2015年普陀区数学中考二模试卷(含答案)

合集下载

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷答案与解析

2015 年上海市中考数学试卷答案与分析2015 年上海市中考数学试卷参照答案与试题分析一、选择题1.(4 分)(2015?上海)以下实数中,是有理数的为()A .B.C.πD.0考实数.点:分依占有理数能写成有限小数和无穷循环小析:数,而无理数只好写成无穷不循环小数进行判断即可.解解:是无理数,A不正确;答:是无理数,B不正确;π是无理数, C 不正确;0 是有理数, D 正确;应选: D.点本题主要考察了无理数和有理数的差别,解评:答本题的重点是要明确:有理数能写成有限小数和无穷循环小数,而无理数只好写成无穷不循环小数.2.(4 分)(2015?上海)当 a>0 时,以下对于幂的运算正确的选项是()A .a0=1B.a﹣1=﹣a C.(﹣a)D.a=2=﹣a2考负整数指数幂;有理数的乘方;分数指数点:幂;零指数幂.分分别利用零指数幂的性质以及负指数幂的析:性质和分数指数幂的性质分别剖析求出即可.解解: A 、a0=1(a>0),正确;答: B、a﹣1= ,故此选项错误;C、(﹣ a)2=a2,故此选项错误;D、a =(a>0),故此选项错误.应选: A.点本题主要考察了零指数幂的性质以及负指评:数幂的性质和分数指数幂的性质等知识,正确掌握有关性质是解题重点.3.(4 分)(2015?上海)以下 y 对于 x 的函数中,是正比率函数的为()3考正比率函数的定义.点:分依据正比率函数的定义来判断即可得出答析:案.解解:A、y 是 x 的二次函数,故 A 选项错误;答: B、y 是 x 的反比率函数,故B 选项错误;C、y 是 x 的正比率函数,故 C 选项正确;D、y是 x 的一次函数,故 D 选项错误;应选 C.点本题考察了正比率函数的定义:一般地,两评:个变量 x,y 之间的关系式能够表示成形如 y=kx (k 为常数,且 k ≠0)的函数,那么 y就叫做 x 的正比率函数.4.(4 分)(2015?上海)假如一个正多边形的中心角为 72°,那么这个多边形的边数是()A .4B.5C.6D.7考多边形内角与外角.点:分依据正多边形的中心角和为360°和正多边析:形的中心角相等,列式计算即可.解解:这个多边形的边数是360÷72=5,答:应选: B.点本题考察的是正多边形的中心角的有关计评:算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的重点.5.(4 分)(2015?上海)以下各统计量中,表示一组数据颠簸程度的量是()A .均匀数 B.众数C.方差D.频次考统计量的选择.点:分依据均匀数、众数、中位数反应一组数据的析:集中趋向,而方差、标准差反应一组数据的失散程度或颠簸大小进行选择.解解:能反应一组数据颠簸程度的是方差或标答:准差,应选 C.点本题考察了标准差的意义,颠簸越大,标准评:差越大,数据越不稳固,反之也建立.6.(4 分)(2015?上海)如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D,要使四边形 OACB 为菱形,还需要增添一个条件,这个条件能够是()A.A D= B.OD= C.∠CAD= ∠ D.∠OCA= ∠BD CD CBD OCB考菱形的判断;垂径定理.点:分利用对角线相互垂直且相互均分的四边形析:是菱形,从而求出即可.解解:∵在⊙ O 中,AB 是弦,半径 OC⊥AB ,答:∴AD=DB ,当 DO=CD ,则 AD=BD ,DO=CD ,AB ⊥CO,故四边形 OACB 为菱形.应选: B.点本题主要考察了菱形的判断以及垂径定评:理,娴熟掌握菱形的判断方法是解题重点.二、填空题7.(4 分)(2015?上海)计算: |﹣2|+2= 4.考有理数的加法;绝对值.点:分先计算 |﹣2|,再加上 2 即可.析:解解:原式 =2+2答: =4.故答案为 4.点本题考察了有理数的加法,以及绝对值的求评:法,负数的绝对值等于它的相反数.8.(4 分)(2015?上海)方程=2 的解是x=2.考无理方程.点:分第一依据乘方法消去方程中的根号,而后根析:据一元一次方程的求解方法,求出 x 的值是多少,最后验根,求出方程=2 的解是多少即可.解解:∵=2,答:∴3x﹣2=4,∴x=2,当 x=2 时,左侧=,右侧 =2,∵左侧 =右侧,∴方程=2 的解是: x=2.故答案为: x=2.点本题主要考察了无理方程的求解,要娴熟掌评:握,解答本题的重点是要明确:(1)解无理方程的基本思想是把无理方程转变为有理方程来解,在变形时要注意依据方程的结构特色选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设协助元素法,利用比率性质法等.(2)注意:用乘方法(马上方程两边各自乘同次方来消去方程中的根号)来解无理方程,常常会产生增根,应注意验根.9.(4 分)(2015?上海)假如分式存心义,那么 x 的取值范围是 x≠﹣ 3 .考分式存心义的条件.点:分依据分式存心义的条件是分母不为0,列出析:算式,计算获得答案.解解:由题意得, x+3≠0,答:即 x≠﹣ 3,故答案为: x≠﹣ 3.点本题考察的是分式存心义的条件,从以下三评:个方面透辟理解分式的观点:(1)分式无心义? 分母为零;(2)分式存心义 ? 分母不为零;(3)分式值为零 ? 分子为零且分母不为零.10.(4 分)(2015?上海)假如对于 x 的一元二次方程 x2+4x﹣m=0 没有实数根,那么 m 的取值范围是 m<﹣ 4 .考根的鉴别式.点:分依据对于x 的一元二次方程x2+4x﹣m=0 没析:有实数根,得出△ =16﹣4(﹣ m)< 0,从而求出 m 的取值范围.解解:∵一元二次方程x2+4x﹣m=0 没有实数答:根,∴△ =16﹣4(﹣ m)< 0,∴m<﹣ 4,故答案为 m<﹣ 4.点本题考察了一元二次方程ax2+bx+c=0评:(a≠0)的根的鉴别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△< 0,方程没有实数根.11.(4 分)(2015?上海)同一温度的华氏度数y (℉)与摄氏度数x(℃)之间的函数关系是y= x+32,假如某一温度的摄氏度数是25℃,那么它的华氏度数是77℉.考函数值.点:分把 x 的值代入函数关系式计算求出y 值即析:可.解解:当 x=25°时,答: y= ×25+32=77,故答案为: 77.点本题考察的是求函数值,理解函数值的观评论:并正确代入正确计算是解题的重点.12.( 4 分)(2015?上海)假如将抛物线y=x 2+2x ﹣1 向上平移,使它经过点 A(0,3),那么所得新抛物线的表达式是 y=x 2+2x+3 .考二次函数图象与几何变换.点:分设平移后的抛物线分析式为 y=x2+2x﹣析:1+b,把点 A 的坐标代入进行求值即可获得b的值.解解:设平移后的抛物线分析式为y=x2+2x﹣答:1+b,把 A(0, 3)代入,得3=﹣1+b,解得 b=4,则该函数分析式为y=x2 +2x+3.故答案是: y=x2+2x+3.点主要考察了函数图象的平移,要求娴熟掌握评:平移的规律:左加右减,上加下减.并用规律求函数分析式.会利用方程求抛物线与坐标轴的交点.13.(4 分)(2015?上海)某校学生会倡导双休日到养老院参加服务活动,初次活动需要 7 位同学参加,现有包含小杰在内的 50 位同学报名,所以学生会将从这 50 位同学中随机抽取 7 位,小杰被抽到参加初次活动的概率是.