排列组合中的分组分配问题ppt课件
排列组合中的分组分配PPT文档共22页
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。—
17种排列组合方法ppt课件
由分步计数原理可得共有 A55A22 A22 =480
种不同的排法
6
五.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞 蹈节目不能连续出场,则节目的出场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共
个有元A素55 中种间,包第含二首步尾将两4舞个蹈空插位入共第有一种步排A好64 的不6
练习:从6个男同学和4个女同学中,选出3个男同学和 2个女同学,分别担任五项不同的工作,一共有多少 种不同的分配方法?
5
四.相邻元素捆绑策略 例2.7人站成一排 ,其中甲乙相邻且丙丁相邻, 共 有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元 素,同时丙丁也看成一个复合元素,再与其它元素进 行排列,同时对相邻元素内部进行自排.
个空隙中插入3个不亮的灯有__C__35 _种.
12
十二.元素相同问题隔板策略 例10.有10个三好学生名额,在分给7个班,每班至 少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成一排,相 邻名额之间形成9个空隙. 在9个空档中选6个 位置插个隔板,可把名额分成7份,对应地分给 7个班级,每一种插板方法对应一种分法共有
同的方法.由分步计数原理,节目的不同顺序
共有
A A55
4 6
种
相 独 独独相
7
六.固定顺序问题用除法策略 例4.7人排队,其中甲乙丙3人顺序一定,共有多少不 同的排法?
1除法:对于某几个元素顺序一定的排列问题,可 先把这几个元素与其他元素一起进行排列,然后 用总排列数除以这几个元素之间的全排列数,则 共有不同排法种数是: A77
A22
15
练习:某兴趣小组有9个人,现有3项不同的活动可以让
排列组合问题17种方法ppt课件
C
6 9
一
二
三
四
五
六
七
班
班
班
班
班
班
班
30
将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素 排成一排的n-1个空隙中,所有分法数为
C m 1 n 1
31
练习题
1. 10个相同的球装5个盒中,每盒至少一 有多少装法?
C4 9
2 .x+y+z+w=100求这个方程组的自然数解 的组数
A
5 5
A A A
2 4
1 4
5 5
一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.
前排
后排
20
练习题
有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并 且这2人不左右相邻,那么不同排法的种数是______
346
21
重排问题求幂策略
把6名实习生分配到7个车间实习,共有 多少种不同的分法
解:完成此事共分六步:把第一名实习生分配 到车间有 种分法.
7
把第二名实习生分配
到车间也有7种分法,
依此类推,由分步计
7 6 数原理共有 种不同的排法
允许重复的排列问题的特点是以元素为研究 对象,元素不受位置的约束,可以逐一安排 各个元素的位置,一般地n不同的元素没有限 制地安排在m个位置上的排列数为 种
一个盒子装1个 (6)每个盒子至少1个
25
练习题 一个班有6名战士,其中正副班长各1人 现从中选4人完成四种不同的任务,每人 完成一种任务,且正副班长有且只有1人 参加,则不同的选法有________ 种 192
排列组合综合应用PPT课件
员__C_15C__13C__24 _种,只会唱的5人中只有2人
选上唱歌人员有_C_52_C_52种,由分类计数
原理共有___C__32 C_32_+__C__15C__13C__24 +__C_52_C_52__种。
本题还有如下分类标准: *以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人的5个节目已排成节 目单,开演前又增加了两个新节目.如果将这 两个节目插入原节目单中,那么不同插法的 种数为( 42 )
2. 某8层大楼一楼电梯上来8名乘客人,他们 到各自的一层下电梯,下电梯的方法
( 78 )
2021
22
练习题 6颗颜色不同的钻石,可穿成几种钻石圈
要注意合并元素2内021 部也必须排列.
14
练习题
某人射击8枪,命中4枪,4枪命中恰好 有3枪连在一起的情形的不同种数为 ( 20 )
2021
15
6.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个
独唱,舞蹈节目不能连续出场,则节目的出
场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共
2021
17
7. 合理分类与分步策略 例4.在一次演唱会上共10名演员,其中8人能
唱歌,5人会跳舞,现要演出一个2人
唱歌2人伴舞的节目,有多少选派方法? 解:10演员中有5人只会唱歌,2人只会跳舞
3人为全能演员。以只会唱歌的5人是否
选上唱歌人员为标准进行研究 只会唱
的5人中没有人选上唱歌人员共有_C_32C__32
10.3.3 排列组合综合应用
2021
排列组合中的分组分配问题完整
五非均分组分配对象确定问题
例6 六本不同的书按1∶2∶3分给甲、乙、丙三个人 有多少种不同的分法?
