章 胶体分散体系的稳定与聚沉
第5章 胶体分散体系的稳定与聚沉
讨论: 电解质和高聚物都可以引起溶胶的聚沉,分 别说明它们引起聚沉的原因。

(1) 压缩扩散层 (2)吸附聚沉

电解质引起聚沉的原因:
高聚物引起聚沉的原因:
(1) 搭桥效应 (2) 脱水效应 (3) 电中和效应
(2)影响位能的因素 A值的影响 当κ、ψ0不变时: A↑,吸力位能↑,势垒↓
(2)影响位能的因素 Ψ0值的影响 ψ0↑,斥力位能↑,势垒↑
(2)影响位能的因素 电解质浓度的影响 n0↑,势垒↑ 通过κ影响: n0↑, κ↑, 势垒↓ 有一最佳稳定值
第5章 胶体分散体系的稳定与聚沉
(3)聚沉理论 1900年舒尔兹一哈迪(Schulze-Hardy) 发现: 电解质中的反号离子才影响分散体系的稳定 性。
第5章 胶体分散体系的稳定与聚沉
5-3 空缺稳定理论 1 高聚物对胶体的稳定可分为哪两种类型? “空间稳定”和“空位稳定” 2 什么是负吸附?空位层? 3 空位稳定的吸力效应和斥力效应 吸力效应如何产生? 浓度差 渗透压 吸力 斥力效应如何产生? 分离过程 非自发过程 吉布斯函数增 大 斥力位能
第5章 胶体分散体系的稳定与聚沉
第5章 胶体分散体系的稳定与聚沉
1 胶粒双电层重叠时的静电斥力 斥力位能UR (1)两平面粒子双电层重叠时的斥力位能
第5章 胶体分散体系的稳定与聚沉

第十二章 界面现象和胶体分散系统第八节 胶体系统的稳定与聚沉

第十二章 界面现象和胶体分散系统第八节 胶体系统的稳定与聚沉
第八节 胶体系统的稳定与聚沉
一、胶体系统的稳定——DLVO理论
(一)理论要点
(1)胶团间既存在斥力势能,也存在引力势能 引力 范德华力:分子或原子间与距离6次方反比,属近程力。 分散相微粒间引力,仍有范德华引力性质,但因每个核粒皆由多个 分子或原子组成,这种范德华引力是多个分子或原子作用的结果, 作用范围,比分子的大千百倍,为远程范德华力
(2)感胶离子序 同价反离子聚沉能力大小次序为感胶离子序 (lyotropic series)。一价正、负离子对带相反电荷胶体粒子的聚沉能 力大小的顺序
H+>Cs+>Rb+>NH4+>K+>Na+>Li+
2023/2/21
F->C1->Br->NO3->I->SCN->0H-
6
(二)高分子化合物的聚沉作用和保护作用
2023/2/21
4
二、胶体系统的聚沉 胶体系统中的分散相微粒互相聚结,颗
粒变大,进而发生沉降的现象,称为聚沉(coagulation)
(一)电解质的聚沉作用
适量电解质稳定胶体;量过多,尤其高价反离子易使溶胶聚沉。原
因:电解质浓度或价数增加,将更多反离子挤入紧密层,使电势
降低,扩散层变薄,ER降低,Emax变小,当电解质浓度足够大时,
Emax代表溶胶发生聚沉时必须克服的“势垒”,迎面相碰的一对胶 体粒子所具有的平动能足以克服这一势垒,才能进一步靠拢聚沉。
若Emax足够高,胶粒热运动无法克服,溶胶相对稳定;若Emax很小
或者2023不/2/2存1 在,溶胶易聚沉 Nhomakorabea3
(2)溶剂化的稳定作用 溶剂化也是溶胶稳定的重要原因:水为 分散介质,胶团双电层结构离子都是水化的,在粒子周围形成弹性 水化外壳。布朗运动使胶团靠近时,水化外壳受挤压而变形,但每 个胶团都力图恢复其原来的形状而又被弹开,可见,水化外壳的存 在增加了溶胶聚合的机械阻力,利于溶胶的稳定性

胶体稳定性简介

胶体稳定性简介

胶体稳定性简介胶体稳定性一、胶体的分类所谓胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,其值通常在1nm—100nm之间,这是一种高度分散的多相不均匀体系。

