(完整版)充分条件和必要条件练习题
(完整版)充分条件和必要条件练习题
充分条件和必要条件练习题1.设x R ∈,则“”是“2210x x +->”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.若a R ∈,则“0a =”是“cos sin a a >”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.设x R ∈,且0x ≠, ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知a R ∈,则“2a >”是“22a a >”的( )A .充分非必条件B .必要不充分条件C .充要条件D .既非充分也非必要条件5.设x R ∈,则“”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件6.若a ,b 为实数,则“0<a b <1”是“b <) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.“0>>b a ”是“22b a >”的什么条件?( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.“1<x <2”是“x<2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.12x <<“”是”“2<x 成立的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件10.A,B 是任意角,“A=B ”是“sinA=sinB ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件11.设a R ∈,则“1a <”是“11a>”( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件12.“20x >”是“0x >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件13.x=y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件14.””是““00>≠x x 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件15.命题5:>x p ,命题3:>x q ,则p 是q 的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件16.“1x =”是“2210x x -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件17.若R a ∈,则“2a =”是“()()240a a -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件一、填空题18.已知条件p :13x ≤≤,条件q :2560x x -+<,则p 是q 的 条件.A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件参考答案1.A【解析】”是“2210x x +->”的充分不必要条件,故选A .考点:充要条件.2.B【解析】即充分条件成立,但当ααsin cos >故必要条件不成立,综合选B.考点:1.正余弦函数的单调性;2.充分条件和必要条件的定义.3.A【解析】,得1x <-,由,解得01x <<或0x <,所以“A. 考点:充要条件的应用.4.A【解析】试题分析:因为当“2a >” 成立时,()2220,a a a a -=->∴ “22a a >” 成立. 即“2a >”⇒“22a a >” 为真命题;而当“22a a >” 成立时, ()2220a a a a -=->, 即2a >或0,2a a <∴>不一定成立, 即“22a a >”⇒“2a >”的充分非必要条件,故选A. 考点:1、充分条件与必要条件;2、不等式的性质.【方法点睛】本题主要考查不等式的性质及充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.5.A【解析】试题分析:由得31<<x ,由220x x +->得1>x 或2-<x ,即是“220x x +->”的充分不必要条件,故选:A .考点:充分条件与必要条件的判断.6.D【解析】 时,p 不能推出q ,当0,0b a <>时,q 不能推出p ,故是既不充分也不必要条件.考点:充要条件.7.A【解析】试题分析:当0>>b a 时,能推出22b a >,反过来,当22b a >不能推出0>>b a ,所以是充分不必要条件,故选A.考点:充分必要条件8.A【解析】试题分析:若“12x <<”,则“2x <”成立,反之不成立,所以“12x <<”是“2x <”的成立充分不必要条件.故选A.考点:充分条件和必要条件的判断.9.A【解析】试题分析:当12x <<时可得2x <成立,反之不成立,所以12x <<“”是”“2<x 成立的充分不必要条件考点:充分条件与必要条件10.A【解析】试题分析:由B A =可得B A sin sin =,由B A sin sin =不一定有B A =,如:0=A ,π=B ,所以B A =是B A sin sin =的充分不必要条件.故选A.考点:充分条件、必要条件.11.B.【解析】 试题分析:111110001a a a a a->⇔->⇔>⇔<<,故是必要不充分条件,故选B . 考点:1.解不等式;2.充分必要条件.12.B .【解析】 试题分析:因为由20x >解得:0x >或0x <,∴“0x >或0x <”是“0x >”的必要而不充分条件.考点:充分必要条件.13.B【解析】或x y =-,所以是“x y =”的必要不充分条件.故B 正确.考点:充分必要条件.14.B【解析】 试题分析:00x x >⇒≠“”“”,反之不成立,因此选B .考点:充要关系15.B【解析】试题分析:若5x >成立则3x >成立,反之当3x >成立时5x >不一定成立,因此p 是q 的充分不必要条件考点:充分条件与必要条件16.A【解析】试题分析:当1x =时,2210x x -+=;同时当2210x x -+=时,可得1x =;可得“1x =”是“2210x x -+=”的充要条件.考点:充分、必要条件的判断.【易错点晴】本题主要考查的是一元二次不等式、对数不等式和集合的交集、并集和补集运算,属于容易题.解不等式时一定要注意对数的真数大于0和2x 的系数大于0,否则很容易出现错误.17.B【解析】 试题分析:若“2a =”,则“()()240a a -+=”;反之 “()()240a a -+=”,则2,a =或4a =-.故“2a =”是“()()240a a -+=”的充分不必要条件.考点:充分、必要条件的判断.18.C【解析】 试题分析:解不等式2560x x -+<得23x <<,由p :13x ≤≤可知p 是q 的必要不充分条件条件考点:充分条件与必要条件。
充分条件与必要条件(基础+复习+习题+练习)
充分条件与必要条件(基础+复习+习题+练习)课题:充分条件和必要条件考纲要求:掌握充分必要条件的意义,能够判定给定的两个命题的充要关系教材复习()1 如果p q ?,则p 是q 的,q 是p 的; ()2 如果,p q q p ??,则p 是q 的;()3 如果,则p 是q 的的充分而不必要条件;()4 如果,则p 是q 的必要而不充分条件;()5 如果,则p 是q 的既不充分也不必要条件;基本知识方法1.判断充要关系的关键是分清条件和结论;2.判断“p 是q 的什么条件”的本质是判断命题“若p ,则q ”及“若q ,则p ”的真假;3.判断充要条件关系的四种方法:①定义法:若p q ?,则p 是q 的充分条件,q 是p 的必要条件;若p q ?,则p 是q 的充要条件。
