材料力学习题答案讲解学习

合集下载

材料力学课后习题答案详细

材料力学课后习题答案详细
Rr (R r) (3 104 ) (60 30) 0.009mm
变形厚的壁厚:
(R r) | (R r) | 30 0.009 29.991(mm)
[习题 2-11] 受轴向拉力 F 作用的箱形薄壁杆如图所示。已知该材料的弹性
常数为 E, ,试求 C 与 D 两点间的距离改
22

N 22 A

10 103 N 400mm 2
25MPa
33

N 33 A
10 103 N 400mm 2
25MPa
[习题 2-3] 试求图示阶梯状直杆横截面 1-1、2-2 和平 3-3 上的轴力,并作
轴力图。若横截面面积 A1 200mm2 , A2 300mm2 , A3 400mm2 ,并求各横截 面上的应力。
A1 11.503cm2 1150.3mm2
AE

N EA A

366.86 103 N 2 1150.3mm2
159.5MPa
EG

N EG A

357.62 103 N 2 1150.3mm2
155.5MPa
[习题 2-5] 石砌桥墩的墩身高 l 10m ,其横截面面尺寸如图所示。荷载
22

N 22 A2

10 103 N 300mm 2
33.3MPa
3
33

N 33 A
10 103 N 400mm 2
25MPa
[习题 2-4] 图示一混合屋架结构的计算简图。屋架的上弦用钢筋混凝土制
成。下面的拉杆和中间竖向撑杆用角钢构成,其截面均
为两个 75mm 8mm 的等边角钢。已知屋面承受集度为

《材料力学》第八章课后习题参考答案

《材料力学》第八章课后习题参考答案

解题方法与技巧归纳
受力分析
在解题前首先要对物体进行受力分析, 明确各力的大小和方向,以便后续进 行应力和应变的计算。
图形结合
对于一些复杂的力学问题,可以画出 相应的示意图或变形图,帮助理解和 分析问题。
公式应用
熟练掌握材料力学的相关公式,能够 准确应用公式进行计算和分析。
检查结果
在解题完成后,要对结果进行检查和 验证,确保答案的正确性和合理性。
压杆稳定
探讨细长压杆在压缩载荷作用下的稳定性问题。
解题方法与技巧
准确理解题意
仔细审题,明确题目要求和考查的知识点。
选择合适的公式
根据题目类型和所给条件,选用相应的公式 进行计算。
注意单位换算
在计算过程中,要注意各物理量的单位换算, 确保计算结果的准确性。
检查答案合理性
得出答案后,要检查其是否符合实际情况和 物理规律,避免出现错误。
相关题型拓展与延伸
组合变形问题
超静定问题
涉及多种基本变形的组合,如弯曲与扭转 的组合、拉伸与压缩的组合等,需要综合 运用所学知识进行分析和计算。
超静定结构是指未知力数目多于静力平衡 方程数目的结构,需要通过变形协调条件 或力法、位移法等方法进行求解。
稳定性问题
疲劳强度问题
研究细长压杆在压力作用下的稳定性问题 ,需要考虑压杆的临界力和失稳形式等因 素。
研究材料在交变应力作用下的疲劳破坏行为 ,需要了解疲劳极限、疲劳寿命等概念和计 算方法。
THANKS FOR WATCHING
感谢您的观看
重点知识点回顾
材料的力学性质
包括弹性、塑性、强度、硬度等基本概念和 性质。
杆件的拉伸与压缩
涉及杆件在拉伸和压缩状态下的应力、应变及 变形分析。

材料力学第3版习题答案

材料力学第3版习题答案

材料力学第3版习题答案第一章:应力分析1. 某材料在单轴拉伸下的应力-应变曲线显示,当应力达到200 MPa 时,材料发生屈服。

若材料在该应力水平下继续加载,其应力将不再增加,但应变继续增加。

请解释这一现象,并说明材料的屈服强度是多少?答案:这种现象表明材料进入了塑性变形阶段。

在单轴拉伸试验中,当应力达到材料的屈服强度时,材料的晶格结构开始发生滑移,导致材料的变形不再需要额外的应力增加。

因此,即使继续加载,应力保持不变,但应变会因为材料内部结构的重新排列而继续增加。

在本例中,材料的屈服强度是200 MPa。

第二章:材料的弹性行为2. 弹性模量是描述材料弹性行为的重要参数。

若一块材料的弹性模量为210 GPa,当施加的应力为30 MPa时,其应变是多少?答案:弹性模量(E)与应力(σ)和应变(ε)之间的关系由胡克定律描述,即σ = Eε。