按分散剂的不同可分为气溶胶、固溶胶、液溶胶;按分散质的不同可分为粒子胶体、分子胶体。

二、胶体的稳定及不稳定性胶体因质点很小,强烈的布朗运动使它不致很快沉降,故具有一定的动力学稳定性;另一方面,疏液胶体是高度分散的多相体系,相界面很大,质点之间有强烈的聚结倾向,所以又是热力学不稳定体系。

一旦质点聚结变大,动力学稳定性也随之消失。

因此,胶体的聚集稳定性是胶体稳定与否的关键。

三、双电层与zeta电位由于分散粒子表面带有电荷而吸引周围的反号离子,这些反号离子在两相界面呈扩散状态分布而形成扩散双电层。

根据双电层理论可将双电层分为Stern层和扩散层。

当分散粒子在外电场的作用下,稳定层与扩散层发生相对移动时的滑动面即是剪切面,该处对远离界面的流体中的某点的电位称为Zeta电位。

即Zeta电位是连续相与附着在分散粒子上的流体稳定层之间的电势差。

四、聚集沉降理论影响因素起聚沉作用的主要是电荷与胶体相反的离子(称为反离子)。

反离子的价数越高,则聚沉效率越高,聚沉值越低。

一价反离子的聚沉值约为25~150,二价的为0.5~2,三价的为0.01~0.1。

聚沉值大致与反离子价数的六次方成反比,这称为舒尔茨-哈代规则。

五、胶体稳定性疏液胶体的稳定性理论通称DLVO理论。

此理论的出发点是:胶体质点间因范德瓦耳斯力而相互吸引,质点在相互接近时又因双电层的重叠而产生排斥作用,胶体的稳定程度取决于上述两种作用的相对大小。

DLVO理论计算了各种形状质点之间的范德瓦耳斯吸引能与双电层排斥能随质点间距离的变化。

在质点相互接近的过程中,如果在某一距离上质点间的排斥能大于吸引能,胶体将具有一定的稳定性;若在所有距离上吸引皆大于排斥,则质点间的接近必导致聚结,胶体发生聚沉。

第五章胶体和胶体的稳定性

第五章胶体和胶体的稳定性
1)反离子的价数起主要作用:反离子 价数越高,聚沉能 力越大。 粗略估计: 聚沉值? 1/Z 6,聚沉能力? Z 6
?? 舒尔策-哈迪( Schultz-Hardy )规则
Schulze-Hardy规则
聚沉能力主要决定于胶粒带相反电荷的离子的价数。 聚沉值与异电性离子价数的六次方成反比 ,这就是
Schulze-Hardy 规则。
电泳与电渗电泳与电渗return电位离子反离子扩散层胶团边界滑动面胶粒吸附层电位电位胶体的结构胶体的结构产品产品墨水墨水纳米防水剂纳米防水剂碳纳米管碳纳米管废水处理废水处理处理的效果处理的效果锅炉污垢沉积锅炉污垢沉积气体尘埃气体尘埃33溶胶的稳定与聚沉溶胶的稳定与聚沉胶体具有较大的表面积较大的比表面胶体具有较大的表面积较大的比表面积因而在热力学上是不稳定的
思考题:如何除去空气中的尘埃?
形成结构紧 密而又稳定 0 的沉积物
第一最小值
ER
形成疏松
左 图 中 , EA 为引力势能,
E
的聚沉物 ER 为 斥 力 势 能
实线 E 为总势能。
E max
b
EA
a
在粒子 距 离
x(粒子间距离) 接近a 时,达
到第二最小
值,其值为
第二最小值
几个kT 。
粒子在此处可形成疏松的不稳定的聚沉物。当外界环境变化 时,这种聚沉物可重新分离生成溶胶。
思考题
? 如何提高天然染料的稳定性? ? 天然染料的特点:
? 天然可再生资源 ? 多种保健功能: 防紫外线 抗老化 延缓衰老 ? 自然大方的染色效果
天然染料分子中的基本单元
表儿茶素棓酸酯( ECG)表棓儿茶素棓酸酯( EGCG)
4.溶胶的聚沉
定义: 溶胶中分散相微粒互相聚结,颗粒变大,进而 发生沉淀的现象称为聚沉。