②利用原命题和逆否命题的等价性来确定。
p q ?等价于q p③利用集合的包含关系:对于集合问题,记条件p 、q 对应的集合分别为A 、B 若A B ?,则p 是q 的充分条件,q 是p 的必要条件;若A B ü,则p 是q 的充分不必要条件,q 是p 的必要不充分条件;若A B =,则A 是B 的充要条件;若A B à且B A à,则p 是q 的既不充分也不必要条件④利用“?”传递性4.“否命题”与“命题的否定”的区别:否命题是对原命题“若p 则q ”的条件p 和结论都否定,即“若p ?则q ?”;而原命题的否定是:“若p 则q ?”,即只是否定原命题的结论。
5.探索充要条件:在探索一个结论成立的充要条件时,一般先探索必要条件,再确定充分条件;也可以一些基本的等价关系来探索。
典例分析:问题1.指出下列各组命题中,p 是q 的什么条件(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选一种作答)()1在ABC △中,p :A B >,q :sin sin A B >()2对于实数,x y ,p :8x y +≠,q :2x ≠或6y ≠()3在ABC △中,p :sin sin A B >,q :tan tan A B >()4已知x 、y R ∈,p :22(1)(2)0x y -+-=,q :(1)(2)0x y --= 问题2.(07浙江)“1>”的x>”是“2x x.A充分而不必要条件.B必要而不充分条件.C充分必要条件.D既不充分也不必要条件问题3.(04重庆)已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件.那么p是q成立的.A充分不必要条件.B必要不充分条件.C充分必要条件.D既不充分也不必要条件问题4.()1(全国高考)若A是B的必要不充分条件,则A?是B?的()2已知条件p:2+≠-,条件q:x、y不都是1-,则p是qx y.A必要不充分条件.B充分不必要条件.C充要条件.D既不充分也不必要条件()3(04湖北)若条件p:1是q?的x+≤4,条件q:256<-,则px x.A必要不充分条件.B充分不必要条件.C充要条件.D既不充分也不必要条件走向高考:1.(07福建文)“2x <”是“260x x --<”的.A 充分而不必要条件.B 必要而不充分条件.C 充要条件 .D 既不充分也不必要条件2.(08安徽)0a <是方程2210ax x ++=至少有一个负数根的.A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分也不必要条件3. (08海南)平面向量a ,b 共线的充要条件是.A a ,b 方向相同 .B a ,b 两向量中至少有一个为零向量.C R λ?∈,b a λ=.D 存在不全为零的实数1λ,2λ,120a b λλ+=4. (福建)“1a =”是“直线0x y += 和直线0x ay -=互相垂直”的.A 必要不充分条件.B 充分不必要条件.C 充要条件 .D 既不充分也不必要条件5. (07江西文)设p :32()21f x x x mx =+++在()-∞+∞,内单调递增,q :m ≥43,则p 是q 的.A 充分不必要条件.B 必要不充分条件.C 充分必要条件 .D 既不充分也不必要条件6.(07湖北文)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p ?是s ?的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件.则正确命题的序号是.A ①④⑤ .B ①②④ .C ②③⑤ .D ②④⑤7. (07山东)下列各小题中,p 是q 的充要条件的是①p :2m <-或6m >;q :23y x mx m =+++有两个不同的零点.②p :()1()f x f x -=;q :()y f x =是偶函数.③p :cos cos αβ=;q :tan tan αβ=.④p :AB A =;q :U UC B C A ?..A ①② .B ②③ .C ③④ .D ①④课后练习作业:1. 一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是.A 0a > .B 1a > .C 1a < .D 1a <-2.已知两个简单命题p 和q ,“p 且q 为真命题”是“p 或q 为真命题”的.A 充分不必要条件 .B 必要不充分条件.C 充要条件 .D 既不充分也不必要条件3. 已知p :113x --≤2,q :2221x x m -+-≤0()0m >,若p ?是q ?的必要不充分条件,求实数m 的取值范围.。
20道充分条件必要条件判断总结练习题(含答案)
20道高中数学充分条件,必要条件判断练习题(含答案)1.设,,a b c 为正数,则“a b c +>”是“222a b c +>”的( )A .充分不必要条件B .必要不充分条件C . 充要条件D .既不充分也不必要条件2.“ 11()()33a b <”是“22log log a b >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3.不等式01>-xx 成立的一个充分不必要条件是( ) 1.>x A 1.->x B 101.<<-<x x C 或 101.><<-x x D 或4、设a ∈R ,则“2a a >”是“1>a ”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.若1a >,则“y x a a >”是“log log a a x y >”的( )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件6.在实数范围内,使得不等式110x->成立的一个充分而不必要的条件是( ) A .1x < B . 02x << C .01x << D . 103x << 7.“sin cos αα=”是“cos20α=”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.“2211og a og b <”是“11a b<”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.设p :x<3,q :-1<x<3,则p 是q 成立的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件10.设,a b 为非零向量,则“//a b ”是“a 与b 方向相同”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件11.“43m =”是“直线x -my +4m -2=0与圆224x y +=相切”的 A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12已知p :(x -1)(x -2)≤0,q :log 2(x +1)≥1,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件13.已知 “命题”是“命题”成立的必要不充分条件,则实数的取值范围为 ( )A .B .C .D .14、“0a =”是“复数(),a bi a b R +∈为纯虚数”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 .