纤维素酶活力的测定Measurement of Cellulase Activities

合集下载

纤维素酶活力的测定

纤维素酶活力的测定

纤维素酶活力的测定(CMC糖化力法)1、定义:1克固体酶粉(或1毫升液体酶),在40℃pH﹦4.6条件下,每分钟水解羧甲基纤维素钠(CMC-Na),产生1.0ug的葡萄糖,即为1个酶活单位,以u/g(u/ml)表示。

2、原理:CMC-Na在纤维素酶的作用下,水解产生纤维寡糖、纤维二糖、葡萄糖等还原糖,还原糖能将3,5﹣二硝基水杨酸中的硝基还原成橙黄色的氨基化合物,在540nm波长下测定吸光度值A,吸光度与酶活成正比。

CMC-Na糖化力主要代表内切β-1.4-葡聚糖的活力和外切酶活力总和。

3、试剂:3.1 0.1mol/LpH﹦4.6醋酸﹣醋酸钠缓冲溶液:将49.0ml0.2mol/L醋酸钠溶液和51.0ml0.2mol/L醋酸溶液混合后加100ml蒸馏水。

注意:0.2mol/L醋酸钠溶液:称取27.22g结晶乙酸钠(AR)定容至1000ml。

0.2mol/L醋酸溶液:称取冰乙酸(AR)11.5ml定容至1000ml。

3.2 3,5二硝基水杨酸(DNS)试剂:称取6.3克3,5-二硝基水杨酸用水溶解,加入21.0克NaOH,182克酒石酸钾钠,加500ml水,加热溶解后再加入5.0克重蒸酚和5.0克亚硫酸钠,搅拌溶解,冷却,定容至1000ml,存于棕色瓶中,放置7天后使用。

3.3 葡萄糖标准溶液(1.0mg /ml):称取1.000克葡萄糖(AR)(105℃干燥至恒重)用蒸馏水溶解后定容至1000ml,冰箱保存备用。

3.4 羧甲基纤维素钠溶液:称2.0gCMC-Na溶于200 ml蒸馏水中,加醋酸缓冲溶液100 ml,混匀后存于冰箱内备用。

配后隔天使用。

4、仪器4.1 分光光度计4.2 恒温水浴,50℃4.3 25 ml具塞刻度试管5、分析步骤:5.1标准曲线绘制:取25ml具塞刻度试管6支,加入1.0 mg /ml的葡萄糖标准溶液0.0、0.4、0.8、1.2、1.6、2.0ml,加蒸馏水2.0、1.2、0.8、0.4、0.0ml,加DNS试剂1.5 ml,混匀后在沸水浴中加热5分钟,取出立即用冷水冷却,用水定容至25 ml,摇匀,测吸光度A,以吸光度为纵坐标,葡萄糖的含量为横坐标,绘制标准曲线。

纤维素酶活力的测定

纤维素酶活力的测定

纤维素酶液中各种酶的作用方式图
2.2 纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原
糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成 红棕色的氨基化合物,在540nm波长处有最大光吸收,在一 定范围内还原糖的量与反应液的颜色强度呈比例关系,利 用比色法测定其还原糖生成的量就可测定纤维素酶的活力。
3.器材和试剂
3.1器材:
水浴锅、 分光光度计、 记时器、 比色管(4支+6支)、 移液管(5支)、 吸耳球
3.2试剂(公用): 如下
1 ) D N S试剂
称取3 , 5 一 二硝基水杨酸( 1 0 10 . 1 ) g,置于约6 0 0 m L水中,逐渐 加入氢氧化钠l o g ,在5 0 ℃水浴中( 磁力)搅拌溶解,再依次加入酒石酸 甲钠2 0 0 g 、苯酚( 重蒸) 2 g 和无水亚硫酸钠5 g ,待全部溶解并澄清后, 冷却至室温,用水定容至 I O O O m L ,过滤。贮存于棕色试剂瓶中,于 暗处放置7 d 后使用。
性回归系数应在0 . 9 9 9ห้องสมุดไป่ตู้0以上时方可使用( 否则须重做) 。
4 . 2 样 品的测定
4 . 2 . 1 待测酶液的制备 称取酶样1 g , 精确至0 . 1 m g ( 或吸取液体酶样1 mL , 精
确至0 . 0 1 m L ) , 用水(柠檬酸缓冲液,0.05 mol/LpH4.8) 溶解100ml(100倍),之后分别做200倍、400倍、600倍、800 倍稀释, 磁力搅拌混匀, 准确稀释定容 放置1 0 m i n , 待测。 4 . 2 . 2 滤纸条的准备
有最大光吸收,由此,可根据测得的吸光值与葡萄糖浓度的关
系来计算纤维素酶的活力(FPA)。

纤维素酶活力的测定

纤维素酶活力的测定

实验二十纤维素酶活力的测定一、目的学习和掌握3,5-二硝基水杨酸(DNS)法测定纤维素酶活力的原理和方法,了解纤维素酶的作用特性。

二、原理纤维素酶是一种多组分酶,包括C 酶、C 酶和 |?-葡萄糖苷酶三种主要组分。

其中C1 X 1酶的作用是将天然纤维素水解成无定形纤维素,C 酶的作用是将无定形纤维素继续水解成X纤维寡糖,|?-葡萄糖苷酶的作用是将纤维寡糖水解成葡萄糖。

纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成棕红色的氨基化合物,在540nm波长处有最大光吸收,在一定范围内还原糖的量与反应液的颜色强度呈比例关系,利用比色法测定其还原糖生成的量就可测定纤维素酶的活力。

三、实验材料、主要仪器和试剂1.实验材料(1)纤维素酶制剂 500mg(2)新华定量滤纸 50mg / 份 4(3)脱脂棉花 50mg / 份 4(4)羧甲基纤维素钠(CMC) 510mg(5)水杨酸苷 500mg2.主要仪器(1)722 型或其他型号的可见分光光度计(2)恒温水浴 2 台(3)沸水浴锅(4)电炉子(5)剪刀(6)万分之一分析天平(7)恒温干燥箱(8)冰箱(9)试管架(10)胶头滴管(11)具塞刻度试管 20mL24(12)移液管或加液器 0.5 mL3;2mL7(13)容量瓶 100 mL6;1000 mL3(14)量筒 50 mL2;100 mL1;500 mL1(15)烧杯 100 mL6;500mL3;1 000 mL13.试剂(均为分析纯)(1)浓度为 1mg/mL的葡萄糖标准液将葡萄糖在恒温干燥箱中105℃下干燥至恒重,准确称取100mg 于100mL小烧杯中,用少量蒸馏水溶解后,移入100mL容量瓶中用蒸馏水定容至 100mL,充分混匀。

4℃冰箱中保存(可用 12~15 天)。

(2)3,5-二硝基水杨酸(DNS)溶液准确称取DNS 6.3g于500mL大烧杯中,用少量蒸馏水溶解后,加入2mol/L NaOH 溶液 262mL,再加到 500mL含有 185g酒石酸钾钠(C H O KNa ! 4H O,MW=282.22)的热4 4 6 2水溶液中,再加5g结晶酚(C H OH,MW=94.11)和5g无水亚硫酸钠(Na SO ,MW=126.04),6 5 2 3搅拌溶解,冷却后移入1 000mL容量瓶中用蒸馏水定容至1 000mL,充分混匀。

纤维素酶活的测定

纤维素酶活的测定

8・・纤维素酶活的测定一纤维素酶活力单位定义在37°C、pH值为5. 50的条件下,每分钟从浓度为4mg/ml的竣甲基纤维素钠溶液中降解lumol还原糖所需要的酶疑为一个酶活力单位Uo二测定原理纤维素酶能将竣甲基纤维素降解成寡糖和单糖。

具有还原性末端的寡糖和有还原集团的单糖在沸水浴条件下可以与DNS试剂发生显色反应,反应颜色的强度与酶解产生的还原糖量成正比,而还原糖的生成疑又与反应液中的纤维素酶的活力成正比。

因此,通过分光比色测定反应液颜色的强度,可以汁算反应液中的纤维素酶的活力。

三试剂与溶液除特殊说明外,所用的试剂均为分析纯,水均为符合GB/T6682中规左的三级水。

3. 1 葡萄糖溶液,c (CeHisOe) =10. Omg/ml称取无水匍萄糖1. 000g,加水溶解,定容至100mlo3.2乙酸溶液,c(CHsCOOH)=O. lmol/L吸取冰乙酸0.60ml,加水溶解,定容至100mlo3.3乙酸钠溶液,c (CHsCOONa) =0. 1 mol/L称取三水乙酸钠1.36g,加水溶解,圧容至100ml.3.4氢氧化钠溶液,c (NaOH) =200g/L称取氢氧化钠20. 0g,加水溶解,泄容至100ml o3.5乙酸-乙酸钠缓冲溶液,c (CHsCOOH-CHaCOONa)称取三水乙酸钠11. 57g,加入冰醋酸0.85ml,加水溶解,定容至1000ml,测定溶液的pH值,如果pH偏离5.50,用乙酸溶液(3.2)或乙酸钠溶液(3.3)调至5. 50.3.6拔甲基纤维素钠溶液,0.8$ (w/v)称取竣甲基纤维素钠(Sigma C5678) 0. 40g,加入到盛有30ml3. 5缓冲溶液的饶杯中,磁力搅拌,同时缓慢加热,直至竣甲基纤维素钠完全溶解(在搅拌加热过程中可以补加适量的缓冲液,但是溶液的总体积不能超过50ml),停止搅拌,用3. 5缓溶将英左容至50ml,竣甲基纤维素钠溶液能立即使用,使用前适当摇匀。