第五章胶体的稳定性

第五章胶体的稳定性

3、胶粒间范德华引力的特点
的随分子间中度上升而很快下降,所以 分 的作用距离很小。 得多。
粒 >> 分 ①胶粒是分子的结合,所以 粒 是许多 分的总和, 1 1 ②比较5-1式、5-3式, 分 6 , 粒 2 。即分子间
x
D
胶粒 分 随D上升, 粒 衰减要慢得多。所以 粒 的作用范围要大 ③ 粒与A成正比,A与粒子性质有关,有效Hamaker常数 与粒子与介质的亲合力有关。
对于粘土泥浆:颗粒较粗(90%>2μ m)属粗分散体系 ,引力较强,表面双电层比较压缩,所以第二极小较深。 因此,浓的粘土悬浮体易形成凝胶结构,具有明显的触变 性。
影响净势能曲线形状的因素: ①A的影响 R 与 A A,在 与 0 不变时,势垒随A的增加而下降。 A无关。

0与 ( 0 s )有关,所以斥能与stern电势( s )有关,
第五章 胶体的稳定性
电解质 的聚沉作用 DLVO理论
聚沉动力学
第五章
高分子化合物 的絮凝作用
高分子化合物的稳定作用 及空间稳定理论简介
胶体粒子有很大的表面积,体系的自由能也很高,所以粒子有 自动聚集以降低表面能的倾向。粒子由小变大的过程叫聚集过程。 如果聚集的最终结果导致粒子从溶液中沉淀析出,则称为聚沉过程 。为了加速聚集,可用其它物质作聚沉剂,如电解质。从聚沉过程 得到沉淀的粒子,一般比较紧密,过程比较缓慢。如加入高分子物 质或高价异号离子,则所产生的沉淀粒子堆集比较疏松。这种沉淀 物称之为絮凝物。这种过程称为絮凝过程,絮凝物的沉淀比较迅速 ,有时几分钟即可完成,沉淀中还可能带有部分溶剂。 虽然溶胶本质上是热力学不稳定体系,但实际上它总能稳定一定 时间,有时可长达数年,数十年之久。使溶胶稳定的因素之一是它 的动力性质,显然由于粒子的布朗运动,可以保持它的动力学稳定 ,但运动不可避免地要相互发生碰撞而聚集。如果每次碰撞都有效 的话,则所有的溶胶会在几秒甚至更短的时间内聚沉。但事实并非 如此,这说明还存在着使溶胶粒子相互排斥而使它稳定的一些因素 ,这即是本章要介绍的内容。

关于胶体稳定性问题的疑难解析

关于胶体稳定性问题的疑难解析

关于胶体稳定性问题的疑难解析作者:李梦雪来源:《化学教学》2018年第01期摘要:中学化学胶体稳定性的探讨范围仅为难溶盐胶体,针对难溶盐胶体稳定性问题,从难溶盐胶体体系中相互作用的角度,解释难溶盐胶体的稳定与聚沉,并结合文献探讨难溶盐胶体制备的必需条件。

解释或澄清中学化学中对胶体稳定性问题的一些认识误区,为中学教师的实际教学提供参考和借鉴。

关键词:胶体稳定性;胶粒相互作用;胶体聚沉;胶体制备;问题探讨文章编号:1005-6629(2018)1-0092-04 中图分类号:G633.8 文献标识码:B胶体稳定性问题是高中化学胶体部分的重要内容。

课程标准要求学生从分类的角度认识胶体分散系,了解胶体这种常见的分散系的本质特点和基本性质。

而胶体稳定性是胶体分散系的重要性质之一,对于学生理解胶体分散系和胶体其他性质具有重要作用。

学业水平测试也要求学生识记并理解胶体的稳定性。

随着胶体化学的发展,人类对胶体稳定性的本质和原因的认识不断完善,教师理应把握胶体发展现状,明确胶体稳定性有关内容,正确引导学生认识胶体及其稳定性,以免造成学生的一些认识误区,不利于中学化学与大学化学之间的衔接。

通过分析目前“胶体”教学中涉及胶体稳定性的有关问题发现,很多教师和学生对胶体稳定性的了解并不深入和全面,尤其在胶体稳定性的探讨范围、胶体稳定存在的原因、稳定胶体制备等问题上存在错误认识。

因此,有必要结合相关文献和专业参考书,对上述问题作一些解读和澄清,以期为中学化学教学提供参考。

1胶体稳定性探讨范围的界定胶体又称胶状分散体,是一种均匀的混合物,分散质粒子直径介于粗分散系和溶液之間,即介观范围的一类分散体系,是一种高度分散的多相不均匀体系。

