脱硫吸收塔的直径和喷淋塔高度设计复习进程

合集下载

脱硫吸收塔地直径和喷淋塔高度设计

脱硫吸收塔地直径和喷淋塔高度设计

吸收塔的直径和喷淋塔高度设计脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。

但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。

而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。

通常烟气中的二氧化硫浓度比较低。

吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。

)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。

根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

吸收塔的相关设计计算

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型(2) 喷淋塔吸收区高度设计(二)对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。

逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。

湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。

(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。

首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量ζ=hC K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3η为给定的二氧化硫吸收率,%;本设计方案为95%h 为吸收塔内吸收区高度,mK 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ;K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。

二氧化硫质量浓度应该低于580mg/m 3(标状态)ζ的单位换算成kg/( m 2.s),可以写成ζ=3600×h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752C ︒+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×103mg/m 3而原来烟气的流量(200C ︒时)为标况20×103(m 3/h) (设为V a )换算成工况25360m3/h 时已经求得 V a =2×103 m 3/h=5.6 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为2SO m =5.6×650mg/m 3=3640mg=3.64gV 2SO = 3.6422.4 L/mol 64/g g mol ⨯=1.3L/s=0.0013 m 3/s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故 y 1=0.0013100%0.023%5.6⨯= 又 烟气流速u=3.5m/s, y 1=0.023%,C t ︒==75,95.0η总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )代入(7)式可得6=64273(3600 3.50.000230.95)/22.427375h ⨯⨯⨯⨯⨯+ 故吸收区高度h=6.17/6≈1.03m(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。

脱硫装置吸收塔的设计计算

脱硫装置吸收塔的设计计算

(一)设计方案的确定用水吸收S02,为提高传质效率,选用逆流吸收过程。

因用水作为吸收剂,且S02不作为产品,故采用纯溶剂。

(二)填料的选择该系统不属于难分离的系统,操作温度及压力较低,可采用散装填料,系统中有S02,有一定的腐蚀性,故考虑选用塑料鲍尔环,由于系统压降无特殊要求,考虑到不同尺寸鲍尔环的传质性能选用D g38塑料鲍尔填料。

(三)设计步骤本课程设计从以下几个方面的内容来进行设计(1)吸收塔的物料衡算;(2)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(3)设计液体分布器及辅助设备的选型;(4)绘制有关吸收操作图纸。

(四)基础数据1、液相的物性数据对于低浓度的吸收过程,溶液的物性数据可以近似取水的物性数据,由手册查得,20℃时水的有关物性数据如下:密度ρ=998.2 kg/m3L粘度μ=0.001 Pa·s=3.6 kg/(m·h)L表面张力L σ=73 dyn/cm=940 896 kg/h 2S02在水中的扩散系数L D =1.47×10-5cm 2/s=5.29×10-6 m 2/h2、 气相的物性数据 混合气体的平衡摩尔质量M =0.04×64.06+0.96×29=30.40 g/mol混合气体的平均密度G ρ=101.330.408.31427330⨯⨯+()=1.222 kg/m3混合气体的粘度可以近似取空气的粘度,查手册20℃时空气的粘度为G μ=1.81×10-5Pa ·s=0.065 kg/(m ·h)查手册得S02在空气中的扩散系数为G D =0.108 cm 2/s =0.039 m 2/h3、 气液相平衡数据 查手册,常压下20℃时: S02在水中的亨利系数E=3.55×1O 3kPa相平衡常数为m E P==3.55×1O 3/101.3=35.04 溶解度系数LLH EM ρ==998.2/3.55×1O 3/18.02=0.0156 kmol/h4、填料的填料因子及比表面积数据 泛点填料因子F φ=184 /m压降填料因子P φ=114 /m比表面积t α=151 m 2/m 3填料临界表面张力C σ=33 dyn/cm=427680 kg/h 2(五) 物料衡算进塔气相摩尔比111y 0.041y 10.04Y ==--=0.042 出塔气相摩尔比222y 0.00151y 10.0015Y ===-- 1.5×10-3进塔惰性气相流量3500273(10.04)22.427330G =⨯⨯-+=135.15 kmol/h吸收过程属于低浓度吸收,最小液气比可按下式计算12min 12)Y Y LG Y m X -=-( 对于纯溶剂的吸收过程,进塔液相组成为:X 2=0312min 120.042 1.510)33.790.04235.040Y Y L G Y m X ---⨯===--( 取液气操作比为1.5min ) 1.533.7950.685L LG G=⨯==1.5( 50.685135.1550.6856850.08/L G kmol h =⨯=⨯=塔底吸收液组成1X :1212()()G Y Y L X X -=-34121()135.15(0.042 1.510)8.0106850.08G Y Y X L ---⨯-⨯===⨯表1:气相进出组成(六)填料塔工艺尺寸的计算1、塔径的计算采用Eckert通用关联图计算泛点气速气相的质量流量G h=⨯='3500 1.2224277kg/液相的质量流量(可以近似用纯水的流量计算)=⨯=L kg h'6850.818.02123438.4/参照Eckert通用关联图图 1: 填料塔泛点和压降的通用关联图(引自《化工原理》)图中 u 0——空塔气速,m /s ;φ——湿填料因子,简称填料因子,1 /m ; ψ——水的密度和液体的密度之比; g ——重力加速度,m /s 2;ρV 、ρL ——分别为气体和液体的密度,kg /m 3; w V 、w L ——分别为气体和液体的质量流量,kg /s 。