要计算应变,我们可以使用公式ε =σ/E。

将给定的数值代入,得到ε = 30 MPa / 210 GPa =1.43×10^-4。

第三章:材料的塑性行为3. 塑性变形是指材料在达到屈服点后发生的永久变形。

如果一块材料在单轴拉伸试验中,其屈服应力为150 MPa,当应力超过这个值时,材料将发生塑性变形。

请解释塑性变形与弹性变形的区别。

答案:塑性变形与弹性变形的主要区别在于材料在去除外力后是否能够恢复原状。

弹性变形是指材料在应力作用下发生的形状改变,在应力移除后能够完全恢复到原始状态,不留下永久变形。

而塑性变形是指材料在应力超过屈服点后发生的不可逆的永久变形,即使应力被移除,材料的形状也不会恢复到原始状态。

第四章:断裂力学4. 断裂韧性是衡量材料抵抗裂纹扩展的能力。

如果一块材料的断裂韧性为50 MPa√m,试样的尺寸为100 mm×100 mm×50 mm,试样中存在一个长度为10 mm的初始裂纹。

请计算在单轴拉伸下,材料达到断裂的临界应力。

材料力学课后答案

材料力学课后答案

由平衡方程,解得:
FBy 5KN; M B 13KN m
微分法画弯矩图
( M B 13KN m; M C M C 3KN m; M D 0)
2.根据强度要求确定 b
max WZ 2 bh 2 3 WZ b 6 3 M
弯矩图
M
(+)
x
3.绘制挠曲轴略图并计算wmax, A , B 令 dw 0 得 x l (0 x l ) 2 dx 所以 wmax w x l
2
挠曲轴略图
w
5ql 4 384 EI
x0
(-)
B
ql 3 24 EI
x
由式(3)知 A
max
M max ymax 176MPa IZ
max
M WZ
K
M max yK 132MPa IZ
3
5-5.图示简支梁,由 NO18 工字钢制成,在集度为q的均匀载荷作用下测得横截 4 面C底边的纵向正应变 =3.0 10 ,试计算梁内的最大弯曲正应力,已知刚的弹 FAy FBy 性模量E=200GPa,a=1m。
M yA Wy 6 M yA M zA 6M zA Wz 2b b 2 b (2b) 2
由 max 解得 b 35.6mm 故
h 2b 71.2mm
14
2.截面为圆形,确定d 由分析图及叠加原理可知: 在1,3区边缘某点分别有最大拉应力,最大压应力 其值均为:
I Z I Z 1 2 I Z 2 1.02 104 m4
2.画弯矩图 由平衡方程得 微分法画弯矩图
FCy 10KN; M C 10KN m