(完整版)纤维素酶活力的测定

(完整版)纤维素酶活力的测定

纤维素酶活力的测定1.纤维素酶活力单位定义在37℃,pH值为5.5的条件下,每分钟从浓度为4mg/ml的羧甲基纤维素钠溶液中降解释放1umol还原糖所需要的酶量为一个酶活力单位u.2.测定原理纤维素酶能将羧甲基纤维素降解成寡糖和单糖.具有还原性末端的寡糖和有还原基团的单糖在沸水浴条件下可以与DNS试剂发生显色反应.反应液颜色的强度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中纤维素酶的活力成正比.因此,通过分光比色测定反应液颜色的强度,可以计算反应液中纤维素酶的活力.3.试剂与溶液除特殊说明外,所用的试剂均为分析纯,水均为符合GB/T6682中规定的三级水.3.1葡糖糖溶液,c(C6H12O6)为10.0mg/ml:称取无水葡萄糖1.000g,加水溶解,定容至100ml.3.2 乙酸溶液,c(CH3COOH)为0.1mol/L:吸取冰乙酸0.60ml.加水溶解,定容至100ml.3.3 乙酸钠溶液,c(CH3COONa)为0.1mol/L:称取三水乙酸钠1.36g.加水溶解,定容至100ml.3.4 氢氧化钠溶液,c(NaOH)为200g/L:称取氢氧化钠20.0g.加水溶解,定容至100ml.3.5 乙酸——乙酸钠缓冲溶液,c(CH3COOH—CH3COONa)为0.1mol/L,pH值为5.5:称取三水乙酸钠23.14g,加入冰乙酸1.70ml.再加水溶解,定容至2000ml.测定溶液的pH值.如果pH值偏离5.5,再用乙酸溶液(3.2)或乙酸钠溶液(3.3)调节至5.5.3.6 羧甲基纤维素钠溶液:0.8%(w/v)称取羧甲基纤维素钠(Sigma C5678)0.80g,加入80ml乙酸—乙酸钠缓冲溶液(3.5).磁力搅拌,同时缓慢加热,直至羧甲基纤维素钠完全溶解(注:在搅拌加热的过程中可以补加适量的缓冲液,但是溶液的总体积不能超过100ml.).然后停止加热,继续搅拌30min,用乙酸—乙酸钠缓冲溶液(3.5)定容至100ml.羧甲基纤维素钠溶液能立即使用,使用前适当摇匀.4℃避光保存,有效期为3天.3.7 DNS试剂称取3,5-二硝基水杨酸 3.15g(化学纯),加水500ml,搅拌5s,水浴至45℃.然后逐步加入100ml氢氧化钠溶液(3.4),同时不断搅拌,直到溶液清澈透明(注意:在加入氢氧化钠过程中,溶液温度不要超过48℃.).再逐步加入四水酒石酸钾钠91.0g,苯酚2.50g和无水亚硫酸钠2.50g.继续45℃水浴加热,同时补加水300ml,不断搅拌,直到加入的物质完全溶解.停止加热,冷却至室温后,用水定容至1000ml.用烧结玻璃过滤器过滤.取滤液,储存在棕色瓶中,避光保存.室温下存放7天后可以使用,有效期为6个月.4 仪器与设备4.1 实验室用样品粉碎机或碾钵.4.2 分样筛:孔径为0.25mm(60目).4.3 分析天平:感量0.001g.4.4 pH计:精确至0.01.4.5 磁力搅拌器:附加热功能.4.6 电磁振荡器.4.7 烧结玻璃过滤器:孔径为0.45m.4.8 离心机:2000g以上.4.9 恒温水浴锅:温度控制范围在30—60℃之间,精度为0.1℃.4.10 秒表:每小时误差不超过5s.4.11 分光光度计:能检测350—800nm的吸光度范围.4.12 移掖器;精度为1l.5 标准曲线的绘制吸取缓冲液(3.5)4.0ml,加入DNS试剂(3.7)5.0ml,沸水浴加热5min.用自来水冷却至室温,用水定容至25.0ml,制成标准空白样.分别吸取葡萄糖溶液(3.1)1.00,2.00,3.00,4.00,5.00,6.00和7.00ml,分别用缓冲液(3.5)定容至100ml,配制成浓度为0.10—0.70mg/ml葡萄糖标准溶液.分别吸取上述浓度系列的葡萄糖标准溶液各 2.00ml(做二个平行),分别加入到刻度试管中,再分别加入2ml水和5mlDNS试剂(3.7).电磁振荡3s,沸水浴加热5min.然后用自来水冷却到室温,再用水定容至25ml.以标准空白样为对照调零,在540nm处测定吸光度OD值.以葡萄糖浓度为Y轴,吸光度OD值为X轴,绘制标准曲线.每次新配制DNS试剂均需要重新绘制标准曲线.6 试样溶液的制备固体试样应粉碎或充分碾碎,然后过60目筛(孔径为0.25mm).称取试样两份,精确至0.001g.加入50ml乙酸—乙酸钠缓冲溶液(3.5).磁力搅拌30min,再用缓冲溶液(3.5)定容至100ml,在4℃条件下避光保存24h.摇匀,取出30-50ml,2000g离心3min.吸取5.00ml上清液,再用缓冲溶液(3.5)做二次稀释(稀释后的待测酶液中纤维素酶活力最好能控制在0.04—0.08 u/ml之间).液体试样可以直接用乙酸—乙酸钠缓冲溶液(3.5)进行稀释,定容(稀释后的酶液中纤维素酶活力最好能控制在0.04—0.08 u/ml之间).如果稀释后酶液的pH值偏离5.5,需要用乙酸溶液(3.2)或乙酸钠溶液(3.3)调节,校正至5.5,然后再用缓冲溶液(3.5)做适当定容.7 测定步骤吸取10.0ml羧甲基纤维素钠溶液(3.6),37℃平衡10min.吸取10.0ml经过适当稀释的酶液,37℃平衡10min.吸取2.00ml经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入5mlDNS试剂(3.7),电磁振荡3s.然后加入2.0ml羧甲基纤维素钠溶液(3.6),37℃保温30min,沸水浴加热5min.用自来水冷却至室温,加水定容至25ml,电磁振荡3s.以标准空白样为空白对照,在540nm处测定吸光度AB.吸取2.0ml经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入2.0ml羧甲基纤维素钠(3.6)(已经过37℃平衡),电磁振荡3s,37℃精确保温30min.加入5.0mlDNS试剂(3.7),电磁振荡3s,酶解反应.沸水浴加热5min,用自来水冷却至室温,加水定容至25ml,电磁振荡3s.以标准空白样为空白对照,在540nm处测定吸光度AE.8.试样酶活力的计算[(AE - AB)×K + CO]XD = × 1000 (1)M×t式(1)中:XD —试样稀释液中的纤维素酶活力,u/ml;AE —酶反应液的吸光度;AB —酶空白样的吸光度;K —标准曲线的斜率;CO —标准曲线的截距;M —葡萄糖的分子量(180.2);t —酶解反应时间,min;1000 —转化因子,1mmol = 1000 umol.XD值应在0.04—0.08 u/ml之间.如果不在这个范围内,应重新选择酶液的稀释度,再进行分析测定.X = XD•Df (2)式(2)中:X —试样纤维素酶的活力,u/g;Df —试样的总稀释倍数.酶活力的计算值保留三位有效数字.9 重复性同一样品两个平行测定值的相对误差不超过8.0%,二者的平均值为最终的酶活力测定值(保留三位有效数字)1.药品、试剂及仪器脂肪酶(Novezymes公司),0.0667mol/L的KH2PO4-Na2HPO4缓冲溶液(pH值为7.38;),脂肪酸显色剂(5%醋酸铜溶液,用吡啶调节pH=6.2),正己烷,油酸,橄榄油,盐酸,无水乙醇,分光光度计,pH计,水/油浴恒温磁力搅拌器,离心机,分析天平等。

纤维素酶活力的测定

纤维素酶活力的测定

目的本检测方法是用来确定本公司纤维素酶类的催化活性。

本方法适用于各种固体和液体纤维素酶制剂。

说明本方法适合于纤维素类酶的质量分析和质量控制领域。

但不是本公司产品及其它公司产品的绝对活力的预测,而各种酶制剂的最终的酶活力在良好的实验操作下仍可发挥出更好的催化活力。

原理纤维素被纤维素酶水解最终降解生成β-葡萄糖。

鉴于纤维素结构的复杂性,没有任何一种酶能将纤维素彻底水解。

1950 年Reese提出了C1-Cx概念。

C1是一水解因子,作用于纤维素的结晶区(如棉花纤维即为高度结晶性纤维),使氢键破裂,呈无定形可溶态,成为长链纤维素分子。

再由Cx最终催化形成还原性单糖。

而Cx通常包括:(1)内切葡萄糖苷酶(endo-1,4-β-D-glucanase,EC3.2.1.4,简称EG)。

这类酶随机水解β-1,4-糖苷键,将长链纤维素分子(羧甲基纤维素钠(CMC)即为人工合成的一种线形纤维素钠盐)截短。

(2)外切葡萄糖苷酶(exo-1,4-β-D-glucanase,EC3.2.1.91),又称纤维二糖水解酶(cellobiohydrolase,简称CBH)。

这类酶作用于β-1,4-糖苷键,每次切下一个纤维二糖分子。

(3)β-葡萄糖苷酶(β-glucosidase,EC3.2.1.21,简称BG),这类酶将纤维二糖(水杨素即为葡萄糖苷键连接的纤维二糖)水解成葡萄糖分子。

据上述理论,分别设计以滤纸(filter paper)、棉球、CMC、水杨素为底物,分别衡量纤维素的总体酶活性(FPA)、C1、Cx、Cb酶活性。

将底物水解后释放还原性糖(以葡萄糖计)与3,5-二硝基水杨酸(DNS)反应产生颜色变化,这种颜色变化与葡萄糖的量成正比关系,即与酶样品中的酶活性成正比。

通过在550nm的光吸收值查对标准曲线(以葡萄糖为标准物)可以确定还原糖产生的量,从而确定出酶的活力单位。

纤维素酶类活性的定义Ⅰ 1g酶粉(1ml酶液)于50℃pH4.8条件下,每分钟水解1×6cm的滤纸(FPA)产生1μg还原糖(以葡萄糖计)的酶量定义为1个FPA酶活力单位。

纤维素酶酶活测定

纤维素酶酶活测定

纤维素酶酶活测定纤维素酶活测定方法一、原理纤维素酶能将纤维素降解成纤维二糖和葡萄糖,具有还原性末端的纤维二糖糖和有还原基团的单糖在沸水浴条件下可与DNS试剂发生显色反应。

反应颜色强度与酶解产生的还原糖量成正比,而还原糖量又与反应液中的纤维素酶的活力成正比。

酶活定义纤维素酶活力单位是指55℃、pH5.0的条件下,以每分钟催化羧甲基纤维素钠水解生成1μmol还原糖所需的酶量定义为一个酶活力单位U。

二、实验试剂羧甲基纤维素钠(聚合度1700-2000),内切纤维素酶(苏柯汉)50mmol NaAC-HAC、DNS试剂三、实验仪器容量瓶(1000ml ×2、500 ml×3、100 ml ×4、50ml×4 ml)、移液器、烧杯(500ml×3、50ml×3)、具塞试管、电热套、水浴锅、分光光度计、pH计、电子天平四、标准曲线的绘制五、酶活测定由于苏柯汉给定的pH范围为4.8-5.2,故选用pH 5.0的50mmol NaAC-HAC缓冲液测定纤维素酶酶活。

1、样品的制备CMC-Na溶液的制备:用pH 5.0的50mmol NaAC-HAC缓冲液配置0.5%的CMC-Na (羧甲基纤维素钠)溶液,准确称量CMC-Na0.05g,精确至0.001g,溶于蒸馏水中,45℃水浴锅中搅拌溶解,冷却后定容至100ml。

纤维素酶液的制备:准确称取纤维素酶,精确到0.001g。

用50mmol NaAC-HAC pH5.0的缓冲液配置成适当的浓度10000倍,保证吸光度在0.2-0.6之间。

2、DNS法测酶活:取1.8ml 0.5% CMC-Na的溶液于25ml 具塞刻度试管中,55℃预热10min左右,加入0.2ml 适当稀释的酶液,于55℃水浴锅中保温30min后,然后加2ml DNS,混匀,沸水浴5min,冷却至室温,定容到25ml。

混匀测OD540nm。

纤维素酶活力的测定方法

纤维素酶活力的测定方法

纤维素酶活力的测定方法1 原理纤维素酶是一种复合酶。

酶系包括外切B-1.4-葡聚糖酶(ExoB-1.4glucanase,EC3.2.1.9)内切B-1.4葡聚糖酶(Endoβ-1.4-glucanase,EC1.2.1.4)和纤维二糖酶。

纤维素酶在一定温度和PH条件下,将纤维素酶底物(滤纸或羟甲基纤维素钠)水解,释放出还原糖。

在碱性,煮沸条件下,3.5-二硝基水杨酸(DNS试剂)与还原糖发生显色反应,其颜色的深浅与还原糖(与葡萄糖汁)含量成正比。

通过在540nm测定吸光度,可得到产生还原糖的量,计算出纤维素酶的FPA酶和CMCA酶活力,以此代表纤维素酶的酶活力。

2 操作A.FPA酶A.1绘制标准曲线按表1规定的量,分别吸取葡萄糖标准使用溶液、缓冲溶液和DNS试剂加入各管中,混匀。

表1葡萄糖标准曲线管号葡萄糖标准使用溶液缓冲液吸取量 DNS试剂吸取量ml 浓度mg/ml 吸取量ml 0 0.0 0.00 2.0 3.01 1.0 0.50 1.5 3.02 1.5 0.50 1.5 3.03 2.0 0.50 1.5 3.04 2.5 0.50 1.5 3.05 3.0 0.50 1.5 3.06 3.5 0.50 1.5 3.0将标准管同时置于沸水浴中,反应10min。

取出,迅速冷却至室温。

用水定容至25ml,盖塞,混匀。

用10mm比色杯,在分光光度计波长540nm处测量吸光度。

以葡萄糖量为横坐标,以吸光度为纵坐标,绘制标准曲线,获得线性回归方程。

线性回归系数应在0.9990以上时方可使用(否则须重做)。

A.2 样品的测定A.2.1待测酶液的制备称取固体酶样1g,精确至0.1mg(或吸取液体酶样1ml,精确至0.01ml),用水溶解,磁力搅拌混匀,准确稀释定容(使试样液与空白液的吸光度之差恰好落在0.3-0.4范围内),放置10min,待测。

A.2.2 滤纸条的准备----将待用滤纸放入(硅胶)干燥器中平衡24h----将水分平衡后的滤纸制成宽1cm、质量为(50±0.5)mg的滤纸条,折成M型,备用。

纤维素酶活力的测定(sdu)

纤维素酶活力的测定(sdu)

纤维素酶活力的测定高熹 168615140001一、实验原理纤维素酶水解纤维素,产生纤维二糖、葡萄糖等还原糖,能将3、5-二销基水杨酸中销基还原成橙黄色的氨基化合物,利用比色法测定其还原物生成量来表示酶的活力。

