第三讲 面板数据变系数模型2
面板数据模型.讲课文档
其中,
称为复合误差(composite error)。
这一结果与1987年数据的横截面OLS回归结果不一 样。注意,使用混合OLS并不解决遗漏变量问题。
两时期面板数据分析(续4)
另一种方法,考虑了非观测效应与解释变量相关性。
(面板数据模型主要就是为了考虑非观测效应与解 释变量相关性的情形)例如在犯罪方程中,让ai中
为两类:一类是恒常不变的;另一类则随时间而变。
d2t表示当t=1时等于0而当t=2时等于1的一个虚拟变 量,它不随i而变。ai概括了影响yit的全部观测不到 的、在时间上恒定的因素,通常称作非观测效应, 也称为固定效应,即ai在时间上是固定的。特质误 差uit表示随时间变化的那些非观测因素。
两时期面板数据分析(续2)
第三,Panel Data Model可以通过设置虚拟变量对 个别差异(非观测效应)进行控制;即面板数据模 型可以用来有效处理遗漏变量(omitted varaiable) 的模型错误设定问题。
遗漏变量
使用面板数据的一个主要原因是,面板数据可以用 来处理某些遗漏变量问题。
例如,遗漏变量是不随时间而变化的表示个体异质 性的一些变量,如国家的初始技术效率、城市的历 史或个人的一些特征等。这些不可观测的不随时间 变化的变量往往和模型的解释变量相关,从而产生 内生性,导致OLS估计量有偏且不一致。
2000 4203.555 8206.271 5522.762 4361.555 3890.580 4077.961 5317.862 3612.722 4360.420 3877.345 5011.976 8651.893 3793.908 6145.622 6950.713
2001 4495.174 8654.433 6094.336 4457.463 4159.087 4281.560 5488.829 3914.080 4654.420 4170.596 5159.538 9336.100 4131.273 6904.368 7968.327
面板数据模型 (2)
面板数据模型1. 引言面板数据模型(Panel Data Model)是一种针对面板数据分析的统计模型。
面板数据也称为纵向数据或者长期追踪数据,在经济学和社会科学领域广泛应用。
面板数据由包含多个个体和多个时间点的观测数据组成,可以提供比截面数据(cross-sectional data)更多的信息。
本文将介绍面板数据模型的基本概念、应用领域、建模方法和相关统计分析技术。
2. 面板数据模型的基本概念2.1 面板数据的构成面板数据由个体维度和时间维度两个维度构成。
个体维度指的是一组被观察的个体,可以是人、公司、地区等;时间维度指的是一段时间内的观测点,可以是年、月、季度等。
面板数据是在个体和时间维度上的交叉观测数据。
2.2 面板数据的类型面板数据分为平衡面板数据和非平衡面板数据。
平衡面板数据指的是所有个体在每个时间点上都有观测值;非平衡面板数据指的是个体在某些时间点上缺少观测值。
2.3 面板数据模型的优势相比于截面数据和时间序列数据,面板数据有以下几个优势:•能够控制个体固定效应:面板数据模型可以减少个体固定效应的干扰,提高模型的解释能力;•能够捕捉个体间的异质性:面板数据模型可以捕捉个体之间的差异和变动,提供更全面的分析结果;•提供更多的信息和数据点:面板数据相对于时间序列数据,提供了更多的观测点,可以提高统计分析的准确性。
3. 面板数据模型的应用领域面板数据模型在经济学、金融学、社会学等领域广泛应用,具体领域包括但不限于:•劳动经济学:分析个体的劳动供给行为和工资决定因素;•金融学:评估公司和证券的风险和收益;•医学研究:研究药物治疗的效果和副作用;•教育经济学:评估教育政策的效果和影响;•发展经济学:分析发展中国家的经济增长和贫困问题。
4. 面板数据模型的建模方法面板数据模型的建模方法主要包括固定效应模型(Fixed Effects Model)和随机效应模型(Random Effects Model)。
面板数据模型
面板数据模型面板数据模型(Panel Data Model)是一种经济学和统计学中常用的数据分析方法,它允许研究人员在时间和个体维度上分析数据。
该模型结合了截面数据(Cross-sectional Data)和时间序列数据(Time Series Data),能够捕捉到个体间的异质性和时间的动态变化。
面板数据模型的基本假设是个体间存在固定效应(Fixed Effects)和时间效应(Time Effects),即个体特定的不变因素和时间特定的不变因素会对观测数据产生影响。
通过控制这些效应,面板数据模型可以更准确地估计变量之间的关系。
面板数据模型的普通形式可以表示为:Yit = α + βXit + εit其中,Yit表示第i个个体在第t个时间点的观测值,α是截距项,β是自变量Xit的系数,εit是误差项。