材料力学第四版课后习题答案

材料力学第四版课后习题答案

材料力学第四版课后习题答案1. 引言。

材料力学是材料科学与工程中的重要基础课程,通过学习材料力学,可以帮助我们更好地理解材料的性能和行为。

本文档将针对材料力学第四版的课后习题进行答案解析,帮助学习者更好地掌握课程内容。

2. 第一章。

2.1 课后习题1。

答,根据受力分析,可以得到杆件的受力情况。

然后利用杆件的受力平衡条件,可以得到杆件的应力状态。

最后,根据应力状态计算应变和变形。

2.2 课后习题2。

答,利用受力分析,可以得到杆件的受力情况。

然后利用杆件的受力平衡条件,可以得到杆件的应力状态。

最后,根据应力状态计算应变和变形。

3. 第二章。

3.1 课后习题1。

答,利用受力分析,可以得到梁的受力情况。

然后利用梁的受力平衡条件,可以得到梁的应力状态。

最后,根据应力状态计算应变和变形。

3.2 课后习题2。

答,利用受力分析,可以得到梁的受力情况。

然后利用梁的受力平衡条件,可以得到梁的应力状态。

最后,根据应力状态计算应变和变形。

4. 第三章。

4.1 课后习题1。

答,利用受力分析,可以得到薄壁压力容器的受力情况。

然后利用薄壁压力容器的受力平衡条件,可以得到薄壁压力容器的应力状态。

最后,根据应力状态计算应变和变形。

4.2 课后习题2。

答,利用受力分析,可以得到薄壁压力容器的受力情况。

然后利用薄壁压力容器的受力平衡条件,可以得到薄壁压力容器的应力状态。

最后,根据应力状态计算应变和变形。

5. 结论。

通过对材料力学第四版课后习题的答案解析,我们可以更好地掌握材料力学的基本原理和方法。

希望本文档能够对学习者有所帮助,促进大家对材料力学的深入理解和应用。

材料力学课后答案

材料力学课后答案

材料力学课后答案材料力学是一门研究材料的结构和性质以及力学行为的学科。

以下是材料力学课后习题的答案。

1. 对于一个材料试验样品的拉伸测试,如何计算应力和应变?答:应力是试样受到的外部力除以其截面积,应变是试样的长度变化除以其原始长度。

2. 当一根钢条受到拉伸力时,它的截面积会变大还是变小?为什么?答:当钢条受到拉伸力时,它的截面积会减小。

这是因为外部力导致钢条内部发生塑性变形,使其截面积减小。

3. 什么是杨氏模量?如何计算?答:杨氏模量是表征材料在受到应力时的变形能力的物理量。

它可以通过应力与应变之间的比率来计算,即杨氏模量=应力/应变。

4. 什么是泊松比?如何计算?答:泊松比是一个无量纲的物理量,它描述了材料在拉伸或压缩时的横向收缩量与纵向伸长量之间的比例关系。

它可以通过横向应变与纵向应变之间的比率来计算,即泊松比=横向应变/纵向应变。

5. 什么是屈服强度?如何确定屈服强度?答:屈服强度是材料在受到应力时开始产生塑性变形的应力值。

它可以通过拉伸测试或压缩测试中的应力-应变曲线来确定,屈服强度对应于曲线上的屈服点。

6. 材料的断裂强度是什么?如何计算?答:材料的断裂强度是指材料在受到拉伸或压缩的最大应力值。

它可以通过拉伸测试或压缩测试中的应力-应变曲线来确定,断裂强度对应于曲线上的断裂点。

7. 什么是韧性?如何评价材料的韧性?答:韧性是材料在受力过程中吸收能量的能力。

可以通过材料的断裂能量来评价韧性,断裂能量是在材料断裂前吸收的总能量。

8. 什么是冷加工和热加工?它们对材料性能有何影响?答:冷加工是在室温下对材料进行塑性变形,而热加工是在高温下对材料进行塑性变形。

冷加工会使材料变硬和脆化,而热加工则会使材料变软和韧性增加。

以上是材料力学课后习题的答案,希望对你的学习有所帮助。

如果有任何疑问,请随时向我提问。

材料力学习题解答

材料力学习题解答

解: (3) 梁可简化, 为图示简朴支梁。
B
(m / 2)a 6EI
ma 12EI
(逆时针)
wC 0
mm
m
2
B
C
m
m
2a a a a a 2a
4.如图所示各梁旳抗弯刚度为EI,试用叠加法计算梁 B截面旳转角以及C点旳挠度。
解: (4) 梁可简化,为图示简朴支梁。 B
q
2qqaa22
C
B
qa3 24EI
φ w3 w2
q EI a
A a/4
θ w1
w1
a 4
qa3 a qa4 24EI 4 96EI
w2
q 8EI
a 4
4
qa 4 2048EI
φ w3
w3
a 4
a 3EI
1 2
q
a 4
2
a 4
qa 4 384EI
w2
w
w1
w2
w3
15qa 4 2048EI
7.试用叠加法计算图示各梁C点旳挠度。
解: (1) 梁可简化, 为图示悬臂梁。
A
B
F (2a)2 2EI
Fa 2 2EI
B
3Fa 2 2EI
(逆时针)
wC
wA
F (2a)3 3EI
( Fa3 3EI
Fa 2 2EI
a)
F
F
B C
Fa
a
a
F
a
BF
C
F
11Fa3 wC 6EI (向下)
4.如图所示各梁旳抗弯刚度为EI,试用叠加法计算梁 B截面旳转角以及C点旳挠度。
A
先考虑载荷作用下梁旳变形。