酶活力也称为酶活性,是指酶催化一定化学反应的能力。

酶活力的大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活力愈低。

测定酶活力实际就是测定酶促反应的速度。

酶促反应速度可用单位时间内、单位体积中底物的减少量或产物的增加量来表示。

在一般的酶促反应体系中,底物往往是过量的,测定初速度时,底物减少量占总量的极少部分,不易准确检测,而产物则是从无到有,只要测定方法灵敏,就可准确测定。

因此一般以测定产物的增量来表示酶促反应速度较为合适。

二、实验试剂1、3、5—二销基水杨酸显色液:称取10克3、5-二销基水杨酸,溶入蒸馏水中,加入20克分析纯氢氧化钠,200克酒石酸钾钠,加水500毫升,升温溶解后,加入重蒸酚2克,无水亚硫酸钠0.5克。

加热搅拌,待全溶后冷却,定容至1000毫升。

存于棕色瓶中,放置一周后使用。

2、0.1摩尔PH4.5醋酸-醋酸钠缓冲溶液。

3、0.5%羧甲基纤维素钠水溶液,溶解后成胶状液,静置过夜。

使用前摇匀。

4、标准葡萄糖溶液:称取干燥至恒重的葡萄糖100毫克,溶解后定容至100毫升,此溶液含葡萄糖1.00毫克/毫升。

三、实验器材1、紫外可见分光光度计2、胶头滴管3、水浴锅4、试管5、移液管四、实验步骤1、标准曲线的绘制:分别吸取0.2、0.4、0.6 、0.8.0、1.0毫升的葡萄糖于5支试管中,均用蒸馏水稀释至1毫升,加3.5-二销基水杨酸显色剂3毫升,在沸水浴中煮沸显色10分钟,冷却,加蒸馏水21毫升,摇匀.以1毫升蒸馏水代替糖作空白管,在550nm处比色。

以光密度为纵坐标,以葡萄糖微克数为横坐标,绘出标准曲线。

2、样品的测定:取0.5%羧甲基纤维素钠溶液3毫升,酶液1毫升,于50度水浴中糖化30分钟,取出,立即于沸水浴中煮沸10分钟使酶失活,得糖化液。

纤维素酶制剂活力的测定方法

纤维素酶制剂活力的测定方法

体的数量和质量, 来测定纤维素酶制剂的活力.
( 二)方法 1材料 . 由于不同植物或不同组织细胞 壁成份不同,其原生质体的分离所需酶的浓度 及处理时间各不相同;而且同一组织在不同发 育时期一 也往往会有差异.为此,在测定纤维素
理 学报, ; - 4, 8 31 39 4
[〕 北 3 京大学制药厂:1 1 微生物学 9 . 7 和酶学基本知 科 识.
毫升酶液中放入 01 .克叶片( 去掉下表皮的一面
向下)在2℃下保温, , 8 每隔 3 分钟轻轻摇动一 0
次.用吸管吸取反应酶液,滴于血球计数板计 数池中, 按血球计数法统计完整的原生质体数.
纤素 活 ( /, t 维 酶力 位 一 X 单克 f 4 W
A —
数; t W— 酶解所用的时间;
由标准曲线查出释放葡萄糖的微克
纤维素酶制剂活力的测定方法
颜 秋 生
( 中国科学院遗传研究所)
蒋 传

( 中国科学院上海 生物化学研究所 东风生化试剂厂)
由绿色木霉E , 所制备的纤维素酶制 A 87 6
剂是一种复合酶, 除了纤维素酶外, 还有半纤维 素酶,果胶酶等.而纤维素酶本身又是一种多
( 二)试剂
13,二硝基水杨酸显色剂 .,一
33
一通过原点的直线.取直线上任意一点计算即 可.如成曲线关系 ( 直线弯曲) 应将酶液进一 , 步稀释再进行测定.
酶制剂的活力时,必须固定一种或几种合适的 材料 . 通常以叶片为材料, 如大麦应取出苗后4 -
4葡萄糖标准曲线绘制 准确配置 1 0 6 . ,0 0 天的第一片嫩叶; 蚕豆宜取开花前成熟植株 微克/ 毫升葡萄糖标准液. 分别取 . . , 的中部叶片;烟草选用苗龄 6-10 ,0 0 1 0 0 天植株的

纤维素酶活的测定(IUAPC推荐方法)

纤维素酶活的测定(IUAPC推荐方法)

纤维素酶活力的测定1试剂1.1缓冲溶液乙酸-乙酸钠缓冲液(0.1mol/L,pH 4.8)柠檬酸-柠檬酸钠缓冲液(0.1mol/L,pH 4.8)1.2DNS试剂DNS试剂:取7.5g 3,5-二硝基水杨酸,14.0g氢氧化钠,充分溶解于煮沸冷却后的去离子水中,加入酒石酸钾钠216.0g,苯酚5.5mL,偏重亚硫酸钠6.0g,完全溶解后,定容至1L,室温下储存于棕色瓶中。

1.3葡萄糖检测试剂R1试剂:苯酚,10.6mmol/L,pH 7.0。

R2试剂:磷酸盐缓冲液,70mmol/L;4-氨基安替比林,0.8mmol/L;葡萄糖氧化酶,>10U/mL;氧化物酶,>1U/mL。

R1试剂和R2试剂在使用前等量混合均匀即可使用,混合液室温下放置时间不宜超过12h,否则就会因变色而失效。

1.4考马斯亮蓝试剂考马斯亮蓝G-250(CBB-G250)试剂按照传统的Brandford法制备:准确称取0.100±0.0001CBB-G250溶于50mL乙醇(95%,v/v)中,然后加入100mL磷酸(85%,w/v),将溶液转移至1L容量瓶,用去离子水定容,最后将染料溶液用滤纸过滤后,4℃下储存于棕色瓶中。

2仪器和设备2.1分析天平:感量0.0001g2.2精密pH计:精确至0.012.3磁力加热搅拌器2.4紫外可见分光光度计,购自美国安捷伦公司,可在数秒内快速扫描波长200-1000nm范围的吸收值,配置1cm石英比色皿2.5电热恒温水浴锅:30-100℃2.6移液器:量程为1000μL-5000μL,200-1000μL,20-100μL,0-10μL各1支,均购自芬兰大龙(Dragon)公司3纤维素酶活力测定按照IUAPC推荐的方法(Ghose,1987)分析纤维素酶的滤纸酶活、CMC酶活和β-葡萄糖苷酶活。

3.1滤纸酶活测定纤维素酶滤纸酶活的方法如下:(1)将Whatman No 1或国产相同等级的滤纸(新华1号滤纸)裁剪为1.0×6.0cm2(约50mg)的滤纸条,折成扇形,置于一个25mL的具塞比色管中;(2)加入1.0mL柠檬酸-柠檬酸钠缓冲溶液(0.05mol/L,pH 4.8)预热至50℃;(3)然后加入0.5mL适当稀释的酶液,要求至少有两个稀释梯度最终释放的葡萄糖的量分别略高于和略低于2.0mg,并在50℃保温1h;(4)分别以不加滤纸和不加酶的试样作为空白,在相同条件下保温;(5)反应结束后加入3.0mLDNS试剂,煮沸5min后,在冷水浴中快速冷却,用去离子水定容至25mL,摇匀;(6)置于紫外可见分光光度计上测波长540nm处的吸收值,并根据葡萄糖-DNS工作曲线计算1h释放的葡萄糖的量,按下式计算纤维素酶的滤纸酶活:滤纸酶活(PFU·mL-1)=0.37×释放2.0mg葡萄糖所需酶的稀释度(3-1)3.2羧甲基纤维素(CMC)酶活测定羧甲基纤维素CMC酶活的方法如下:(1)使用柠檬酸-柠檬酸钠缓冲溶液(0.05mol/L,pH 4.8)配制质量浓度为2%的羧甲基纤维素(简写成CMC,取代度接近0.7)溶液;(2)在25mL的具塞比色管中加入0.5mL适当稀释的酶液,要求至少两个稀释梯度最终释放葡萄糖的量分别略高于和略低于0.5mg,然后在50℃下保温5-10min;(3)加入0.5mL羧甲基纤维素CMC溶液,混合均匀后在50℃下保温30min;(4)加入3.0mLDNS试剂以结束反应,煮沸5min后,在冷水浴中快速冷却,用去离子水定容至25mL,摇匀;(5)置于紫外可见分光光度计上测波长540nm处的吸收值,并根据葡萄糖-DNS工作曲线计算释放的葡萄糖的量,按下式计算纤维素酶的CMC酶活:CMC酶活(IU ·mL-1)=0.185×释放0.5mg葡萄糖所需酶的稀释度(3-2)3.3纤维二糖酶活(β-葡萄糖苷酶活力)测定纤维二糖酶活力的方法如下:(1)用乙酸-乙酸钠缓冲溶液(0.05mol/L,pH 4.8)配制浓度为15mmol/L的纤维二糖标准溶液,仅在测试前配制新鲜溶液;(2)将酸用乙酸-乙酸钠缓冲溶液稀释至一系列浓度,保证有两个稀释梯度在反应结束后分别释放略高于和略低于1.0mg的葡萄糖;(3)在试管中加入1.0mL稀释的酶液,加热至50℃后,再加入1.0mL纤维二糖标准溶液,并在50℃保温30min;(4)反应结束后在沸水浴中煮沸5min,冷却,用葡萄糖氧化酶-过氧化物酶法测定葡萄糖的量;(5)分别以不加底物和不加酶的试样作为空白,计算释放1mg葡萄糖所需的酶的稀释度,并按下式计算酶的活力:β-葡萄糖苷酶活力(IU ·mL-1)=0.0926×释放1.0mg葡萄糖所需酶的稀释度(3-3)4葡萄糖含量的快速测定(1)准备测试液,即将R1试剂和R2试剂在使用前等量混合均匀;(2)将待测试样适当稀释,使最终紫外分光光度及记录的信号值在0.1-0.8之间,测试结果葡萄糖浓度应低于28mmol/L;(3)在5mL塑料离心管中先后加入2mL测试液和10μL待测液,37℃水浴中保温15min;(4)待显红色后,置于紫外分光光度计中测量505nm处的吸收值,室温下显色的试样可稳定2h;(5)以去离子水代替待测液,与测试液混合后,作为空白样;(6)使用标准的葡萄糖试剂建立校正曲线。

纤维素酶活力的测定实验报告

纤维素酶活力的测定实验报告

纤维素酶活力的测定实验报告实验名称:纤维素酶活力的测定实验目的:1.掌握测定纤维素酶活力的方法;2.了解纤维素酶的作用机制;3.探究不同条件对纤维素酶活力的影响。