考概率公式.点:分由某校学生会倡导双休日到养老院参加服析:务活动,初次活动需要7 位同学参加,现有包含小杰在内的 50 位同学报名,直接利用概率公式求解即可求得答案.解解:∵学生会将从这50 位同学中随机抽取答:7 位,∴小杰被抽到参加初次活动的概率是:.故答案为:.点本题考察了概率公式的应用.用到的知识评论:为:概率 =所讨状况数与总状况数之比.14.(4 分)(2015?上海)已知某校学生“科技创新社团”成员的年纪与人数状况以下表所示:年纪 11 12 13 14 15(岁)人数5516 1512那么“科技创新社团”成员年纪的中位数是14岁.考中位数.点:分一共有 53 个数据,依据中位数的定义,把析:它们按从小到大的次序摆列,第 27 名成员的年纪就是这个小构成员年纪的中位数.解解:从小到大摆列此数据,第27 名成员的答:年纪是 14 岁,所以这个小构成员年纪的中位数是14.故答案为 14.点本题属于基础题,考察了确立一组数据的中评:位数的能力.注意找中位数的时候必定要先排好次序,而后再依据奇数和偶数个来确立中位数,假如数占有奇数个,则正中间的数字即为所求,假如是偶数个则找中间两位数的均匀数.15.(4 分)(2015?上海)如图,已知在△ ABC 中, D、E 分别是边 AB 、边 AC 的中点, = ,= ,那么向量用向量,表示为﹣.考 * 平面向量.点:分由 = , = ,利用三角形法例求解即可求析:得,又由在△ ABC 中,D、E 分别是边 AB、边 AC 的中点,可得 DE 是△ ABC 的中位线,而后利用三角形中位线的性质求解即可求得答案.解解:∵ =, =,答:∴=﹣=﹣,∵在△ ABC 中,D、E 分别是边 AB、边 AC的中点,∴= =(﹣)= ﹣.故答案为:﹣.点本题考察了平面向量的知识以及三角形中评:位线的性质.注意掌握三角形法例的应用.16.(4 分)(2015?上海)已知 E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E作AC 的垂线,交边CD 于点F,那么∠FAD= 22.5 度.考正方形的性质;全等三角形的判断与性质.点:分依据正方形的性质可得∠DAC=45 °,再由析:AD=AE 易证△ADF ≌△AEF,求出∠FAD.解解:如图,答:在 Rt △AEF 和 Rt△ADF 中,∴R t △AEF ≌Rt △ADF ,∴∠ DAF= ∠EAF ,∵四边形 ABCD 为正方形,∴∠ CAD=45 °,∴∠ FAD=22.5°.故答案为: 22.5.点本题考察了正方形的性质,全等三角形的判评:定与性质,求证 Rt △AEF ≌Rt △ADF 是解本题的重点.17.(4 分)(2015?上海)在矩形ABCD 中,AB=5,BC=12,点 A 在⊙ B 上,假如⊙ D 与⊙ B 订交,且点B 在⊙ D 内,那么⊙ D 的半径长能够等于14(答案不独一).(只要写出一个切合要求的数)考圆与圆的地点关系;点与圆的地点关系.点:专开放型.题:分第一求得矩形的对角线的长,而后依据点A析:在⊙B 上获得⊙ B 的半径为 5,再依据⊙ D 与⊙ B 订交,获得⊙ D 的半径 R 知足 8<R<18,在此范围内找到一个值即可.解解:∵矩形 ABCD 中, AB=5 ,BC=12,答:∴AC=BD=13 ,∵点 A 在⊙B 上,∴⊙ B 的半径为 5,∵假如⊙ D 与⊙ B 订交,∴⊙ D 的半径 R 知足 8<R<18,∵点 B 在⊙D 内,∴R>13,∴13<R<18,∴14 切合要求,故答案为: 14(答案不独一).点本题考察了圆与圆的地点关系、点与圆的位评:置关系,解题的重点是第一确立⊙ B 的半径,而后确立⊙ D 的半径的取值范围,难度不大.18.(4 分)(2015?上海)已知在△ ABC 中,AB=AC=8 ,∠ BAC=30 °,将△ ABC 绕点 A 旋转,使点 B 落在原△ ABC 的点 C 处,此时点 C落在点 D 处,延伸线段 AD ,交原△ ABC 的边BC 的延伸线于点 E,那么线段 DE 的长等于4﹣4.考解直角三角形;等腰三角形的性质.点:专计算题.题:分作 CH ⊥AE 于 H ,依据等腰三角形的性质析:和三角形内角和定理可计算出∠ ACB=(180°﹣∠ BAC )=75°,再依据旋转的性质得 AD=AB=8 ,∠CAD= ∠BAC=30 °,则利用三角形外角性质可计算出∠E=45°,接着在 Rt△ACH 中利用含 30 度的直角三角形三边的关系得 CH= AC=4 ,AH= CH=4,所以DH=AD﹣AH=8﹣4,而后在Rt △CEH 中利用∠E=45°获得 EH=CH=4 ,于是可得 DE=EH ﹣DH=4﹣4.解解:作 CH ⊥AE 于 H,如图,答:∵AB=AC=8 ,∴∠ B=∠ACB= (180°﹣∠ BAC )=(180°﹣ 30°) =75°,∵△ ABC 绕点 A 旋转,使点 B 落在原△ABC 的点 C 处,此时点 C 落在点 D 处,∴A D=AB=8 ,∠CAD= ∠BAC=30 °,∵∠ ACB= ∠CAD+ ∠E,∴∠ E=75°﹣ 30° =45°,在 Rt △ACH 中,∵∠ CAH=30 °,∴CH= AC=4 ,AH= CH=4 ,∴DH=AD ﹣AH=8 ﹣4 ,在 Rt △CEH 中,∵∠ E=45°,∴EH=CH=4 ,∴DE=EH ﹣DH=4 ﹣( 8﹣4 )=4 ﹣4.故答案为 4 ﹣4.点本题考察认识直角三角形:在直角三角形评:中,由已知元素求未知元素的过程就是解直角三角形.也考察了等腰三角形的性质和旋转的性质.三、解答题19.(10 分)(2015?上海)先化简,再求值:÷﹣,此中x=﹣1.考分式的化简求值.点:分先依据分式混淆运算的法例把原式进行化析:简,再把 x 的值代入进行计算即可.解解:原式=? ﹣答:=﹣=,当 x= ﹣1 时,原式 == ﹣1.点本题考察的是分式的化简求值,熟知分式混评:合运算的法例是解答本题的重点.20.(10 分)(2015?上海)解不等式组:,并把解集在数轴上表示出来.考解一元一次不等式组;在数轴上表示不等式点:的解集.分先求出每个不等式的解集,再依据找不等式析:组解集的规律找出不等式组的解集即可.解解:答:∵解不等式①得: x>﹣ 3,解不等式②得: x≤2,∴不等式组的解集为﹣ 3<x≤2,在数轴上表示不等式组的解集为:.点本题考察认识一元一次不等式组,在数轴上评:表示不等式组的解集的应用,解本题的重点是能依据不等式的解集求出不等式组的解集,难度适中.21.(10 分)(2015?上海)已知:如图,在平面直角坐标系 xOy 中,正比率函数 y= x 的图象经过点 A ,点 A 的纵坐标为 4,反比率函数 y= 的图象也经过点 A,第一象限内的点 B 在这个反比率函数的图象上,过点 B 作 BC∥x 轴,交 y 轴于点C,且 AC=AB .求:(1)这个反比率函数的分析式;(2)直线 AB 的表达式.考反比率函数与一次函数的交点问题.点:分(1)依据正比率函数 y= x 的图象经过点析:A,点 A 的纵坐标为 4,求出点 A 的坐标,依据反比率函数y= 的图象经过点 A ,求出m的值;(2)依据点A 的坐标和等腰三角形的性质求出点 B 的坐标,运用待定系数法求出直线AB 的表达式.解解:∵正比率函数 y= x 的图象经过点 A,答:点 A 的纵坐标为 4,∴点 A 的坐标为( 3,4),∵反比率函数 y= 的图象经过点 A ,∴m=12,∴反比率函数的分析式为:y=;(2)如图,连结 AC 、AB ,作 AD ⊥BC 于D,∵A C=AB ,AD ⊥BC,∴B C=2CD=6 ,∴点 B 的坐标为:(6,2),设直线 AB 的表达式为: y=kx+b ,由题意得,,解得,,∴直线 AB 的表达式为: y=﹣ x+6.