材料力学习题册答案学习资料

材料力学习题册答案学习资料

练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。

( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。

(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。

( 是 ) (4)应力是内力分布集度。

(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。

(是 ) (6)若物体产生位移,则必定同时产生变形。

(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。

(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。

(是):(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。

(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。

(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。

(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。

,(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。

(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。

根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。

(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。

变形。

(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。

(8)根据小变形条件,可以认为构件的变形远小于其原始尺寸。

1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。

材料力学课后答案

材料力学课后答案

材料力学课后答案1. 弹性力学基础题。

题目,一根长为L的均匀横截面圆柱形杆,端部固定,另一端受力F,求受力端的应变。

解答,根据弹性力学的基本公式,应变ε=σ/E,其中σ为应力,E为弹性模量。

由于杆的横截面积为A,受力F导致的应力σ=F/A。

因此,受力端的应变ε=F/(AE)。

2. 弹性力学应用题。

题目,一根钢丝的长度为L,直径为d,受力F时产生的应力为σ,求其应变。

解答,首先计算钢丝的横截面积A=πd^2/4,然后根据应变ε=σ/E,其中E为钢的弹性模量,求得应变ε=σ/(E)。

3. 材料的破坏。

题目,一块材料在受力时产生的应力达到了其屈服强度,求此时的应变。

解答,当材料的应力达到屈服强度时,材料开始发生塑性变形,此时的应变无法简单地通过弹性力学公式来计算。

需要通过材料的本构关系来确定应变。

4. 弯曲应力与应变。

题目,一根横截面为矩形的梁,在受力时产生的最大应力为σ,求其最大应变。

解答,根据梁的弯曲应力公式σ=My/I,其中M为弯矩,y为梁的截面离中性轴的距离,I为梁的惯性矩。

最大应变发生在最大应力处,由应变ε=σ/E,可以求得最大应变。

5. 拉伸与压缩。

题目,一根长为L的杆在受拉力F时产生的应变为ε,求其长度变化量。

解答,根据胡克定律,拉伸或压缩材料的长度变化量ΔL=εL。

6. 应变能。

题目,一根长为L的弹簧,在受力F时产生的应变为ε,求其弹性势能。

解答,弹簧的弹性势能U=1/2kε^2,其中k为弹簧的弹性系数。

根据ε=F/(kL),代入可得弹性势能U=1/2F^2/(kL)。

7. 疲劳破坏。

题目,一根金属材料在受到循环载荷时,经过了n次循环后发生疲劳破坏,求其疲劳寿命。

解答,根据疲劳寿命公式N=K(σ_max)^(-1/α),其中N为疲劳寿命,K为材料常数,σ_max为循环载荷的最大应力,α为材料的疲劳指数。

代入循环载荷的应力值,可以求得疲劳寿命。

8. 蠕变。

题目,一根材料在高温下受到持续载荷时发生了蠕变,求其蠕变应变。

材料力学第五版课后习题答案详解

材料力学第五版课后习题答案详解

Microsoft Corporation材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:;;(b)解:;;(c)解:;。

(d)解:。

返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:返回2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EG横截面上的应力。

解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

解:2-6(2-8) 一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)。

《材料力学》课后题答案(第1-3章)

《材料力学》课后题答案(第1-3章)

(2)CD和AB一样长时,计算总的伸长量(复合杆)
PL /(E1A1 E2 A2 )
4PL
/[E1πd12
E2π(d
2 2
d12
)]
1.7mm
(3)没有套管时,计算总的伸长量
' PL / E1A1 4PL / E1πd12
3.42mm
比较3种情况下的 变形,能得到什
么结论?
解:(1)由已知条件得,
应变 0.001
由胡克定律,得
铜 E铜 100GPa 0.001 100MPa 铝 E铝 72GPa 0.001 72MPa
计算轴力
FN,铝 铝 A铝
FN,铜 铜 A铜
72MPa 100MPa
π 4π 4
[(40mm)2 (25mm)2 (25mm)2 49.1kN
0
则可得: 29.1
如图所示总长L0=1.25m的柔性弦线栓在A、B两个支座上,A、 B高度不同,A比B高。弦线上放置无摩擦滚轮,滚轮上承受 力P。图中C点为平衡后滚轮停留的位置。设A、B间水平距离 L=1.0m,弦线拉断力为200N,设计安全因数为3.0,试确定许
用载荷P。
解:对C处进行受力分析, 列出平衡方程:
ε l / l (1mm)/(5103 mm) 2 104
(2)计算横截面上的正应力
c FN / A 6 106 N / m2 6MPa
(3)计算混凝土的弹性模量
E c / 6MPa / 2 104 30GPa
如图所示构件上一点 A处的两个线段AB和 AC,变形前夹角为 60°,变形后夹角为 59°。试计算A点处的 切应变。
解:(1)计算AC段与BC段的伸长量
AC BD Pb / E1A1 4Pb / E1πd12 0.685mm