面板数据模型可以通过固定效应模型(Fixed Effects Model)和随机效应模型(Random Effects Model)来估计参数。
固定效应模型假设个体间的差异是固定的,即个体特定的不变因素对观测数据产生影响。
该模型通过引入个体固定效应来控制个体间的差异,估计其他变量对因变量的影响。
随机效应模型假设个体间的差异是随机的,即个体特定的不变因素对观测数据不产生影响。
该模型通过引入个体随机效应来控制个体间的差异,估计其他变量对因变量的影响。
面板数据模型的估计方法包括最小二乘法(Ordinary Least Squares, OLS)、固定效应估计法(Fixed Effects Estimation)和随机效应估计法(Random Effects Estimation)。
最小二乘法是一种常用的估计方法,但在面板数据模型中存在一致性问题。
固定效应估计法通过个体间的差异来估计参数,可以解决一致性问题。
随机效应估计法则通过个体间和时间间的差异来估计参数,可以更全面地捕捉到数据的变化。
面板数据模型在经济学和社会科学研究中具有广泛的应用。
面板数据模型 (2)
面板数据模型面板数据模型是一种用于可视化面板的数据结构。
面板是一种数据可视化工具,它可以将数据以图表、表格、图像等形式展示出来,帮助用户更直观地理解数据。
1. 什么是面板数据模型?面板数据模型是一种用于表示面板数据的数据结构。
它由以下几个要素组成:•数据源(Data Source):数据源是面板中使用的数据的来源。
数据源可以是各种类型的数据,包括数据库、文件、API接口等。
面板可以从一个或多个数据源中获取数据。
•指标(Metric):指标是面板中展示的数据的具体指标。
指标可以是一些统计数据,如平均值、总和、最大值等。
面板可以同时展示多个指标。
•维度(Dimension):维度是用于分类和分组数据的属性。
维度可以是日期、地理位置、产品类型等。
面板可以通过维度对数据进行分组,从而提供更多的数据分析维度。
•图表类型(Chart Type):面板可以根据数据的特点选择合适的图表类型进行展示。
常见的图表类型有折线图、柱状图、散点图等。
2. 面板数据模型的关键元素面板数据模型由以下几个关键元素组成:•表格(Table):表格是面板中最基本的展示方式,它将数据以表格的形式展示出来。
表格由多行和多列组成,每行表示一个数据项,每列表示一个指标或维度。
表格可以方便地查看每个数据项的具体数值。
•图表(Chart):图表是面板中常用的展示方式,它以图形的形式展示数据。
图表可以根据数据的特点选择不同的类型,如折线图可以展示数据的趋势变化,柱状图可以展示数据的比较关系。
•过滤器(Filter):过滤器可以用于筛选展示的数据。
通过设置过滤器,用户可以根据需要过滤掉一些数据,只展示感兴趣的数据。
过滤器可以设置在维度上,也可以设置在指标上。
•时间轴(Time Range):时间轴是面板中用于选择数据展示时间范围的工具。
用户可以通过时间轴选择展示的时间跨度,如按小时、按天、按周等。
3. 应用举例以下是一个简单的面板数据模型的应用举例:---title: 面板数据模型示例---# 面板数据模型示例## 数据源本面板使用的数据源为数据库中的销售数据。
面板数据模型
面板数据模型引言概述:面板数据模型是一种经济学和统计学中常用的数据分析方法。
它适用于具有时间和个体维度的数据,可以帮助研究人员更好地理解个体之间的关系以及时间的变化趋势。
本文将详细介绍面板数据模型的概念、应用领域、优势和限制,并提供一些实际案例来说明其实际价值。
正文内容:1. 面板数据模型的概念1.1 面板数据模型的定义面板数据模型是一种同时考虑时间和个体维度的数据分析方法。
它将个体的观察结果按照时间顺序排列,形成一个面板数据集,以便分析个体之间的关系和时间的变化趋势。
1.2 面板数据模型的分类面板数据模型可以分为固定效应模型和随机效应模型。
固定效应模型假设个体之间的差异是固定的,而随机效应模型则允许个体之间的差异是随机的。
2. 面板数据模型的应用领域2.1 经济学领域面板数据模型在经济学领域得到广泛应用。
例如,研究人员可以利用面板数据模型来分析不同国家或地区的经济增长率、失业率和通货膨胀率之间的关系,以及企业的生产效率和市场竞争程度之间的关系。
2.2 社会科学领域面板数据模型也在社会科学领域具有重要意义。
研究人员可以利用面板数据模型来研究教育、健康、就业等社会问题,并分析个体特征对这些问题的影响。
2.3 金融领域面板数据模型在金融领域的应用也非常广泛。
例如,研究人员可以利用面板数据模型来分析不同股票的收益率之间的关系,以及股票市场的波动与宏观经济指标之间的关系。
3. 面板数据模型的优势3.1 控制个体固定效应面板数据模型可以通过固定效应来控制个体固有的差异,从而更准确地分析个体之间的关系。
3.2 利用时间维度的信息面板数据模型可以利用时间维度的信息,分析个体随时间的变化趋势,更好地理解时间的影响。
3.3 提高数据的效率面板数据模型可以利用面板数据集中的交叉个体和时间信息,提高数据的效率,减少估计的方差。