设a b 、是非零向量,则“=2a b ”是“=||||a b a b ”成立的A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件16.已知向量,则“”是“与反向”的( ) A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件17、设集合{}A x x a =<,{}3B x x =<,则“3a <”是“A B ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件18.设R x ∈,则“1<2x ”是“1<lg x ”的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件19.“1a ≥”是“()()1,,ln 1x x x a ∃∈+∞--<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要2:()3()p x m x m ->-2:340q x x +-<m 17m m ><-或17m m ≥≤-或71m -<<71m -≤≤20.在ABC ∆中,“A B >”是“cos cos A B <”的 ( )A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件答案1.B.∵,,a b c 为正数,∴当2,2,3a b c ===时,满足a b c +>,但222a b c +>不成立,即充分性不成立,若222a b c +>,则()222+->a b ab c ,即()2222+>+>a b c ab c ,>a b c +>,成立,即必要性成立,则“a b c +>”是“222a b c +>”的必要不充分条件,故选:B2.B3.A4.A5.【答案】A【解析】【分析】先找出y x a a >及log log a a x y >的等价条件,然后根据充分条件和必要条件的定义分别进行判断即可.【详解】由a>1,得y x a a > 等价为x>y; log log a a x y >等价为x>y>0故“y x a a > ”是“log log a a x y >”的必要不充分条件故选:A【点睛】本题主要考查充分条件和必要条件的判断,指对函数的单调性,根据充分条件和必要条件的定义是解决本题的关键.6.D7.A【解析】【分析】由2211og a og b <可推出a b <,再结合充分条件和必要条件的概念,即可得出结果.【详解】若2211og a og b <,则0a b <<,所以110ab>>,即“2211og a og b <”不能推出“11a b <”,反之也不成立,因此“2211og a og b <”是“11a b <”的既不充分也不必要条件.故选D【点睛】本题主要考查充分条件和必要条件,熟记概念即可,属于基础题型.9.C10.B11.A12A13.B14【答案】B【解析】试题分析:0a =,00b a bi =⇒+=为实数;复数(),a bi a b R +∈为纯虚数0,00a b a ⇒=≠⇒=,所以“0a =”是“复数(),a bi a b R +∈为纯虚数”的必要不充分条件,选B.考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.15.B16【答案】C【解析】与反向则存在唯一的实数,使得,即所以是“与反向”的充要条件故选C17.A18.B19.B20.A。
充分条件和必要条件练习题
充分条件和必要条件练习题班级: 姓名:1.设x R ∈,则“12x >”是“2210x x +->”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件2.若a R ∈,则“0a =”是“cos sin a a >”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.设x R ∈,且0x ≠,“112x⎛⎫> ⎪⎝⎭”是“11x <”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件 D .既不充分也不必要条件4.已知a R ∈,则“2a >”是“22a a >”的( ) A .充分非必条件 B .必要不充分条件 C .充要条件 D .既非充分也非必要条件5.设x R ∈,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件6.若a ,b 为实数,则“0<a b <1”是“b <1a”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件7.“0>>b a ”是“22b a >”的什么条件?( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.“1<x <2”是“x<2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.12x <<“”是”“2<x 成立的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件10.A,B 是任意角,“A=B ”是“sinA=sinB ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件11.设a R ∈,则“1a <”是“11a>”( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件12.“20x >”是“0x >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件13.“x =y ”是“x=y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件14.””是““00>≠x x 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件15.命题5:>x p ,命题3:>x q ,则p 是q 的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件16.“1x =”是“2210x x -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件17.若R a ∈,则“2a =”是“()()240a a -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件18.已知条件p :13x ≤≤,条件q :2560x x -+<,则p 是q 的 条件.A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既非充分也非必要条件19.已知P={x|a-4<x<a+4},Q={x|x2-4x+3<0},若x∈P是x∈Q的必要条件,求实数a的取值范围20.已知集合A={y|y=x2-3/2x+1,x∈[3/4,2]},B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,求实数m的取值范围.。
充分条件与必要条件(经典练习及答案详解)