材料力学习题及答案

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

《材料力学》第五章课后习题参考答案

《材料力学》第五章课后习题参考答案

错误原因及避免方法
错误原因
1. 对材料力学的基本原理理解不深入,导致选择错误的公式或方法进行 计算。
2. 计算过程中出现数值错误或单位不统一等问题,导致结果偏差较大。
错误原因及避免方法
• 对计算结果缺乏分析和讨论,无法判断其 合理性和准确性。
错误原因及避免方法
01
避免方法
02
03
04
1. 加强对材料力学基本原理 的学习和理解,掌握各种公式 和方法的适用范围和条件。
题目一
分析并比较不同材料在拉伸过程中的力学行为差异。
题目二
讨论材料疲劳破坏的机理及影响因素。
要求
掌握材料在拉伸过程中的应力-应变曲线,理解弹性模量 、屈服强度、抗拉强度等概念,能够运用所学知识分析不 同材料的力学行为。
要求
了解材料疲劳破坏的基本概念,掌握疲劳破坏的机理和影 响因素,能够运用所学知识分析实际工程中的疲劳破坏问 题。
知识点综合运用
弹性力学基础
运用弹性力学的基本原理,分析 材料在弹性阶段的力学行为,计
算弹性模量等参数。
塑性力学基础
运用塑性力学的基本原理,分析材 料在塑性阶段的力学行为,理解屈 服强度、抗拉强度等概念。
疲劳破坏理论
运用疲劳破坏的基本理论,分析材 料在交变应力作用下的力学行为, 讨论疲劳破坏的机理和影响因素。
加强实践应用
除了理论学习外,我还计划通过 实践应用来加深对材料力学的理 解。例如,可以尝试利用所学知 识解决实际工程问题,或者参加 相关的实验和课程设计等。
拓展相关学科领域
材料力学是一门基础学科,与其他学 科领域有着密切的联系。因此,我计 划拓展相关学科领域的学习,如结构 力学、弹性力学等,以便更全面地了 解材料的力学性能和工程应用。

材料力学全部习题解答讲解

材料力学全部习题解答讲解

1 2 R2
3
2
(b)
yc =
ydA
A
=
A
b 0
y ayndy b ayndy
=
n n

1 2
b
0
26
Iz =
y2dA
A
Iy =
z2dA
A
解: 边长为a的正方截面可视为由图示截面和一个半 径为R的圆截面组成,则
Iz
=I(za)
I(zR)=
a4 12


2R 4
0

FN A
10103 N 1000 106 m2
10MPa
由于斜截面的方位角 450
得该截面上的正应力和切应力分别为
45
0 cos2 10106 cos2 450 pa 5MPa
0 sin 2 1 10106 sin 900 pa 5MPa
2
18
解:1.求预紧力 由公式l FNl 和叠加原理,故有
EA
l