脱硫塔选型与设计

脱硫塔选型与设计

烟气脱硫工艺主要设备吸收塔设计和选型4.1吸收塔的设计吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。

4.1.1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。

但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。

而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。

通常烟气中的二氧化硫浓度比较低。

吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。

)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。

根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x2,x1为喷淋塔石灰石浆液进出塔时的SO2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m2﹒h)W 液相空塔质量流速,kg/(m2﹒h)y1×=mx1, y2×=mx2 (m为相平衡常数,或称分配系数,无量纲)k Y a为气体膜体积吸收系数,kg/(m2﹒h﹒kPa)k L a为液体膜体积吸收系数,kg/(m2﹒h﹒kmol/m3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

脱硫吸收塔的直径和喷淋塔高度设计

脱硫吸收塔的直径和喷淋塔高度设计

吸收塔的直径和喷淋塔高度设计脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。

但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。

而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。

通常烟气中的二氧化硫浓度比较低。

吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。

)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。

根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

吸收塔的相关设计计算

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型(2) 喷淋塔吸收区高度设计(二)对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。

逆流式吸收塔的烟气速度一般在-5ms 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。

湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为。

(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。

首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量ζ=hC K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,mK 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ;K 0=3600u ×273/(273+t)按照排放标准,要求脱硫效率至少95%。

二氧化硫质量浓度应该低于580mg/m 3(标状态)ζ的单位换算成kg/( 2,可以写成ζ=3600×h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752C ︒+=下、烟气流速为 u=3.5m/s 、脱硫效率η= 前面已经求得原来烟气二氧化硫SO 2质量浓度为a (mg/3m )且 a=×103mg/m 3 而原来烟气的流量(200C ︒时)为标况20×103(m 3/h) (设为V a )换算成工况25360m3/h 时已经求得 V a =2×103 m 3/h=5.6 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为2SO m =×650mg/m 3=3640mg=3.64gV 2SO = 3.6422.4 L/mol 64/g g mol ⨯=1.3L/s=0.0013 m 3/s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故 y 1=0.0013100%0.023%5.6⨯= 又 烟气流速u=3.5m/s, y 1=%,C t ︒==75,95.0η总结已经有的经验,容积吸收率范围在-6.5 Kg (m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )代入(7)式可得 6=64273(3600 3.50.000230.95)/22.427375h ⨯⨯⨯⨯⨯+ 故吸收区高度h=6≈1.03m(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。

吸收塔的相关设计计算

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型(2)喷淋塔吸收区高度设计(二)对于喷淋塔,液气比范围在8L/m3-25 L/m3之间[5],根据相关文献资料可知液气比选择12.2 L/m3是最佳的数值。

逆流式吸收塔的烟气速度一般在2.5-5m/s范围内[5][6],本设计方案选择烟气速度为3.5m/s。

湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。

(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。

首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量ζ=(3)其中C为标准状态下进口烟气的质量浓度,kg/m3η为给定的二氧化硫吸收率,%;本设计方案为95%h为吸收塔内吸收区高度,mK0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ;K 0=3600u ×273/(273+t)按照排放标准,要求脱硫效率至少95%。

