湿式氧化技术共51页文档
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)链的终止:若自由基之间相互碰撞生 成稳定的分子,则链的增长过程终止。
R· + R· → R-R ROO·+ R·→ ROOR ROO·+ ROO·→ ROH + R1COR2 + O2
A + O2
CO2、H2O
B + O2 反应过程示意图
大分子有机物和不稳定的中间化合物A被氧化降 解,生成稳定的中间产物B,然后再被氧化为最 终产物如CO2。
(5)能耗少,可以回收能量和有用物料——系统的 反应热可以用来加热进料,系统中排出的热量可以 用来产生蒸汽或加热水,反应放出的气体可以用来 产生机械能或电能等。
湿式氧化技术作用机理
主要包括传质和化学反应两个过程,目前的研究结 果普遍认为WAO反应属于自由基反应,通常分为 三个阶段:链的引发、链的发展或传递、链的终止。 (1)链的引发:反应物分子生成自由基的过程。
主要内容
◎ 湿式氧化技术及特点 ◎ 湿式氧化技术作用机理 ◎ 影响湿式氧化处理效果的主要因素 ◎ 湿式氧化工艺和设备 ◎ 湿式氧化处理技术的应用 ◎催化湿式氧化技术
湿式氧化技术及特点
1. 湿式氧化法:指在高温(125-320℃)和高压 (0.5-20MPa)条件下,以空气中的氧气为氧化剂, 在液相体系中,将废水中的有机物氧化分解为无机 物或小分子有机物的过程。相应的技术称之为湿式 氧化技术(wet air oxidation,WAO)。
2. WAO最初由美国的F. J. Zimmermann在1944 年研究提出的,并于1958年首次用于处理造纸黑 液,也称齐默尔曼法。
保证湿式氧化过程的必要条件 ——高温、高压及液相条件
湿式氧化反应过程分为两个阶段:前段受氧的传质控 制,后段受反应动力学控制。
温度是WAO过程过程的关键影响因素,温度越高, 化学反应速率越快;温度升高可以增加氧气的传质速 度,减小液体的粘度。
(2)处理效率高——在合适的温度和压力条件下, WAO的COD处理效率可达到90%以上; (3)氧化速度快——大部分的反应停留时间在30~ 60 min以内(停留时间短)。处理装置小,占地少, 结构紧凑,易于管理。
(4)二次污染较少——C被转化为CO2,N被转化 为NH3、NO3-、N2,卤化物和硫化物被氧化为相应 的无机卤化物和硫化物,在反应过程中没有NOx、 SO2、HCl、CO等有害的物质产生。
4. 压力 系统压力的主要作用是保持反应系统内液相的存在, 对氧化反应的影响并不显著。如果压力过低,大量的 反应热会消耗在水的蒸发上,这样不但反应温度得不 到保证,而且反应器有蒸干的危险。因此,在一定温 度下,总压不应低于该温度下水的饱和蒸气压。
5. 废水的pH值
反应体系的pH值变化的规律:先变小(中间体羧酸的积 累)后略有升高(中间体的进一步氧化),温度越高,物 质的转化越快,pH值的变化越剧烈。 废水的pH值对湿式氧化的影响有三种情况: (1)pH值越低,氧化效果越好。例:有机磷农药废水; (2)pH值对COD去除率的影响存在极值点。例:含酚废 水在pH值为3.5~4.0时,COD的去除率最大。 (3)pH值越高,处理效果越好。例:酒厂废水。
影响湿式氧化处理效果的主要因素
1. 废水的反应热和空气量 在湿式氧化(湿式燃烧)系统中依靠有机物被 氧化所释放的氧化热来维持反应温度,单位质 量被氧化物质在氧化过程中产生的热值即为燃 烧值。同时,湿式氧化过程中需要消耗空气, 所需空气的量由废水降解的COD值计算获得。
经验公式——
(1)完全去除时空气的理论需要量与废液浓 度之间的关系: A = 4.3COD (g空气/L废液)
(2)放热量: H = 4.3COD×3.16 = 13.6COD (kJ/L废液)
2. 废水中有机物的结构 大量研究表明:有机物氧化与物质的电 荷特征和空间结构有很大的关系,不同 的废水有各自的反应活化能和不同的氧 化反应过程,因此湿式氧化的难易程度 不同。
3. 温度 决定性因素。反应温度低,即使延长反应时间,反 应物的去除率也不会显著提高。
RH + O2 → R·+ ·HO2 (RH为有机物) 2RH + O2 → 2R·+ H2O2 H2O2 → 2·OH
(2)链的发展与传递:自由基与分 子相互作用,交替进行使自由基数量 迅速增加的过程。
RH + ·OH → R·+ H2O R·+ O2 → ROO· ROO·+ RH → ROOH + R·
——调节废水到适宜的pH值,有利于加快反应的 速度和有机物的降解。 ——低的pH值对反应设备的腐蚀增加,对反应设 备的材质要求高,材料使用费用增加;低的pH值 易使催化剂活性组分溶出和流失,造成二次污染。
设计WAO流程时要两者兼顾。
6. 停留时间
(1)达到处理效果所需要的时间随反应温度的升高 而缩短;
压力的主要作用是保证氧的分压维持在一定的范围内, 确保液相中有较高的溶解氧浓度。
液相(水)保证有机物和氧良好的混溶(均相体系的 反应,不受相间传质影响)。
3. 湿式氧化技术的特点(与常规的处理方法相比) (1)应用范围广——几乎可以无选择地有效氧化各 类高浓度有机废水,特别是毒性大、常规方法难降 解的废水;
原因:(1)温度<100℃时,氧的溶解度随着温度 的升高而降低;温度T > 150℃时,有机物的溶解 度随着温度的升高而增大,氧在水中的传质系数 也随着温度的升高而增大;(2)温度升高使液体 的粘度减小,因此温度升高有利于氧在液体中的 传质和有机物氧化。
温度越高,有机物的氧化越完全
但是,温度升高,总压力增大,动力消百度文库增加,且 对反应器的要求越高,因此,从经济的角度考虑, 应选择合适的温度,既要满足氧化的效率,又要 合理地设计能量消耗等费用。
(2)去除率越高,所需的反应温度越高或反应时间 越长;
(3)氧分压越高,所需的温度越低或反应时间越短。 根据污染物被氧化的难易程度以及处理的要求,可确 定最佳反应温度和反应时间。一般而言,湿式氧化处 理装置的停留时间在0.1~2 h之间。
7. 搅拌强度 在高压反应釜内进行反应时,氧气从气相向液 相中传质与搅拌强度有关。搅拌强度影响传质 速率,搅拌强度越大,液体的湍流程度越大, 氧气在液相中的停留时间越长,传质速率就越 大。当搅拌强度增大到一定程度时,搅拌强度 对传质速率的影响很小。