l1

l2

l3

Fl1 EA1

Fl2 EA2

Fl3 EA3

4F
E

l1 d12

l2 d22

l3 d32

由此得 F
El
18.65kN
4

l1
d
2 1

l2
d
2 2

l3
根据式
tan 2 2I y0z0
I z0 I y0
解得主形心轴 y 的方位角为 a =
3.计算主形心惯性矩

《材料力学》第二章课后习题及参考答案

《材料力学》第二章课后习题及参考答案
简答题2答案
在材料力学中,应力和应变是描述材料受力状态的基本物理量。应力表示单位面积上的 力,而应变则表示材料的变形程度。
简答题3答案
弹性力学和塑性力学是材料力学的重要分支。弹性力学主要研究材料在弹性范围内的应 力、应变和位移,而塑性力学则研究材料在塑性变形阶段的力学行为。
选择题答案
80%
选择题1答案
选择题3解析
这道题考察了学生对材料力学中 弯曲应力的理解,学生需要理解 弯曲应力的概念和计算方法,并 能够根据实际情况进行选择和应 用。
计算题解析
01
计算题1解析
这道题主要考察了学生对材料力学中拉压杆的计算能力,学生需要掌握
拉压杆的应力、应变计算方法,并能够根据实际情况进行选择和应用。
02
计算题2解析
计算题2答案
根据题意,先求出梁的剪力和弯矩,然后根据剪力和弯矩的关系 求出梁的位移分布,最后根据位移和应力的关系求出应力分布。
03
习题解析Biblioteka 简答题解析简答题1解析这道题考查了学生对材料力学 基本概念的理解,需要明确应 力和应变的概念及关系,并能 够解释在材料力学中如何应用 。
简答题2解析
这道题主要考察了学生对材料 力学中弹性模量的理解,以及 如何利用弹性模量进行相关计 算。学生需要理解弹性模量的 物理意义,掌握其计算方法。
C. 材料力学的任务之一是研究材 料的各种力学性能,包括强度、 刚度和稳定性等。
100%
选择题2答案
D. 在材料力学中,应力和应变是 描述材料受力状态的基本物理量 。
80%
选择题3答案
B. 材料力学主要研究材料的力学 性能和内部结构的关系,包括弹 性、塑性和韧性等。
计算题答案

材料力学第五版课后习题答案详解

材料力学第五版课后习题答案详解

Microsoft Corporation孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:;;(b)解:;;(c)解:;。

(d)解:。

返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:返回2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EG横截面上的应力。

解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

解:2-6(2-8) 一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)返回2-7(2-9)一根直径、长的圆截面杆,承受轴向拉力,其伸长为。

试求杆横截面上的应力与材料的弹性模量E。

解:2-8(2-11)受轴向拉力F作用的箱形薄壁杆如图所示。

已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。

解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 轴向拉伸与压缩2-1 试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴F N (kN)F N1= -2kN F N2 = 0kN F N3= 2kN(a (b )2-2 图示中部对称开槽直杆,试求横截面1-1和2-2上的正应力。

解: 1.轴力由截面法可求得,杆各横截面上的轴力为 kN 14N -=-=F F 2.应力 4201014311N 11⨯⨯-==--A F σMPa 175-=MPa ()410201014322N 22⨯-⨯-==--A F σMPa 350-=MPa2-3 图示桅杆起重机,起重杆AB 的横截面是外径为mm 20、内径为mm 18的圆环,钢丝绳BC 的横截面面积为2mm 10。

试求起重杆AB 和钢丝绳=2kN解:1.轴力取节点B 为研究对象,受力如图所示,0=∑x F : 045cos 30cos N N =++οοF F F AB BC0=∑y F : 045sin 30sin N =--οοF F AB由此解得: 83.2N -=AB F kN , 04.1N =BC F kN 2.应力起重杆横截面上的应力为()223N 182041083.2-⨯⨯-==πσAB AB AB A F MPa 4.47-=MPa 钢丝绳横截面上的应力为101004.13N ⨯==BC BC BCA F σMPa 104=MPa2-4 图示由铜和钢两种材料组成的等直杆,铜和钢的弹性模量分别为GPa 1001=E 和GPa 2102=E 。

若杆的总伸长为mm 126.0Δ=l ,试求载荷F 和杆横截面上的应力。

解:1.横截面上的应力 由题意有 ⎪⎪⎭⎫⎝⎛+=+=∆+∆=∆2211221121E l E l A E Fl A E Fl l l l σ 由此得到杆横截面上的应力为3322111021040010100600126.0⨯+⨯=+∆=E l E l l σMPa 9.15=MPa 2.载荷24049.15⨯⨯==πσA F N 20=kN学习资料2-5 图示阶梯形钢杆,材料的弹性模量GPa 200=E ,试求杆横截面上的最大正应力和杆的总伸长。