二氧化硫质量浓度应该低于580mg/m 3(标状态)ζ的单位换算成kg/( m 2.s),可以写成ζ=3600×h y u t/*273273*4.22641η+ (7) 在喷淋塔操作温度下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为a (mg/3m )且 a=0.650×103mg/m 3而原来烟气的流量(200C ︒时)为标况20×103(m 3/h) (设为V a )换算成工况25360m3/h 时已经求得 V a =2×103 m 3/h=5.6 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为 2SO m =5.6×650mg/m 3=3640mg=3.64g V 2SO = 3.6422.4 L/mol 64/g g mol ⨯=1.3L/s=0.0013 m 3/s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等故 y 1=0.0013100%0.023%5.6⨯= 又 烟气流速u=3.5m/s, y 1=0.023%,C t ︒==75,95.0η总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )代入(7)式可得6=64273(3600 3.50.000230.95)/22.427375h⨯⨯⨯⨯⨯+故吸收区高度h=6.17/6≈1.03m(4)喷淋塔除雾区高度(h3)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m3 [9]。

吸收塔的相关设计计算

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型(2) 喷淋塔吸收区高度设计(二)对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。

逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。

湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。

(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。

首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量ζ=hC K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3η为给定的二氧化硫吸收率,%;本设计方案为95%h 为吸收塔内吸收区高度,mK 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ;K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。

二氧化硫质量浓度应该低于580mg/m 3(标状态)ζ的单位换算成kg/( m 2.s),可以写成ζ=3600×h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752C ︒+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×103mg/m 3而原来烟气的流量(200C ︒时)为标况20×103(m 3/h) (设为V a )换算成工况25360m3/h 时已经求得 V a =2×103 m 3/h=5.6 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为2SO m =5.6×650mg/m 3=3640mg=3.64gV 2SO = 3.6422.4 L/mol 64/g g mol ⨯=1.3L/s=0.0013 m 3/s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故 y 1=0.0013100%0.023%5.6⨯= 又 烟气流速u=3.5m/s, y 1=0.023%,C t ︒==75,95.0η总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )代入(7)式可得6=64273(3600 3.50.000230.95)/22.427375h ⨯⨯⨯⨯⨯+ 故吸收区高度h=6.17/6≈1.03m(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。

脱硫装置吸收塔的设计计算

脱硫装置吸收塔的设计计算

(一)设计方案的确定用水吸收S02,为提高传质效率,选用逆流吸收过程。

因用水作为吸收剂,且S02不作为产品,故采用纯溶剂。

(二)填料的选择该系统不属于难分离的系统,操作温度及压力较低,可采用散装填料,系统中有S02,有一定的腐蚀性,故考虑选用塑料鲍尔环,由于系统压降无特殊要求,考虑到不同尺寸鲍尔环的传质性能选用D g38塑料鲍尔填料。

(三)设计步骤本课程设计从以下几个方面的内容来进行设计(1)吸收塔的物料衡算;(2)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(3)设计液体分布器及辅助设备的选型;(4)绘制有关吸收操作图纸。