点本题主要考察了待定系数法求反比率函数评:与一次函数的分析式和一次函数与反比率函数的解得的求法,注意数形联合的思想在解题中的应用.22.(10 分)(2015?上海)如图, MN 表示一段笔挺的高架道路,线段 AB 表示高架道路旁的一排居民楼,已知点 A 到 MN 的距离为 15 米,BA 的延伸线与 MN 订交于点 D,且∠ BDN=30 °,假定汽车在高速道路上行驶时,四周 39 米之内会遇到噪音( XRS )的影响.(1)过点 A 作 MN 的垂线,垂足为点 H,假如汽车沿着从 M 到 N 的方向在 MN 上行驶,当汽车抵达点 P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点 H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点 Q 时,它与这一排居民楼的距离 QC 为 39 米,那么对于这一排居民楼,高架道路旁安装的隔音板起码需要多少米长?(精准到 1 米)(参照数据:≈1.7)考解直角三角形的应用;勾股定理的应用.点:分(1)连结 PA.在直角△ PAH 中利用勾股析:定理来求 PH 的长度;(2)由题意知,隔音板的长度是PQ 的长度.经过解 Rt △ADH 、Rt △CDQ 分别求得DH 、DQ 的长度,而后联合图形获得:PQ=PH+DQ ﹣ DH,把有关线段的长度代入求值即可.解解:(1)如图,连结 PA.由题意知,AP=39m.答:在直角△ APH 中, PH== =36 (米);(2)由题意知,隔音板的长度是 PQ 的长度.在 Rt △ADH 中, DH=AH ?cot30°=15(米).在 Rt △CDQ 中, DQ===78(米).则 PQ=PH+HQ=PH+DQ ﹣DH=36+78 ﹣15≈114﹣15×1.7=88.5≈89(米).答:高架道路旁安装的隔音板起码需要 89米.25点本题考察认识直角三角形的应用、勾股定理评:的应用.依据题目已知特色采用适合锐角三角函数或边角关系去解直角三角形,获得数学识题的答案,再转变获得实质问题的答案.23.(12 分)(2015?上海)已知,如图,平行四边形 ABCD 的对角线订交于点 O,点 E 在边BC 的延伸线上,且 OE=OB ,连结 DE.(1)求证: DE ⊥BE;(2)假如 OE⊥CD,求证: BD?CE=CD ?DE .考相像三角形的判断与性质;等腰三角形的性点:质;平行四边形的性质.专证明题.题:分(1)由平行四边形的性质获得 BO= BD,析:由等量代换推出 OE= BD,依据平行四边形的判断即可获得结论;26(2)依据等角的余角相等,获得∠CEO= ∠CDE,推出△ BDE ∽△ CDE,即可获得结论.解证明:(1)∵四边形 ABCD 是平行四边形,答:∴BO= BD,∵OE=OB ,∴OE= BD,∴∠ BED=90 °,∴DE⊥BE;(2)∵ OE⊥CD∴∠ CEO+ ∠DCE= ∠CDE+ ∠DCE=90 °,∴∠ CEO= ∠CDE ,∵OB=OE ,∴∠ DBE= ∠CDE ,∵∠ BED= ∠BED ,∴△ BDE ∽△ CDE ,∴,∴BD?CE=CD ?DE.点本题考察了相像三角形的判断和性质,直角评:三角形的判断和性质,平行四边形的性质,熟记定理是解题的重点.24.(12 分)(2015?上海)已知在平面直角坐标系 xOy 中(如图),抛物线 y=ax2﹣4 与 x 轴的负半轴( XRS)订交于点 A,与 y 轴订交于点 B,AB=2 ,点 P 在抛物线上,线段 AP 与 y 轴的正半轴交于点 C,线段 BP 与 x 轴订交于点 D,设点 P 的横坐标为 m.(1)求这条抛物线的分析式;(2)用含 m 的代数式表示线段 CO 的长;(3)当 tan∠ODC= 时,求∠ PAD 的正弦值.考二次函数综合题.点:分(1)依据已知条件先求出 OB 的长,再根析:据勾股定理得出 OA=2 ,求出点 A 的坐标,再把点 A 的坐标代入 y=ax2﹣4,求出 a 的值,从而求出分析式;(2)依据点P 的横坐标得出点P 的坐标,过点P 作PE⊥x 轴于点E,得出OE=m ,PE=m 2﹣4,从而求出 AE=2+m ,再依据=,求出 OC;(3)依据 tan ∠ODC= ,得出 = ,求出OD 和 OC ,再依据△ ODB ∽△ EDP,得出=,求出 OC,求出∠ PAD=45°,从而求出∠ PAD 的正弦值.解解:(1)∵抛物线 y=ax2﹣4 与 y 轴订交于答:点 B,∴点 B 的坐标是( 0,﹣ 4),∴O B=4 ,∵A B=2 ,∴OA==2,∴点 A 的坐标为(﹣ 2,0),把(﹣ 2,0)代入 y=ax2﹣4 得: 0=4a﹣4,解得: a=1,则抛物线的分析式是:y=x2﹣4;(2)∵点 P 的横坐标为 m,∴点P 的坐标为( m,m2﹣4),过点 P 作 PE⊥x 轴于点 E,∴OE=m ,PE=m 2﹣4,∴A E=2+m ,∵ = ,∴= ,∴CO=2m ﹣4;(3)∵ tan ∠ODC= ,∴ = ,∴OD= OC= ×( 2m﹣4)=,∵△ ODB ∽△ EDP ,∴= ,∴=,∴m1=﹣1(舍去),m2=3,∴O C=2×3﹣4=2,∵OA=2 ,∴O A=OC ,∴∠ PAD=45°,∴sin∠PAD=sin45°=.点本题考察了二次函数的综合,用到的知识评论:是相像三角形的判断与性质、勾股定理、特殊角的三角函数值,重点是依据题意作出协助线,结构相像三角形.25.(14 分)(2015?上海)已知,如图, AB 是半圆 O 的直径,弦 CD ∥AB ,动点 P,Q 分别在线段OC ,CD 上,且DQ=OP ,AP 的延伸线与射线 OQ 订交于点 E,与弦 CD 订交于点 F(点 F 与点 C,D 不重合),AB=20 ,cos∠AOC= ,设 OP=x ,△ CPF 的面积为y.(1)求证: AP=OQ ;(2)求 y 对于 x 的函数关系式,并写出它的定义域;(3)当△ OPE 是直角三角形时,求线段 OP 的长.考圆的综合题.点:分(1)连结 OD,证得△ AOP ≌△ ODQ 后即析:可证得 AP=OQ ;(2)作 PH⊥OA ,依据 cos∠AOC= 获得OH= PO= x,从而获得 S△AOP = AO ?PH=3x ,利用△ PFC ∽△ PAO 适合对应边的比相等即可获得函数分析式;(3)分当∠ POE=90°时、当∠ OPE=90°时、当∠ OEP=90°时三种状况议论即可获得正确的结论.解解:(1)连结 OD ,答:在△ AOP 和△ ODQ 中,,∴△ AOP ≌△ ODQ ,∴AP=OQ ;(2)作 PH⊥OA ,∵cos∠AOC= ,∴OH= PO= x,∴S△AOP = AO ?PH=3x ,又∵△ PFC ∽△ PAO,∴==()2,整理得: y=(<x<10);(3)当∠ POE=90°时, CQ== ,PO=DQ=CD ﹣CQ= (舍);当∠OPE=90°时,PO=AO ?cos∠COA=8 ;当∠ OEP=90°时,∠AOQ= ∠DQO= ∠APO ,∴∠ AOC= ∠AEO ,即∠ OEP= ∠COA ,此种状况不存在,∴线段 OP 的长为 8.点本题考察了圆的综合知识、相像三角形的判评:定及性质等知识,综合性较强,难度较大,特别是第三题的分类议论更是本题的难点.。