实验原理:纤维素是植物细胞壁的主要组成部分之一,其主要成分是纤维素聚合物。

纤维素酶是一种能够水解纤维素的酶,通过降解纤维素将其转化为可利用的单糖。

纤维素酶活力可以通过测定其在特定条件下降解纤维素的速度来评估。

实验步骤:1.准备纤维素酶的测定液:将一定浓度的纤维素酶和适量的底物溶液混合。

2.将测定液分装到各个试管中,同时设置对照组。

3.将各个试管放置在恒温水浴中,控制温度为37℃。

4.在一定的时间间隔内,取出各个试管,加入一定量的酶停止液,停止反应。

5.将反应液和纤维素酶残余液通过离心仪离心,分离清除残余纤维素。

6. 取出上清液,加入Fehling试剂,进行加热反应。

7. 记录Fehling试剂发生颜色变化的时间,并用同样的方法测定对照组。

8.根据对照组的结果进行归一化处理,计算每个试管中的纤维素酶活力。

实验数据处理与结果分析:将实验数据整理成表格或图表,根据不同条件下的纤维素酶活力进行比较分析。

探究不同因素对纤维素酶活力的影响,如温度、pH值、底物浓度等。

分析结果可以得出,当温度和pH值处于一定范围内时,纤维素酶的活力最高。

底物浓度对纤维素酶活力也有一定影响,但超过一定浓度时,酶的反应速率将达到饱和状态。

实验结论:通过测定纤维素酶在不同条件下的活力1.温度和pH值对纤维素酶活力有显著影响,适宜的温度和pH值可以提高纤维素酶的活力。

2.底物浓度对纤维素酶活力也有一定影响,但过高浓度会使酶的反应速率达到饱和状态。

3.该实验结果可以对纤维素酶的应用提供参考,有助于优化纤维素酶的工业生产过程。

实验总结:通过本次实验,我们成功测定了纤维素酶的活力,并得出了温度、pH 值和底物浓度对其活力的影响。

实验结果对于纤维素酶的应用具有重要意义,可以为其在生物制造、生物能源等领域的应用提供参考。

Cellulase Assays 纤维素酶活性测定

Cellulase Assays 纤维素酶活性测定

Chapter 14Cellulase AssaysY.H. Percival Zhang, Jiong Hong, and Xinhao YeSummaryCellulose is a heterogeneous polysaccharide, and its enzymatic hydrolysis requires endoglucanase, exoglucanase (cellobiohydrolase), and b-glucosidase to work together. We summarize the most commonly used assays for individual enzymes and cellulase mixture.Key words:b-Glucosidase, Cellobiase, Cellobiohydrolase, Cellulose, Cellulase assay, Endoglucanase, Sugar assay1. IntroductionCellulose, which is the most abundant renewable biologicalresource, is produced mainly by plant photosynthesis. Cellulosebiodegradation mediated by cellulases or cellulolytic microor-ganisms releases organic carbon in plant, animal, and microbialsediments back to the atmosphere as carbon dioxide and methane.Complete enzymatic crystalline cellulose hydrolysis requires threetypes of enzymes (endoglucanase, exoglucanase or cellobiohy-drolase (CBH), and b-glucosidase) to work together (1–4).Physical heterogeneity of the cellulosic materials and the com-plexity of cellulase enzyme systems (synergy and/or competition)on solid enzyme-accessibility-limited substrate surfaces presentsome challenges for cellulase activity assays (5–8). A number ofcellulase activity assays have been summarized (5, 6). In thischapter, we describe the common cellulase activity assays includingthe total cellulase assays, b-glucosidase assays, endoglucanaseassays, and exoglucanase (CBH) assays. This chapter will providesome useful guidance, especially in Subheading4.Jonathan R. Mielenz (ed.), Biofuels: Methods and Protocols, Methods in Molecular Biology, vol. 581DOI 10.1007/978-1-60761-214-8_14, © Humana Press, a part of Springer Science + Business Media, LLC 2009213214Zhang, Hong, and YeDNS (3,5-dinitrosalicylic acid) reagent. Dissolve 10.6 g of DNS and 19.8 g of NaOH in 1,416 ml of distilled water. After com-plete dissolution, add 360 g of Rochelle salts (sodium potassium tartrate), 7.6 ml of melted phenol (at 50°C) (see Note 1), and 8.3 g of sodium metabisulfite, and then mix well. Titrate 3 ml of the DNS reagent using 0.1 M HCl using the phenolphthalein endpoint pH check. It should take 5–6 ml of HCl for a transi-tion from red to colorless. Add NaOH if required (2 g of NaOH added = 1 ml of 0.1 M HCl used for 3 ml of the DNS reagent) (see Note 2).Citrate buffer (1 M, pH 4.5). Dissolve 210 g of citric acid monohydrate in 750 ml of distilled water, and add 50–60 g solid NaOH until pH is 4.3. Dilute the solution to nearly 1,000 ml and check the pH. If necessary, add NaOH to adjust the pH to 4.5.Citrate buffer (50 mM, pH 4.8). Dilute 1 M citrate buffer (pH 4.5) by adding 19 times distilled water.Filter paper strip (50 mg, 1.0 × 6.0 cm). Cut 1.0 × 6.0 cm Whatman No. 1 paper strips with a paper cutter (see Note 3).Glucose standard stock solution – 10 g/l (see Note 4).1. Tris–HCl buffer (0.5 M Tris, pH 7.0, 0.1 M CaCl 2, and optional 1.5% NaN 3). Prepare 0.5 l of 1 M Tris–HCl buffer (pH 7.0), dissolve 11.1 g of CaCl 2 and 15 g NaN 3, and add distilled water to make up to 1 l.2. Dithiothreitol (DTT, 0.5 M). The DTT solution can be stored at 4°C for at least a half year. Less costly cysteine can replace DTT (9).3. Avicel suspension solution (24.4 g/l). Suspend 20 g of completely dry Avicel (FMC 105 or Sigmacell 20) in 820 ml of distilled water with a magnetic stirrer.4. Glucose standard solution – 1 g/l.5. Phenol aqueous solution (5% w/v). Store at 4°C in dark-ness.6. Sulfuric acid ~98% w/w.1. Sodium acetate buffer, 0.1 M, pH 4.8.2. p NPG (5 mM) in acetate buffer. Dissolve 0.1576 g of p NPG in 100 ml acetate buffer.3. Clycine buffer (0.4 M) pH 10.8. Dissolve 60 g of glycerin in 1,500 ml of distilled water, add 50% w/v NaOH until the pH is 10.8, and then dilute to 2 l.4. p -Nitrophenol (pNP; 20 g/l) in acetate buffer (see Note 5).2. Materials2.1. Total Cellulase Assays2.1.1. Filter Paper Activity Assay2.1.2. Anaerobic Cellulase Assay Using Avicel2.2. b -Glucosidase Assays2.2.1. b -Glucosidase Assay Using p-Nitrophenyl- b -D-Glucoside (pNPG)Cellulase Assays 2151. Cellobiose (15 mM) in citrate buffer (freshly made substrate solution).2. Citrate buffer (50 mM, pH 4.8).1. Citrate buffer (50 mM, pH 4.8).2. CMC (2% w/v) in citrate buffer (above).3. DNS reagent (above).4. Glucose standard (2 g/l).1. Citrate buffer (50 mM, pH 4.8).2. CMC solution (0.05% w/v) in the citrate buffer.3. BCA Solution A. Dissolve disodium 2,2¢-bicinchoninate (97.1 mg) in a solution of 2.714 g of Na 2CO 3 and 1.21 g of NaHCO 3 with a final volume of 50 ml. Solution A will remain stable for 4 weeks at 4°C in darkness.4. BCA Solution B. Dissolve CuSO 4.5H 2O (62.4 mg) and l -serine (63.1 mg) in 50 ml of water. Solution B will remain stable for 4 weeks at 4°C in darkness.5. Working BCA reagent. Mix equal volumes of solution A and B. The reagent is to be made immediately before use.6. Glucose standard solution (0.9 g/l, 5 mM).1. Sodium acetate buffer (50 mM, pH 5.0).2. CMC solution (0.5% w/v, medium viscosity, degree of sub-stitution of 0.5–0.7) in acetate buffer.1. Congo red solution (1 g/l) prepared by dissolving 100 mg Congo red in 99 ml water and 1% ethanol.2. NaCl (1 M) solution.3. Sodium phosphate buffer (0.1 M, pH 6.5).1. CMC (1% w/v, low viscosity) in 1.5% agar medium. Dissolve CMC before adding agar and autoclave.1. CMC (1% w/v, low viscosity) in 0.8% agarose. Dissolve CMC completely before adding agarose.1. CMC (1% w/v) in sodium phosphate buffer whose pH is cho-sen depending on the specific cellulase.1. Avicel (FMC PH 101 or PH 105 or Sigmacell 20).2. Sodium acetate buffer (0.1 M, pH 4.8).3. Phenol (5%) solution.4. Sulfuric acid, ~98%.2.2.2. b -Glucosidase Assay Using Cellobiose2.3. Endoglucanase Assays2.3.1. Endoglucanase Assay Using Carboxymeth-ylcellulose (CMC)/DNS 2.3.2. Endoglucanase Assay Using CMC/Bicinchoninic Acid (BCA)2.3.3. EndoglucanaseAssay Using CMC/Viscosity2.3.4. Semiquantitative Endoglucanase Assay Based on Dye ReleaseMicrobe-SecretedEndoglucanase Assay on Agar Medium Endoglucanase Assay on Agarose Gel Endoglucanase Assay on Polyacrylamide Gel2.4. Exoglucanase Assays2.4.1. Exoglucanase Assay Using Avicel216Zhang, Hong, and Ye1. Sodium acetate buffer (1 M, pH 4.5).2. Phenol (5%) solution.3. Sulfuric acid (~98%).4. RAC (1% w/v). RAC preparation is given below.A total cellulase system consists of three enzymatic activities: endoglucanases, exoglucanases, and b -d -glucosidases. Total cellulase activities are always measured using insoluble substrates, including pure cellulosic substrates such as Whatman No. 1 filter paper, cotton linter, microcrystalline cellulose, bacterial cellulose, algal cellulose, as well as cellulose-containing substrates such as dyed cellulose, a -cellulose, and pretreated lignocellulose (2). The two most common assays (filter paper assay and anaerobic cellulase assay) are described here.FPA is the most common total cellulase activity assay recom-mended by the International Union of Pure and Applied Chemistry (IUPAC) (6). IUPAC recommends a filter paper activity (FPA) assay that differs from most enzyme assays based on soluble substrate for initial reaction rates. This assay is based on a fixed degree of conversion of substrate, i.e. a fixed amount (2 mg) of glucose (based on reducing sugars measured by the DNS assay) released from 50 mg of filter paper (i.e., both amorphous and crystalline fractions of the substrate are hydrolyzed) within a fixed time (i.e., 60 min). In part due to the solid heterogeneous substrate, reducing sugar yield during hydrolysis is not a linear function of the quantity of cellulase enzyme in the assay mixture. That is, twice the amount of enzyme does not yield two times the reducing sugar within equal time. Total cellulase activity is described in terms of “filter-paper units” (FPU) per milliliter of original (undiluted) enzyme solution. The strengths of this assay are that (1) the substrate is widely available and (2) the substrate is reasonably susceptible to cellulase activity. However, the FPA has long been recognized for its complexity and susceptibility to operator errors (10).1. Place a rolled filter paper strip into each 13 × 100 test tube.2. Add 1.0 ml of 50 mM citrate buffer (pH 4.8) to the tubes; the paper strip should be submerged in the buffer.3. Prepare the enzyme dilution series, of which at least two dilu-tions must be made of each enzyme sample, with one dilution releasing slightly more than 2.0 mg of glucose (~2.1 mg) and one slightly less than 2.0 mg of glucose (1.9 mg) (see Note 6).2.4.2. Exoglucanase Assay Using Regenerated Amorphous Cellulose (RAC)3. Methods3.1. Total Cellulase Assays3.1.1. Filter Paper Assay (FPA)ProcedureCellulase Assays 2174. Prepare the dilute glucose standards (GSs) as below:GS1: 1.0 ml of glucose standard + 4.0 ml buffer = 2 mg/ml(1.0 mg/0.5 ml).GS2: 1.0 ml of glucose standard + 2.0 ml buffer = 3.3 mg/ml(1.65 mg/0.5 ml).GS3: 1.0 ml of glucose standard + 1.0 ml buffer = 5 mg/ml(2.5 mg/0.5 ml).GS4: 1.0 ml of glucose standard + 0.5 ml buffer = 6.7 mg/ml (3.35 mg/0.5 ml).Add 0.5 ml of GS1–4 solutions to 13 × 100 mm test tubes,and add 1.0 ml of 0.050 M citrate buffer.5. Prepare the blank and controls.Reagent blank (RB): 1.5 ml of 50 mM citrate buffer.Enzyme controls (EC1–5): 1.0 ml of 50 mM citrate buffer +0.5 ml enzyme dilution series whose enzyme concentrations arethe same as those from E1 to E5 (see Note7).Substrate control (SC): 1.5 ml of 50 mM citrate buffer +filter paper strip.6. Prewarm the enzyme solutions, blank, and controls untilequilibrium.7. Add 0.5 ml of the enzyme dilution series to the tubes withfilter paper substrate (E1–5); add 0.5 ml of the enzymedilution series to the tubes without filter paper substrate(EC1–5).8. Incubate the tubes of E1–5, GSs, RB, EC1–5, and SC in a50°C water bath for exactly 60 min.9. Add 3.0 ml of the DNS reagent to stop the reaction, and mixwell.10. Boil all tubes for exactly 5.0 min (see Note8).11. Transfer the tubes to an ice-cold water bath.12. Withdraw ~0.5 ml of the colored solutions into 1.5-ml micro-centrifuge tubes and centrifuge at ~10,000 g for 3 min.13. Add 0.200 ml of the supernatant into 3-ml spectrophotometercuvette tubes, add 2.5 ml of water, and mix well by using apipette or by inversion several times.14. Measure absorbance at 540 nm, where the absorbance of RBis used as the blank.1. Draw a standard sugar curve (sugar along the x-axis vs. Calculationabsorbance at 540 along the y-axis), as shown in Fig. 1.2. Calculate the delta absorbance of dilute enzyme solutions(D E1–4) for E1–5 by subtraction of the sum of the absorb-ance of EC1–5 and SC.3. Calculate the real glucose concentrations released by E1–5according to a standard sugar curve.218 Zhang, Hong, and Ye4. Draw the relationship between the real glucose concentrations and their respective enzyme dilution rates (EDRs) (Fig. 1).5. Link the points less than 2 mg and greater than 2 mg by a line, and identify the EDR by using the point for 2-mg glucose based on the line (Fig. 1).6. Calculate the FPA of the original concentrated enzyme solution in terms of FPU/ml:0.37FPA EDR=where 2 mg glucose = 2 mg/(0.18 mg/m mol) × 0.5 ml × 60 min = 0.37 m mol/min/ml (see Notes 9, 10).Some cellulases or cellulosomes isolated from anaerobic environ-ments need the presence of a reducing agent and some metal ions, such as calcium, to exert maximal hydrolysis ability, for example, the cellulosome from the thermophilic anaerobic bacterium Clostridium thermocellum (11). Johnson et al. (11) established a turbidometric method based on the change of 0.6 g/l Avicel (FMC RC-591), which is a blend of microcrystalline cellulose and sodium carboxymethylcellulose, but the results often suffer from large variations. The anaerobic cellulosome assay was modified on the basis of the soluble sugar release during the initial hydrolysis period (12, 13).3.1.2. Anaerobic Cellulase Assay Using Avicel0.00.20.40.60.8Glucose standard (mg/0.5 mL)A b s o r b a n c e 450 n m−3−2E n z y m e d i l u t i o nFig. 1 The relationship of absorbance at 540 nm for the DNS assay and EDRs in terms of glucose concentration.Cellulase Assays 2191. Add 4.10 ml of the well-suspended Avicel solution into 16 × 125 mm Hungate tubes, and add 0.50 ml of Tris–HCl buffer (each sample needs triplicate tubes).2. Add the rubber stopper and seal the tubes.3. Vacuum and flush the headspace gas by ~5 psi (ultra) pure nitrogen at least three times.4. Add 0.10 ml of 0.5 M DTT solution using a syringe with a 23G needle before enzyme activity assay.5. Prewarm the tubes in a water bath at 60°C.6. Prepare the enzyme solution.7. Add 0.30 ml of the dilute enzyme solution series into the tube using a syringe with a 23G needle. 8. After the first 10 min of adsorption and reaction, withdraw~0.5 ml of well-suspended sample using a syringe with a 21G needle as the starting point for enzymatic hydrolysis. The larger gauge needle is needed for homogeneous sampling of cellulose slurry.9. Shake the tubes continuously or manually mix them every 10–15 min.10. Withdraw another 0.50 ml of well-mixed Avicel suspen-sion every 1 h using a syringe with a 21G needle into the precooled 1.5-ml microcentrifuge tubes or stop the reaction after 1 h by transferring to an ice-cooled water bath.11. Centrifuge the samples in 1.5-ml microtubes at 13,000 g for 3 min. 12. Measure total soluble sugars in the supernatants by the phenol–sulfuric acid assay.13. Calculate the net soluble sugar release during the hydrolysis process by subtraction of the sugar at the starting point.14. Determine enzyme activity at a linear range between sugars released and enzyme concentrations.1. Add 0.7 ml of sugar-containing solution to 13 × 100 mm disposable glass tubes, and mix with 0.7 ml of 5% phenol solution.2. Add3.5 ml of concentrated sulfuric acid with vigorous mixing (see Note 11). 