解:1.最大正应力由于杆各横截面上的轴力相同,故杆横截面上的最大正应力发生在BC 段的任一横截面上,即127.3MPa MPa 204104023N max =⨯⨯==πσBC A F2.杆的总伸长mm57.0mm 20800404001020010404 444 22332222=⎪⎭⎫ ⎝⎛+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+=+=+=∆+∆=∆ππππBC BC AB AB BCBCABAB BC BCAB ABBC AB d l d l E F d E Fl d EFl EA Fl EA Fl l l l2-6 图示电子秤的传感器为一空心圆筒形结构,圆筒材料的弹性模量GPa 200=E 。

在秤某一沿圆筒轴向作用的重物时,测得筒壁产生的轴向线应变6108.49-⨯-=ε解:圆筒横截面上的轴力为 G F -=N 由胡克定律EAG E -==σε可以得到此重物的重量为()[]kN20 N 298080410200108.49 2236=⨯--⨯⨯⨯⨯⨯=-=-πεEAG第三章 材料的力学性质 拉压杆的强度计算3-1 图示水压机,若两根立柱材料的许用应力为MPa 80][=σ,试校核立柱的强度。

解:立柱横截面上的正应力为][59.74802106002MPa MPa 23σπσ<=⨯⨯==A F所以立柱满足强度条件。

3-2 图示油缸盖与缸体采用6个螺栓连接。

已知油缸内径mm 350=D ,油压MPa 1=p 。

若螺栓材料的许用应力MPa 40][=σ,试求螺栓的内径。

解:由于内压的作用,油缸盖与缸体将有分开的趋势,依靠六个螺栓将它们固定在一起。

油缸盖受到的压力为42D p F π⋅=由于6个螺栓均匀分布,每个螺栓承受的轴向力为46162N D p F F π⋅==由螺栓的强度条件2222N 64461d pD d D p A F =⋅⋅==ππσ≤][σ 可得螺栓的直径应为 d ≥mm 6.22mm 3501=⨯=D pσ3-3 图示铰接结构由杆AB 和AC 组成,杆AC 的长度为杆AB 长度的两倍,横截面面积均为2mm 200=A 。

两杆的材料相同,许用应力MPa 160][=σ。

试求结构的许用载荷][F 。

解:由0=∑x F : 045sin 30sin N N =-οοAB AC F F 可以得到:AB AB AC F F F N N N 2>=即AC 杆比AB 杆危险,故32N 200160][N =⨯==A F AC σkN21621N N ==AC AB F F kN 由0=∑y F : 030cos 45cos N N =-+F F F AC AB οο 可求得结构的许用载荷为 ][F 7.43=kN3-4 承受轴力kN 160N =F 作用的等截面直杆,若任一截面上的切应力不超过MPa 80,试求此杆的最小横截面面积。

解:由切应力强度条件AF22N max ==στ≤][τ可以得到A ≥80210160][23N ⨯⨯=τF mm 21000=mm 23-5试求图示等直杆AB各段内的轴力。

解:为一次超静定问题。

设支座反力分别为AF和B F由截面法求得各段轴力分别为AACFF=N,FFFACD2N-=,BDBFF=N①静力平衡方程为=∑y F:02=---BAFFFF②变形协调方程为=∆+∆+∆=∆DBCDACllll③物理方程为EAaFl ACACN=∆,EAaFl CDCD2N=∆,EAaFl DBDBN=∆④由①②③④联立解得:FFA47=,FF B45-=故各段的轴力分别为:FFAC47N=,4NFF CD-=,FF DB45N-=。

3-6图示结构的横梁AB可视为刚体,杆1、2和3的横截面面积均为A,各杆的材料相同,许用应力为][σ。

试求许用载荷][F。

解:为一次超静定问题。

由对称性可知,BFADFF NN=,BFADll∆=∆。

①静力平衡条件:=∑y F:0NNN=-++FFFFBFCEAD②变形协调条件:CEADll∆=∆即EAlFEAlF CEAD2NN⋅=即CEADFF NN2=③由①②③解得:FFFFCEBFAD522NNN===由AD 、BF 杆强度条件AF BF AD 52==σσ≤][σ,可得该结构的许用载荷为A F ][25][σ=3-7 图示铰接正方形结构,各杆的材料均为铸铁,其许用压应力与许用拉应力的比值为3][][t c =σσ,各杆的横截面面积均为A 。