C61C52C33
非均分组有分配对象要把组数当作元素个数 再作排列。
五非均分组分配对象不固定问题
例7 六本不同的书分给3人,1人1本,1人2本,1人3本 有多少种分法
C
2 10
C
2 8
C
2 6
C
4 4
A
3 3
C
2 10
C
2 8
C
2 6
C
4 4
3 有六本不同的书分给甲、乙、丙三名同学,按下条 件,各有多少种不同的分法?
(1)每人各得两本; (2)甲得一本,乙得两本,丙得三本; (3)一人一本,一人两本,一人三本; (4)甲得四本,乙得一本,丙得一本; (5)一人四本,另两人各一本·
排列组合中的分组分配问题
ab
cd
ac
bd
ad
bc
bc
ad
bd
ac
cd
ab
一、 提出分组与分配问题,澄清模糊概念 n 个不同元素按照某些条件分配给 k 个不同得对象,称为
分配问题,分定向分配和不定向分配两种问题;将 n 个不同 元素按照某些条件分成 k 组,称为分组问题.分组问题有不平 均分组、平均分组、和部分平均分组三种情况。分组问题和 分配问题是有区别的,前者组与组之间只要元素个数相同是 不区分的;而后者即使 2 组元素个数相同,但因对象不同, 仍然是可区分的.对于后者必须先分组后排列。
C61C52C33 A33
练习1
1:12本不同的书平均分成四组有多少 种不同分法?
排列组合中的分组分配问题
分析:
(1)矩形 C82C52 280;即: (7 6 5 4 3 2 1)( 4 3 2 1) 280
若求正方形个数,则: ①只由一个小正方形组成的有7 * 4; ②由2 * 2小正方形组成的有6 *3; ③由3*3小正方形组成的有5* 2 ; ④ 由4 * 4小正方形组成的有4 *1。 故7 * 4+6 *3+5* 2+4 *1 60 。
如果先跨2个台阶还剩2个台阶2种方法再上去,3+2=5种。 登上5个台阶,如果先跨1个台阶还剩4个台阶5种方法再上去;
如果先跨2个台阶还剩3个台阶3种方法再上去,5+3=8种。 登上6个台阶,… … 8+5=13种。 登上7个台阶,… … 13+8=21种。 … … … 21+13=34种 … … … 34+21=55种。 登上10个台阶, 55+34=89种。
3、(1)6本不同书分给甲2本,乙2本,丙2本,有多少种
分法?
(2)6本不同书平均分成三组,有多少种分法?
答:1)C2 6
C
2 4
C
2 2
;
2)
C2C2C2 642 A33
。
说明:一件事:6本不同书分给甲2本,乙2本,丙2本,
可看成分两步完成:
1)先分成三组,设分法x种; 2)再分给甲乙丙三人,有A33种。
C160 C62 C42 C22 18900
种分法?