充分条件与必要条件1.设x∈R,则“1<x<2”是“1<x<3”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】“1<x<2”⇒“1<x<3”,反之不成立.所以“1<x<2”是“1<x<3”的充分不必要条件.故选B.2.(2020年佛山高一期末)“x=1”是“x2-4x+3=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若x=1,则x2-4x+3=0,是充分条件,若x2-4x+3=0,则x =1或x=3,不是必要条件.故选A.3.(2021年荆州期末)x2<9的必要不充分条件是()A.-3≤x≤3 B.-3<x<0C.0<x≤3 D.1<x<3【答案】A【解析】x2<9即-3<x<3.因为-3<x<3能推出-3≤x≤3,而-3≤x≤3不能推出-3<x<3,所以x2<9的必要不充分条件是-3≤x≤3.4.(多选)对任意实数a,b,c,下列命题中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a+5是无理数”是“a是无理数”的充要条件C.“a>b”是“a2>b2”的充分条件D.“a<5”是“a<3”的必要条件【答案】BD【解析】因为A中“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac =bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故A为假命题;因为B中“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,故“a+5是无理数”是“a是无理数”的充要条件,故B为真命题;因为C中“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,故“a>b”是“a2>b2”的既不充分也不必要条件,故C为假命题;因为D中{a|a<5}{a|a<3},故“a<5”是“a <3”的必要条件,故D为真命题.故选BD.5.(多选)已知p是r的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件,下列命题正确的是()A.r是q的充要条件B.p是q的充分条件而不是必要条件C.r是q的必要条件而不是充分条件D.r是s的充分条件而不是必要条件.【答案】AB【解析】由已知有p⇒r,q⇒r,r⇒s,s⇒q,由此得r⇒q且q⇒r,A正确,C不正确,p⇒q,B正确,r⇒s且s⇒r,D不正确.故选AB.6.“m=9”是“m>8”的________条件,“m>8”是“m=9”的________条件(填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”).【答案】充分不必要条件必要不充分条件【解析】当m=9时,满足m>8,即充分性成立,当m=10时,满足m>8,但m=9不成立,即必要性不成立,即“m=9”是“m>8”的充分不必要条件,“m>8”是“m=9”的必要不充分条件.7.条件p:1-x<0,条件q:x>a,若p是q的充分不必要条件,则a的取值范围是________.【答案】{a|a<1}【解析】p:x>1,若p是q的充分不必要条件,则p⇒q,但q⇒/ p,即p对应集合是q对应集合的真子集,所以a<1.8.下列说法正确的是________(填序号).①“x>0”是“x>1”的必要条件;②“a3>b3”是“a>b”的必要不充分条件;③在△ABC中,“a>b”不是“A>B”的充分条件.【答案】①【解析】①中,当x>1时,有x>0,所以①正确;②中,当a>b时,a3>b3一定成立,但a3>b3也一定能推出a>b,即“a3>b3”是“a>b”的充要条件,所以②不正确;③中,当a>b时,有A>B,所以“a>b”是“A>B”的充分条件,所以③不正确.9.指出下列各命题中,p是q的什么条件,q是p的什么条件.(1)p:x2>0,q:x>0.(2)p:x+2≠y,q:(x+2)2≠y2.(3)p:a能被6整除;q:a能被3整除.(4)p:两个角不都是直角;q:两个角不相等.解:(1)p:x2>0,则x>0或x<0,q:x>0,故p是q的必要条件,q是p的充分条件.(2)p:x+2≠y,q:(x+2)2≠y2,则x+2≠y,且x+2≠-y,故p是q的必要条件,q是p的充分条件.(3)p:a能被6整除,故也能被3和2整除,q:a能被3整除,故p是q的充分条件,q 是p的必要条件.(4)p:两个角不都是直角,这两个角可以相等,q:两个角不相等,则这个角一定不都是直角,故p是q的必要条件,q是p的充分条件.B级——能力提升练10.设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】因为a 2≥0,而(a -b )a 2<0,所以a -b <0,即a <b ;由a <b ,a 2≥0,得到(a -b )a 2≤0,(a -b )a 2可以为0,所以“(a -b )a 2<0”是“a <b ”的充分不必要条件.11.已知a ,b 为实数,则“a +b >4”是“a ,b 中至少有一个大于2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】“a +b >4”⇒“a ,b 中至少有一个大于2”,反之不成立.所以“a +b >4”是“a ,b 中至少有一个大于2”的充分不必要条件.故选A .12.设p :12≤x ≤1;q :(x -a )(x -a -1)≤0.若p 是q 的充分不必要条件,则a 的取值范围是________.【答案】⎩⎨⎧⎭⎬⎫a ⎪⎪0≤a ≤12 【解析】因为q :a ≤x ≤a +1,p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ a <12,a +1≥1或⎩⎪⎨⎪⎧ a ≤12,a +1>1,解得0≤a ≤12. 13.(2020年大庆高一期中)已知p :-4<x -a <4,q :2<x <3.若q 是p 的充分条件,则实数a 的取值范围为________.【答案】{a |-1≤a ≤6} 【解析】因为p :-4<x -a <4,即a -4<x <a +4,q :2<x<3.若q 是p 的充分条件,则{x |2<x <3}⊆{x |a -4<x <a +4},则⎩⎪⎨⎪⎧a -4≤2,a +4≥3,即-1≤a ≤6.所以实数a 的取值范围为{a |-1≤a ≤6}.14.若集合A ={x |x >-2},B ={x |x ≤b ,b ∈R },试写出:(1)A ∪B =R 的一个充要条件;(2)A ∪B =R 的一个必要不充分条件;(3)A ∪B =R 的一个充分不必要条件.解:(1)集合A ={x |x >-2},B ={x |x ≤b ,b ∈R }.(1)若A ∪B =R ,则b ≥-2,故A ∪B =R 的一个充要条件是b ≥-2.(2)由(1)知A∪B=R的一个充要条件是b≥-2,所以A∪B=R的一个必要不充分条件可以是b≥-3.(3)由(1)知A∪B=R的一个充要条件是b≥-2,所以A∪B=R的一个充分不必要条件可以是b≥-1.C级——探究创新练15.已知关于x的实系数二次方程x2+ax+b=0有两个实数根α,β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件.证明:(1)充分性:由韦达定理,得|b|=|α·β|=|α|·|β|<2×2=4.设y=x2+ax+b,则y=x2+ax+b的图象是开口向上的抛物线.又|α|<2,|β|<2,所以当x=2时,y>0且当x=-2时,y>0,即有-(4+b)<2a<4+b.因为|b|<4,所以4+b>0,即2|a|<4+b.(2)必要性:令y=x2+ax+b,由2|a|<4+b,得当x=2时,y>0且当x=-2时,y>0,因为|b|<4,所以方程y=0的两根α,β同在{x|-2<x<2}内或无实根.因为α,β是方程y=0的实根,所以α,β同在{x|-2<x<2}内,即|α|<2且|β|<2.。
1.1充分条件和必要条件(解析版)