(四)基础数据1、液相的物性数据对于低浓度的吸收过程,溶液的物性数据可以近似取水的物性数据,由手册查得,20℃时水的有关物性数据如下:密度ρ=998.2 kg/m3L粘度μ=0.001 Pa·s=3.6 kg/(m·h)L表面张力L σ=73 dyn/cm=940 896 kg/h 2S02在水中的扩散系数L D =1.47×10-5cm 2/s=5.29×10-6 m 2/h2、 气相的物性数据 混合气体的平衡摩尔质量M =0.04×64.06+0.96×29=30.40 g/mol混合气体的平均密度G ρ=101.330.408.31427330⨯⨯+()=1.222 kg/m3混合气体的粘度可以近似取空气的粘度,查手册20℃时空气的粘度为G μ=1.81×10-5Pa ·s=0.065 kg/(m ·h)查手册得S02在空气中的扩散系数为G D =0.108 cm 2/s =0.039 m 2/h3、 气液相平衡数据 查手册,常压下20℃时: S02在水中的亨利系数E=3.55×1O 3kPa相平衡常数为m E P==3.55×1O 3/101.3=35.04 溶解度系数LLH EM ρ==998.2/3.55×1O 3/18.02=0.0156 kmol/h4、填料的填料因子及比表面积数据 泛点填料因子F φ=184 /m压降填料因子P φ=114 /m比表面积t α=151 m 2/m 3填料临界表面张力C σ=33 dyn/cm=427680 kg/h 2(五) 物料衡算进塔气相摩尔比111y 0.041y 10.04Y ==--=0.042 出塔气相摩尔比222y 0.00151y 10.0015Y ===-- 1.5×10-3进塔惰性气相流量3500273(10.04)22.427330G =⨯⨯-+=135.15 kmol/h吸收过程属于低浓度吸收,最小液气比可按下式计算12min 12)Y Y LG Y m X -=-( 对于纯溶剂的吸收过程,进塔液相组成为:X 2=0312min 120.042 1.510)33.790.04235.040Y Y L G Y m X ---⨯===--( 取液气操作比为1.5min ) 1.533.7950.685L LG G=⨯==1.5( 50.685135.1550.6856850.08/L G kmol h =⨯=⨯=塔底吸收液组成1X :1212()()G Y Y L X X -=-34121()135.15(0.042 1.510)8.0106850.08G Y Y X L ---⨯-⨯===⨯表1:气相进出组成(六)填料塔工艺尺寸的计算1、塔径的计算采用Eckert通用关联图计算泛点气速气相的质量流量G h=⨯='3500 1.2224277kg/液相的质量流量(可以近似用纯水的流量计算)=⨯=L kg h'6850.818.02123438.4/参照Eckert通用关联图图 1: 填料塔泛点和压降的通用关联图(引自《化工原理》)图中 u 0——空塔气速,m /s ;φ——湿填料因子,简称填料因子,1 /m ; ψ——水的密度和液体的密度之比; g ——重力加速度,m /s 2;ρV 、ρL ——分别为气体和液体的密度,kg /m 3; w V 、w L ——分别为气体和液体的质量流量,kg /s 。

吸收塔的相关设计计算

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型(2) 喷淋塔吸收区高度设计(二)对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。

逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。

湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。

(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。

首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量ζ=hC K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,mK 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ;K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。

二氧化硫质量浓度应该低于580mg/m 3(标状态)ζ的单位换算成kg/( m 2.s),可以写成ζ=3600×h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752C ︒+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×103mg/m 3而原来烟气的流量(200C ︒时)为标况20×103(m 3/h) (设为V a )换算成工况25360m3/h 时已经求得 V a =2×103 m 3/h=5.6 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为2SO m =5.6×650mg/m 3=3640mg=3.64gV 2SO = 3.6422.4 L/mol 64/g g mol ⨯=1.3L/s=0.0013 m 3/s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故 y 1=0.0013100%0.023%5.6⨯= 又 烟气流速u=3.5m/s, y 1=0.023%,C t ︒==75,95.0η总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )代入(7)式可得6=64273(3600 3.50.000230.95)/22.427375h ⨯⨯⨯⨯⨯+ 故吸收区高度h=6.17/6≈1.03m(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。

吸收塔的设计和选型

吸收塔的设计和选型

吸收塔的设计吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。

4.1.1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。

但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。

而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。

通常烟气中的二氧化硫浓度比较低。

吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。

)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。

根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有 喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

烟气脱硫设计计算

烟气脱硫设计计算

烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5%工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。

吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。

净烟气经过除雾器降低烟气中的水分后排入烟囱。

粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。

吸收过程吸收过程发生的主要反应如下:Mg(OH)2+SO2→MgSO3+H2OMgSO3+SO2+H2O→Mg(HSO3)2Mg(HSO3)2+Mg(OH)2→2MgSO3+2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。

这个阶段化学反应如下:MgSO3+1/2O2→MgSO4Mg(HSO3)2+1/2O2→MgSO4+H2SO3H2SO3+Mg(OH)2→MgSO3+2H2OMgSO3+1/2O2→MgSO4是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。