【讨论】:隔(插)板法
1、某运输公司有7个车队,每队的车都多于四辆, 且型号相同。要从这7个车队中抽出10辆车组成一 运输队,每队至少抽一辆,问不同的抽法有多少种。
2、某校高三有6个班级,现从中选10名学生组成
6、排列组合问题之分组分配问题
排列组合问题之分组分配问题(一)(五个方面)一、非平均分组 (分步组合法)“非平均分组”是指将全部元素分成元素个数互相不相等的组。
例 1、 7 人参加义务劳动,按以下方法分组有多少种不相同的分法?①分成 3组,分别为 1人、 2 人、 4 人;②选出 5个人分成 2 组,一组 2 人,另一组 3人。
解:①先选出 1人,有 C 17 种,再由剩下的 6 人选出 2 人,有 C 62 种,最后由剩下的 4 人为一组,有 C 44 种。
由分步计数原理得分组方法共有C 71C 62 C 44 105 (种)。
②可 选分同步 。
先从 7 人中选出 2 人,有 C 72 种,再由剩下的 5 人中选出 3 人,有 C 53种,分组方法共有 C 72C 53210 (种)。
也可 先选后分 。
先选出 5 人,再分为两组,由分步 计数原理得分组方法共有C 75C 52 C 33 210 (种)。
二、平均分组 (去除重复法)“平均分组”是指将全部元素分成全部组元素个数相等或部分组元素个数相等的组。
㈠全部平均分组 (去除重复法)23例 2、 7人参加义务劳动,选出6人,有多少种不相同的分法?个人,分成 组,每组都是 解: 可选分同步 。
先选 3 人为一组,有 C 73 种;再选 3 人为另一组,有 C 43 种。
又有 2 组都 是 3人,每 A 22 种分法只能算一种,因此不相同的分法共有 C 73C 43 70 (种)。
A 22也可 先选后分 。
不相同的分法共有 C 76 C 63C 3370 (种)。
A 22㈡部分平均分组 (去除重复法)例 3、 10个不相同零件分成 4 堆,每堆分别有 2 、 2 、 2 、 4 个,有多少种不相同的分法?解:分成 2 、 2 、 2 、 4 个元素的 4 堆,分别有 C 102 、 C 82 、 C 62 、 C 44 种,又有 3 堆都是 2个元素,每 A 33 种分法只能算一种,因此不相同的分组方法共有C 102C 82 C 62 C 44 3150 (种)。
排列组合(平均法)PPT
2020/4/4
11
• 例7 设集合A={1,2,3,4},B={6,7,8},A为定 义域,B为值域,则从集合A到集合B的不同的函数有 多少个?
• 分析:由于集合A为定义域,B为值域,即集合A、B中 的每个元素都有“归宿”,而集合B的每个元素接受集 合A中对应的元素的数目不限,所以此问题实际上还是 分组后分配的问题。先考虑分组,集合A中4个元素分 为三组,各组的元素数目分别为1、1、2,则共有 (种) 分组方法。再考虑分配,即排列,再乘以 ,所以共有 =36(个)不同的函数。
A33=6,所以分法是 90/6=15(种)。
• (2)先分组,方法是C61*C52*C33=60 ,那么还要不要除以A33? 我们发现,由于每组的书的本数是不一样的,因此不会出现相同的分法,即共有 =60(种) 分法。
• (3)分组方法是C64*C21*C11=30(种)
•
其中有没有重复的分法?我们发现,其中两组的书的本数都是一本,因此这两
2020/4/4
8
• 例4 六本不同的书,分给甲、乙、丙三人, 每人至少一本,有多少都有“归
宿”,即书要分完,人不能空手。因此,考
虑先分组,后排列。先分组,六本书怎么分
为三组呢?有三类分法(1)每组两本(2)分别为
一本、二本、三本(3)两组各一本,另一组四
本。所以根据加法原理,分组法C 62CA是4233C 22 + C16C52C33
+C
64C
12C
1 1
A
2 2
A33
=90(种)。再考虑排列,即再乘以 。
所以一共有540种不同的分法。
2020/4/4
9
• 例6 有甲、乙、丙三项任务,甲需2人承担,乙、丙各需 1人承担,从10人中选派4人承担这三项任务,不同的选法 有多少种?