1.1 充分条件和必要条件同步练习一、单选题1.下列句子不是命题的是()A.2x+1B.北京是中国的首都C.月亮是地球的卫星D.雷锋是我们学习的榜样【答案】A2.下列关于命题的说法不正确的是()A.命题要么是正确的,要么就是错误的B.命题不可能是疑问句C.命题是一个陈述句D.“请不要迟到”是一个命题A.3>5B.312能被3整除C.B⊆A∩B D.Q⊆Z【答案】B4.下列句子是命题的是()A.x>0B.祝你生日快乐!C.老师,您好!D.2<1【答案】D5.下列命题是真命题的是()A.-1是自然数B.如果x是负数,那么2x<0C.函数y=x3是奇函数D.如果sinθ>0,则θ是第一或第二象限角【答案】C,D选项中的θ可能在y轴正半轴6.下列命题中,条件p不是结论q的充分条件的是()A.p:x>y,q:y<xB.p:函数f(x)是偶函数,q:f(5)=f(-5)C.p:cosα=1,q::α=0,q:直线l与x轴垂直D.p:直线l的倾斜角为π2【答案】C7.把“天上下雨地上湿”写成“如果p,那么q”的形式,可以是()A.如果天上下雨,那么地上湿B.如果天上不下雨,那么地上不会湿C.如果地上湿了,那么天上下雨了D.如果地上没湿,那么天上没下雨【答案】A8.下列命题是真命题的是().【答案】C9.“a>0”是“a>1”的()【答案】A10.“x=y”是“x2=y2”的()A.充分条件B.必要条件C.既是充分条件又是必要条件D.既不是充分条件也不是必要条件【答案】A二、填空题11.用“⇒”“⇐”填空.(1)x∈A x∈A∪B;(2)两个三角形全等两个三角形相似;(3)ab=0 a=0.【答案】(1)⇒(2)⇒(3)⇐12.用“充分”“必要”填空.(1)x∈Z是x∈N的条件;(2)“x是4的倍数”是“x是2的倍数”的条件.【答案】(1)必要(2)充分13.判断命题的真假:命题“如果某彩票的中奖概率为1,那么买100张彩票就一定能中奖”是 .100【答案】假命题14.命题“一尺之棰,日取其半,万世不竭”的条件是,结论是.【答案】日取其半,万世不竭15.把命题“己所不欲,勿施于人”写成“如果p,那么q”的形式:.【答案】如果己所不欲,那么勿施于人三、解答题16.写出“a∈{x|x>5}”的一个充分条件和一个必要条件.【答案】充分条件:x=10;必要条件:x>3;(合理即可)17.已知命题p:α=β;命题q:tanα=tanβ,问p是q的什么条件?【答案】充分条件18.判断下列语句是否为命题.若是,是真命题还是假命题?(1)0是自然数吗?(2)10100可真大!(3)x>2;(4)5>2;(5)若a=0,则ab=0;(6)如果x2=1,那么x=1【答案】命题:(4)(5)(6)真命题:(4)(5)假命题(6)能力进阶19.写出下列命题的逆命题,并判断其真假;依此判断原命题的条件p是否为结论q的必要条件.(1)如果|x|>0,那么x>0;(2)在△ABC中,如果∠A是锐角,那么△ABC是锐角三角形;(3)如果α=0,那么sinα=0.【答案】(1)如果x>0,那么|x|>0 是(2)如果△ABC是锐角三角形,那么∠A是锐角是(3)如果sinα=0,那么α=0,不是20.判断下列个命题中p是q的充分条件还是必要条件?(1)p:a=-2,q:|a+4|=2;(2)p:a、b都是偶数,q:a+b是偶数;(3)p:a>b,q:ac2>bc2.【答案】(1)充分条件(2)充分条件(3)必要条件。
(完整版)充分条件与必要条件测试题(含答案)
充分条件与必要条件测试题(含答案)班级 姓名一、选择题1.“”是“”的 ( )2x =(1)(2)0x x --=(A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件2.在中,,则是的 ( )ABC ∆:,:p a b q BAC ABC >∠>∠p q (A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件3.“或是假命题”是“非为真命题”的( )p q p A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.若非空集合,则“或”是“”的( )M N ≠⊂a M ∈a N ∈a M N ∈ A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件B 提示:“或”不一定有“”。
a M ∈a N ∈a M N ∈ 5.对任意的实数,下列命题是真命题的是( ),,a b c (A )“”是“”的必要条件ac bc >a b >(B )“”是“”的必要条件ac bc =a b =(C )“”是“”的充分条件ac bc <a b >(D )“”是“”的必要条件ac bc =a b =6.若条件,条件,则是的( ):14p x +≤:23q x <<q ⌝p ⌝(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件7.若非空集合满足,且不是的子集,则( ),,A B C A B C = B A A. “”是“”的充分条件但不是必要条件x C ∈x A ∈B. “”是“”的必要条件但不是充分条件x C ∈x A ∈C. “”是“”的充要条件x C ∈x A ∈D. “”既不是“”的充分条件也不是“”必要条件x C ∈x A ∈x A ∈ 8.对于实数,满足或,则是的(),x y :3,:2p x y q x +≠≠1y ≠p q (A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件9.“”是“函数的值恒为正值”的 ( )40k -<<2y x kx k =-- (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件10.已知条件,条件,则是的 ( ):2p t ≠2:4q t ≠p q (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件11.“a =2”是“函数f (x )=x 2+ax +1在区间[-1,+∞)上为增函数”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件12.已知是的充分条件而不是必要条件,是的充分条件,是的必要条件,p r q r s r q 是 的必要条件。
充分条件与必要条件练习题及答案
充分条件与必要条件练习题及答案(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;对.且,即,是的充要条件.选.D p q q p p q p q D⇒⇒⇔说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②∵是成立的充要条件,∴③C B C B⇔由①③得A C ④ 由②④得A D .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是 [ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A(B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1. 说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系.例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y x xy- 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥a b pq(p a b a4b 0)2ab21 11⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。
充分条件与必要条件练习题及答案