4. 面板数据模型的限制4.1 数据缺失问题面板数据模型在面对数据缺失问题时可能会出现一些困难,需要采取一些特殊的处理方法。
面板数据模型
面板数据模型面板数据模型,又称固定效应模型,是计量经济学中常用的一种数据分析方法。
它适用于时间序列和截面数据的联合分析,具有较高的灵活性和强大的解释能力。
本文将对面板数据模型的基本原理、应用场景以及估计方法进行介绍,并通过实例说明其实际运用。
第一部分:面板数据模型的基本原理面板数据模型基于以下假设:每个个体(又称单位)在不同时间点都有观测值,并且个体之间的观测值具有相关性。
面板数据模型通常由固定效应模型和随机效应模型两种形式。
固定效应模型假设个体特定的不变因素对观测值产生了影响,这些不变因素可能包括个体的性别、年龄、学历等。
固定效应模型可以通过引入个体固定效应变量来捕捉这些影响因素,并以此来解释观测值的变动。
第二部分:面板数据模型的应用场景面板数据模型在经济学、金融学、社会学等领域得到了广泛的应用。
例如,在经济学中,研究人员可以利用面板数据模型来分析不同国家或地区的经济增长情况,探讨政策对经济发展的影响;在金融学领域,研究人员可以运用面板数据模型来研究股票价格的波动和影响因素。
第三部分:面板数据模型的估计方法面板数据模型有多种估计方法,常见的有固定效应模型估计和随机效应模型估计。
固定效应模型估计通常采用最小二乘法,即通过对个体固定效应进行回归分析来求解模型参数。
随机效应模型估计则假设个体固定效应是误差项的一部分,通过对固定效应进行随机化处理得到模型的估计结果。
实例应用:假设我们需要研究不同地区的教育水平对经济增长的影响,我们可以使用面板数据模型来分析这个问题。
我们收集了10个地区在2010年到2020年的经济增长率和教育水平数据。
我们可以利用固定效应模型来探究教育水平对经济增长的影响。
首先,我们创建一个包含个体固定效应的面板数据模型,并使用最小二乘法来估计参数。
然后,我们通过分析模型的显著性水平、参数估计结果以及模型拟合程度来得出结论。
通过面板数据分析,我们可以发现教育水平对经济增长确实存在显著的正向影响。
面板数据模型经典PPT
该模型假设个体和时间特定效应是固定的,不会随着解释变量的变化 而变化。
03
固定效应模型可以通过固定效应估计量来估计变量的影响,该估计量 不受个体和时间特定效应的影响。
04
固定效应模型可以通过各种方法进行估计,包括最小二乘法、广义最 小二乘法、工具变量法和随机效应法等。
随机效应模型
01 02 03 04
面板数据模型经典
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的检验与诊断 • 面板数据模型的应用案例
01
面板数据模型概述
定义与特点
定义
面板数据模型是一种统计分析方法, 用于分析时间序列和截面数据的混合 数据集。
特点
能够同时考虑时间和个体效应对因变 量的影响,提供更全面的分析视角, 有助于揭示数据背后的复杂关系。
面板数据模型的适用场景
01
面板数据模型适用于分析长时间跨度下多个个体或 经济实体的数据,如国家、地区或公司等。
02
当需要探究时间趋势和个体差异对因变量的影响时, 面板数据模型是理想的选择。
03
在经济学、社会学、生物学等领域,面板数据模型 被广泛应用于实证研究。
面板数据模型与其他模型的比较
01
与时间序列模型相 比
其他领域的应用案例
总结词
除了上述领域外,面板数据模型还广泛应用 于金融、环境科学、医学和交通等领域,为 各领域的科学研究和实践提供了重要的方法 和工具。
详细描述
在金融领域,面板数据模型被用于股票价格 、收益率和风险评估等方面;在环境科学领 域,面板数据模型被用于研究气候变化、环 境污染和生态平衡等方面;在医学领域,面 板数据模型被用于疾病诊断、治疗方法和药 物研发等方面;在交通领域,面板数据模型 被用于交通流量、交通规划和交通安全等方
面板数据模型介绍
融合发展的方法可以充分利用各种方法的优点,提高模型的预测精度和稳 定性。
融合发展的方法有助于解决复杂的数据分析问题,促进相关领域的发展和 应用。
THANKS FOR WATCHING
感谢您的观看
公司财务数据的面板数据模型分析
要点一
总结词
要点二
详细描述
公司财务数据的面板数据模型分析是评估公司财务状况和 经营绩效的有效手段。
通过收集公司在一段时间内的财务数据,如收入、利润、 资产负债表等,利用面板数据模型分析这些数据的动态变 化,可以评估公司的盈利能力、偿债能力和运营效率,为 投资者和债权人提供决策依据。
02 面板数据模型的类型
固定效应模型
01
固定效应模型是一种用于面板数据分析的统计模型,它通过控 制个体和时间特定效应来估计变量的影响。
02
该模型假设个体和时间特定效应是恒定的,不会随着自变量的
变化而变化。
它主要用于消除个体和时间特定效应对估计的影响,以更好地
03
解释变量的影响。
随机效应模型
01
02