2015年上海中考各区二模数学试题及答案汇总

2015年上海中考各区二模数学试题及答案汇总
2 2 2 2
BC OC = ∴ OC ,∴ OD
2 2
x r 2 − x2
2
=
r 2 − x2 r
2
,…………………(1 分)
∴ xr = r − x , x + rx − r − 0 , 5 ∵ r ≠ 0 , ( rx ) + rx − 1 ≠ 0 , rx = − 1 ± (负值舍去) ,………………………(1 分) 2 BC x 5 −1 ∴sin∠ODC=sin∠COB = OB .……………(1 分) = = r 2
2 2 2 2
年长宁区初三数学教学质量检测试卷 长宁区初三数学教学质量检测试卷参考答案 初三数学教学质量检测试卷参考答案
2
x
2
2
2
∆ADE
2
∆ADE
1
2
D
E
H
F
C
P
G R
O
A
Q
B
初三数学基础考试卷—3—
2015
年上海各区县中考二模试题及答案
∴DE=CF. (1 分) (2)据题意,设 DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4). (1 分) ∵矩形 ABCD ∴∠A=∠B=90° 若△PAQ 与△QBR 相似,则有 AP AQ 10 - t 3t 14 ① QB = (2 分) = t= BR 12 - 3t 1.5t 5
25
D P E F C
O R
A
Q
B
第 25 题图
初三数学基础考试卷—2—
2015
年上海各区县中考二模试题及答案
2015 18. 1
或 11 . 6 24.(本题满分 12 分) 解:(1) y = x − 2tx + t − 2 = (x - t ) - 2 ∴A(t,-2)(2 分) y ∵点 C 的横坐标为 1,且是线段 AB 的中点 ∴t =2 (1 分) ∴ y = (x - 2 ) - 2 D ∴P(1,-1).(1 分) O (2)据题意,设 C(x,-2)(0< x < t),P(x, ( x − t ) − 2 )E P B C A AC= t-x,PC= ( x − t ) (1 分) 第 24 题图 ∵AC=PC ∴t-x = ( x − t ) ∵x < t ∴ t - x=1 即 x = t - 1 ∴AC=PC=1 (2 分) AC ∵DC//y 轴 ∴ PC ∴EB= t ∴OE=2-t = EB AB 1 1 3 ∴S = 1 (OE + DP) × OD = (3 − t )(t − 1) = − t + 2t − (1< t <2). (2 分) 2 2 2 2 1 1 1 (3) S = 2 DP × AB = 2 ×1× t = 2 t (1 分) 1 3 ∵ S = 2S ∴ 1 t = 2( − t + 2t − ) 2 2 2 3 解得 t = 3 , t = 2 (不合题意)∴ t = .(2 分) 2 2 25.(本题满分 14 分) (1)证:作 OH⊥DC 于点 H,设⊙O 与 BC 边切于点 G,联结 OG. (1 分) ∴∠OHC=90° ∵⊙O 与 BC 边切于点 G ∴OG=6,OG⊥BC ∴∠OGC=90° ∵矩形 ABCD ∴∠C=90° ∴四边形 OGCH 是矩形 ∴CH=OG ∵OG=6 ∴CH=6 (1 分) ∵矩形 ABCD ∴AB=CD 第 25 题图(1) ∵AB=12 ∴CD=12 ∴DH=CD﹣CH=6 ∴DH= CH ∴O 是圆心且 OH⊥DC ∴EH=FH (2 分)

初中数学上海市普陀区中考模拟数学二模考试题考试卷及答案.docx

初中数学上海市普陀区中考模拟数学二模考试题考试卷及答案.docx

xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图11-1,已知梯形ABCD中,AD∥BC,∠D=90°,BC=5,CD=3,cotB=1,P是边BC上的一个动点(不与点B、点C重合),过点P作射线PE,使射线PE交射线BA于点E,∠BPE=∠CPD。

(1)如图11-2,当点E与点A重合时,求∠DPC的正切值;(2)当点E落在线段AB上时,设BP=,BE=,试求与之间的函数解析式,并写出的取值范围;(3)设以BE长为半径的和以AD长为直径的相切,求BP的长。

试题2:如图10,在平面直角坐标系中,二次函数的图像经过点,,,点D是点C关于原点的对称点,联结BD,点E是轴上的一个动点,设点E的坐标为,过点E作轴的垂线交抛物线于点P。

(1)求这个二次函数解析式;(2)当点E在线段OB上运动时,直线交BD于点Q,当四边形CDQP是平行四边形时,求的值;评卷人得分(3)是否存在点P,使△BDP是不以BD为斜边的直角三角形,如果存在,请直接写出点P的坐标;如果不存在,请说明理由。

试题3:如图9,在△ABC中,点D、E分别在边BC、AC上,BE、AD相交于点G,EF∥AD交BC于点F,且,联结FG。

(1)求证:FG∥CE;(2)设∠BAD=∠C,求证:四边形AGFE是菱形。

试题4:本市为了给市容营造温馨和谐的夜间景观,准备在一条宽7.4米的道路上空利用轻轨桥墩,安装呈大中小三个同心圆的景观灯带,如图8,已知EF表示路面宽度,轻轨桥墩上设有两处限高标志,分别表示等腰梯形的下底边到路面的距离为2.9米和等腰梯形的上底边到路面的距离为3.8米,大圆直径等于AD,三圆半径的比等于1:2:3.试求这三个圆形灯带的总长为多少米?(结果保留π)(参考数据:)试题5:已知,如图7,在平面直角坐标系中,直线与轴交于点A,在第一象限内与反比例函数图像交于点B,BC垂直于轴,垂足为点C,且OC=2OA。

(完整)2015年上海各区二模18题汇总,推荐文档

(完整)2015年上海各区二模18题汇总,推荐文档

黄埔18. 如图4-1,点P是以r为半径的圆O外一点,点在线段OP上,若满足,则称点是点P关于圆O的反演点.如图4-2,在Rt△AB O中,,AB=2,BO=4,圆O的半径为2,如果点、分别是点A、B关于圆O的反演点,那么的长是▲.奉贤18.如图,已知钝角三角形ABC,∠A=35°,OC为边AB上的中线,将△AOC绕着点O顺时针旋转,点C落在BC边上的点处,点A落在点处,联结,如果点A、C、在同一直线上,那么∠的度数为▲;虹口徐汇18.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是上一点.将扇形AOB沿EF对折,使得折叠后的圆弧恰好与半径OB相切于点G,若OE=5,则O到折痕EF的距离为▲ .静安、青浦区18.如图,⊙O1的半径为1,⊙O2的半径为2,O1O2=5,⊙O分别与⊙O1外切、与⊙O2内切,那么⊙O半径的取值范围是▲ .宝山嘉定18.在矩形中,,点在边上,联结,△沿直线翻折后点落到点,过点作,垂足为点,如图5,如果,那么▲.18.如图,在△ABC中,AB=AC=5cm,BC=6cm,BD平分∠ABC,BD交AC于点D.如果将△ABD沿BD翻折,点A落在点A′处,那么△D A′C的面积为_______________cm2.长宁18.如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,且juxingABCD4BC=6,△ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM 是等腰三角形时,BE= ▲ .18.如图,在中,,,点是的中点,将沿着直线EF折叠,使点与点重合,折痕交于点,交于点,那么的值为▲.闵行18.如图,已知在Rt△ABC中,∠C = 90º,AC = BC = 1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,联结AC′,直线AC′与边CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF =▲ .浦东新区18.如图,已知在Rt△ABC中,D是斜边AB的中点,AC=4,BC=2,将△ACD沿直线CD折叠,点A落在点E处,联结AE,那么线段AE的长度等于▲.普陀区18.如图6,在矩形纸片中,<.点、分别在边、上,沿直线将四边形翻折,点恰好与点重合.如果此时在原图中△与△的面积比是1︰3,那么的值等于▲.杨浦18.如图,钝角△ABC中,tan∠BA C=,BC=4,将三角形绕着点A旋转,点C落在直线AB上的点C,处,点B落在点B,处,若C、B、B,恰好在一直线上,则A B的长为▲ .闸北18.在矩形中,,,把矩形沿直线翻折,点落在边上的点处,若,那么的长等于▲。