塔底吸收液pH由自动喷注的20%氢氧化镁浆液调整,而且与酸碱计连锁控制。

当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。

20%氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。

吸收塔地相关设计计算

吸收塔地相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型(2)喷淋塔吸收区高度设计(二)对于喷淋塔,液气比范围在8L/m3-25 L/m3之间⑸,根据相关文献资料可知液气比选择12.2 L/m I是最佳的数值。

逆流式吸收塔的烟气速度一般在2.5-5m/s范围内⑸⑹,本设计方案选择烟气速度为|.5m/s。

湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90鸠上时(本设计反案尾5%,钠硫比(Na/S) —般略微大于1,本次选择的钠硫比(Na/S)为1.02。

(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷-------- 平均容积吸收率, 以匚-.表示。

首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量=^KoC-V h其中C为标准状态下进口烟气的质量浓度,kg/m3为给定的二氧化硫吸收率,%;本设计方案为95%h 为吸收塔内吸收区高度,mK)为常数,其数值取决于烟气流速u(m/s)和操作温度「C);K)=3600uX 273/(273+t)按照排放标准,要求脱硫效率至少95%二氧化硫质量浓度应该低于580mg/m (标状态)■的单位换算成kg/( m 2 .s),可以写成- 64 273=3600X * u* y, /h (7)22.4273 +t在喷淋塔操作温度100 50 =75 C下、烟气流速为u=3.5m/s、脱硫效率=0.95 2前面已经求得原来烟气二氧化硫SO2质量浓度为a (mg/ m3)且a=0.650 X103mg/mf而原来烟气的流量(200 C时)为标况20x 103(m3/h)(设为Va)换算成工况25360m3/h 时已经求得V a =2x 103 m3/h=5.6 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为3m S o2=5.6 x 650mg/m =3640mg=3.64gV SQ=S'64 g述22.4 L/mol =1.3L/s=0.0013 m 3/s64g / mol则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等故y ,=0.0013 100% =0.023%5.6又烟气流速u=3.5m/s, y 1=0.023%,二0.95, 75 C总结已经有的经验,容积吸收率范围在 5.5-6.5 Kg/ (m • s)之间⑺,取=6 kg/ (m. s)代入(7)式可得6= (3600 仝2733.5 0.00023 0.95)/ h22.4273+75故吸收区高度h=6.17/6〜1.03m(4)喷淋塔除雾区高度(h a)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m⑻ 。

烟气脱硫简单设计计算讲解

烟气脱硫简单设计计算讲解
运行可靠
镁法脱硫相对于钙法的最大优势是系统不会发生设备结垢堵塞问题,能保证整个脫硫系 统能够安全有效的运行,同时镁法PH值控制在6.0-6.5之间,在这种条件下设备腐蚀问题 也得到了一定程度的解决。总的来说,镁法脱硫在实际工程中的安全性能拥有非常有力的保
第二章设计计算
1
《通知》规泄二氧化硫的排放量可以按实际监测或物料衡算法计算,由于火力发电厂烟 气监测装置的应用并没有普及,因此大多采用物料平衡方法进行计算:
2、2旁路烟道尺寸
旁路烟道主要用于脱硫塔在检修或出现故障需要紧急停止运行,防止对塔体及内部设 备造成损害而设立的烟气旁路输送烟道。烟气的流速取15m/s,烟道与主烟道相连接,所以 其高度应与已有烟道相同,便于施工,取高为2.1m:烟气量为全部工况下最大烟气量,即285000m3/h,则烟道的宽度为2.5m。
镁法脱硫优点
技术成熟
氧化镁脱硫技术是一种成熟度仅次于钙法的脫硫工艺,氧化镁脱硫工艺在世界各地都有 非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法, 另外在美国、徳国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。
原料来源充足
在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其 次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃 肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。
273+130
脱硫塔进口二氧化硫的含量C1
2727-200
需要的脱硫效率为:n= —―x100%=92.7%
2727
2.