该模型同时控制个体和时间特定效应,并允许它们在某些情 况下随自变量的变化而变化。
03
它适用于当个体和时间特定效应对解释变量有不同程度的影 响时的情况。
其他类型
其他类型的面板数据模型包括空间面板数据模型、动态面板 数据模型等。
这些模型在特定的研究领域和应用场景中有其特定的用途和 优势。
03 面板数据模型的估计方法
面板数据模型介绍
目录
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的检验与诊断 • 面板数据模型的应用案例 • 面板数据模型的发展趋势与展望
13、第七章(面板数据模型——固定影响变系数模型)
面板(平行)数据模型——固定影响变系数模型一、研究目的面板数据模型从系数的角度看,可以分为3种类型,即:不变系数模型(也称为混合模型)、变截距模型、变系数模型。
这三种类型在固定影响变截距模型案例分析中已经介绍过了。
从估计方法的角度看,也可以分为3种类型,分别是:混合模型、固定影响(效应)模型、随机影响(效应)模型。
混合模型也就是不变系数模型,这时面板的三维数据和二维数据没有区别,面板模型等同于一般的回归模型,因此采用OLS就可以得到估计结果。
固定影响模型分为变截距模型和变系数模型,变截距模型在之前的案例分析中介绍了,本案例介绍固定影响变系数模型,以及之前的案例分析中没有涉及的面板数据模型中的一些知识和操作的介绍。
至于随机效应模型会在高级计量分析案例中介绍。
二、面板数据模型原理1、面板数据模型原理这部分内容参见固定影响变截距模型案例分析2、固定影响模型与随机影响模型的区别所谓的固定、随机、混合,主要是针对分组变量而言的。
固定效应模型,表示你打算比较的就是你现在选中的这几组。
例如,我想比较10个公司的业绩,分析目的就是为了比较这10个公司的差别,不想推广到其他公司。
这10个公司不是从很多公司中抽样出来的,分析结论不想推广到其他公司,结论仅限于这10个公司。
“固定”的含义正在于此,这10个公司是固定的,不是随机选择的。
随机效应模型,表示你打算比较的不仅是你的设计中的这几组,而是想通过对这几组的比较,推广到他们所能代表的总体中去。
例如,你打算分析上述10个公司所在行业内其他公司的业绩,那么你所选的10个公司业绩的分析研究,其目的不是为了比较这10个公司的业绩差异,而是为了说明整个行业的所有公司的业绩差异。
你的研究结论就不仅仅限于这10个公司,而是要推广到整个行业。
“随机”的含义就在于此,这10个公司是从整个行业中挑选出来的。
混合效应模型就比较好理解了,就是既有固定的因素,也有随机的因素。
一般来说,只有固定效应模型,才有必要进行两两比较,随机效应模型没有必要进行两两比较,因为研究的目的不是为了比较随机选中的这些组别。
面板数据模型
面板数据模型引言概述:面板数据模型是一种经济学和统计学领域常用的数据分析方法,它可以更准确地描述和分析时间序列和横截面数据的关系。
本文将从五个大点来阐述面板数据模型的相关内容。
正文内容:1. 面板数据模型的基本概念1.1 面板数据的定义和特点:面板数据是指在一段时间内对多个个体进行观察得到的数据,包含了时间序列和横截面的特点。
1.2 面板数据的分类:面板数据可以分为平衡面板和非平衡面板,平衡面板是指每一个个体在每一个时间点都有观测值,非平衡面板则相反。
2. 面板数据模型的估计方法2.1 固定效应模型:固定效应模型是面板数据模型中最常用的一种估计方法,它通过引入个体固定效应来控制个体特定的不可观测因素对因变量的影响。
2.2 随机效应模型:随机效应模型则是通过引入个体随机效应来控制个体特定的不可观测因素对因变量的影响,相比于固定效应模型,它更加灵便。
2.3 混合效应模型:混合效应模型是固定效应模型和随机效应模型的结合,既考虑了个体固定效应,又考虑了个体随机效应。
3. 面板数据模型的假设检验3.1 Hausman检验:Hausman检验是用来判断固定效应模型和随机效应模型哪个更适合的一种假设检验方法。
3.2 异方差检验:由于面板数据模型中存在异方差问题,需要进行异方差检验来确保模型的可靠性。
3.3 序列相关检验:面板数据模型中还需要进行序列相关检验,以确保模型的误差项是否存在相关性。
4. 面板数据模型的应用领域4.1 经济学领域:面板数据模型在经济学领域广泛应用,可以用于研究经济增长、劳动经济学、国际贸易等问题。
4.2 社会学领域:面板数据模型也被用于社会学研究中,可以用于分析教育、健康、家庭结构等社会问题。
4.3 金融学领域:面板数据模型在金融学领域的应用也很广泛,可以用于研究股票市场、债券市场等金融问题。
5. 面板数据模型的优缺点5.1 优点:面板数据模型可以同时考虑个体特征和时间变化,更准确地描述变量之间的关系。
面板数据模型设定检验方法
1:(STATA 的双固定效应)xi :xtreg y x1 x2 i.year,fe2:变系数模型(1)生成虚拟变量tab id,gen(id)gen open1=id1*opengen open2=id2*open(2)变系数命令xtreg y open1 open2。