2015年区二模数学答案

2015年区二模数学答案

3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=

普陀区2015年初三二模语文试题2015年普陀区数学二模

普陀区2015年初三二模语文试题2015年普陀区数学二模

《普陀区2015年初三二模语文试题|2015年普陀区数学二模》摘要:普陀区05年初三二模语试题(满分50分考试00分钟)考生、试卷共7题,、言(39分)()默写(5分)、草枯鹰眼疾,⑵引烛观()、用现代汉语翻译画线句普陀区05年初三二模语试题(满分50分考试00分钟)考生、试卷共7题、请将所有答案做答题纸指定位置上做试卷上律不计分、言(39分)()默写(5分)、草枯鹰眼疾《观猎》、西北望射天狼《江城子》3、吾视其辙乱《曹刿论战》、并怡然乐《桃花记》5、衣带渐宽终不悔《蝶恋花》(二)下面古诗完成67题(分)望岳杜甫[岱宗夫如何?齐鲁青了造化钟神秀阴阳割昏晓荡胸生层云眦入归鸟会当凌绝顶览众山6、诗岱宗思是___________________________(分)7、三眦词夸张地表现了_____________________________(分)(三)下面两选完成89题(8分)【甲】潭鱼可许头皆若空游无所依日光下澈影布石上佁然不动;俶尔远逝往翕忽似与游者相乐【乙】庭下如积水空明水藻荇交横盖竹柏影也8、甲作者是柳宗元乙作者是宋朝(人名)他们与另六位散代表作合称_____________________(分)9、甲以潭鱼□□□从侧面表现了潭水清澈;乙提到积水空明用以表现_________________从而衬托出作者___________________心情(6分)(四)下完成03题(分)浴肆避鬼杭八桥相传多邪秽①人宵②行无灯而微雨闻有屐声顾见头身长二尺许伫立观头亦随立及行头亦行及趋头亦趋其人恐亟驰③至浴肆排闼④直入;及掩门头亦随入人几落胆矣引烛观乃儿也盖以斗障雨亦惧鬼故紧随耳是亦错者也向使二人各散不白则以真鬼矣今见鬼者可卒⑤惧也哉?【释】①邪秽指鬼怪②宵夜③亟驰快跑④排闼用力推门⑤卒猝仓促急速0、释下列句加词(分)⑴顾见头()⑵引烛观()、用现代汉语翻译画线句(分)今见鬼者可卒⑤惧也哉?、其人恐原因概括地说就是他以身有头鬼□□3、这则故事告诉我们道理是_____________(3分)、做事要心谨慎B、不要害怕有鬼、凡事要细心观察、不能轻信传言二、现代(0分)()下完成8题(0分)①975年日次利用海域建设长崎机场并投入运营以世界各国已先建成了十多海上机场②由世界航空运输业发展迅猛新机场建设方兴艾致使土地匮乏和环境污染等矛盾日益突出而海上机场则有着独特优势③机场占地面积对建设用地要高但土地属不可再生所以建设机场与土地供给矛盾日益突出由我国城市化水平迅速提高很多现有机场已被城市重重包围导致机场无法扩建机场交通受到影响利用填海建设机场不占用城市建设用地和耕地既可以城市航运又城市建设节约空④机场对周边环境影响是很主要是噪声污染和废气污染我国规定机场周边居民区、教区等类区域噪声限值标准是70分贝般生活区限值是7 5分贝如超这指标机场就要面临巨额赔偿有些机场由噪音太不得不减少飞机起落架次如海上建机场则远离居民区就基不存噪音扰民、废气污染等问题⑤现代城市发展迅速原先建郊区机场很快被高楼包围对飞机起降造成很影响由城市热岛效应而造成气污染和空气质量下降使飞行起降能见降低;而且城市机场被各种电磁信覆盖些特定无线电通信频率容易干扰飞机起降成飞行安全隐患建设海上机场则完全没有这些担忧⑥⑦海上机场般工程量相当浩要量土石方填海而形成建设用地耽地面沉降仍对建设工程形成挑战如日关西国际机场填海造地填土厚达到33米但由阪湾海底地质条件不佳有很厚淤泥机场从建设日起就直不停沉降母亲机场躲人工岛已下陷了十多厘米从机场营业初营运单位就不得不花费7000亿日元(约合5亿美元)用维护⑧另外填海会改变当地然海岸线造成近岸海域和浅滩缩海洋环境发生改变容易导致沿岸栖息生物生态环境发生变化造成不可逆严重生态影响由以上种种面因素制约各国规划建设海上机场还是极其谨慎、对方兴艾艾理正确项是(分)、多年生草植物 B、止绝、美、忧心5、海上机场具有哪些独特优势?(9分)⑴ □□□□⑵□□□□ ⑶□□□□6、请⑥段横线上填补恰当渡句(3分)7、⑦段举日关西机场例子对其作用分析恰当项是(3分)、说明关西国际机场造价和维护费用极昂贵B、说明建造海上机场工程量极浩、说明要量土石方填海才能形成建设用地、说明地面沉降是建设令人头疼问题8、根据下列理错误项是(3分)、城市建设用地有限是很多机场无法扩建主要原因B、海上机场不存噪音扰民、废气污染等问题、机场周围些特定无线电通信频率容易干扰飞机起降、海上机场建设工程易对生态环境造成影响(二)下完成93题(0分)醉了柒校长有些醉了柒校长这么放开肚子喝酒还是次不会儿酒瓶见了底陈老师摇摇晃晃地走了明天他就南下广东堂弟工厂出任副理是不会难和失落李老师也摇摇晃晃地走了他因教龄长年纪拿了笔数额可观补偿金可以提早城里儿子安晚年也不会难、失落3难、失落只有柒校长其实柒校长压根也不必难和失落他将到另学校担任校长那学校靠近他平原他再也不用每周翻山越岭往返和这坐落深山老林学校了他如往返已二十几年头5柒校长没有理由难、失落他却难、失落得要命肠胃里酒肉推搡着他、撕扯着他火辣辣地灼烧着他他摇摇晃晃走出宿舍他想和他样难、失落人6操场空荡荡教室空荡荡宿舍空荡荡7今天该是开学日子8柒校长绕着操场走边走边捡拾地上枯枝败叶醉眼朦胧朦胧他看到做操学生排满了操场就像老农看他田地里生机盎然秧苗这些秧苗都是柒校长挨挨户上门移植邻近五村庄人没有哪户柒校长不曾踏进9茬又茬秧苗开花结了柒校长也从毛头伙变成了半老头头发花白稀疏了额头横了皱纹了犀利眼光暗淡了矮墩身材更加粗短了0阵风迎面拂柒校长甩甩头那些满操场秧苗慢慢消隐了剩下八株现株也不剩了他干呕了几口踉跄几步屁股坐旗杆基座上柒校长!你怎么了?你喝醉了吧?柒校长腾地立起村长我没醉没醉他紧紧握住人手你看你看这么学校他试图村长脸上寻难和失落3村长哈哈笑几天就改装做木材加工厂了已到投人了柒校长手无力地垂下喃喃地说往孩子们又得走五六乡里上学了就因这五六二十几年前这带孩子都不上学5现哪还有几孩子这山旮旯哟户户都出打工了孩子也跟着到外面了不上学就打工学校了也有道理三老师八孩子怎么养?6柒校长仍心有不甘说每村子总也还有两三孩子吧?7国总不能两三孩子办学校养几老师吧?村长说8这道理柒校长不是不明白他这会是真醉了9、根据拼音正确写汉学校了也有道理(分)0、⑥段画线句三空荡荡传递给我们信息是(分)、⑨段秧苗开花结与柒校长变化形成强烈反差寄托了作者怎样情感?(3分)、以醉了贯穿全请写出醉不含义(7分)①段⑧段8段3、对主旨理恰当项是(分)、山村教育识淡薄比济贫瘠更让人心酸B、山村要像柒校长这样乐奉献人们、济落使山村教育极缺乏、热心农村教育事业柒校长令人敬佩三、综合运用(分)下面材完成6题【材】0年月二届市级档案献遗产申报活动正式启动旨打捞散落民档案献全社会企事业单位以及人可申报这是市档案局(馆)首次面向公众组织申报和审定档案献遗产档案献遗产所以珍贵不仅体现其高昂市场流通价值考证、研究历史、梳理明发展脉络档案献遗产重要性也不言而喻有历史千古谜团很可能因份档现身而被破因档案献遗产称得上是无价宝【材二】截至今年3月旬已申报了近四十份档案这些档案年龄可追溯到明朝万历年史还有国电信史上首份电话码表《英商上海华洋德律风公司电话表》(德律风是上海人对电话早称谓)、张爱玲创作《太太万岁》电影剧手稿、市民婚等史、请给材拟恰当新闻标题________________________(3分)5、以下哪些不属档案献遗产_________、_________(分)、梁思成代表作《国雕塑史》80页手稿B、上海早德律风、民国期出版《义勇军进行曲》唱片、淞沪抗战照片、建元代真如寺、清宣统皇帝溥仪退位诏6、如档案馆举办次档案献遗产展览其有份展品系《潍县署寄舍弟墨》手稿请展品写段介绍(80以)(分)四、写作(60分)7、题目这样感觉真要⑴写600左右⑵不得透露人相关信息⑶不得。