其种类有很多,而中学和大学化学中涉及的所谓“胶体”其实只是由难溶无机盐粒子构成的胶体,其中粒子以介观尺度分散在溶剂中且具有相界面,这是一种处于热力学不稳定、动力学稳定的体系。

而其他胶体体系即使其中粒子尺寸在介观范围也不在讨论范围内。

胶体的稳定性

胶体的稳定性

3、胶粒间的静电斥力
当颗粒表面带有电荷,在颗粒-溶液界面上即产生扩散双 电层。当它们互相接近,两个双电层相互重叠,即产 生静电斥力
颗粒间的静电斥力使颗粒互相远离,有利于稳定
H
R a
O1
h
dh
H0 O2
ER
64 n0kT
2 0

exp D
0

ER
6 4 a n0 k T
2 0
H
0
0
a
板厚δ =0
A:Hamaker常数,与β有关,10-19~10-20J
分散介质对引力位能的影响
有效Hamaker常数
A101 A11
1/2
A 00
1/2

2
1、不管A11、A00相对大小如何,A101总为正值,即在溶剂 或真空中,胶体颗粒之间的van der Waals力总表现为 引力 2、两个胶体颗粒被溶液隔开后,其van der Waals引力总 小于真空中的引力 3、若A11=A00,则A101=0,胶体颗粒间无相互吸引作用, 这样的胶体体系至少是聚集稳定的。另外,这意味着 溶剂性质与胶体颗粒性质相同,而溶剂化好的胶体颗 粒似乎能满足这一条件
2、胶粒间的长程van der Waals引力
分子间的van der Waals引力
2 1 2 3 kTr
2
2
2
Keeson相互作用: Debye相互作用: London相互作用:
U
U
U
K