,fe面板数据模型设定检验方法4.1 F 检验先介绍原理。
F 统计量定义为()()/~, (30)/()R U U RSS RSS J F F J N k RSS N k -=-- 其中RSS r 表示施加约束条件后估计模型的残差平方和,RSS u 表示未施加约束条件的估计模型的残差平方和,J 表示约束条件个数,N 表示样本容量,k 表示未加约束的模型中被估参数的个数。
在原假设“约束条件真实”条件下,F统计量渐近服从自由度为( J , N – k )的F 分布。
以检验个体固定效应回归模型为例,介绍F 检验的应用。
建立假设H 0:αi =α。
模型中不同个体的截距相同(真实模型为混合回归模型)。
H 1:模型中不同个体的截距项αi 不同(真实模型为个体固定效应回归模型)。
F 统计量定义为:F =)/()]()/[()(k N NT SSE k N NT k NT SSE SSE u u r --------1=)/()/()(k N NT SSE N SSE SSE u u r ----1 (31)其中SSE r 表示约束模型,即混合估计模型的残差平方和,SSE u 表示非约束模型,即个体固定效应回归模型的残差平方和。
非约束模型比约束模型多了N -1个被估参数。
以案例1为例,已知SSE r = 4824588,SSE u = 2270386,F = )/()/()(11----N NT SSE N SSE SSE u u r =)/()/()(115105227038611522703864824588---- =22510182443= 8.1(32)F 0.05(6, 87) = 1.8因为F = 8.1 > F 0.05(14, 89) = 1.8,推翻原假设,比较上述两种模型,建立个体固定效应回归模型更合理。
面板数据模型
面板数据模型引言概述:面板数据模型是一种经济学和统计学领域常用的数据分析方法,它能够有效处理时间序列和截面数据的结合。
本文将介绍面板数据模型的概念、应用领域、优势以及常见的面板数据模型方法。
一、面板数据模型的概念1.1 面板数据的定义面板数据是指在一段时间内对多个个体进行观测得到的数据,其中个体可以是个人、公司、国家等。
面板数据包含了时间序列和截面数据的特点,能够提供更全面和准确的信息。
1.2 面板数据模型的基本假设面板数据模型的基本假设包括个体异质性、时间稳定性和无序列相关等。
个体异质性指个体之间存在差异;时间稳定性指个体的特征在时间上保持稳定;无序列相关指个体之间的观测值在时间上不相关。
1.3 面板数据模型的分类面板数据模型可以分为固定效应模型、随机效应模型和混合效应模型。
固定效应模型假设个体间存在固定差异,随机效应模型假设个体间存在随机差异,而混合效应模型同时考虑了固定差异和随机差异。
二、面板数据模型的应用领域2.1 经济学领域面板数据模型在经济学领域广泛应用于宏观经济分析、产业经济分析、金融市场分析等方面。
它能够匡助研究人员更准确地分析经济现象,提供政策制定的依据。
2.2 社会科学领域面板数据模型在社会科学领域中的应用也较为广泛,例如教育领域的学生绩效评估、健康领域的医疗资源分配等。
通过面板数据模型,研究人员可以更好地理解社会问题并提供相应的解决方案。
2.3 管理学领域面板数据模型在管理学领域的应用主要集中在企业绩效评估、市场竞争分析、人力资源管理等方面。
它能够匡助企业决策者更好地了解企业内外部环境对企业绩效的影响。
三、面板数据模型的优势3.1 提供更多信息相比于传统的时间序列或者截面数据分析方法,面板数据模型能够提供更多的信息,更全面地反映个体和时间的差异。
3.2 提高估计效率面板数据模型能够利用个体和时间的交叉信息,提高估计的效率。
通过引入个体固定效应或者随机效应,可以降低估计的方差。
面板数据模型
it
it
it
面板数据模型
第6页
得
( )( )
X X Y Y it
i.
it
i.
ˆi t
( )2
X X it
i.
i
t
再预计 i
ˆ i Y i. ˆ X i.
方差预计量为:
e e 2
ˆ
i
( )2
it
i.
t
nt (n 1)
(3)设定检验
H : ...
0
1
2
n
H 1:至少有一个不等
Y X
it
i
it
it
截距项
, i
随机的 i
模型可以改写为:Y it
X W
it
it
其中W
it
i
it
混合影响
面板数据模型
横截面对Y干扰
第2页
二.固定效应模型
Y X
it
i
it
it
模型 (1)截距项
i
模型 (2)
i
t
i,
非随机的
t
对模型(1)
当 X it X *时
...
it
2 it 2
n itn
it
it
面板数据模型
第8页
3.对固定效应模型(2)设定和预计
Y X
it
i
t
it
it
(1)设定(不含截距项, 引进n+T-1个虚拟变量)
Y D D H H X
...
...
