海上风力发电概况
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
绿色能源的未来在于大型风力发电场,而大型风电场的未来在海上。本文简要叙述了全球海上风力发电的近况和一些主要国家的发展计划,并介绍了海上风电场的基础结构和吊装方法。
关键词:海上风电;风力发电机组;基础结构;吊装方法。
要旨
このページグリーンエネルギーの未来は大型風力発電場、大型風力発電の未来は海上。本文は簡単に述べた世界の海上風力発電の近況といくつかの主要国の発展計画を紹介した海上風力発電の基礎構造と架設方法。
キーワード海上風力発電、風力発電ユニット;基礎構造;架設方法。
1 引言
1.1 风力发电是近年来世界各国普遍关注的可再生能源开发项目之一,发展速度非常快。1997~2004年,全球风电装机容量平均增长率达26.1%。目前全球风电装机容量已经达到5000万千瓦左右,相当于47座标准核电站。随着风电技术逐渐由陆上延伸到海上,海上风力发电已经成为世界可再生能源发展领域的焦点。
1.2 海上风能的优点
风能资源储量大、环境污染小、不占用耕地;低风切变,低湍流强度——较低的疲劳载荷;高产出:海上风电场对噪音要求较低,可通过增加转动速度及电压来提高电能产出;海上风电场允许单机容量更大的风机,高者可达5MW—10MW
2 海上风能的利用特点
海上风况优于陆地,风流过粗糙的地表或障碍物时,风速的大小和方向都会变化,而海面粗糙度小,离岸10km的海上风速通常比沿岸陆上高约25%;海上风湍流强度小,具有稳定的主导风向,机组承受的疲劳负荷较低,使得风机寿命更长;风切变小,因而塔架可以较短;在海上开发利用风能,受噪声、景观影响、鸟类影响、电磁波干扰等问题的限制较少;海上风电场不占陆上土地,不涉及土地征用等问题,对于人口比较集中,陆地面积相对较小、濒临海洋的国家或地区较适合发展海上风电海上风能的开发利用不会造成大气污染和产生任何有害物质,可减少温室效应气体的排放。
3 海上风电机组的发展
3.1 第一个发展阶段——500~600kW级样机研制
早在上世纪70年代初,一些欧洲国家就提出了利用海上风能发电的想法,到1991~1997年,丹麦、荷兰和瑞典才完成了样机的试制,通过对样机进行的试验,首次获得了海上风力发电机组的工作经验。但从经济观点来看,500~600kW级的风力发电机组和项目规模都显得太小了。因此,丹麦、荷兰等欧洲国家随之开展了新的研究和发展计划。有关部门也开始重新以严肃的态度对待海上风电场的建设工作。
3.2第二个发展阶段——第一代MW级海上商业用风力发电机组的开发
2002年,5 个新的海上风电场的建设,功率为1.5~2MW的风力发电机组向公共
电网输送电力,开始了海上风力发电机组发展的新阶段。在2002~2003年,按照第一次大规模风电场建设计划,将有160MW总装机功率的海上风力发电机组投入使用。这些转子直径在80m 以上的第一代商业用海上风力发电机组,是为适应在海上使用的要求在陆地风力发电机组基础上多次改型的。例如,配备了可进行就地维修的船用工具,使电站机器间具备防腐蚀和耐气候变化功能等。
3.3第三个发展阶段——第二代数MW级陆地和海上风力发电机组的应用
MW级风力发电机组的应用,体现了风力发电机组向大型化发展的方向,这种趋势在德国市场上表现得尤为明显。新一代涡轮机的功率达3~5MW,风轮直径达90~115m,目前它们正处于研制和试验阶段。
3.4第四个发展阶段——第三代数MW级风力发电机组的开发利用