6
2
1 2 2 1
3 h
6
D
r 1 2
2
6
L

胶体的稳定性和聚沉

胶体的稳定性和聚沉

胶体的稳定性和聚沉憎液溶胶属热力学不稳定体系,有集结长大以至于聚沉的趋势。

但在短时间内甚至在相当长时间内(对某些特殊的溶胶如金溶胶),憎液溶胶却能稳定存在。

1.溶胶的稳定性除布朗运动外,溶胶的稳定性还与下面两个因素有关。

(1).胶粒的电性:带电的胶粒由于胶粒间的范德华力而相互吸引,而相同电荷的斥力又将使之分开。

胶粒是否稳定,取决于这两种相反的力的相对大小。

这也是20世纪40年代由Derjaguin、Landan、Verwey、Overbeek等人提出的溶胶稳定性理论(通常称为DLVO理论)的主要点。

(2).溶剂化作用:溶剂化作用降低了胶粒的表面能,同时溶剂分子把胶粒包围起来,形成一具有弹性的水合外壳。

当胶粒相互靠近时,水合外壳因受到挤压而变形,但每个变形胶团都力图恢复其原来的形状而又被弹开。

可见,水合外壳(溶剂化层)的存在起着阻碍聚结的作用。

综上所述:分散相粒子的带电、溶剂化作用、布朗运动是憎液溶胶三个最重要的稳定因素。

凡是能使上述稳定因素遭到破坏的作用,皆可以使溶胶聚沉2.溶胶的聚沉溶胶中的分散相微粒互相聚沉,颗粒变大,最后发生沉淀的现象称为聚沉。

溶胶的聚沉可分为二个阶段,第一为无法用肉眼观察出分散程度变化的阶段,称为"隐聚沉";第二阶段则可用肉眼观察到颗粒的变化,称为"显聚沉"。

(1).电解质的聚沉作用当往溶胶中加入过量的电解质后,往往会使溶胶发生聚沉。

这是由于电解质加入后,电解质中与扩散层反离子电荷符号相同的那些离子将由于同电排斥而将反离子压入到吸附层,从而减少胶粒的带电量,ζ电势降低。

当扩散层中的反离子被全部压入吸附层内,胶粒处于等电状态,ζ电势为零,此时溶胶的稳定性最差,非常易于聚沉。

如豆浆使荷负电的蛋白质胶体,卤水中的Ca2+、Mg2+、Na+等离子压缩扩散层厚度,使ζ电势下降并使蛋白质聚沉。

实验表明,当溶胶的ζ电势降低到一定值时,(不必降到零!),就可观察到聚沉现象的发生。

2.6--胶体的稳定与聚沉解析

2.6--胶体的稳定与聚沉解析
斥的能量Vr,总作用能 为Va+Vr。如图所示:
第三页,共二十五页。
溶胶 的稳定性 (róngjiāo)
Va+Vr
0
d
粒子间相互作用与其(yǔqí)距离的关系曲线
当粒子相距较大时,主要为吸力(xīlì),总势能为负值;当 靠近到一定距离,双电层重叠,排斥力起主要作用,势能升 高。要使粒子聚结必须克服这个势垒。
水化膜中的水有较高的黏度,这也成为胶粒相互接近 时的机械障碍
第五页,共二十五页。
影响聚沉作用(zuòyòng)的一些因素
1. 电解质对于(duìyú)溶胶聚沉作用的影响 聚沉值 使一定量的溶胶在一定时间内完全聚沉
所需电解质的最小浓度(nóngdù)。从已知的表值 可见,对同一溶胶,外加电解质的反号 离子的价数越低,其聚沉值越大。
沉,常用金值来表示大分子溶液对金溶胶的保护能力。 齐格蒙第提出的金值含义:
为了保护10 cm3 0.006%的金溶胶,在加入1 cm3 10% NaCl溶液后不致聚沉,所需高分子的最少质量称为金 值,一般用mg表示。
金值越小,表明高分子保护剂的能力越强。
第十二页,共二十五页。
影响(yǐngxiǎng)聚沉作用的一些因素
第八页,共二十五页。
影响聚沉作用的一些(yīxiē)因素
(3) 有机化合物的离子都有很强的聚沉能力,这可 能与其(yǔqí)具有强吸附能力有关。
(4)电解质的聚沉作用(zuòyòng)是正负离子作用(zuòyòng)的 总和
通常相同电性离子的价数愈高,则该电解质的聚沉 能力愈低,这可能与这些相同电性离子的吸附作用有关
(1) 起絮凝作用的高分子化合物一般要具有(jùyǒu)链状结构
(2)任何絮凝剂的加入量都有一最佳值 (3)高分子的分子质量越大,絮凝效率也越高

第四讲胶体的稳定性

第四讲胶体的稳定性

10-19~10-20J之间。
三、DLVO理论
2.双电层的斥力势能
因带电胶粒所带电荷的影响,在其周围形成双电层,使 Stern层和扩散层中的反离子浓度高于体相中的浓度。而在扩 散层以外任何一点不受胶粒电势的影响,因为胶粒所带电荷 对它的作用被双电层中反离子的作用抵消。 由于这种反离子氛的“屏蔽作用”,当两粒子的扩散层不 重叠时,它们之间不产生任何斥力。当两粒子的扩散双电层 发生重叠时,胶粒对重叠区的作用不能被反离子氛完全屏蔽。 重叠后反离子浓度增大,这样既破坏了扩散层中的离子平衡 分布,又破坏了双电层的静电平衡。
作用,产生斥力势能称为空间斥力势能ERS。
四、高分子的稳定和絮凝作用
所以,总势能E=ER + EA + ERS
10kT 0=32mv 20kT 0=25.6mv 0=19.2mv
10kT
势 能
0 0=12.8mv 0=0mv 20kT
距离
电层重叠时的排斥势能。下
图是表面势能的变化对总势
能曲线和势垒大小的影响。 表面电势0 对势能曲线的影响
三、DLVO理论
外界因素(如电解质浓度等)强烈地影响胶粒之间的排斥势能ER。
如胶粒表面的溶剂化膜是比较定向排列的,表现出一
定的弹性,具有“水化膜斥力”作用。
四、高分子的稳定和絮凝作用
1.高分子的稳定作用
很早以前,人们就发现高分子物质对溶胶具有稳定作用。如我国
古代制造的墨汁就掺进树胶,以保护炭粉不致聚结。现代工业上制造 的油溶性油漆、涂料、油墨等均利用了高分子的稳定作用。 关于稳定机理,直至近年才有比较深刻的认识,总的来说主要是
酸钾、乙酸钾分别是49.5、50、85、110(聚沉值),而 1/3柠檬酸钾是240。