it
1 it1
n itn
2 it 2
T
itT
面板数据模型 (2)
面板数据模型1.面板数据定义。
时间序列数据或截面数据都是一维数据。
例如时间序列数据是变量按时间得到的数据;截面数据是变量在截面空间上的数据。
面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。
面板数据是同时在时间和截面空间上取得的二维数据。
面板数据示意图见图1。
面板数据从横截面(cross section)上看,是由若干个体(entity, unit, individual)在某一时刻构成的截面观测值,从纵剖面(longitudinal section)上看是一个时间序列。
面板数据用双下标变量表示。
例如y i t, i = 1, 2, …, N; t = 1, 2, …, TN表示面板数据中含有N个个体。
T表示时间序列的最大长度。
若固定t不变,y i ., ( i = 1, 2, …, N)是横截面上的N个随机变量;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列(个体)。
图1 N=7,T=50的面板数据示意图例如1990-2000年30个省份的农业总产值数据。
固定在某一年份上,它是由30个农业总产总值数字组成的截面数据;固定在某一省份上,它是由11年农业总产值数据组成的一个时间序列。
面板数据由30个个体组成。
共有330个观测值。
对于面板数据y i t, i = 1, 2, …, N; t = 1, 2, …, T来说,如果从横截面上看,每个变量都有观测值,从纵剖面上看,每一期都有观测值,则称此面板数据为平衡面板数据(balanced panel data)。
若在面板数据中丢失若干个观测值,则称此面板数据为非平衡面板数据(unbalanced panel data)。
注意:EViwes 3.1、4.1、5.0既允许用平衡面板数据也允许用非平衡面板数据估计模型。
面板数据模型-理论部分
若接受假设H03,则样本数据符合常系数模型(Ⅲ),无需进一步检验。 若拒绝假设H03,则需检验H02.如果接受H02,则样本数据符合变截距
模型(Ⅱ),反之拒绝H 02,则应认为样本数据符合变系数模型 (Ⅰ)。
经济分析中的平行(面板)数据问题
在经济分析中,尤其是通过建立计量经济学模型所进 行的经济分析中,经常发现,只利用截面数据或者只 利用时间序列数据不能满足分析的目的的需要。
例如,如果分析成本问题,只利用截面数据,即选择同 一截面上不同规模的企业数据作为样本观测值,可以 分析成本和企业规模的关系,但不能分析技术进步对 成本的影响;只利用时间序列数据,即选择同一企业 在不同时间上的数据作为样本观测值,可以分析成本 和技术进步的关系,但是不能分析企业规模对成本的 影响。如果采用平行(面板)数据,即在不同时间上 选择不同规模的企业数据作为样本观测值,既可以分 析成本与技术进步的关系,也可以分析成本与企业规 模的关系。
再例如1990-2000年30个省份的农业总产值数据。固 定在某一年份上,它是由30个农业总产值数字组成的截 面数据;固定在某一省份上,它是由11年农业总产值数
据组成的一个时间序列。面板数据由30个个体组成。共
有330个观测值。 对于面板数据来说,如果从横截面上看,每个变量
都有观测值,从纵剖面上看,每一期都有观测值,则称 此面板数据为平衡面板数据(balanced panel data)。若 在面板数据中丢失若干个观测值,则称此面板数据为非 平衡面板数据(unbalanced panel data)。
(3)计算H02对应的F2统计量。 若计算的统计量F2的值不小于给定显著水平的临界值,拒 绝假设H02,则样本数据适于变系数模型(Ⅰ) ;反之接
经济统计学中的面板数据模型
经济统计学中的面板数据模型面板数据模型是经济统计学中一种重要的分析方法,它能够综合考虑横截面和时间序列的特征,为研究人员提供了更为全面和准确的数据分析工具。
本文将探讨面板数据模型的基本概念、应用领域以及一些常见的方法和技巧。
一、面板数据模型的基本概念面板数据模型又称为纵横数据模型,它是将多个横截面单位(如个人、家庭、企业等)在一定时间段内的观测数据组合起来进行分析的一种统计模型。
面板数据模型可以分为固定效应模型和随机效应模型两种类型。
固定效应模型假设每个横截面单位的个体效应是固定的,不随时间变化。
这种模型常用于分析不同个体之间的差异,例如研究不同企业的经营绩效。
而随机效应模型则假设个体效应是随机的,可以通过随机变量来表示。
这种模型适用于研究同一横截面单位在不同时间点的变化,例如分析个人收入的变化趋势。
二、面板数据模型的应用领域面板数据模型在经济学和社会科学的研究中得到了广泛的应用。
首先,它可以用于研究个体行为的动态变化。
例如,通过分析个人消费行为的面板数据,可以了解到个人在不同时间段内的消费习惯和消费水平的变化趋势,为制定宏观经济政策和个人理财提供依据。
其次,面板数据模型也可以用于评估政策效果和经济政策的影响。
通过对政策实施前后的面板数据进行比较,可以分析政策对经济发展、就业情况等方面的影响,并为政策制定者提供决策参考。
另外,面板数据模型还可以用于研究跨国公司的经营策略和市场竞争。
通过对不同国家或地区的面板数据进行分析,可以了解到跨国公司在不同市场的表现和竞争优势,为企业决策提供参考。
三、面板数据模型的方法和技巧在面板数据模型的分析中,有一些常见的方法和技巧可以帮助研究人员更好地利用数据进行分析。
首先,面板数据模型中的异质性问题需要引起注意。
由于不同个体之间存在差异,研究人员需要通过引入个体固定效应或随机效应来控制这种差异,以确保模型的准确性。
其次,面板数据模型中的内生性问题也需要关注。
内生性问题指的是模型中的解释变量与误差项之间存在相关性,可能导致估计结果的偏误。
第三讲 面板数据变系数模型2
其中,β 是常数均值向量 β =(β1
β2
"
βK
)' ,ξ it