排列组合中的分组分配问题
排列组合中的分组分配问题在排列组合教学中,分组分配问题是一个重要且难以理解的概念。
有些排列组合问题看起来不是分配问题,但实际上可以用分配问题的方法来解决。
一、区分分组与分配问题将n个不同的元素按照某些条件分配给k个不同的对象,称为分配问题,分为定向分配和不定向分配两种问题;将n个不同元素按照某些条件分成k组,称为分组问题。
分组问题有不平均分组、平均分组和部分平均分组三种情况。
分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同就不区分;而后者即使两组元素个数相同,但因对象不同,仍然是可区分的。
对于后者必须先分组后排列。
二、基本的分组问题例如,六本不同的书分为三组,求在下列条件下各有多少种不同的分配方法?1.每组两本。
分组与顺序无关,是组合问题。
分组数是C6^2C4^2=90种,但这90种分组实际上重复了6次。
我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。
以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数A3^3,所以分法是C6^2C4^2/A3^3=15种。
2.一组一本,一组二本,一组三本。
先分组,方法是C6^1C5^3,不需要除以A3,因为每组的书的本数不一样,不会出现相同的分法,即共有60种分法。
3.一组四本,另外两组各一本。
分组方法是C6^4C2^1C1^1=30种,其中两组的书的本数都是一本,因此这两组有了顺序,而与四本书的那一组,由于书的本数不一样,C6^2C1^1不可能重复。
所以实际分法是15种。
通过以上三个小题的分析,我们可以得出分组问题的一般方法。
结论1:一般地,n个不同的元素分成p组,各组内元素数目分别为m1,m2,…,mp,其中k组内元素数目相等,那么分组方法数是m1n/m2(n-m1)Cm3(n-m1-m2)…Cmp(m-k+1)。
专题课排列组合综合应用课件高二下学期数学人教A版选择性
类型二:多面手问题
例2 某外语组有9人,每人至少会英语和日语中的一门,其中7人会英
语,3人会日语,从中选出会英语和日语的各一人到边远地区支教,有
多少种不同的选法? 方法一 直接分类(从元素考虑)
由图可知既会英语又会日语的有
7+3-9=1人,记为甲,只会英语6人,只会日语2人。
Ⅰ类:甲去教英语,有 N1 C12 2种方法; Ⅱ类:甲去教日语,有 N2 C16 6 种方法; Ⅲ类:甲未被选中,有 N3 C16C12 12 种方法; 由分类加法计数原理得 N N1 N2 N3 20
专题课 排列组合综合应用
排列组合题 型
有条件的抽(选)取问题 多面手问题 分组分配问题
类型一:有限制条件的抽(选)取问题
例1 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各 有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法? (1)至少有一名队长当选; (2)至多有两名女生当选; (3)既要有队长,又要有女生当选.
类型一:有限制条件的抽(选)取问题
例1 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各 有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法? (2)至多有两名女生当选; 解 直接法(分类加法原理,从元素角度考虑)
Ⅰ类:0名女生当选,有 N1 C85 56 种方法; Ⅱ类:1名女生当选,有 N2 C15C84 350 种方法; Ⅲ类:2名女生当选,有 N3 C52C83 560 种方法; 由分类加法原理得 N N1 N2 N3 966
英语 日语 7人 3人
类型二:多面手问题
例2 某外语组有9人,每人至少会英语和日语中的一门,其中7人会英
语,3人会日语,从中选出会英语和日语的各一人到边远地区支教,有
排列组合分组分配问题
(1)平均分组,没有分配对象
例6: 6本不同的书平均分成3组,有多少种分 法? 15种
(2)非平均分组,没有分配对象
例7: 6本不同的书分成3组,一组3本,一组2 本,一组1本,有多少种分法? 60种 例8: 6本不同的书,分成3组,一组4本,其余两 组各1本,有多少种分法? 15种
1.有分配对象的分组:元素分组后,又分配给具体对 象,而分组是确定
例1: 6本不同的书分给3人,甲得1本,乙得2 本,丙得3本,有多少种不同的分法?
60种
(2)各组元素数目确定,分配对象 不确定
例2: 6本不同的书分给3人,1人1本,1人2 本,1人3本,有多少种分法?
360种
(3)平均分配给具体对象
例3: 6本不同的书平均分给3人,有多少种分 法?
90种
(4)部分均分给若干对象
例4: 6本不同的书分给3人,1人4本,其余2人 各1本,有多少种分法? 90种 例5: 6本不同的书全部分给4名学生,每人至 多2本,至少1本,有多少种分法? 1080种
2.无分配对象的分组:元素分组以后,没有分配对象 或所分配给的对象不具体不确定,可以不加以区别.
排列组合讲解.ppt.ppt
3.发展 (1)原因: ①甲午战争以后列强激烈争夺在华铁路的 修。筑权 ②修路成为中国人 救的亡强图烈存愿望。 (2)成果:1909年 京建张成铁通路车;民国以后,各条商路修筑 权收归国有。 4.制约因素 政潮迭起,军阀混战,社会经济凋敝,铁路建设始终未入 正轨。
二、水运与航空
1.水运 (1)1872年,
结论2 捆绑法:要求某几个元素必须排在一起的问题, 可以用捆绑法来解决问题.即将需要相邻的元素合并为 一个元素,再与其它元素一起作排列,同时要注意合并元 素内部也可以作排列.