【VIP专享】2015年普陀区数学二模卷及答案

【VIP专享】2015年普陀区数学二模卷及答案

组委会从中随机抽取部分学生的成绩(得分都是整数)作为样本,绘制成频率分布直方图(图 4),
请根据提供的信息估计该区本次竞赛成绩在 89.5 分—99.5 分的学生大约有
(用 a 和 b 表示);
15、如图 3,在△ABC 中,点 D、E 分别在 AB、AC 上, ADE C ,如果 AE=2,△ADE 的面积
是 4,四边形 BCED 的面积是 5,那么 AB 的长是
16、某区有 6000 名学生参加了“创建国家卫生城市”知识竞赛,为了了解本次竞赛成绩分布情况,竞赛
2015 年普陀区初三数学二模卷(时间:100 分钟,满分 Nhomakorabea150 分)
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)
1、 下列分数中,能化为有限小数的是( )
1
A、
15
2、 下列说法中,不正确的是(
A、10 的立方根是 3 10
4
C、 的平方根是
9
2
3
2
B、
15
3、 数据 0、1、1、3、3、4 的平均数和方差分别是(


C、
1 x

5
D、
15
D、2.4 和 2
D、等腰三角形
的图像上,并且 x1


D、
x2
0 ,那么下列各
C
B
分1
A
13、 A O 的直径为 10,弦 AB 的弦心距 OM 是 3,那么弦 AB 的长是
14、如图 2,已知△ABC 中,中线 AM、BN 相交于点 G,如果 AG a , BN b ,那么 BC
A、2 和 1.6
4、 在下列图形中,中心对称图形是(

上海市普陀区2015高三数学二模试卷及答案

上海市普陀区2015高三数学二模试卷及答案

上海市普陀区2015高三数学二模试卷2015.4一、填空题(每小题4分,共56分)1.已知集合{}{}221,,0,1<<=-=xx B a A ,若AB ≠∅,则实数a 的取值范围是2.函数cos ()sin ()y x x ππ22=+-+44的最小正周期为 . 3.在等差数列}{n a 中,已知,13,2321=+=a a a 则=++654a a a . 4.若2tan -=α,α是直线b kx y +=的倾斜角,则α= .(用α的反正切表示)5.设(12i)34i z +=-(i 为虚数单位),则||z = .6.直角坐标系xoy 内有点A (2,1),B (0,2),将线段AB 绕直线1y =旋转一周,所得到几何体的体积为 .7.已知平面向量1122(,),(,)a x y b x y ==,若2,3,6a b a b ==⋅=-,则1122x y x y +=+8.设1,0≠>a a ,行列式34210231D -=xa 中第3行第2列的代数余子式记作y ,函数()x f y =的反函数经过点()1,2,则a= .9.某学生参加3门课程的考试。

假设该学生第一门、第二门及第三门课程取得合格水平的概率依次为45,3,525,且不同课程是否取得合格水平相互独立。

则该生只取得一门课程合格的概率为 .10.已知P 是椭圆22221(0)x y a b a b+=>>上的一点,12,F F 为椭圆的左、右焦点,则1211PF PF +的最小值为 . 11.已知{}n a 是等差数列,设n n a a a T +++= 21()n *∈N .某学生设计了一个求n T 的算法框图(如图),图中空白处理框中是用n 的表达式对n T 赋值,则空白处理框中应填入:n T ←____________.12.不等式12sin x a y x+≥-+对一切非零实数,x y 均成立,则实数a 的范围为13.平面直角坐标系xOy 中,O 为坐标原点.定义()11,P x y 、()22,Q x y 两点之间的“直角(第11题图)距离”为1212(,)d P Q x x y y =-+-,已知点()1,0B ,点M 是直线30(1)kx y k k -++= 上的动点,(,)d B M 的最小值为 .14.当n 为正整数时,用()N n 表示n 的最大奇因数,如(3)3,(10)5,N N ==,设(1)(2)(3)(4)(21)(2nnn S N N N N NN=+++++-+,则数列{}1(2)n n S S n --≥的前n 项和的表达式为 .二、选择题(每小题5分,共20分)15.已知l ,m 是两条不同的直线,α是一个平面,以下命题正确的是( )(A ) 若α⊥l , m l ⊥, 则mα; (B )若α//l , m α, 则 m l //;(C )若α⊥l , α//m , 则 m l ⊥; (D ) 若α⊥l , m l ⊥, 则 α//m ; 16.以下是科学家与之相研究的领域不匹配的是( ) (A )笛卡儿—解析几何; (B )帕斯卡—概率论;(C )康托尔—集合论;(D )祖暅之—复数论;17.已知各项均不为零的数列{}n a ,定义向量1(,)n n n a a +=c ,(,1)n n n =+b ,*n N ∈. 下列命题中真命题是( )(A) 若*n N ∈总有//n n c b 成立,则数列{}n a 是等差数列(B) 若*n N ∈总有//n n c b 成立,则数列{}n a 是等比数列(C) 若*n N ∈总有n n ⊥c b 成立,则数列{}n a 是等差数列(D) 若*n N ∈总有n n ⊥c b 成立,则数列{}n a 是等比数列18.方程sin cos 0x x x +=的正根从小到大地依次排列为12,,,,n a a a ,则正确的结论为( )(A )102n n a a π+<-<(B )1212n n n a a a +++<+ (C )1212n n n a a a +++=+ (D )1212n n n a a a +++>+三、解答题(12+14+14+16+18,共74分)19.已知向量()()wx a wx sin 3,1,1,cos 1+=+=(w 为常数且0>w ),函数()b a x f ⋅=在R 上的最大值为2.(1)求实数a 的值;(2)把函数()x f y =的图象向右平移6w π个单位,可得函数()x g y =的图象,若()x g y =在⎥⎦⎤⎢⎣⎡4,0π上为增函数,求w 的最大值.20.已知三棱柱111ABC A B C -的侧棱与底面垂直,11,,AA AB AC AB AC M ===⊥是1CC 的中点,N 是BC 的中点,点P 在11A B 上,且满足111A P A B λ=(1)证明:PN AM ⊥;(2)当λ取何值时,直线PN 与平面ABC 所成的角θ最大?并求该角的最大值的正切值。