这一代商业用海上风力发电机组的功率大于5MW,风轮直径约120m,这种风力发电机组只适于在海上使用。目前,已经具备海上风力发电设备商业生产能力的厂家,主要有Vestas(丹麦)、Bonus(丹麦)、NEG-Micon(丹麦)、GE Wind Energy (美国)、Nordex(德国)、Enercon(德国)、REpower(德国)。单机额定功率覆盖范围从2MW、2.3MW、3.6MW、4.2MW、4.5MW、到5MW。叶轮直径从80m、85.4m、100m、110m、114m、116m到126 m(详见表3)。风力发电机大型化,巨型化的趋势已十分明显。
3.5海上风力机参数
4海上风电机组的基础形式
目前经常被讨论的基础形式主要涵盖参考海洋平台的固定式基础,和处于概念阶段的漂浮式基础,具体包括:
单桩基础;
浮置式基础;
三腿或多腿固定式基础;
混凝土重力固定式基础;
钢制重力固定式基础;
桶式基础
4.1单桩基础
单桩固定式基础现在已经逐渐成为风电机组安装的一种标准方案,并已经在许多大型海上风电场中采用,如Horns Rev、Sams Samsø、Utgrunden、Arklow Bank、Scroby Sands和 Kentish Flats。这种基础结构尤其适用于20~25m的中浅水域,目前通常采用的直径为4m,未来可能将达到5~6m。此方案的最大的优点在于它的简易性——利用打桩、钻孔或喷冲的方法将桩基安装在海底泥面以下一定的深度,通过调整片或护套来补偿打桩过程中的微小倾斜以保证基础的平正。而它的弊端在于海床较为坚硬时,钻孔的成本较高。
4.2浮置式基础
浮置式基础适用于50~100m的水深,其成本较低,而且能够扩展现有海上风电场的范围。但是,由于其不稳定,意味着仅能应用于海浪较低的情况。此外,齿轮箱和发电机这些旋转机械长期工作在加速度较大的环境下,从而潜在的增大了风险并降低了使用寿命。
4.3三腿或多腿固定式基础
此方案适用于水深超过30m的条件。较单桩固定式更为坚固和多用,但其成本较高,移动性也不好。与单桩固定式一样,不适宜较软的海床。
4.4混凝土重力固定式基础
这是海上风电场采用的第一种基础结构,它主要是靠体积庞大的混凝土块的重力来固定风机的位置。这种方案使用方便,而且适用于各种海床土质,但是由于它重量大,搬运的费用较高。
4.5钢制重力固定式基础
与混凝土重力固定式一样,它也是靠自身重力固定风机位置的,但钢制的重量仅有80~110吨,从而使安装和运输更为简单。当把钢制基座固定之后,向其内部填充重矿石以增加重量(一般为1000吨左右)。虽然此方案也适用于所有海床土质,但其抗腐蚀性较差,需要长期保护。
4.6桶式基础
这种基础是将其放置在海床上之后,抽空内部的海水,靠周围海水所产生压力将其固定在海床上。此种基础大大节省了钢材用量和海上施工时间,降低了生产、运输和安装成本,同时拆除基础也很方便。
5海上风电场吊装方法
离岸风机的安装相对于岸上安装难度颇高,可通过千斤顶驳船或者浮吊船完成。其中的选择取决于海水深度、起吊机的能力和驳船的载重量。起吊机应具备提升风机主要部件(塔架、机舱、叶轮等)的能力,其吊钩提升高度应大于机舱的尺寸,确保塔架和风机装配件的安装。现有的浮吊船大多不是特意为海上风电场的风机安装而设计制造的。对于大型海上风电场(机组超过50台),通过使用安装驳船来控制建设周期(即控制成本),完成建设任务。具体包括:
5.1千斤顶安装
5.1.1千斤顶安装
以千斤顶吊装塔架、机舱和叶轮是最先出现的海上风电场吊装方法。千斤顶可为安装工作提供一个稳定的基座,因此它也是打桩工程的首选。然而,其缺乏内在稳定性和机动性使塔架的安装较为困难