9胶体的稳定与聚沉

9胶体的稳定与聚沉

由W/O型乳状液转化成O/W 型乳状液称 为乳状液的转化
一般可以通过加入足量的反型乳化剂的 方法实现乳状液的转化 乳状液的破坏(破乳 Deemulsification )) (1) 机械法 (离心分离、泡沫分离、蒸馏、 过滤等)
(2) 高压电法(石油的破乳脱水)
(3) 加入表面活性更强但不能形成保护膜的表 面活性剂(如戊醇、辛醇、十二烷基磺酸钠 等)
(4) Schulze-Hardy 规则
8e L A 1/ 2 ( ) kT
3
I
c , z ,Vr , 势垒降低
当势垒为0时,胶体 由稳定转入聚沉
V
V 0 dV 0 dH
H
临界聚沉值
c B
(kT )
3 5
4 0
A z
2
6
(a) 当表面电势较高时,γ0 →1,c∝z-6 当表面电势较高时, γ0≈zeψ0/4kT c∝ψ04/z2
AgCl (溶胶)
SnO2 (溶胶)
SnO2
加K2Sn(OH)2
2、凝聚法 (1) 化学凝聚法 FeCl3 + H2O
煮沸
Fe(OH)3(溶胶)+ 3HCl As2S3(溶胶)+ 3H2O
As2O3 + 3H2S
加热
2HAuCl4(稀溶液) + 3HCHO(少量)+ 11KOH
2Au(溶胶)+ 3HCOOK +8KCl + 8H2O
乳化剂( Emulsifying agent) 为了形成稳定的乳状液所必须加入的第 三组分。 常用的乳化剂有:蛋白质、树胶、磷脂 等天然产物;各种表面活性剂;固体粉末等
乳化剂的作用: (1) 在分散相周围形成保护膜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质点 介质
(2) 双电层的排斥能 对球形粒子
Vr
64n0 kT

2 0
2
exp(H )
各种形状粒子之间在不同的情况下相互吸引能与双电
层排斥能的计算方法。他们处理问题的方法与结论有 大致共同之处,因此以他们的姓名第一个字母简称为
DLVO理论。
DLVO理论给出了计算胶体质点间排斥能及吸引 能的方法,并据此对憎液胶体的稳定性进行了定量处 理,得出了聚沉值与反号离子电价之间的关系式,从
理论上阐明了Schulze-Hardy 规则
§2.6 胶体的稳定与聚沉
(Stability and coagulation of sol )
溶胶的稳定性 影响聚沉作用的一些因素 胶体稳定性的DLVO理论大意 *DLVO理论的一种简化表示式 高分子化合物对溶胶的絮凝和稳定作用
胶体的稳定与聚沉 Stability and coagulation of sol 胶体由于具有巨大的表面能,因此是热 力学不稳定体系,但在某些条件下,也能稳 定的存在一段时间。胶体的稳定是相对的、 暂时的和有条件的,而不稳定则是绝对的。 影响溶胶稳定性的因素
胶粒的聚沉能力可以排成如下次序:
H > Cs > Rb > N H > K > Na > Li
的溶胶的聚沉能力则有如下次序:



+ 4



不同的一价阴离子所形成的钾盐,对带正电
F > Cl > Br > NO > I



3

同价离子聚沉能力的这一次序称为感胶离子序。
它与水合离子半径从小到大的次序大致相同。
影响聚沉作用的一些因素
(3) 有机化合物的离子都有很强的聚沉能力,这可
能与其具有强吸附能力有关。
(4)电解质的聚沉作用是正负离子作用的总和 通常相同电性离子的价数愈高,则该电解质的聚 沉能力愈低,这可能与这些相同电性离子的吸附作用
有关
影响聚沉作用的一些因素
(5)不规则聚沉 在溶胶中加入少量的电解质可以使溶胶聚沉,电
一个溶剂化膜(水化膜)
水化膜中的水分子是比较定向排列的,当胶粒彼
此接近时,水化膜就被挤压变形,而引起定向排列的
引力又力图恢复原来的定向排列,这样就使水化膜表
现出弹性,成为胶粒彼此接近时的机械阻力
水化膜中的水有较高的黏度,这也成为胶粒相互 接近时的机械障碍
影响聚沉作用的一些因素
1. 电解质对于溶胶聚沉作用的影响 聚沉值 使一定量的溶胶在一定时间内完全聚沉 所需电解质的最小浓度。从已知的表值 可见,对同一溶胶,外加电解质的反号
产生相互聚沉现象的原因是:可以把溶胶粒 子看成是一个巨大的离子,所以溶胶的混合类似 于加入电解质的一种特殊情况。
影响聚沉作用的一些因素
2. 胶粒之间的相互作用 在憎液溶胶中加入某些大分子溶液,加入的量不 同,会出现两种情况: 当加入大分子溶液的量足够多时,会保护溶胶不聚
沉,常用金值来表示大分子溶液对金溶胶的保护能力。 齐格蒙第提出的金值含义:
DLVO理论
(1) 质点间的范德华吸引能 胶粒之间的相互作用可看作是分子作用的加和 若两个球形粒子体积相等
A r Va 12 H
H: 两球表面之间的最短距离 r : 胶粒半径 A:Hamaker常数 (与物质有关 10-19~10-20 J) 在介质中, A ( A A ) 2
解质浓度稍高,沉淀又重新分散而成溶胶,并使胶粒
所带电荷改变符号。
如果电解质的浓度再升高,可以使新形成的溶胶
再次沉淀。 不规则聚沉是胶体粒子对高价异号离子的强烈吸
附的结果。
影响聚沉作用的一些因素
2. 胶粒之间的相互作用 将胶粒带相反电荷的溶胶互相混合,也会发生聚 沉。
与加入电解质情况不同的是,当两种溶胶的用 量恰能使其所带电荷的量相等时,才会完全聚沉, 否则会不完全聚沉,甚至不聚沉。
为了保护10 cm3 0.006%的金溶胶,在加入1 cm3 10% NaCl溶液后不致聚沉,所需高分子的最少质量称 为金值,一般用mg表示。
金值越小,表明高分子保护剂的能力越强。
影响聚沉作用的一些因素
2. 胶粒之间的相互作用 在加入少量大分子溶液时,会促使溶胶的聚沉, 这种现象称为敏化作用; 当加入的大分子物质的量不足时,憎液溶胶的胶
100 :1.6 :0.14
1 1
6
1 : 2
6
1 : 3
6
这表示聚沉值与异电性离子价数的六次方成反比 这一结论称为Schulze-Hardy规则
影响聚沉作用的一些因素
(2)价数相同的离子聚沉能力也有所不同。例如不
同的碱金属的一价阳离子所生成的硝酸盐对负电性
(1) 热力学稳定性 (2) 动力学稳定性 (3) 抗聚结稳定性
溶胶的稳定性
热力学稳定性 胶体体系是多相分散体系,有巨大
的界面能,故在热力学上不稳定。
动力学稳定性
由于溶胶粒子小,Brown运动激烈,
在重力场中不易沉降,使溶胶具有动力稳定性 抗聚结稳定性 胶粒之间有相互吸引的能量Va和相互
排斥的能量Vr,总作用能 为Va+Vr。如图所示:
离子的价数越低,其聚沉值越大。
聚沉能力 是聚沉值的倒数。聚沉值越大的电解质
其聚沉能力越小;反之,聚沉值越小的
电解质,其聚沉能力越强。
影响聚沉作用的一些因素
电解质的影响有如下一些规律: (1)聚沉能力主要决定于与胶粒带相反电荷的离子 的Байду номын сангаас数
异电性离子为一、二、三价的电解质,其聚沉
值的比例约为: 相当于
溶胶的稳定性
Va+Vr
0
d
粒子间相互作用与其距离的关系曲线 当粒子相距较大时,主要为吸力,总势能为负值; 当靠近到一定距离,双电层重叠,排斥力起主要作用, 势能升高。要使粒子聚结必须克服这个势垒。
溶胶的稳定性
溶剂化层的影响 胶粒表面因吸附某种离子而带电,并且此种离子 及反离子都是溶剂化的,这样,在胶粒周围就形成了
粒粘附在大分子上,大分子起了一个桥梁作用,把胶
粒联系在一起,使之更容易聚沉。 例如,对SiO2进行重量分析时,在SiO2的溶胶中 加入少量明胶,使SiO2 的胶粒粘附在明胶上,便于
聚沉后过滤,减少损失,使分析更准确。
不同胶体的相互作用
胶体稳定性的DLVO理论大意
在20世纪四十年代,前苏联学者Deijaguin和 Landau与荷兰学者Verwey和Overbeek分别提出了关于
相关文档
最新文档