例3 在高二年级中的8个班,组织一个12个人的年级学 生分会,每班要求至少1人,名额分配方案有多少种?
分析 此题若直接去考虑的话,就会比较复杂.但如果我 们将其转换为等价的其他问题,就会显得比较清楚,方 法简单,结果容易理解.
[合作探究·提认知] 电视剧《闯关东》讲述了济南章丘朱家峪人朱开山一家, 从清末到九一八事变爆发闯关东的前尘往事。下图是朱开山 一家从山东辗转逃亡到东北途中可能用到的四种交通工具。
依据材料概括晚清中国交通方式的特点,并分析其成因。 提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展; 政府及各阶层人士的提倡与推动。
例4 袋中有不同的5分硬币23个,不同的1角硬币10个, 如果从袋中取出2元钱,有多少种取法? 分析 此题是一个组合问题,若是直接考虑取钱的问题 的话,情况比较多,也显得比较凌乱,难以理出头绪来.但 是如果根据组合数性质考虑剩余问题的话,就会很容 易解决问题.
解 把所有的硬币全部取出来,将得到 0.05×23+0.10×10=2.15元,所以比2元多0.15元,所 以剩下0.15元即剩下3个5分或1个5分与1个1角,所以 共有 C233 C213种 C取110 法.
排列组合中的分组分配
则不同分法为
C C C m1 n
m2 n m1
m3 n ( m1 m2 )
C mk mk
种.
如果 m1, m2 mk中有且仅有i个相等,则不同的分法为:
C C C m1
m2
m3
n
n m1
n ( m1 m2 )
Aii
C mk mk
种.
基础探究 一:均分无分配对象的问题
先分类,以集合A为基准,划左舷的3个人中,有以下几类情况:①A中有3人;②A 中有2人;C中有1人;③A中有1人,C中有2人;④C中有3人。
第①C类39,划左舷的人已选定,划右舷的人可以在B,C中选3人, 有
C33C39 C32C15C38 C13C52C37 C30C35C36
种 ,以下类同
A33
三.多面手问题
例4 :有12名划船运动员,其中3人只会划左舷,4人只会划右舷,其余5人既会划左舷 也会划右舷。现在要从这12名运动员中选出6人平均分在左、右舷划船参加比赛,有 多少种不同的选法?
分析:设集合A={只会划左舷的3个人},B={只会划右舷的4个人},C={既会划左舷又 会划右舷的5个人}
A33 种.
故由分步计数原理有
C92
C
3 7
C
4 4
A33
7560 种.
③每人3件,即各人分得数相同,不需排列.则有
C93
C63 A33
C33
A33
1680 种.
• 练习: 9件不同的玩具,按下列分配方案各有几种分法? • ④平均分成三堆,有多少种分法? • ⑤分为2、2、2、3四堆,有多少种分法?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1有分配对象和无分配对象
2分配对象确定和不固定
16
(1)
C
14 2 C
84C
4 4
A
3 3
12! 8! 1 5775
4!·8! 4!·4! 3!
(2)
C
12 2 C
120C82
C
6 6
A
3 3
5
二:均分有分配对象的问题
例2:6本不同的书按2∶2∶2平均分给甲、乙、 丙三个人,有多少种不同的分法?(每人2本)
方法:先分再排法。分成的组数看成元 素的个数·
C120
C
2 8
C
2 6
C
4 4
A
3 3
C120
C
2 8
C
2 6
C
4 4
13
3 有六本不同的书分给甲、乙、丙三名同学,按下条 件,各有多少种不同的分法?
(1)每人各得两本; (2)甲得一本,乙得两本,丙得三本; (3)一人一本,一人两本,一人三本; (4)甲得四本,乙得一本,丙得一本; (5)一人四本,另两人各一本·
(1)
C
2 6
C
2 4
C
2 2
(2)
C
1 6
C
2 5
C
3 3
(3)
C
1 6
C
2 5
C
3 3
A
3 3
(4)
C
4 6
C
1 2
C
1 1
(5)
A
1 3
C
4 6
C
1 2
C14
1 1
练习4:12本不同的书分给甲、乙、丙三人按下列 条件,各有多少 种不同的分法?