烟气脱硫设计计算

烟气脱硫设计计算

烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。

吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。

净烟气经过除雾器降低烟气中的水分后排入烟囱。

粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。

吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 →MgSO3 + H2OMgSO3 + SO2 + H2O →Mg(HSO3)2Mg(HSO3)2 + Mg(OH)2 →2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。

这个阶段化学反应如下:MgSO3 + 1/2O2 →MgSO4Mg(HSO3)2 + 1/2O2 →MgSO4 + H2SO3H2SO3 + Mg(OH)2 →MgSO3 + 2H2OMgSO3 + 1/2O2 →MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。

塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。

当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。

20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。

烟气脱硫简单设计计算

烟气脱硫简单设计计算

烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。

吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。

净烟气经过除雾器降低烟气中的水分后排入烟囱。

粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。

吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HS O3)2Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。

这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。

塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。

当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。

20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。

吸收塔的设计和选型

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型4.1吸收塔的设计吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。

4.1.1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。

但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。

而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。

通常烟气中的二氧化硫浓度比较低。

吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。

)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。

根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x2,x1为喷淋塔石灰石浆液进出塔时的SO2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m2﹒h)W 液相空塔质量流速,kg/(m2﹒h)y1×=mx1, y2×=mx2 (m为相平衡常数,或称分配系数,无量纲)k Y a为气体膜体积吸收系数,kg/(m2﹒h﹒kPa)k L a为液体膜体积吸收系数,kg/(m2﹒h﹒kmol/m3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

吸收塔的设计和选型

吸收塔的设计和选型

吸收塔的设计和选型烟气脱硫工艺主要设备吸收塔设计和选型4.1吸收塔的设计吸收塔就是烟气装置的核心,就是利用石灰石和亚硫酸钙去脱下烟气中二氧化硫气体的主要设备,必须确保较低的烟气效率,必须对吸收塔系统展开详尽的排序,包含吸收塔的尺寸设计,塔内燃烧室的布局,吸收塔底部烘烤装置的形式的挑选、吸收塔材料的挑选以及服务设施结构的挑选(包含法兰、人孔等)。

4.1.1吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计4.1.1.1喷淋塔的高度设计喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。

但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。

而计算喷淋塔吸收区高度主要有两种方法:(1)喷淋塔吸收区高度设计(一)达至一定的稀释目标须要一定的塔高。

通常烟气中的二氧化硫浓度比较高。

稀释区高度的理论排序式为h=h0×ntu(1)其中:h0为传质单元高度:h0=gm/(kya)(ka为污染物气相摩尔高推动力的总传质系数,a为塔内单位体积中有效率的传质面积。

)ntu为传质单元数,对数数值为ntu=(y1-y2)/△ym,即为气相总的浓度变化除于平均值推动力△ym=(△y1-△y2)/ln(△y1/△y2)(ntu就是表观稀释困难程度的量,ntu越大,则达至稀释目标所须要的塔高随之减小。

根据(1)所述:h=h0×ntu=gmy1?y2gmy1?y2*?***kya?ymkya(y1?y1)?(y2?y2)*y1?y1ln()*y2?y2kya=kya=9.81×10?4g 0.7w0.25[4]kla??w0.82[4](2)其中:y1,y2为脱硫塔内烟气进塔出塔气体中so2组分的摩尔比,kmol(a)/kmol(b)**y1,y2为与喷淋塔进塔和出来塔液体均衡的气相浓度,kmol(a)/kmol(b)kya为气相总体积吸收系数,kmol/(m3.hqkpa)x2,x1为喷淋塔石灰石浆液出入塔时的so2组分摩尔比,kmol(a)/kmol(b)g气相空塔质量流速,kg/(m2qh)w液相空塔质量流速,kg/(m2qh)y1×=mx1,y2×=mx2(m为二者平衡常数,或表示分配系数,无量纲)kya为气体膜体积吸收系数,kg/(m2qhqkpa)kla为液体膜体积吸收系数,kg/(m2qhqkmol/m3)式(2)中?为常数,其数值根据表中2[4]表3温度与?值的关系温度/?100.0093150.0102200.0116250.0128300.0143使用稀释有关科学知识去展开稀释区高度排序就是比较传统的高度计算方法,虽然排序步骤简单明了,但是由于石灰石浆液在存有喷淋塔自上而下的流动过程中由于石灰石浓度的增加和亚硫酸钙浓度的不断减少,石灰石浆液的稀释传质系数也在不断变化,如果要数出来具体内容的瞬间数值就是不可能将的,因此使用这种方法排序难以获得比较准确的数值。

吸收塔的相关设计计算

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型(2) 喷淋塔吸收区高度设计(二)对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。

逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。

湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。

(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。

首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量ζ=hC K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3η为给定的二氧化硫吸收率,%;本设计方案为95%h 为吸收塔内吸收区高度,mK 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ;K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。

二氧化硫质量浓度应该低于580mg/m 3(标状态)ζ的单位换算成kg/( m 2.s),可以写成ζ=3600×h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752C ︒+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×103mg/m 3而原来烟气的流量(200C ︒时)为标况20×103(m 3/h) (设为V a )换算成工况25360m3/h 时已经求得 V a =2×103 m 3/h=5.6 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为2SO m =5.6×650mg/m 3=3640mg=3.64gV 2SO = 3.6422.4 L/mol 64/g g mol ⨯=1.3L/s=0.0013 m 3/s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故 y 1=0.0013100%0.023%5.6⨯= 又 烟气流速u=3.5m/s, y 1=0.023%,C t ︒==75,95.0η总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )代入(7)式可得6=64273(3600 3.50.000230.95)/22.427375h ⨯⨯⨯⨯⨯+ 故吸收区高度h=6.17/6≈1.03m(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脱硫吸收塔的直径和喷淋塔高度设计吸收塔的直径和喷淋塔高度设计脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。

但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。

而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。

通常烟气中的二氧化硫浓度比较低。

吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。

)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。

根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有 喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

以上是传统的计算喷淋塔吸收区高度的方法,此外还有另外一种方法可以计算。

(2)喷淋塔吸收区高度设计(二)采用第二种方法计算,为了更加准确,减少计算的误差,需要将实际的喷淋塔运行状态下的烟气流量考虑在内。

而这部分的计算需要用到液气比(L/G)、烟气速度u(m/s)和钙硫摩尔比(Ca/S)的值。

本设计中的液气比L/G是指吸收剂石灰石液浆循环量与烟气流量之比值(L/M3)。

如果增大液气比L/G,则推动力增大,传质单元数减少,气液传质面积就增大,从而使得体积吸收系数增大,可以降低塔高。

在一定的吸收高度内液气比L/G增大,则脱硫效率增大。

但是,液气比L/G增大,石灰石浆液停留时间减少,而且循环泵液循环量增大,塔内的气体流动阻力增大使得风机的功率增大,运行成本增大。

在实际的设计中应该尽量使液气比L/G减少到合适的数值同时有保证了脱硫效率满足运行工况的要求。

湿法脱硫工艺的液气比的选择是关键的因素,对于喷淋塔,液气比范围在8L/m3-25 L/m3之间[5],根据相关文献资料可知液气比选择12.2 L/m3是最佳的数值[5][6]。

烟气速度是另外一个因素,烟气速度增大,气体液体两相截面湍流加强,气体膜厚度减少,传质速率系数增大,烟气速度增大回减缓液滴下降的速度,使得体积有效传质面积增大,从而降低塔高。

但是,烟气速度增大,烟气停留时间缩短,要求增大塔高,使得其对塔高的降低作用削弱。

因而选择合适的烟气速度是很重要的,典型的FGD脱硫装置的液气比在脱硫率固定的前提下,逆流式吸收塔的烟气速度一般在2.5-5m/s范围内[5][6],本设计方案选择烟气速度为3.5m/s。

湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钙硫比(Ca/S)一般略微大于1,最佳状态为1.01-1.02,而比较理想的钙硫比(Ca/S)为1.02-1.05,因此本设计方案选择的钙硫比(Ca/S)为1.02。

(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。

首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量ζ=hC K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3η为给定的二氧化硫吸收率,%;本设计方案为95%h 为吸收塔内吸收区高度,mK 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ;K 0=3600u ×273/(273+t)由于传质方程可得喷淋塔内单位横截面面积上吸收二氧化硫的量]8[为: G (y 1-y 2)=a k y ×h ×m y ∆ (4)其中: G 为载气流量(二氧化硫浓度比较低,可以近似看作烟气流量),kmol/( m 2.s)Y 1,y 2 分别为、进塔出塔气体中二氧化硫的摩尔分数(标准状态下的体积分数)k y 单位体积内二氧化硫以气相摩尔差为推动力的总传质系数,kg/(m 3﹒s) a 为单位体积内的有效传质面积,m 2/m 3.m y ∆ 为平均推动力,即塔底推动力,△y m =(△y 1-△y 2)/ln(△y 1/△y 2)所以 ζ=G(y 1-y 2)/h (5)吸收效率ζ=1-y 1/y 2,按照排放标准,要求脱硫效率至少95%。