例1已知p: X], X2是方程x2 + 5x —6 = 0的两根,q: x1 + x2= —5,则p是q的[]A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解Vxp X2是方程X2+5X-6=0的两根,Axp X?的值分别为1, 一6,.\x1+x2= l —6= — 5.说明p= q.但q垃p,事实上只要取衍=-2,心=一3作为反例即可说明这一点. 因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[] A・ p: 3x+2>5, q:—2x—3> —5B・ p:a>2, b<2» q: a>bC.P:四边形的两条对角线互相垂直平分,Q:四边形是正方形D.p: aHO, q:关于x的方程ax=l有惟一解分析逐个验证命题是否等价.解对A. p: x>l, q: x<l,所以,p是q的既不充分也不必要条件;对B. p=>q但qi^p,p是q的充分非必要条件;对C. 且q=P,P是q的必要非充分条件;对D.卩=>4且耳=>卩,即poq, p是q的充要条件.选D.说明:当a=0时,ax = 0有无数个解.例3若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解TA是B的充分条件,・・.A=B(DTD是c成立的必要条件,.・.cnD@TC是B成立的充要条件,・・・C o B③由①③得A=C④由②④得八=0.••.D是A成立的必要条件.选B.说明:要注总利用推出符号的传递性.例4设命题甲为:0Vx<5,命题乙为x-2 <3,那么甲是乙的[] A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件分析先解不等式再判定.解解不等式|x-2 V3得一 1V X V5.V0<x<5=> —l<x<5» 但—1 VxV5:^0Vx<5・••甲是乙的充分不必要条件,选A.说明:一般情况下,如果条件甲为xGA,条件乙为xGB.当且仅当A匸B时,甲为乙的充分条件;当且仅当AoB时,甲为乙的必要条件;当且仅当A=B时,甲为乙的充要条件.例5设A、B、C三个集合,为使A症(BUC),条件是[] A.充分条件 B.必要条件C.充要条件D.既不充分也不必要条件分析可以结合图形分析.请同学们自己画图.解V 而BGfBUC),.-.A^(BUC).但是,当B=N, C=R, A=Z 时,显然A^(BUC),但A^B不成立,综上所述:“A£B”=>“A£(BUC)”,而“A£(BUC)”氓“A^B”.即"A£B”是“A^(BUC)”的充分条件(不必要).选A.说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6给出下列各组条件:(1)p: ab=0, q: a2+b2=0;(2)p: xyMO, q: x + iy = x+y ;(3)p: m>0, q:方程x2—x—m=0 有实根:(4)p: x —1 >2, q: x< —1.其中P是q的充要条件的有[] A・1组B・2组C・3组D・4组分析使用方程理论和不等式性质. 解(l )p 是q 的必要条件(2) p 是q 充要条件 (3) p 是q 的充分条件 (4) p 是q 的必要条件.选A.说明:ab=O 指苴中至少有一个为零,而a 2+b 2=0指两个都为零.X. >3 X. +X 9>6例7、。
充分条件与必要条件练习题及答案
例1 已知p :x 1,x 2是方程x 2+5x -6=0的两根,q :x 1+x 2=-5,则p 是q 的[ ]A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 分析 利用韦达定理转换.解 ∵x 1,x 2是方程x 2+5x -6=0的两根, ∴x 1,x 2的值分别为1,-6, ∴x 1+x 2=1-6=-5.因此选A .说明:判断命题为假命题可以通过举反例. 例2 p 是q 的充要条件的是[ ]A .p :3x +2>5,q :-2x -3>-5B .p :a >2,b <2,q :a >bC .p :四边形的两条对角线互相垂直平分,q :四边形是正方形D .p :a ≠0,q :关于x 的方程ax =1有惟一解 分析 逐个验证命题是否等价.解 对A .p :x >1,q :x <1,所以,p 是q 的既不充分也不必要条件; 对B .p q 但q p ,p 是q 的充分非必要条件; 对C .p q 且q p ,p 是q 的必要非充分条件;对.且,即,是的充要条件.选.D p q q p p q p q D ⇒⇒⇔说明:当a =0时,ax =0有无数个解.例3 若A 是B 成立的充分条件,D 是C 成立的必要条件,C 是B 成立的充要条件,则D 是A 成立的[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 通过B 、C 作为桥梁联系A 、D . 解 ∵A 是B 的充分条件,∴A B ① ∵D 是C 成立的必要条件,∴C D ②∵是成立的充要条件,∴③C B C B ⇔由①③得A C ④ 由②④得AD .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|; (3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a0ax2x100 21a0a12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a0ax2x100 221a21a1a02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a≤1.即ax2+2x+1=0至少有一个负实根的充要条件是a≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p、q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么s,r,p分别是q的什么条件分析画出关系图1-21,观察求解.解 s是q的充要条件;(s r q,q s)r是q的充要条件;(r q,q s r)p是q的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系.例11 关于x的不等式|x|x3(a1)x2(3a1)0AB A B1a3a12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a+-⊆121222分析化简A和B,结合数轴,构造不等式(组),求出a.解 A={x|2a≤x≤a2+1},B={x|(x-2)[x-(3a+1)]≤0}当≤+即≥时,23a1a13B={x|2≤x≤3a+1}.A B2a2a+13a+11a323a1a2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B={x|3a+1≤x≤2}A B2a3a+1a+12a1A B a11a3A B1a3a12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。
考点62 充分、必要条件(练习)(原卷版)