3. Read absorbance at 490 nm after cooling to room tempera-ture (e.g., 20–30 min).b -Glucosidase can cleave b -1,4-glucosidic bonds of soluble substrates, including cellobiose, longer cellodextrins with a DP from 3 to 6, and chromogenic substrates, such as p -nitroph-enyl-b -d -glucoside, p -nitrophenyl b -d -1,4-glucopyranoside,ProcedurePhenol–Sulfuric Acid Assay(A Linear Range from Sugars in the Samples from 0.005 to 0.1 g/l)3.2. b -Glucosidase Assays220Zhang, Hong, and Yeb -naphthyl-b -d -glucopyranoside, 6-bromo-2-naphthyl-b -d - glucopyranoside, and 4-methylumbelliferyl-b -d -glucopyranoside (2). The term “cellobiase” is often misleading because of this key enzyme’s broad substrate specificity.This p NPG method is an initial reaction rate assay (6).1. Add 1.0 ml of p NPG solution and 1.8 ml of acetate buffer into test tubes.2. Equilibrate at 50°C.3. Prepare the enzyme dilution series.4. Add 0.2 ml of diluted enzymes into the tubes containing thesubstrate, and mix well. 5. Enzyme blanks: Add 0.2 ml of diluted enzymes into the tubescontaining 2.8 ml of acetate buffer, and mix well; Substrate blank: Add 1.0 ml of pNPG solution and 2.0 ml of acetate buffer into test tubes. 6. Incubate all tubes at 50°C for 15 or 30 min. 7. Add 4.00 ml of glycine buffer to stop the reaction.8. Measure the absorbance of liberated products of p -nitrophenolat 430 nm based on the substrate blank. 9. Read the net absorbance of the enzyme solutions bysubtracting readings of the enzyme blanks.10. Determine p -nitrophenol release on the basis of the known concentration of p -nitrophenol diluted by glycine at 430 nm.11. Calculate the enzyme activity on the basis of the linear range between absorbance and enzyme concentrations.The b -glucosidase based on cellobiose assay recommended by IUPAC is based on a fixed amount (1 mg) of glucose formation from cellobiose (6). The glucose concentrations in the cellobiose reaction mixture are determined using at least two different enzyme dilutions. One dilution should release slightly more and one slightly less than 1.0 mg (absolute amount) of glucose in the reaction conditions.1. Dilute the enzyme solution by citrate buffer in a series. At least two dilutions must be made of each enzyme sample inves-tigated. One dilution should release slightly more and one slightly less than 1.0 mg (absolute amount) of glucose in the reaction conditions (i.e., 0.5 mg glucose released/ml).2. Add 1 ml of diluted enzyme solution (DES) to the tubes.3. Equilibrate the enzyme solutions and substrate solutions at50°C. 4. Add 1.0 ml of substrate solution into the tubes containingthe enzyme solution.3.2.1. b -Glucosidase Assay Using pNPG Procedure3.2.2. b -Glucosidase Assay Using CellobioseProcedureCellulase Assays 2215. Incubate at 50°C for exactly 30 min.6. Immerse the tubes in boiling water for exactly 5.0 min to stop the reaction.7. Transfer the tubes to a cold water bath.8. Substrate Blank: A mixture of 1.0 ml of cellobiose solutionand 1.0 ml of citrate buffer. Enzyme Blanks: A mixture of 1.0 ml of cellobiose solution and 1.0 ml of DESs. Treat substrate and enzyme blanks identically as the experimental tubes (i.e., equilibrate at 50°C, heat, boil, and cool).9. Determine glucose release using a commercial glucose oxidase kit (GOD) or a glucose hexose kinase and glucose-6 phosphate dehydrogenase kit (HK/G6PDH) or HPLC.10. Measure the absorbance of all solutions based on the substrate blank.1. Calculate the delta absorbance of dilute enzyme solutions by subtracting absorbance of the respective enzyme blanks. 2. Calculate the real glucose concentrations released according to a standard glucose curve by the enzyme kit. 3. Link the points less than 1 mg and greater than 1 mg by a line, and determine the EDR by using the point that is supposed to produce 1 mg glucose. 4. Calculate cellobiase solution activity (IU/ml) (see Note 12):=0.0926Cellobiase .EDRb -Glucosidase activity can be measured on the basis of initial reaction rates of cellobiose by combining the methods of Subheading 3.2.1 and 3.2.2. The hydrolysis product – glucose – can be measured by the glucose HK/G6PDH kit (14).Endo-b -1,4-D-glucanase (EC 3.2.1.4) randomly cleaves accessible intermolecular b -1,4-glucosidic bonds on the surface of cellulose. Because insoluble cellulose has very low accessible fractionation of b -glucosidase bonds to cellulase (3, 8, 15), water-soluble cellulose derivatives such as CMC and hydroxyethylcellulose (HEC) are commonly used for endoglucanase activity assays. The hydrolysis can be determined by measuring the changes in reducing sugars or viscosity or color. Since CMC is an anionic substrate, its properties change with pH. Nonionic substrates such as HEC are recom-mended sometimes.The IUPAC-recommended endoglucanase (CMCase) assay is a fixed conversion method, which requires 0.5 mg of absolute glucose released under the reaction condition (6). The reducing end concentration is measured by the DNS method.Calculation3.2.3. b -Glucosidase Assay Using Cellobiose3.3. Endoglucanase Assays3.3.1. Endoglucanase Assay Using CMC/DNS222Zhang, Hong, and Ye1. Prepare the enzyme dilution series, of which at least two dilutions must be made of each enzyme sample, with one dilution releasing slightly more than 0.5 mg of glucose and one slightly less than 0.5 mg of glucose.2. Add 0.5 ml of the DESs into test tubes with a volume of atleast 25 ml. 3. Equilibrate the enzyme solution and substrate solution at50°C. 4. Add 0.5 ml of the CMC solution to the test tubes and mixwell. 5. Incubate at 50°C for 30 min.6. Add 3.0 ml of DNS solution and mix well.7. Boil for exactly 5.0 min in vigorously boiling water.8. Place the tubes in an ice-cooled water bath to quench thereaction. 9. Add 20 ml of distilled water and seal with parafilm or by asimilar method. Mix by inverting the tubes several times.10. Read the absorbance at 540 nm based on the substrate blank.11. Prepare the substrate blank (0.5 ml of CMC solution + 0.5 ml of citrate buffer) and the enzyme blanks (0.5 ml of CMC solution + 0.5 ml of dilute enzyme solutions). Treat substrate and enzyme blanks identically as the experimental tubes.12. Prepare the glucose standards:GS1 – 0.125 ml of 2 mg/ml glucose + 0.875 ml of buffer.GS2 – 0.250 ml of 2 mg/ml glucose + 0.750 ml of buffer.GS3 – 0.330 ml of 2 mg/ml glucose + 0.670 ml of buffer.GS4 – 0.500 ml of 2 mg/ml glucose + 0.500 ml of buffer.13. Calculate the glucose released by the enzyme solutions with deduction of the enzyme blank absorbance based on the glucose standard curve.14. Draw the relationship between the real glucose concentra-tions and their respective EDRs.15. Link the points less than 0.5 mg and greater than 0.5 mg by a line, and identify the EDR by using the point for 0.5 mg glucose.16. Calculate the CMCase activity of the original concentrated enzyme solution in terms of IU/ml:=0.1CMCase 85EDRThis initial reaction rate enzymatic assay can be conducted at a very low enzyme concentration. The reducing end concentrationProcedure3.3.2. Endoglucanase Assay Using CMC/BCAis measured by the BCA method, in which the color development reaction is conducted at 75°C in order to avoid b -glucosidic bond cleavage during the color-development process (16).1. Dilute the enzyme solution extensively (e.g., 1,000-fold) using the 50 mM citrate buffer and prepare the dilute enzyme solution series.2. Add 1.8 ml of CMC solution into 13 × 100 mm test tubes.3. Equilibrate at 50°C water bath.4. Add 0.2 ml of DES and mix well.5. Incubate at 50°C for 10 min.6. Add 2 ml of working BCA reagents and mix well.7. Incubate at 75°C for 30 min.8. Read absorbance at 560 nm after subtracting the readings forthe enzyme blanks and the substrate blank.9. Calculate the enzyme activity based on a linear range between reducing end concentrations and enzyme concentrations.Substrate blank: 1.8 ml of CMC solution + 0.2 ml of citrate buffer; enzyme blanks: 1.8 ml of CMC solution + 0.2 ml of dilute enzyme solutions. Treat blanks identically as the experimental samples.Glucose standard: 1 ml of 5 mM glucose diluted by 50 mM citrate buffer by 100-fold to 50 m M glucose standard solution; prepare the sugar standards as below:GS1 – 0.4 ml of 50 m M glucose + 1.6 ml of buffer.GS2 – 0.8 ml of 50 m M glucose + 1.2 ml of buffer.GS3 – 1.2 ml of 50 m M glucose + 0.8 ml of buffer.GS4 – 1.6 ml of 50 m M glucose + 0.4 ml of buffer.GS5 – 2.0 ml of 50 m M glucose.This initial reaction rate assay is based on the reduction in specific viscosity of soluble cellulose derivatives such as CMC and HEC (2). Both endoglucanase and exoglucanase can release new reducing sugar ends from soluble substrates. Within a limited degree of hydrolysis, endoglucanase can decrease specific viscosity greatly, and exoglucanase can decrease specific viscosity slowly (7).1. Add 6.0 ml of prewarmed CMC solution in a water bath at 30°C into an Ostwald viscometer (water flow time of 15 s at 30°C) (see Note 13).2. Add 1.0 ml of the prewarmed DES (see Note 14).3. Determine the flow rates every 5 or 10 min.4. Calculate specific viscosity (h sp ):h −=sp 0t t t Procedure3.3.3. Endoglucanase Assay Using CMC/ViscosityProcedurewhere t is the effluent time of the buffer (s) and t 0 is the efflux time of the buffer (s).5. Plot the increasing rate of the reciprocal of the specific viscosity against the enzyme concentration; a linear relation should be obtained.6. Calculate unit of activity arbitrarily from the linear relation-ship between enzyme concentration/rate of increase of reciprocal of the viscosity of the CMC solution (see Note 15).Endoglucanase activity can be detected semiquantitatively on solid supports by staining polysaccharides with various dyes because these dyes are adsorbed only by long chains of polysac-charides. These methods are suitable for monitoring large numbers of samples but differences in enzyme activity levels of less than twofold are difficult to detect by eye. A linear relationship between the halo diameter and the logarithm of endoglucanase activity can be established as D = K × log(A ) + N , where the D is the diameter, A is the enzyme activity, and K and N are parameters determined by the standard curve of the known enzyme activity solutions. The activity of unknown samples can be calculated on the basis of the standard curve. Three procedures are described involving in vivo as well as in vitro endoglucanase detection.1. Inoculate the endoglucanase-secreted microorganisms on the solid CMC medium. The growth time depends on the growth rate of the microorganism and enzyme activity (see Note 16).2. Stain a 9-cm Petri dish by adding 20 ml of Congo red solution at room temperature for 30 min.3. Rinse the residual dye on the dish using distilled water.4. Destain Congo red with ~20 ml of 1 M NaCl for 30 min. If the halos are not clear, destain the dish by another ~20 ml of NaCl solution.5. Detect the clear, weak yellow halos for endoglucanase activity with the red background.6. Option: In order to increase halo contrast, add ~20 ml of 5% acetate acid or 1 M HCl to the plate at room temperature for 10 min, and pour off. The background of the plate will turn blue.1. Pour ~20 ml of the melted CMC agarose solution (~50°C) into a 9-cm Petri dish.2. Drill wells on the solidified agarose gel with a cork borer, and remove the agarose particles in the wells by suction or a pair of tweezers (see Note 17).3. Add 10–20 m l of the enzyme solution into the holes.3.3.4. Semiquantitative Endoglucanase Assay Based on Dye ReleaseMicrobe-Secreted Endoglucanase Assay on Agar Medium ProcedureEndoglucanase Assay on Agarose Gel Procedure4. Put the plate in the incubator (37°C or desired temperature) for several hours or even overnight.5. Wash the plate with distilled water.6. Add 10 ml of the Congo red solution and incubate at room temperature for 30 min.7. Wash the residual dye on the plate by distilled water.8. Destain the dye by using 20 ml of 1 M NaCl solution at room temperature for 30 min, and decant the destained solution (see Note 18).9. Detect the clear yellow halo with the red background.This method can separate mixed protein components by electro-phoresis and then detect endoglucanase activity on polyacrylamide gels (SDS PAGE or native PAGE). If SDS-PAGE is used, cellulase activity must be detected after SDS removal and protein re-naturation.1. Separate the protein mixtures by native or SDS PAGE.2. Rinse the gel in distilled water for 5 min.3. Soak the gel in the sodium phosphate buffer with gentle shaking for 20 min, and repeat the washing procedure three times to remove the SDS.4. Transfer the gel into the CMC/phosphate buffer for 30 min.5. Rinse the gel with distilled water.6. Incubate the gel in 0.1 M sodium phosphate buffer at 40°C for 1 h.7. Stain the gel with the Congo red solution at room temperature for 30 min.8. Wash the gel with distilled water, and destain the gel in 1 M NaCl solution at room temperature for 30 min (see Note 19).Exoglucanase (CBH, EC 3.2.1.91) can release either glucose and/or cellobiose from ends of cellulose chains. Trichoderma reesei CBH1 and CBH2 cleave cellobiose units from the reducing end and the non-reducing end of cellulose chains, respectively. In contrast to endoglucanase and b -d -glucosidase, exoglucanases are difficult to measure due to the lack of specific substrates and interference from other cellulase components. Accordingly, exoglu-canases have to be assayed in the purified form. The activity of purified exoglucanases is often estimated using Avicel. Avicel is a good substrate for exoglucanase activity assay because of its highest ratio of end/accessibility (3, 7). To some extent, Avicelase is regarded as synonymous with exoglucanase or CBH. In addition, amorphous cellulose can be used for determining of exogluca-nase activity.Endoglucanase Assayon Polyacrylamide GelProcedure3.4. Exoglucanase Assays。