二氧化硫质量浓度应该低于580mg/m 3(标状态)所以 y 1η≥y 1-0.0203% (6)又因为G=22.4×(273+t )/273=u(流速)将式子(5)ζ的单位换算成kg/( m 2.s),可以写成ζ=3600×h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度C ︒=+75250100下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为a (mg/3m )且 a=1.18×104mg/m 3而原来烟气的流量(145C ︒时)为20×104(m 3/h)换算成标准状态时(设为V a )已经求得 V a =1.31×105 m 3/h=36.30 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为2SO m =36.30×1.18×104mg/m 3=42.83×10mg 4=428.3gV 2SO =L/mol 22.4/643.428⨯mol g g =149.91L/s=0.14991 m 3/s ≈0.15 m 3/s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故 y 1=%41.0%10030.3615.0=⨯又 烟气流速u=3.5m/s, y 1=0.41%,C t ︒==75,95.0η总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )代入(7)式可得6=(95.0041.05.3752732734.22643600⨯⨯⨯+⨯⨯)/h 故吸收区高度h=18.33≈18.3m(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。

除雾器一般设置在吸收塔顶部(低流速烟气垂直布置)或出口烟道(高流速烟气水平布置),通常为二级除雾器。

除雾器设置冲洗水,间歇冲洗冲洗除雾器。

湿法烟气脱硫采用的主要是折流板除雾器,其次是旋流板除雾器。

① 除雾器的选型折流板除雾器 折流板除雾器是利用液滴与某种固体表面相撞击而将液滴凝聚并捕集的,气体通过曲折的挡板,流线多次偏转,液滴则由于惯性而撞击在挡板被捕集下来。

通常,折流板除雾器中两板之间的距离为20-30mm ,对于垂直安置,气体平均流速为2-3m/s ;对于水平放置,气体流速一般为6-10m/s 。

气体流速过高会引起二次夹带。

旋流板除雾器 气流在穿过除雾器板片间隙时变成旋转气流,其中的液滴在惯性作用下以一定的仰角射出作螺旋运动而被甩向外侧,汇集流到溢流槽内,达到除雾的目的,除雾率可达90%-99%。

喷淋塔除雾区分成两段,每层喷淋塔除雾器上下各设有冲洗喷嘴。

最下层冲洗喷嘴距最上层喷淋层(3-3.5)m ,距离最上层冲洗喷嘴(3.4-32)m 。

② 除雾器的主要设计指标a.冲洗覆盖率:冲洗覆盖率是指冲洗水对除雾器断面的覆盖程度。

冲洗覆盖率一般可以选在100 %~300 %之间。

冲洗覆盖率%=%100*22Atg h n απ 式中 n 为喷嘴数量,20个;α为喷射扩散角,90A 为除雾器有效通流面积 ,15 m 2h 为冲洗喷嘴距除雾器表面的垂直距离,0.05m所以 冲洗覆盖率%=%100*22A tg h n απ= 22200.051100%15π⨯⨯⨯=203% b.除雾器冲洗周期:冲洗周期是指除雾器每次冲洗的时间间隔。

由于除雾器冲洗期间会导致烟气带水量加大。

所以冲洗不宜过于频繁,但也不能间隔太长,否则易产生结垢现象,除雾器的冲洗周期主要根据烟气特征及吸收剂确定。

c.除雾效率。

指除雾器在单位时间内捕集到的液滴质量与进入除雾器液滴质量的比值。

影响除雾效率的因素很多,主要包括:烟气流速、通过除雾器断面气流分布的均匀性、叶片结构、叶片之间的距离及除雾器布置形式等。

d.系统压力降。

指烟气通过除雾器通道时所产生的压力损失 ,系统压力降越大 ,能耗就越高。

除雾系统压降的大小主要与烟气流速、叶片结构、叶片间距及烟气带水负荷等因素有关。

当除雾器叶片上结垢严重时系统压力降会明显提高 ,所以通过监测压力降的变化有助把握系统的状行状态 ,及时发现问题 ,并进行处理。

相关文档
最新文档