试求该结构的许用载荷][F 。

解:B 点受力如图(a )所示,由平衡条件可得:2N F F =由对称性可知,AD 、BD 、AC 、BC 四杆受拉,拉力均为2F,由拉杆的强度条件 AF2t =σ≤][t σ 可得 F ≤A ][2t σ ①D 点受力如图(b )所示,由平衡条件可得:F F F -=-=N N2'CD 杆受压,压力为F ,由压杆的强度条件AF=c σ≤][3][t c σσ=可得 F ≤A ][3t σ ② 由①②可得结构的许用载荷为A F ][2][t σ=。

3-8 图示横担结构,小车可在梁AC 上移动。

已知小车上作用的载荷kN 15=F ,斜杆AB 为圆截面钢杆,钢的许用应力MPa 170][=σ。

若载荷F 通过小车对梁AC 的作用可简化为一集中力,试确定斜杆AB解:由几何关系,有388.09.18.08.0sin 22=+=α取AC 杆为研究对象0=∑C M : 09.1sin N =-⋅Fx F AB α由此可知:当m 9.1=x 时,kN 66.38kN 388.015sin max N N ====αF F F AB AB由 42maxN max dF AB AB πσ=≤][σ 可得d ≥mm 17mm 1701066.384][43max N =⨯⨯⨯=πσπAB F3-9 图示联接销钉。

已知kN 100=F ,销钉的直径mm 30=d ,材料的许用切应力MPa 60][=τ。

试校核销钉的剪切强度,若强度不够,应改用多大直径的销钉。

解:1.校核销钉的剪切强度232230101002242⨯⨯⨯===πππτd F d F MPa 7.70=MPa ][τ> ∴ 销钉的剪切强度不够。

2.设计销钉的直径 由剪切强度条件422d F πτ=≤][τ,可得d ≥60101002][23⨯⨯⨯=πτπF mm 6.32=mm3-10 图示凸缘联轴节传递的力偶矩为m N 200e ⋅=M ,凸缘之间用四个对称分布在mm 800=D 圆周上的螺栓联接,螺栓的内径mm 10=d ,螺栓材料的许用切应力MPa 60][=τ。

试校核螺栓的剪切强度。

n-n截面0解:设每个螺栓承受的剪力为Q F ,则由 e 0Q 42M D F =⋅⋅ 可得eQ 2D M F =螺栓的切应力80101020022422302e 20eQ ⨯⨯⨯⨯====πππτD d M d D M A F MPa 9.15=MPa ][τ< ∴ 螺栓满足剪切强度条件。

3-11 图示矩形截面木拉杆的接头。

已知轴向拉力kN 50=F ,截面的宽度mm 250=b ,木材顺纹的许用挤压应力MPa 10][bs =σ,顺纹的许用切应力MPa 1][=τ。

试求接头处所需的尺寸l 和a 。

解:1. 由挤压强度条件abF=bs σ≤][bs σ 可得a ≥102501050][3bs ⨯⨯=σb F mm 20=mm2. 由剪切强度条件 blF=τ≤][τ 可得l ≥12501050][3⨯⨯=τb F mm 200=mm3-12 图示螺栓接头。

已知kN 40=F ,螺栓的许用切应力MPa 130][=τ,许用挤压应力MPa 300][bs =σ。

试求螺栓所需的直径d 。

解:1. 由螺栓的剪切强度条件422d F πτ=≤][τ可得d ≥13010402][23⨯⨯⨯=πτπF mm 14=mm20bs ⋅=d Fσ≤][bs σ 可得d ≥300201040][203bs ⨯⨯=σF mm 7.6=mm 综合1、2,螺栓所需的直径为d ≥14mm 。

3-13 图示结构的AB 杆为刚性杆,A 处为铰接,AB 杆由钢杆BE 与铜杆CD 吊起。

已知CD 杆的长度为m 1,横截面面积为2mm 500,铜的弹性模量GPa 1001=E ;BE 杆的长度为m 2,横截面面积为2mm 250,钢的弹性模量GPa 2002=E 。

试求CD 杆和BE 杆中的应力以及BE 杆的伸长。

解:为一次超静定问题。

相关文档
最新文档