是均值为零、具有固定协方差矩阵的随机
向量ξ =(ξ
it
1it
ξ 2it
"
ξ Kit
)'
,则称满足(6.16)式的模型是面板数据随机系数模型。
5.1 Swamy 随机系数模型
如果随机系数模型(5.2)中 K 个解释变量的系数向量 β i 是均值 β 和协方差矩阵 Σ 的
( ) 即,
βi
=
β
+ξ i
, E (ξi )
=
0;E
ξi
ξ
' j
⎧Σ
=
⎨ ⎩
0
(i (i
= ≠
j) j)
;
假设 5:对任意的 i 和 j,误差向量 ui 与系数向量 β j 独立。 于是,模型(5.3)的合并随机项 Xξ +U 的协方差矩阵
( )( ) Ω
=
E
⎡ ⎢⎣
Xξ +U
Xξ +U
⎡⎡
Seemingly unrelated regression
Eq uat ion
Obs Parms
RMSE "R-sq"
chi 2
P
I1
20
2 85.19983 0.9203
261.12 0.0000
I2
20
2 90.75319 0.4487
20.06 0.0000
I3
20
2 26.13536 0.6954
Σ
+ σi2
X
' i
5.3 变系数Panel Data模型
n n ˆ Wi i X i i1 yi i 1 i 1
i2 I T i X i X i
n
复合随机项的协方差矩 阵的第i个对角分块
2 1 1 Wi [ i ( X i X i ) ] [ i2 ( X i X i ) 1 ]1 i 1
一、变系数Panel Data模型表达及含义
1、实际经济分析中的变系数问题
• 线性模型中,系数表示边际倾向(对于直接线性 模型)或者弹性(对于对数线性模型),而它们 相对于不同的截面个体经常是不同的。例如:
–不同地区收入的边际消费倾向不同。
–不同地区FDI的边际效益不同。
–不同家庭的边际储蓄倾向不同。
1
ˆ ( X X ) 1 X y i i i i i
说明GLS估计是每一个横截面个体 上最小二乘估计的矩阵加权平均。 权与它们的协方差成比例。
GLS 估计的协方差矩阵为:
ˆ ) X 1 X Var ( GLS i i i i 1
E(μiμj ) 0
i j
E(μi μ ) i2I i
• 这里可以将模型看成一个由n个方程组成的联立 方程模型,由于方程之间不存在相关性,分别估 计每个方程并没有信息损失。
• 即使采用系统估计方法同时估计所有方程的参数 ,与单方程估计是等价的,因为没有增加任何信 息。
• 附带回答一个问题:建立Panel Data模型时需要 多长的时间序列样本?
Y = Xβ + Xα + μ
α1 α2 α α n nK1
( Xα + μ)的协方差矩阵是对角分块阵,其第i个对角分块为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的 GLS 估计量才是最佳线性无偏估计(BLUE)。 由计算分块矩阵逆的引理1容易证明,
( ) ( ) 1引理:对于矩阵 A、B 和 D, A + BDB' −1 = A−1 − A−1B B' A−1B + D−1 −1 B' A−1 .
面板数据计量分析 白仲林
( ) X
' i
ωi−1
X
i
=
⎡ ⎢⎣
ε m = ( IN ⊗ιT )ξ m + um
E
⎛ ⎜ ⎝
ξ u
m m
⎞ ⎟ ⎠
(ξ
l
'
ul
')
=
⎛ ⎜
σ
2 ξ ,ml
I
N
⎝
⎞
σ I 2 u,ml NT
⎟ ⎠
,
m,l = 1, 2, …, M
ξ ~(0,∑ ξ ⊗ IN)
u ~(0,∑u ⊗ INT),
( ) ( ) 其中,∑ ξ =
σ2 ξ ,ml
"
xKi2
⎥ ⎥
# " #⎥
⎡X1
⎢ , X =⎢⎢
X2 %
⎤ ⎥ ⎥, ⎥
⎢⎥ ⎣YN ⎦ NT×1
⎢⎥ ⎣ X N ⎦ NT×K
⎢ ⎣x1iT
x2iT
"
⎥ x ⎦ KiT T×K
⎢ ⎣
⎥ XN⎦
⎡ ξ1 ⎤
⎡ξ1i ⎤
⎡ u1 ⎤
ξ
=
⎢ ⎢
ξ
2
⎢#
⎥ ⎥ ⎥
, ξi
=
⎢⎢ξ2i ⎢#
⎥ ⎥ ⎥
sureg (I1 = F1 C1) (I2 = F2 C2[, noconstant]) (I3 = F3 C3) (I4 = F4 C4) (I5 = F5 C5)[ , isure]
. sureg (I1 = F1 C1) (I2 = F2 C2) (I3 = F3 C3) (I4 = F4 C4) (I5 = F5 C5)
(占总资产)比率是影响工业电力需求的重要因素。但是,考虑到宏观或产业政策的相互影响, 使得这三个模型的误差项具有相关性,因此需要将它们联立估计。
这时,面板数据模型应该设定为
K
∑ y
m it
=
β
m k
x
m kit
+
εm it
i = 1,2," , N ; t = 1,2," ,T
k =1
m = 1,2,…, M
.0059292 .2278877
C2
.4503213 .1218427
3.70 0.000
.211514 .6891286
_c ons
47.17259 114.8141
0.41 0.681
-177.859 272.2041
I3
F3
.0352793 .0127776
2.76 0.006
.0102357 .0603228
46.73 0.0000
I4
20
2 12.34291 0.9122
210.78 0.0000
I5
20
2 8.391486 0.6778
39.19 0.0000
迭代估计法选项
Coef. Std. Err.
z
P>|Leabharlann z|[95% Conf. Interval]
I1
F1
.1288887 .0212979
6.05 0.000
假设 3:对每个个体 i,误差向量 Ui 是均值为零、具有协方差矩阵为 σi2 IT 的独立同分布
( ) 随机向量,即, E (ui ) = 0 , E
ui u'j
=
⎧σ ⎨
2 i
IT
⎩0
(i = j) (i ≠ j) .