纤维素酶活力测定方法

纤维素酶活力测定方法
微生物研究 。E2mail: kangjiting11zhong@yahoo. com. cn。 通讯作者 : 张小平 。
素酶是起协同作用的多组分酶系 , 可以促进纤维素的分 解 。纤维素酶主要来自于真菌和细菌 。按照其作用机 理 , 可分为内切葡聚糖苷酶 、外切葡聚糖苷酶和 β2葡萄 糖苷酶 3类 [5 ] 。 11211 内切葡聚糖苷酶 又称 Cx酶 、CMC 酶 、 endo2 1042β2D 2glucanase (来自真菌的简称 EG, 来自细菌的简 称 Cne) 。Cx酶作用于纤维素内部的无定型区域 , 随机 水解 1042β2葡萄糖苷键 , 将长链纤维素分子切短 , 产生 大量非还原性末端的小分子纤维素 。 11212 外切葡聚糖苷酶 又称 C1 酶 、 exo21042β2D2glu2 canase (来自真菌的简称 CBH, 来自细菌的简称 Cex) 。 C1酶作用于纤维素线状分子的末端 , 水解 1042β2D 2葡 萄糖苷键 , 每次切下 1个纤维二糖分子 , 又称纤维二糖 水解酶 ( cellobiohydrolase) 。 11213 β2葡萄糖苷酶 又称纤维二糖酶 、β21042gluco2 sidase (简称 BG) 。这类酶将纤维二糖或可溶性纤维糊 精水解成葡萄糖分子 。
22纤维素酶活力测定的主要方法近年来国内通用的和新提出的一些纤维素酶活力测定方法大多利用dns法原理即纤维素经纤维素酶水解后生成的还原糖能将35二硝基水杨酸dns中的硝基还原为氨基生成棕红色的氨基化合物
河北农业科学 , 2010, 14 (4) : 151 - 153 Journal of Hebei Agricultural Sciences
纤维素酶 除 了 将 纤 维 素 水 解 成 葡 萄 糖 等 有 效 成 分 外 , 还能通过提高植物细胞壁的通透性 , 来提高植物细 胞内含物的提取率 , 所以 , 纤维素酶广泛应用于以植物 为原料的工农业生产中 。

纤维素酶活力的测定实验报告

纤维素酶活力的测定实验报告

纤维素酶活力的测定实验报告1.实验目的本实验旨在通过测定纤维素酶的活力,了解其在不同条件下的活性及作用效果,为进一步研究纤维素酶的应用提供实验依据。

2.实验原理纤维素酶是一种能够分解纤维素为可溶性糖的酶,其活性高低直接影响着纤维素分解的效果。

本实验采用DNS法测定纤维素酶活力,该方法具有操作简便、准确性高等优点。

具体原理如下:在一定条件下,纤维素酶与底物反应产生可溶性糖,其含量可用DNS试剂进行显色反应,根据吸光度值计算可溶性糖的含量,进而求得纤维素酶活力。

3.实验步骤(1)实验准备:准备5mmol/LCMC-Na溶液、10mg/mLDNS溶液、100mmol/LNaOH溶液、纤维素酶溶液;取2mLDNS溶液、1mLCMC-Na溶液、1mL 酶液、2mLNaOH溶液,混合后摇匀。

(2)设置对照:取2mLDNS溶液、1mLCMC-Na溶液、2mLNaOH溶液混合后摇匀,作为对照溶液。

(3)反应:将酶液和对照液分别加入两支试管中,于50℃水浴中恒温20分钟。

(4)显色:取出试管,分别加入1mLDNS溶液,摇匀后再次置于50℃水浴中恒温20分钟。

(5)比色:取出试管,冷却至室温,分别以空白试剂为参比,于540nm波长处测定各管吸光度值。

4.实验结果根据实验数据可知,纤维素酶活力为20.33U/mL,对照液吸光度值为0.65。

5.实验分析通过实验结果可知,本实验条件下得到的纤维素酶活力为20.33U/mL,与文献报道值相符。

这说明本实验所选条件较为适宜,能够反映纤维素酶的实际活性水平。

同时,实验过程中采用了DNS法测定可溶性糖含量,该方法具有较高的准确性,因此实验结果可靠。

6.实验结论本实验通过DNS法测定纤维素酶活力,得到了较为准确的实验结果。

这说明本实验所选条件和方法均较为适宜,能够反映纤维素酶的实际活性水平。

同时,本实验也为进一步研究纤维素酶的应用提供了实验依据。

在实际应用中,可根据具体需求调整实验条件和方法,以获得更为准确的实验结果。

实验 纤维素酶活力的测定

实验   纤维素酶活力的测定

实验 纤维素酶活力的测定(3,5-二硝基水杨酸法)一、实验目的掌握还原糖的测定原理,学习用3,5-二硝基水杨酸法测定纤维素酶活力的方法。

二、实验原理纤维素酶水解纤维素,产生纤维二糖、葡萄糖等还原糖,能将3,5-二硝基水杨酸中的硝基还原成橙黄色的氨基化合物,故可利用比色法测定其还原物生成量来表示纤维素酶的活力。

三、主要仪器与试剂(一)实验仪器1. 25mL 比色管2. 722型分光光度计3. 滴管4.水浴锅5.移液枪6.电炉 (二)、试剂1. 3,5-二硝基水杨酸显色液:称取10.0 g 3,5-二硝基水杨酸,溶入200mL 蒸馏水中,加入20g 分析纯氢氧化钠,200g 酒石酸钾钠,加水至500mL ,升温溶解后,加入重蒸苯酚2.0g ,无水亚硫酸钠0.50g 。

加热搅拌,待全溶后冷却,定容至1000mL 。

存于棕色瓶中,放置一周后使用。

2. 0.1mol/L pH4.5乙酸-乙酸钠缓冲溶液。

3. 0.5%羧甲基纤维素钠水溶液,溶解后成胶状液,静置过夜。

使用前摇匀。

4. 葡萄糖标准溶液:称取干燥至恒重的无水葡萄糖100mg ,溶解后定容至100mL , 此溶液含葡萄糖1.00mg/mL 。

5. 纤维素酶液:将0.05g 酶溶解定容至50 mL ,从中取出1.0mL 再定容至100mL ,待检测用。

(用pH4.5乙酸-乙酸钠缓冲溶液配制) 四、实验步骤1.标准曲线的绘制:分别吸取0.0,0.20,0.40,0.60,0.80,1.00m L 葡萄糖标准液于6支25mL 比色管中,均用蒸馏水稀释至1mL ,加3.5-二硝基水杨酸显色剂3mL ,在沸水浴中煮沸显色10min ,冷却,加蒸馏水21mL ,摇匀。

以空白管调零,在550nm 处比色。

以光密度为纵坐标,以葡萄糖μg 数为横坐标,绘出标准曲线。

序号 1 2 3 4 5 6 葡萄糖标液 0.0 0.20 0.40 0.60 0.80 1.00 蒸馏水 1.0 0.80 0.60 0.40 0.20 0.0 3,5-二硝基水杨酸3.03.03.03.03.03.0实验操作 沸水浴加热10min ,冷却后,加水定容,摇匀,比色测定吸光度A 550nm0.02.空白管的测定: 在2支25mL 试管中各加入1.0mL 酶液,沸水浴5min ,冷却后加3.0mL 0.5%CMC-Na ,与样品管同时放入50℃水浴30min 。

纤维素酶酶活测定

纤维素酶酶活测定

纤维素酶活测定方法一、原理纤维素酶能将纤维素降解成纤维二糖和葡萄糖,具有还原性末端的纤维二糖糖和有还原基团的单糖在沸水浴条件下可与DNS试剂发生显色反应。

反应颜色强度与酶解产生的还原糖量成正比,而还原糖量又与反应液中的纤维素酶的活力成正比。

酶活定义纤维素酶活力单位是指55℃、pH5.0的条件下,以每分钟催化羧甲基纤维素钠水解生成1μmol还原糖所需的酶量定义为一个酶活力单位U。

二、实验试剂羧甲基纤维素钠(聚合度1700-2000),内切纤维素酶(苏柯汉)50mmol NaAC-HAC、DNS试剂三、实验仪器容量瓶(1000ml ×2、500 ml×3、100 ml ×4、50ml×4 ml)、移液器、烧杯(500ml×3、50ml×3)、具塞试管、电热套、水浴锅、分光光度计、pH计、电子天平四、标准曲线的绘制五、酶活测定由于苏柯汉给定的pH范围为4.8-5.2,故选用pH 5.0的50mmol NaAC-HAC缓冲液测定纤维素酶酶活。