2015年上海中考数学二模24题整理

2015年上海中考数学二模24题整理

已知B :在平面直角坐标系中,抛物线 y = ax 2 + x 的对称轴为直线 x =2,顶点为 A .(1)求抛物线的表达式及顶点 A 的坐标; A点 P 24 题 y = ( x - m )2 + n 的顶点 D 在直线 AB 上,与 y 轴的交点为 C 。

动点之角度(2015 二模 崇明)24.(本题满分 12 分,每小题各 6 分)如图,已知抛物线 y = ax 2 + bx + c 经过点 A (0, - 4) ,点 B (-2, 0) ,点 C (4, 0) .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点 M 在 y 轴上, ∠OMB + ∠OAB = ∠ACB ,求点 M 的坐标.yy(2015 二模 奉贤)24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 8 分)B OC x O C xA(备用图)(2)(第为抛物线对称轴上一点,联结 OA 、OP .x图)①当 OA ⊥OP 时,求 OP 的长;②过点 P 作 OP 的垂线交对称轴右侧的抛物线于点 B ,联结 OB ,当∠OAP =∠OBP 时,求点 B 的坐标.(2015 二模 杨浦)24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 4 分,第 (3)小题 4 分,)已知:在直角坐标系中,直线 y =x +1 与 x 轴交与点 A ,与 y 轴交与点 B ,抛物线12(1)若点 C (非顶点)与点 B 重合,求抛物线的表达式;y(2)若抛物线的对称轴在y轴的右侧,且CD⊥AB,求∠CAD的正切值;(3)在第(2)的条件下,在∠ACD的内部作射线CP交抛物线的对称轴于点P,使得∠DCP=∠CAD,求点P的坐标。

动点之相似(2015二模宝山嘉定)24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(图9),双曲线y=k(k≠0)与直线y=x+2都经过点xA(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.y(2015二模金山)24.(本题满分12分)已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;B A 如图,在直角坐标系 xOy 中,抛x 物线 y = ax O 2 - 2ax + c 与 x 轴的正半轴相x 交于点 A 、与 y 轴 (3)直线 y = kx + 2 与 y 轴交于点 N ,与直线 AC 的交点为 M ,当 ∆MNC 与 ∆AOC 相似时,求点 M 的坐标.动点之面积(2015 二模 黄浦)24. (本题满第(1)小题满分 3 分,第(2) 分 12 分,小题满分 4分,第(3)小题满分 5 分)如图 7,在平面直角坐标系xOy 中,已知点 A 的坐标为(a ,3)(其中a >4),射线 OA与反比例函数y = 12 的图像交于点 P ,点 B 、C 分别在函数y = 12 的图像上,且 AB //x 轴,xxAC //y 轴.(1)当点 P 横坐标为 6,求直线 AO 的表达式;(2)联结 BO ,当 AB = BO 时,求点 A 坐标;(3)联结 BP 、CP ,试猜想:S ∆ABP 的值是否随 a 的变化而变化?如果不变,求出 S ∆ABP 的SS∆ACP∆ACP值;如果变化,请说明理由.(2015 二模 静安青浦)24.(本题满分 12 分,第(1)小题满分 8 分,第(2)小题满分 4 分)PCO 图7的正半轴相交于点 B ,它的对称轴与 x 轴相交于点 C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;如图,已知抛物线 y = x 2 - 2tx + t 2 - 2 的顶点 A 在第四象限,过点 A 作 AB ⊥y 轴于点 B ,A (-1,0),B (4,0 ),C (0,2 ).点D 是点 C 关于原点的对称C 点A ,联结 B D ,点E 是 x 轴上的E (2)如果点 D 在此抛物线上,DF ⊥OA ,垂足为 F ,DF 与线段 AB 相交于点G ,且 S∆ADG : S∆AFG= 3 : 2 ,求点 D 的坐标.y(2015 二模 长宁)24.(本题满分 12 分)BCC 是线段 AB 上一点(不与 A 、B 重合),过点 C 作 CD ⊥x 轴于点 D ,并交抛物线于点 P .(1)若点 C 的横坐标为 1,且是线段 AB 的中点,求点 P 的坐标;(2)若直线 AP 交 y 轴负半轴于点 E ,且 AC =CP ,求四边形 OEPD 的面积 S 关于 t 的函数解析式,并写出定义域;(3)在(2)的条件下,当△ADE 的面积等于 2S 时 ,求 t 的值.y动点之直角、等腰三角形存在性DO x(2015 二模 普陀 ) 如图10,在平面直角坐标系xOy 中,二次函数的图像经过点 PB一个动点,设点 E 的坐标为(m , 0),过点 E 作 x 轴的垂线 l 交抛物线于点 P .第 24 题(1)求这个二次函数的解析式;图(2)当点E 在线段 OB 上运动时,直线 l 交 BD 于点 Q .当四边形CDQP 是平行四边形时,求 m 的值;(3)是否存在点 P ,使△ B DP 是不以 BD 为斜边的直角三角形,如果存在,请直接写出点 P 的坐标;如果不存在,请说明理由.y y(2015二模松江)24.(本题满分12分,每小题各4分)C C如图,二次函数y=-x2+bx的图像与x轴的正半轴交于点A(4,0),过A点的直线与A OB x A O B xy轴的正半轴交于点B,与二次函数的图像交于另一点C,过点C作CH⊥x轴,垂足为H.设二次函数图像的顶点为D,其对称轴与直线AB及x轴分别交于点E和点F.(1)求这个二次函数的解析式;(2)如果CE=3BC,求点B的坐标;(3)如果△DHE是以DH为底边的等腰三角形,求点E的坐标.动点之梯形(2015二模徐汇)24.如图,在平面直角坐中,O为坐标原点,开口向上的抛物线与x点A(-1,0)和点B(3,0),D为抛物线的直线AC与抛物线交于点C(5,6).(1)求抛物线的解析式;(2)点E在x轴上,且∆AEC和∆AED相似,求点E的坐标;标系轴交于顶点,(3)若直角坐标平面中的点F和点A、C、D构成求点F的坐标.其他直角梯形,且面积为16,试((2015 二模 闵行)24.(本题满分 12 分,其中每小题各 4 分)如图,已知在平面直角坐标系 xOy 中,抛物线 y = ax 2 - 2ax - 4 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C ,其中点 A 的坐标为(-3,0).点 D 在线段 AB 上,AD = AC .(1)求这条抛物线的关系式,并求出抛物线的对称轴;(2)如果以 DB 为半径的圆 D 与圆 C 外切,求圆 C 的半径;(3)设点 M 在线段 AB 上,点 N 在线段 BC 上.如果线段 MN 被直线 CD 垂直平分,求BN 的值. CN(2015 二模 浦东)24. 本题满分 12 分,其中第(1)小题 3 分,第(2)小题 4 分,第(3)小题 5 分) 已知:如图,直线 y =kx +2 与 x 轴的正半轴相交于点 A(t ,0)、与 y 轴相交于点 B ,抛物线 y = - x 2 + bx + c 经过点 A 和点 B ,点 C 在第三象限内,且 AC ⊥AB ,tan∠ACB = 1 .2(1)当 t =1 时,求抛物线的表达式;(2)试用含 t 的代数式表示点 C 的坐标;(3)如果点 C 在这条抛物线的对称轴上,求 t2020-2-8的值.。