假设 4:模型(5.3)的系数向量 βi 是均值 β 和协方差矩阵 Σ 的独立同分布随机向量,
面板数据计量分析 白仲林
( ) ( ) 类似地,设 y' = y1' " yM ' , ym = y1m1 " y1mT " yNm1 " yMmT '
⎡ X1
⎢ X =⎢
⎢
X2 %
⎤
⎡
Xm 1
⎤
⎥ ⎥,
其中, X m
=
⎢ ⎢
Xm 2
⎥ ⎥
⎥
⎢⎥
Xm i
=
⎛ ⎜ ⎜ ⎜
xm 1i1
xm 1i 2 #
(5.4)
ωi = E ⎡⎣(Xiξi + ui )(Xiξi + ui )' ⎤⎦ = E ⎡⎣(Xiξi )(Xiξi )' + uiui' ⎤⎦ ,
ωi
=
X
i
ΣX
' i
+
σ
2 i
IT
i = 1,2,3," , N .
5.2 Swamy 随机系数模型的估计
由于模型(5.3)的合并随机项 Xξ +U 存在异方差和序列相关性,所以,模型(5.3)
随机向量,并且, β 和 Σ 分别是不随时间变化的向量和矩阵,则面板数据随机系数模型可
写为矩阵形式
Y = Xβ + Xξ + U
(5.3)
⎡ Y1 ⎤
其中,Y
=
⎢ ⎢
Y2
⎢#
⎥ ⎥ ⎥
⎡ X1 ⎤
,
X
=
⎢ ⎢ ⎢
X2 #
⎥ ⎥ ⎥
⎡ x1i1
,
Xi
=
⎢⎢x1i ⎢#
2
x2i1 " xKi1 ⎤
x2i2
( ) 即,
βi
=
β
+ξ i
, E (ξi )
=
0;E
ξi
ξ
' j
⎧Σ
=
⎨ ⎩
0
(i (i
= ≠
j) j)
;
假设 5:对任意的 i 和 j,误差向量 ui 与系数向量 β j 独立。 于是,模型(5.3)的合并随机项 Xξ +U 的协方差矩阵
( )( ) Ω
=
E
⎡ ⎢⎣
Xξ +U
Xξ +U
⎡⎡
.3141704 .0260555 12.06 0.000
.2631025 .3652383
_c ons
.6961959 11.57599
0.06 0.952 -21.99233 23.38473
I5
F5
.1444101 .0501274
2.88 0.004
.0461623
.242658
C5
.0069288 .0192621
i =1
(5.5)
∑ ( ) ( ) ( ) 其中,Wi
=
⎧ ⎨ ⎩
N j =1
⎡ ⎣
Σ
+σ 2 j
X
' j
X
j
−1
⎤ −1 ⎦
⎫−1 ⎬ ⎭
⎡ ⎣
Σ
+σ 2 i
X
' i
X
i
⎤ −1 −1 ⎦
,
βˆ i
=
X
' i
X
i
−1
X
Y'
ii
是第
i
个个体模型系数向量 βi 的 OLS 估计。
由(5.5)式可见,模型(5.3)的 GLS 估计 βˆ 是 βi 的 OLS 估计 βˆ i 的矩阵加权平均。并 且, βˆ 的协方差矩阵
"
β
m K
' ,m = 1, 2, …, M
显然,模型(4.3)是标准的线性 SUR 模型(Zellner,1962)。从而,可以基于 SUR
模型的两种估计方法(FGLS 估计量和迭代估计法 ITERZEF)估计模型(4.1)。
类似地,也可以讨论双因素误差的模型(4.1),即,
ε
m it
= ξim
+ λtm
面板数据计量分析 白仲林
第三讲 面板数据变系数回归模型
1 确定性变系数模型——SUR 模型
单因素面板数据 SUR 模型 前面所讨论的面板数据模型属于面板数据单方程模型,常常也需要建立多方程的面板数
据模型。这里只讨论一种最简单的情形,即假设在 M 个方程中,每个单方程模型的解释变 量各不相同。对于更一般的情况,请参考 Baltagi(2008,P121-141).
+ uimt 的情形。
SUR 模型的检验
Breusch 和 Pagan(1980)基于 Lagrange 乘数(Lagrange multiplier)方法提出了检验零
假设
H0: Ω 是对角矩阵
的 LM 统计量。
不含截距选
SUR 模型的 Stata 估计
以 Grunfeld(1958)数据的前 5 家公司数据为例。 Stata 命令:
0.36 0.719 -.0308242 .0446818
_c ons
25.00319 6.239317
4.01 0.000
12.77435 37.23202
面板数据计量分析 白仲林
2 面板数据随机系数模型
自 Swamy(1970、1973 和 1978 等)应用面板数据的随机系数模型研究美国各州汽油需 求函数等问题以来,面板数据的随机系数模型得到了一些应用。然而,由于该类模型的参数 估计计算比较复杂,制约了它的广泛应用,经验研究主要集中于随机效应模型的使用。但是 这并不意味着随机系数模型不重要,实际上,在研究经济增长收敛理论(Durlauf,2001) 等许多经济问题时,建立面板数据随机系数模型是解决问题的合理方法(Canova,1999)。 本节主要介绍两种面板数据随机系数模型,一种是 Swamy 随机系数模型,另一种是 Hsiao 随机系数模型。