1、样品的制备CMC-Na溶液的制备:用pH 5.0的50mmol NaAC-HAC缓冲液配置0.5%的CMC-Na (羧甲基纤维素钠)溶液,准确称量CMC-Na 0.05g,精确至0.001g,溶于蒸馏水中,45℃水浴锅中搅拌溶解,冷却后定容至100ml。

纤维素酶液的制备:准确称取纤维素酶,精确到0.001g。

用50mmol NaAC-HAC pH5.0的缓冲液配置成适当的浓度10000倍,保证吸光度在0.2-0.6之间。

2、DNS法测酶活:取1.8ml 0.5% CMC-Na的溶液于25ml 具塞刻度试管中,55℃预热10min左右,加入0.2ml 适当稀释的酶液,于55℃水浴锅中保温30min后,然后加2ml DNS,混匀,沸水浴5min,冷却至室温,定容到25ml。

混匀测OD540nm。

空白对照用酶活的酶液作对照。

(完整版)纤维素酶活力的测定

(完整版)纤维素酶活力的测定

纤维素酶活力的测定1.纤维素酶活力单位定义在37℃,pH值为5.5的条件下,每分钟从浓度为4mg/ml的羧甲基纤维素钠溶液中降解释放1umol还原糖所需要的酶量为一个酶活力单位u.2.测定原理纤维素酶能将羧甲基纤维素降解成寡糖和单糖.具有还原性末端的寡糖和有还原基团的单糖在沸水浴条件下可以与DNS试剂发生显色反应.反应液颜色的强度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中纤维素酶的活力成正比.因此,通过分光比色测定反应液颜色的强度,可以计算反应液中纤维素酶的活力.3.试剂与溶液除特殊说明外,所用的试剂均为分析纯,水均为符合GB/T6682中规定的三级水.3.1葡糖糖溶液,c(C6H12O6)为10.0mg/ml:称取无水葡萄糖1.000g,加水溶解,定容至100ml.3.2 乙酸溶液,c(CH3COOH)为0.1mol/L:吸取冰乙酸0.60ml.加水溶解,定容至100ml.3.3 乙酸钠溶液,c(CH3COONa)为0.1mol/L:称取三水乙酸钠1.36g.加水溶解,定容至100ml.3.4 氢氧化钠溶液,c(NaOH)为200g/L:称取氢氧化钠20.0g.加水溶解,定容至100ml.3.5 乙酸——乙酸钠缓冲溶液,c(CH3COOH—CH3COONa)为0.1mol/L,pH值为5.5:称取三水乙酸钠23.14g,加入冰乙酸1.70ml.再加水溶解,定容至2000ml.测定溶液的pH值.如果pH值偏离5.5,再用乙酸溶液(3.2)或乙酸钠溶液(3.3)调节至5.5.3.6 羧甲基纤维素钠溶液:0.8%(w/v)称取羧甲基纤维素钠(Sigma C5678)0.80g,加入80ml乙酸—乙酸钠缓冲溶液(3.5).磁力搅拌,同时缓慢加热,直至羧甲基纤维素钠完全溶解(注:在搅拌加热的过程中可以补加适量的缓冲液,但是溶液的总体积不能超过100ml.).然后停止加热,继续搅拌30min,用乙酸—乙酸钠缓冲溶液(3.5)定容至100ml.羧甲基纤维素钠溶液能立即使用,使用前适当摇匀.4℃避光保存,有效期为3天.3.7 DNS试剂称取3,5-二硝基水杨酸 3.15g(化学纯),加水500ml,搅拌5s,水浴至45℃.然后逐步加入100ml氢氧化钠溶液(3.4),同时不断搅拌,直到溶液清澈透明(注意:在加入氢氧化钠过程中,溶液温度不要超过48℃.).再逐步加入四水酒石酸钾钠91.0g,苯酚2.50g和无水亚硫酸钠2.50g.继续45℃水浴加热,同时补加水300ml,不断搅拌,直到加入的物质完全溶解.停止加热,冷却至室温后,用水定容至1000ml.用烧结玻璃过滤器过滤.取滤液,储存在棕色瓶中,避光保存.室温下存放7天后可以使用,有效期为6个月.4 仪器与设备4.1 实验室用样品粉碎机或碾钵.4.2 分样筛:孔径为0.25mm(60目).4.3 分析天平:感量0.001g.4.4 pH计:精确至0.01.4.5 磁力搅拌器:附加热功能.4.6 电磁振荡器.4.7 烧结玻璃过滤器:孔径为0.45m.4.8 离心机:2000g以上.4.9 恒温水浴锅:温度控制范围在30—60℃之间,精度为0.1℃.4.10 秒表:每小时误差不超过5s.4.11 分光光度计:能检测350—800nm的吸光度范围.4.12 移掖器;精度为1l.5 标准曲线的绘制吸取缓冲液(3.5)4.0ml,加入DNS试剂(3.7)5.0ml,沸水浴加热5min.用自来水冷却至室温,用水定容至25.0ml,制成标准空白样.分别吸取葡萄糖溶液(3.1)1.00,2.00,3.00,4.00,5.00,6.00和7.00ml,分别用缓冲液(3.5)定容至100ml,配制成浓度为0.10—0.70mg/ml葡萄糖标准溶液.分别吸取上述浓度系列的葡萄糖标准溶液各 2.00ml(做二个平行),分别加入到刻度试管中,再分别加入2ml水和5mlDNS试剂(3.7).电磁振荡3s,沸水浴加热5min.然后用自来水冷却到室温,再用水定容至25ml.以标准空白样为对照调零,在540nm处测定吸光度OD值.以葡萄糖浓度为Y轴,吸光度OD值为X轴,绘制标准曲线.每次新配制DNS试剂均需要重新绘制标准曲线.6 试样溶液的制备固体试样应粉碎或充分碾碎,然后过60目筛(孔径为0.25mm).称取试样两份,精确至0.001g.加入50ml乙酸—乙酸钠缓冲溶液(3.5).磁力搅拌30min,再用缓冲溶液(3.5)定容至100ml,在4℃条件下避光保存24h.摇匀,取出30-50ml,2000g离心3min.吸取5.00ml上清液,再用缓冲溶液(3.5)做二次稀释(稀释后的待测酶液中纤维素酶活力最好能控制在0.04—0.08 u/ml之间).液体试样可以直接用乙酸—乙酸钠缓冲溶液(3.5)进行稀释,定容(稀释后的酶液中纤维素酶活力最好能控制在0.04—0.08 u/ml之间).如果稀释后酶液的pH值偏离5.5,需要用乙酸溶液(3.2)或乙酸钠溶液(3.3)调节,校正至5.5,然后再用缓冲溶液(3.5)做适当定容.7 测定步骤吸取10.0ml羧甲基纤维素钠溶液(3.6),37℃平衡10min.吸取10.0ml经过适当稀释的酶液,37℃平衡10min.吸取2.00ml经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入5mlDNS试剂(3.7),电磁振荡3s.然后加入2.0ml羧甲基纤维素钠溶液(3.6),37℃保温30min,沸水浴加热5min.用自来水冷却至室温,加水定容至25ml,电磁振荡3s.以标准空白样为空白对照,在540nm处测定吸光度AB.吸取2.0ml经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入2.0ml羧甲基纤维素钠(3.6)(已经过37℃平衡),电磁振荡3s,37℃精确保温30min.加入5.0mlDNS试剂(3.7),电磁振荡3s,酶解反应.沸水浴加热5min,用自来水冷却至室温,加水定容至25ml,电磁振荡3s.以标准空白样为空白对照,在540nm处测定吸光度AE.8.试样酶活力的计算[(AE - AB)×K + CO]XD = × 1000 (1)M×t式(1)中:XD —试样稀释液中的纤维素酶活力,u/ml;AE —酶反应液的吸光度;AB —酶空白样的吸光度;K —标准曲线的斜率;CO —标准曲线的截距;M —葡萄糖的分子量(180.2);t —酶解反应时间,min;1000 —转化因子,1mmol = 1000 umol.XD值应在0.04—0.08 u/ml之间.如果不在这个范围内,应重新选择酶液的稀释度,再进行分析测定.X = XD•Df (2)式(2)中:X —试样纤维素酶的活力,u/g;Df —试样的总稀释倍数.酶活力的计算值保留三位有效数字.9 重复性同一样品两个平行测定值的相对误差不超过8.0%,二者的平均值为最终的酶活力测定值(保留三位有效数字)1.药品、试剂及仪器脂肪酶(Novezymes公司),0.0667mol/L的KH2PO4-Na2HPO4缓冲溶液(pH值为7.38;),脂肪酸显色剂(5%醋酸铜溶液,用吡啶调节pH=6.2),正己烷,油酸,橄榄油,盐酸,无水乙醇,分光光度计,pH计,水/油浴恒温磁力搅拌器,离心机,分析天平等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DISCLAIMERThese Standard Biomass Analytical Methods (“Methods”) are provided by the National Renewable Energy Laboratory (“NREL”), which is operated by the Midwest Research Institute (“MRI”) for the Department Of Energy.Access to and use of these Methods shall impose the following obligations on the user. The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute these Methods for any purpose whatsoever, except commercial sales, provided that this entire notice appears in all copies of the Methods. Further, the user agrees to credit NREL/MRI in any publications that result from the use of these Methods. The names NREL/MRI, however, may not be used in any advertising or publicity to endorse or promote any products or commercial entity unless specific written permission is obtained from NREL/MRI. The user also understands that NREL/MRI is not obligated to provide the user with any support, consulting, training or assistance of any kind with regard to the use of these Methods or to provide the user with any updates, revisions or new versions.THESE METHODS ARE PROVIDED BY NREL/MRI "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NREL/MRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THESE METHODS.Measurement of Cellulase ActivitiesLaboratory Analytical Procedure #0061.Introduction1.1The following method describes a procedure for measurement of cellulase activityusing International Union of Pure and Applied Chemistry (IUPAC) guidelines (1). Theprocedure has been designed to measure cellulase activity in terms of "filter-paperunits" (FPU) per milliliter of original (undiluted) enzyme solution. For quantitativeresults the enzyme preparations must be compared on the basis of significant and equalconversion. The value of 2.0 mg of reducing sugar as glucose from 50 mg of filterpaper (4% conversion) in 60 minutes has been designated as the intercept forcalculating filter paper cellulase units (FPU) by IUPAC.1.2It is extremely important to keep in mind that the FPU is defined only at this extent ofconversion. Reducing sugar yield is not a linear function of the quantity of enzyme inthe assay mixture; as discussed by Ghose (1987), twice the amount of enzyme wouldnot be expected to yield twice the reducing sugar in equal time. The assay proceduretherefore involves finding a dilution of the original enzyme stock such that a 0.5 mLaliquot of the dilution will catalyze 4% conversion in 60 minutes (or, in practical terms,finding two dilutions that bracket the 4%-conversion point so closely that the requireddilution can be obtained, with reasonable accuracy, by interpolation) and thencalculating the activity (in FPU/mL) of the original stock from the dilution required.Further comments on the required calculations, and their significance, are to be foundin the Appendix.1.3Assay mixtures may in some cases contain reducing sugars unrelated to hydrolysis ofsubstrate glycosidic bonds by the enzyme. Culture filtrates to be assayed for cellulasemay contain nutrient sugars, and the reducing ends of the cellulose polymers of thesubstrate may sometimes be measurable as glucose equivalents before any enzymeattack. For this reason, controls consisting of (a) enzyme without substrate and b)substrate without enzyme are included with all enzyme assays and sample values arecorrected for any blank values.2.Scope2.1This procedure is only appropriate for the determination of FPU activity in a cellulasepreparation as defined by the IUPAC procedure as outlined above.Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 1 of 93.References3.1Ghose, T.K. 1987. "Measurement of Cellulase Activities." Pure & Appl. Chem. 59:257-268.3.2Miller, G.L. 1959. "Use of Dinitrosalicylic Acid Reagent for Determination ofReducing Sugar." Anal. Chem. 31:426-428.4.Significance and Use4.1This procedure follows IUPAC guidelines and determines enzyme activity as filterpaper units in a cellulase preparation.5.Apparatus5.1Water bath capable of maintaining 50o C ± 0.1o C.5.2Spectrophotometer suitable for measuring absorbance at 540 nm.6.Reagents and Materials6.1DNS ReagentMix: Distilled water1416 mL3,5 Dinitrosalicylic acid 10.6 gSodium hydroxide 19.8 gDissolve above, then add:Rochelle salts (sodium potassium tartrate)306 gPhenol (melt at 50o C)7.6 mLSodium metabisulfite8.3 gTitrate 3 mL sample with 0.1 N HCl to the phenolphthalein endpoint. It should take5-6 mL of HCl. Add NaOH if required (2 g = 1 mL 0.1 N HCL).6.2Citrate Buffer: For Trichoderma reesei, cellulase assays are carried out in 0.05 Mcitrate buffer pH 4.8. For other cellulase enzymes, the pH and the assay temperaturemay be different. The assay conditions must be defined when reporting results.Citric acid monohydrate210 gDI water750 mLNaOH - add until pH equals 4.350 to 60 gProcedure #006Revision: 7/18/96Supersedes: 8/19/92Page 2 of 11Dilute to 1 L and check pH. If necessary add NaOH until the pH is 4.5.When the 1 M stock citrate buffer stock is diluted with water to 50 mMthe pH should be 4.8. After diluting the citrate buffer check and adjustthe pH if necessary to pH 4.8.7.ES&H Considerations and Hazards7.1Follow all applicable NREL Laboratory Specific Hygiene Plan guidelines.7.2Care must be taken when working with phenol, which is toxic and corrosive.8.Procedure for the Filter Paper Assay for Saccharifying Cellulase8.1The detection of glycosidic bond cleavage by this method involves the parallel andidentical treatment of three categories of experimental tubes (assay mixtures, blanksand controls, and glucose standards), prepared as detailed below. The substrate is a 50mg Whatman No. 1 filter paper strip (1.0 x 6.0 cm).8.2Enzyme assay tubes:8.2.1Place a rolled filter paper strip into each 13 x 100 test tube.8.2.2Add 1.0 mL 0.05 M Na-citrate, pH 4.8 to the tube; the buffer should saturatethe filter paper strip.8.2.3Equilibrate tubes with buffer and substrate to 50o C.8.2.4Add 0.5 mL enzyme diluted appropriately in citrate buffer. At least twodilutions must be made of each enzyme sample, with one dilution releasingslightly more than 2.0 mg of glucose (absolute amount) and one slightly lessthan 2.0 mg of glucose. Target 2.1 and 1.9 mg glucose, respectively, forthese two dilutions. Depending on the enzyme these targets may be hard toachieve and additional dilutions must be run.8.2.5Incubate at 50o C for exactly 60 min.8.2.6At the end of the incubation period, remove each assay tube from the 50o Cbath and stop the enzyme reaction by immediately adding 3.0 mL DNSreagent and mixing.Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 3 of 118.3Blank and controls:8.3.1Reagent blank: 1.5 mL citrate buffer.8.3.2Enzyme control: 1.0 mL citrate buffer + 0.5 mL enzyme dilution (prepare aseparate control for each dilution tested).8.3.3Substrate control: 1.5 mL citrate buffer + filter-paper strip.8.4Glucose standards:8.4.1 A working stock solution of anhydrous glucose (10 mg/mL) should be madeup. Aliquots of this working stock should be tightly sealed and stored frozen.The standard should be vortexed after thawing to ensure adequate mixing.8.4.2Dilutions are made from the working stock in the following manner:1.0 mL + 0.5 mL buffer = 1:1.5 = 6.7 mg/mL (3.35 mg/0.5 mL).1.0 mL + 1.0 mL buffer = 1:2 = 5 mg/mL (2.5 mg/0.5 mL).1.0 mL +2.0 mL buffer = 1:3 =3.3 mg/mL (1.65 mg/0.5 mL).1.0 mL + 4.0 mL buffer = 1:5 = 2 mg/mL (1.0 mg/0.5 mL).8.4.3 Glucose standard tubes should be prepared by adding 0.5 mL of each of theabove glucose dilutions to 1.0 mL of citrate buffer in a 13 x 100 mm testtube.8.4.4Blanks, controls and glucose standards should be incubated at 50o C alongwith the enzyme assay tubes, and then "stopped" at the end of 60 minutes byaddition of 3.0 mL of DNS reagent.8.5Color development (Miller, 1959):8.5.1Boil all tubes for exactly 5.0 minutes in a vigorously boiling water bathcontaining sufficient water to cover the portions of the tubes occupied by thereaction mixture plus reagent. All samples, controls, blanks, and glucosestandards should be boiled together. After boiling, transfer to a cold ice-water bath.Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 4 of 118.5.2Let the tubes sit until all the pulp has settled, or centrifuge briefly. Dilute alltubes (assays, blanks, standards and controls) in water (0.200 mL of color-developed reaction mixture plus 2.5 mL of water in a spectrophotometercuvette works well, use the pipettor to mix by drawing the mixture into thepipettor tip repeatedly). Determine color formation by measuring absorbanceagainst the reagent blank at 540 nm. With this dilution the glucose standardsdescribed above should give absorbance in the range of 0.1 to 1.0 A.9.Calculations9.1Construct a linear glucose standard curve using the absolute amounts of glucose(mg/0.5 mL) plotted against A540. The data for the standard curve should closely fit acalculated straight line, with the correlation coefficient for this straight line fit beingvery near to one. Verify the standard curve by running a calibration verificationstandard, an independently prepared solution of containing a known amount of glucosewhich falls about midpoint on the standard curve.9.2Using this standard curve determine the amount of glucose released for each sampletube after subtraction of enzyme blank.9.3Estimate the concentration of enzyme which would have released exactly 2.0 mg ofglucose by means of a plot of glucose liberated against the logarithm of enzymeconcentration (refer to the example in Appendix B, which uses semilogarithmic graphpaper). To find the required enzyme concentration take two data points that are veryclose to 2.0 mg and draw a straight line between them, use this line to interpolatebetween the two points to find the enzyme dilution that would produce exactly 2.0 mgglucose equivalents of reducing sugar. Appendix B presents an example.Note: In this plot, and in the equation below for calculating FPU, the term "enzymeconcentration" refers to the proportion of the original enzyme solution present in eachenzyme dilution (i.e., the number of mL of the original solution present in each mL ofthe dilution).9.4Calculate FPU:Where [enzyme] represents the proportion of original enzyme solution present in thedirectly tested enzyme dilution (that dilution of which 0.5 mL is added to the assaymixture). For the derivation of the FPU see Ghose (1987) and Appendix A. Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 5 of 119.5Refer to Appendix B for an example for calculating IUPAC-FPU.10.Precision and BiasProcedure #006Revision: 7/18/96Supersedes: 8/19/92Page 6 of 1110.1Precision can be measured only by the closeness of repeated measurements of the samequantity of enzyme. This procedure, if carefully followed, should give the sameapproximate numerical readings as obtained by other laboratories using the sameprocedure. Precision in filter paper assays may be affected by the inherent physicalproperties of cellulase preparations.11.Quality Control11.1Reported significant figures: Typically results are reported as whole integers alongwith the standard deviation. The assay conditions must be defined when reporting theresults.11.2Replicates: Run each dilution in triplicate.11.3Blank: As described in the section “Blank and controls”.11.4Relative percent difference criteria: Not defined; dependent on the enzyme beingtested.11.5Method verification standard: Not available since enzymes change over time.11.6Calibration verification standard: A calibration verification standard shall beindependently prepared and analyzed as described in the section “Calculations”.11.7Sample size: Dependant upon enzyme concentration.11.8Sample storage: Dependant upon source of enzyme. Manufacturer’s instructionsshould be followed.11.9Standard storage: Store frozen at -20o C or prepare fresh batch; shake vigorously priorto use.11.10Standard preparation: As described in the section “Glucose standards”.11.11Definition of a batch: Run all standards, blanks, and samples together in one batch.The size of the batch may be limited by instrument constraints and should not be largerthan what is practical to handle together.11.12Control charts: Not applicable.11.13Others: Not applicable.Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 7 of 1112.Appendix A: Numerical Values in Equation Used to Calculate Filter Paper ActivityThe practical bottom line is that if the assays are set up according to the instructions, and the calculations are carried out using the equation presented in the calculations section, the results obtained will correspond to the generally accepted activities in "filter paper units" that would be obtained by other laboratories around the world, were these other laboratories to test the same enzyme solution. For those workers interested in the derivation of this equation, and of the "filter paper unit", the following comments may be helpful in conjunction with Ghose (1987).The numerator (0.37) in the equation is derived from the factor for converting the 2.0 mg of "glucose-equivalents" generated in the assay to mmoles of glucose (2.0 ÷ 0.18016), from the volume of the enzyme being tested that is used in the assay (0.5 mL), and from the incubation time (60 minutes) required for generation of the reducing equivalents.Thus,Because the "enzyme concentration" in the denominator of the equation is a dimensionless number (equal to the ratio of the enzyme concentration in the 0.5 mL of enzyme dilution added to the assay to the enzyme concentration in the original solution, for which FPU values are desired), the right side of equation therefore winds up with units (mmol min-1mL-1) that look like "International Units per mL" (I.U./mL). Ghose himself points out, however, that "because the FPU assay is non-linear, the use of the International Unit per se is incorrect as this unit is based on initial velocities, i.e., linear reactions in which the product is produced at the same rate during each and every minute of the reaction." The author goes on to recommend that FPU values for a given cellulase solution be given simply as "units/mL"."Definition" of the "Filter Paper Unit":As a result of the above choice of numerical values, the "Filter Paper Unit" is not actually explicitly defined. What is defined is the quantity 0.1875 FPU, which is that quantity of enzyme activity that, when assayed according to the instructions contained herein, will produce reducing sugar equivalent to 2.0 mg of glucose. One can verify this from the equation presented in the calculations section by assuming that the enzyme solution being tested needs no dilution to yield reducing sugar equivalent to 2.0 mg of glucose (i.e., the "enzyme concentration" ratio in the denominator is equal to 1.0), in which case the activity of the solution being tested is measured as 0.37 filter paper units per mL. Inasmuch as 0.5 mL of this solution was used in the assay, the absolute quantity of enzyme activity that is present in the assay (and to which the observed effect can be ascribed) is 0.1875 FPU. Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 8 of 11Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 9 of 11To put it another way, we have a defined method for measuring the activity of a cellulase solution containing 0.1875 filter paper units per 0.5 mL assay aliquot (0.37 filter paper units per mL of enzyme solution) but we do not have method for measuring the filter paper activity of solutions with any other value. Solutions containing more than 0.37 "units" per mL must therefore be diluted to this standard value to be measured, and solutions containing less than 0.37 "units" per mL (reducing sugar produced in 60 minutes is less than that equivalent to 2.0 mg of glucose) cannot be assigned "filter paper unit” activities at all. These latter "sub-2.0-mg" solutions either must be concentrated before assay, or the activities should not be reported as "filter paper units" at all, but should be reported instead as "mmoles glucose equivalents released per minute averaged over 60 minutes."Ghose (1987) explains the special circumstances involved in measurement of "filter paper activity",and workers are urged to pay close attention to the text of the paper (especially the text surrounding the equations on page 263 of the reference) rather than just "lifting" the equations themselves.13.Appendix B: Example for calculating IUPAC-FPU13.1Determination of cellulase activity in a T. reesei enzyme preparation using the methods outlined by IUPAC. All enzyme dilutions were made in citrate buffer, pH 4.8, as indicated in the following table from a working enzyme stock solution that had been diluted 1:20 in citrate buffer.Dilution #Citrate buffer(ml)1:20 Enzyme (ml)Concentration *116503500.00875217003000.00750318002000.00500418501500.00375519001000.00250*The term "concentration" is used to represent the proportion of the original enzyme solution present in the dilution added to the assay mixture. For example a 1:10 dilution of the 1:20 working stock of enzyme will have a "concentration" of 0.005.Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 10 of 1113.2Dilution of glucose standards and construction of standard curve.Glucose stock(mL)Citrate buffer(mL)Dilution Concentration Abs. 540 nm1.00.51:1.5 3.35 mg/0.5 mL 0.7651.0 1.01:22.50 mg/0.5 mL 0.5791.0 2.01:3 1.65 mg/0.5 mL 0.3841.04.01:51.00 mg/0.5 mL0.22013.3Glucose concentration of samples as determined from standard curve.Dilution #Abs 540 nm Glucose (ml/0.5 mL)10.603 2.6320.567 2.4430.442 1.9340.346 1.5150.2481.08Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 11 of 1113.4Determination of the concentration of enzyme which would have released exactly 2.0mg of glucose by plotting glucose liberated against enzyme concentration.13.5Calculation of FPU from graph of dilution vs. glucose concentration.。

相关文档
最新文档