考点62 充分、必要条件【题组一 充分、必要条件】1.(2020·全国)“0ab <”是方程“22ax by c +=”表示双曲线的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件2.(2020·全国)“1m 且2m ≠”是“方程22121x y m m -=--表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2020·内蒙古集宁一中)设命题甲为:15x -<<,命题乙为:|2|4x -<,那么甲是乙的 A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件4.(2020·民勤县第一中学)“01m <≤”是函数11()11mx f x x x x ⎧->⎪=⎨⎪-+≤⎩,,满足:对任意的12x x ≠,都有12()()f x f x ≠”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2018·吉林长春外国语学校)已知命题p 、q ,如果p ⌝是q ⌝的充分而不必要条件,那么q 是p 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要6.(2020·陕西新城.西安中学高三月考(文))设x R ∈,i 是虚数单位,则“2x =”是“复数()()242z x x i =-++为纯虚数”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件7.(2020·上海高三其他)在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC 是以A 、B 为底角的等腰三角形”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件8.(2020·北京市第五中学高三其他)已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (12)=0,则“不等式f (log 4x )>0的解集”是“{x |0<x <12}”的( ) A .充分不必要条件 B .充分且必要条件 C .必要不充分条件 D .既不充分也不必要条件【题组二 充分、必要条件的选择】1.(2019·湖南永州.高考模拟(文))“不等式20x x m -+>在R 上恒成立”的充要条件是( ) A .14m > B .14m <C .1m <D .1m2.(2019·普宁市华美实验学校高三开学考试(理))“函数1()31xf x a =++有零点”的充要条件是( ) A .10a -<< B .1a <- C .0a <D .01a <<3.(2020·安徽高三三模(理))“关于x 的方程()212xxa +=有实数解”的一个充分不必要条件是( ) A .113a << B .12a ≥C .213a << D .112a ≤<【题组三 求参数】1.(2020·天津南开.高三一模)已知命题2:230p x x +->,命题:q x a >,且q 的一个必要不充分条件是p ,则实数a 的取值范围是( )A .[)1,+∞B .(],1-∞C .[)1,-+∞D .(],3-∞-2.(2020·四川成都.高三二模(文))已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( ) A .12m > B .12m ≥C .1mD .m 1≥3.(2019·福建厦门一中高三其他(理))已知命题{}2:|560p A x x x =-+<,命题{}:|lg(2),q B x y x a a R ==-∈.若命题q 是p 的必要不充分条件,则a 的取值范围是( )A .2a <B .2a ≤C .4a <D .4a ≤4.(2019·九龙坡.重庆市育才中学高三三模(理))已知集合{}2230A x x x =+-<,集合{}3B x x a =-<<,若“x B ∈”是“x A ∈”的必要不充分条件,则实数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞ C .()3,1- D .(]3,1-5.(2019·天津市宁河区芦台第一中学高考模拟(理))已知条件p:|x +1|>2,条件q:|x|>a ,且¬p 是¬q 的必要不充分条件,则实数a 的取值范围是( ) A .0≤a ≤1 B .1≤a ≤3C .a ≤1D .a ≥36.(2019·江西上饶.高三二模(理))已知命题2:|03x p A x x -⎧⎫=<⎨⎬-⎩⎭,命题:{|lg(2),}q B x y x a a R ==-∈.若命题q 是p 的必要不充分条件,则a 的取值范围是( ) A .4a ≥ B .4a ≤C .4a >D .4a <7.(2020·江西高三其他(文))设x ∈R ,a <b ,若“a ≤x ≤b ”是“x 2+x -2≤0”的充分不必要条件,则b -a 的取值范围为( ) A .()0,2B .(]0,2C .()0,3D .(]0,3 8.(2020·四川省绵阳南山中学高三其他(理))已知1:12p x ≥-,()2:1q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( ) A .(-∞,3]B .[2,3]C .(2,3]D .(2,3)9.(2020·定远县育才学校)条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.10.(2020·上海市市北中学)设条件:22x α-<<,条件:2213m x m β-≤<-,且α是β的充分条件,则实数m 的取值范围是___________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
充分条件和必要条件练习题
1.设x R ∈,则“”是“2210x x +->”的( ) A .充分不必要条件 B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
2.若a R ∈,则“0a =”是“cos sin a a >”的( )
A .必要不充分条件
B .充分不必要条件
C .充分必要条件
D .既不充分也不必要条件
3.设x R ∈,且0x ≠, ) A .充分而不必要条件 B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
4.已知a R ∈,则“2a >”是“22a a >”的( )
A .充分非必条件
B .必要不充分条件
C .充要条件
D .既非充分也非必要条件
5.设x R ∈,则“”是“220x x +->”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .即不充分也不必要条件
6.若a ,b 为实数,则“0<a b <1”是“b <
) A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
7.“0>>b a ”是“22b a >”的什么条件?( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
8.“1<x <2”是“x<2”成立的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
9.12x <<“”是”
“2<x 成立的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件
10.A,B 是任意角,“A=B ”是“sinA=sinB ”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
11.设a R ∈,则“1a <”是“11a
>”( ) A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
12.“20x >”是“0x >”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
13.x=y ”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
14.”