(1)一人三本,一人四本,一人五本;
(2)甲三本,乙四本,丙五本;
(3)甲两本,乙、丙各五本;
(4)一人两本,另两人各五本·
(1)
C
3 12
C
4 9
C
5 5
A
3 3
(2)
C
3 12
C
4 9
C
5 5
(3)
C
2 12
C
5 10
C
5 5
(4)
A
1 3
C
12 2 C
5 10
C
5 515课堂小结一平均分组问题1 平均分成的组,不管它们的顺序如 何,都是一种情况,所以分组后要 除以Amm,即m!,其中m表示组数。
(1)均分的三组看成是三个元素在三 个位置上作排列
(1)
C
2 6
C
2 4
C
2 2
A
3 3
A
3 3
C
2 6
C
2 4
C
2 2
6
三:部分均分有分配对象的问题
例3 12支笔按3:3:2:2:2分给A、B、C、D、 E五个人有多少种不同的分法?
方法:先分再排法。分成的组数看成元素的个数· (2)均分的五组看成是五个元素在五个位置上作 排列
选2个 再选2 又选2个 剩下四个 分组方法数
ab
cd
ef
ab
ef
cd
cd
ab
ef
cd
ef
ab
ef
ab
cd
ef
cd
ab
……
……
……
ghij ghij
ghij ghij
这A33 种只 能算一种
ghij
ghij
4
……
…|…
基础探究
一:均分无分配对象的问题
例1:12本不同的书 (1)按4∶4∶4平均分成三堆有多少种不同的分法? (2)按2∶2∶2∶6分成四堆有多少种不同的分法?
C61C52C33 A33
11
练习1
1:12本不同的书平均分成四组有多少 种不同分法?
C132
C
3 9
C36
C
3 3
A
4 4
12
练习2
2:10本不同的书
(1)按2∶2∶2∶4分成
四堆有多少种不同的
分法?
(1)
(2)按2∶2∶2∶4分给
甲、乙、丙、丁四个
人有多少种不同的分 (2)
法?3人2本1人4本?
C61C52C33
注意:非均分问题无分配对象只要按比例分完再用 乘法原理作积
9
五非均分组分配对象确定问题
例6 六本不同的书按1∶2∶3分给甲、乙、丙三个人 有多少种不同的分法?
C61C52C33
非均分组有分配对象要把组数当作元素个数 再作排列。
10
五非均分组分配对象不固定问题
例7 六本不同的书分给3人,1人1本,1人2本,1人3本 有多少种分法
(2)
C
13 2 C
3 9
C62
C 42 C22
A
3 3
A
2 2
A
5 5
7
三:部分均分无分配对象的问题
例4 六本不同的书分成3组一组4本其余各1本有多少种分法 ?甲4本,乙丙各一本?1人4本,1人1本,1人1本?
C64C21C11 A22
8
四非均分组无分配对象问题
例5 6本不同的书按1∶2∶3分成三堆有多少种 不同的分法?
排列组合中的分组分配问题
ab
cd
ac
bd
ad
bc
bc
ad
bd
ac
cd
ab
1
一、 提出分组与分配问题,澄清模糊概念 n 个不同元素按照某些条件分配给 k 个不同得对象,称为
分配问题,分定向分配和不定向分配两种问题;将 n 个不同 元素按照某些条件分成 k 组,称为分组问题.分组问题有不平 均分组、平均分组、和部分平均分组三种情况。分组问题和 分配问题是有区别的,前者组与组之间只要元素个数相同是 不区分的;而后者即使 2 组元素个数相同,但因对象不同, 仍然是可区分的.对于后者必须先分组后排列。
2
引旧育新
1 把abcd分成平均两组
ab
cd
ac
bd
ad
bc
bc
ad
bd
ac
cd
ab
有_____多少种分法?
C
2 4
C
2 2
A
2 2
3
这两个在分组时只能算一个
2平均分成的组,不管它们的顺序如何,都是一种
情况,所以分组后要除以Amm,即m!,其中m表
示组数。
3
部分均匀分组 3. 将十个不同的零件分成四堆,每堆分别有 2个、2个、2个、4个,有多少种不同的分法? 分析:记十个零件为a、b、c、d、e、f、g、 h、i、j写出一些组来考察