”是““00>≠x x 的( ) A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
15.命题5:>x p ,命题3:>x q ,则p 是q 的 ( )
A .必要不充分条件
B .充分不必要条件
C .充要条件
D .既不充分也不必要条件
16.“1x =”是“2210x x -+=”的( )
A .充要条件
B .充分不必要条件
C .必要不充分条件
D .既不充分也不必要条件
17.若R a ∈,则“2a =”是“()()240a a -+=”的( )
A .充要条件
B .充分不必要条件
C .必要不充分条件
D .既不充分也不必要条件
一、填空题
18.已知条件p :13x ≤≤,条件q :2560x x -+<,则p 是q 的 条件.
A .充分必要条件
B .充分不必要条件
C .必要不充分条件
D .既非充分也非必要条件
参考答案
1.A
【解析】
”是“2210x x +->”的充分不必要条件,故选A .
考点:充要条件.
2.B
【解析】
即充分条件成立,但当ααsin cos >故必要条件不成立,综合选B.
考点:1.正余弦函数的单调性;2.充分条件和必要条件的定义.
3.A
【解析】
,得1x <-,由,解得01x <<或0x <,所以“
A. 考点:充要条件的应用.
4.A
【解析】
试题分析:因为当“2a >” 成立时,()2220,a a a a -=->∴ “22a a >” 成立. 即“2a >”⇒“22a a >” 为真命题;而当“22a a >” 成立时, ()2220a a a a -=->, 即2a >或0,2a a <∴>不一定成立, 即“22a a >”⇒“2a >”的充分非必要条件,故选A. 考点:1、充分条件与必要条件;2、不等式的性质.
【方法点睛】本题主要考查不等式的性质及充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.
5.A
【解析】
试题分析:由得31<<x ,由220x x +->得1>x 或2-<x ,即是“220x x +->”的充分不必要条件,故选:A .
考点:充分条件与必要条件的判断.
6.D
【解析】 时,p 不能推出q ,当0,0b a <>时,q 不能推出p ,故是既不充分也不必要条件.
考点:充要条件.
7.A
【解析】
试题分析:当0>>b a 时,能推出22b a >,反过来,当22b a >不能推出0>>b a ,所以是充分不必要条件,故选A.
考点:充分必要条件
8.A
【解析】
试题分析:若“12x <<”,则“2x <”成立,反之不成立,所以“12x <<”是“2x <”的成立充分不必要条件.
故选A.
考点:充分条件和必要条件的判断.
9.A
【解析】
试题分析:当12x <<时可得2x <成立,反之不成立,所以12x <<“”是”“2<x 成立的充分不必要条件
考点:充分条件与必要条件
10.A
【解析】
试题分析:由B A =可得B A sin sin =,由B A sin sin =不一定有B A =,如:0=A ,π=B ,所以B A =是B A sin sin =的充分不必要条件.故选A.
考点:充分条件、必要条件.
11.B.
【解析】 试题分析:111110001a a a a a
->⇔->⇔>⇔<<,故是必要不充分条件,故选B . 考点:1.解不等式;2.充分必要条件.
12.B .
【解析】 试题分析:因为由20x >解得:0x >或0x <,∴“0x >或0x <”是“0x >”的必要而不充分条件.
考点:充分必要条件.
13.B
【解析】
或x y =-,所以是“x y =”的必要不充分条件.故B 正确.
考点:充分必要条件.
14.B
【解析】 试题分析:00x x >⇒≠“”“”,反之不成立,因此选B .
考点:充要关系
15.B
【解析】
试题分析:若5x >成立则3x >成立,反之当3x >成立时5x >不一定成立,因此p 是q 的充分不必要条件
考点:充分条件与必要条件
16.A
【解析】
试题分析:当1x =时,2210x x -+=;
同时当2210x x -+=时,可得1x =;可得“1x =”是“2210x x -+=”的充要条件.
考点:充分、必要条件的判断.
【易错点晴】本题主要考查的是一元二次不等式、对数不等式和集合的交集、并集和补集运算,属于容易题.解不等式时一定要注意对数的真数大于0和2x 的系数大于0,否则很容易出现错误.
17.B
【解析】 试题分析:若“2a =”,则“()()240a a -+=”;反之 “()()240a a -+=”,则2,a =或4a =-.故“2a =”是“()()240a a -+=”的充分不必要条件.
考点:充分、必要条件的判断.
18.C
【解析】 试题分析:解不等式2560x x -+<得23x <<,由p :13x ≤≤可知p 是q 的必要不充分条件条件
考点:充分条件与必要条件。