2015年上海各区中考数学二模压轴题24、25题图文解析

2015年上海各区中考数学二模压轴题24、25题图文解析

《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。

2015年上海各区中考数学二模压轴题24、25题图文解析

2015年上海各区中考数学二模压轴题24、25题图文解析

《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。

普陀区2015年模拟试卷1

普陀区2015年模拟试卷1

(第8题图)普陀区2015年初中毕业生学业考试适应性试卷数学卷(三中三模)一.选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.给出四个数2-,2,12,0,其中为无理数的是( ▲ ) A .-2B .2C .12D .02.下列运算正确的是( ▲ )A .325()a a =B .325a a a += C .32()a a a a -÷= D .331a a ÷= 3.网购已成为人们的主要消费方式,2014年,天猫“11.11”购物狂欢节总成交额达571亿元,将571亿元用科学记数法表示应为( ▲ ) A .81071.5⨯元 B .91071.5⨯元C .101071.5⨯元D .111071.5⨯元4.一条开口向上的抛物线的顶点坐标是(-1,2),则它有( ▲ )A .最大值1B .最大值-1C .最小值2D .最小值-25.学校举行红歌赛,全校21个班级均组队参赛。

所有参赛代表队的成绩互不相同,小敏在已知自己班级代表队成绩的情况下,要想知道本班代表队是否进入前10名,只需要知道所有参赛代表队成绩的( ▲ )A.平均数B.众数C.中位数D.方差 6.某几何体的三视图如图所示,则它是( ▲ )A .圆锥B .圆柱C .棱锥D .球7.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这相邻两树在坡面上的距离AB 为( ▲ )A .αsin 5B .αsin 5C .αcos 5D .αcos 58.如图,图中数轴的单位长度为1,如果R,T 表示的数互为相反数,那么图中的4个点中,哪一点表示的数的绝对值最大( ▲ )A .PB .RC .QD .T 9.正方形ABCD 内,有一个内切圆⊙O 。

电脑可设计程序:在正方形内可随机产生一系列点,当点数很多时,电脑自动统计正方形内的点数a 个,⊙O 内的点数b 个(在正方形边上和圆上的点不在统计中),根据用频率估计概率的原理,可推得π的大小是(▲)第9题图A第13题图 A . π≈a b B .π≈4b a C . π≈a b D .π≈ba 4 10.如图,平行四边形纸片ABCD 中,AB =6,AD =10,∠B =︒60,P 为BC 边上的一点,折叠该纸片,使点A 与点P 重合,折痕为EF 。

上海市普陀区中考数学二模试卷及答案(word解析版)

上海市普陀区中考数学二模试卷及答案(word解析版)

上海市普陀区中考数学二模试卷一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.(4分)(•普陀区二模)下列各数中无理数共有()①﹣0.21211211121111,②,③,④,⑤.A.1个B.2个C.3个D.4个.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,,共有3个.故选C.点评:此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)(•普陀区二模)如果a>1>b,那么下列不等式正确的个数是()①a﹣b>0,②a﹣1>1﹣b,③a﹣1>b﹣1,④.A.1B.2C.3D.4.考点:不等式的性质.分析:根据不等式的基本性质进行解答.解答:解:①由已知条件知a>b,则在该不等式的两边同时减去b得到a﹣b>0.故①正确;②由已知条件可设a=2,b=﹣1,则a﹣1=1,1﹣b=2,即a﹣1<1﹣b,故②错误;③由已知条件知a>b,则在该不等式的两边同时减去1得到a﹣1>b﹣1.故③正确;④当b<0时,.故④错误;综上所述,正确的结论有2个.故选B.点评:主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.(4分)(•上海)在下列方程中,有实数根的是()A.x2+3x+1=0 B.C.x2+2x+3=0 D.考点:根的判别式;算术平方根;解分式方程.分析:一元二次方程要有实数根,则△≥0;算术平方根不能为负数;分式方程化简后求出的根要满足原方程.解答:解:A、△=9﹣4=5>0,方程有实数根;B、算术平方根不能为负数,故错误;C、△=4﹣12=﹣8<0,方程无实数根;D、化简分式方程后,求得x=1,检验后,为增根,故原分式方程无解.故选A.点评:总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根,(2)△=0⇔方程有两个相等的实数根,(3)△<0⇔方程没有实数根;2、算术平方根不能为负数;3、分式方程要验根.4.(4分)(•普陀区二模)下列语句正确的是()A.“上海冬天最低气温低于﹣5℃”,这是必然事件B.“在去掉大小王的52张扑克牌中抽13张牌,其中有4张黑桃”,这是必然事件C.“电视打开时正在播放广告”,这是不可能事件D.“从由1,2,5组成的没有重复数字的三位数中任意抽取一个数,这个三位数能被4整除”,这是随机事件考点:随机事件.分析:确定事件包括必然事件和不可能事件.必然事件就是一定发生的事件,即发生的概率是1的事件.不可能事件是指在一定条件下,一定不发生的事件.随机事件是可能发生也可能不发生的事件.解答:解:A、B、C是随机事件,原说法错误,D中由1,2,5组成的没有重复数字的三位数中任意抽取一个数,这个三位数可能被4整除,也可能不能被4整除,是随机事件,正确故选D.点评:解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)(•普陀区二模)我县6月份某一周的日最高气温(单位:℃)分别为28,30,29,31,32,28,25,这周的最气温的平均值为()A.28℃B.29℃C.30℃D.31℃考点:算术平均数.专题:计算题.分析:本题可把所有的气温加起来再除以7即可.平均数是指在一组数据中所有数据之和再除以数据的个数.解答:解:依题意得:平均气温=(28+30+29+31+32+28+27)÷7=29℃.故选B.点评:本题考查的是平均数的求法.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.6.(4分)(•普陀区二模)对于一个正多边形,下列四个命题中,错误的是()A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补考点:正多边形和圆.专题:常规题型.分析:利用正多边形的对称轴的性质、对称性、中心角的定义及中心角的性质作出判断即可.解答:解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.故选B.点评:本题考查了正多边形和圆的知识,解题的关键是正确的理解正多边形的有关的定义.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)(•普陀区二模)计算:(﹣a)3•a﹣3=﹣1.考点:负整数指数幂.分析:根据负整数指数幂的运算法则进行计算即可.解答:解:原式=﹣a3•=﹣1.故答案为:﹣1.点评:本题考查的是负整数指数幂,即负整数指数幂等于相应的正整数指数幂的倒数.8.(4分)(•普陀区二模)函数的定义域是x≥0且x≠2.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:,解得:x≥0且x≠2.故答案是:x≥0且x≠2.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(4分)(•普陀区二模)已知,若b+d≠0,则=.考点:比例的性质.专题:计算题.分析:由一已知式子和原式可得,利用比例的合比性质即可求得原式的值.解答:解:∵,∴==.点评:熟练掌握比例的合比性质并灵活运用.10.(4分)(•普陀区二模)某城市现有固定居住人口约为一千九百三十万,用科学记数法表示为1.93×107人.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将19300000用科学记数法表示为1.93×107.故答案为:1.93×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)(•普陀区二模)不等式组的解集是1<x<2.考点:解一元一次不等式组.分析:求出每个不等式的解集,根据找不等式组解集的规律找出即可.解答:解:,∵解不等式①得:x>1,解不等式②得:x<2,∴不等式组的解集为1<x<2,故答案为:1<x<2;点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,关键是能根据不等式的解集找出不等式组的解集.12.(4分)(•潍坊)分解因式:27x2+18x+3=3(3x+1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对剩余项9x2+6x+1利用完全平方公式分解因式即可.完全平方公式:a2±2ab+b2=(a±b)2.解答:解:27x2+18x+3,=3(9x2+6x+1),=3(3x+1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次因式分解,分解因式要彻底.13.(4分)(•普陀区二模)如果两个相似三角形的面积之比是16:9,那么它们对应的角平分线之比是4:3.考点:相似三角形的性质.分析:先根据相似三角形面积的比求出其相似比,再根据其对应的角平分线的比等于相似比即可解答.解答:解:∵两个相似三角形的面积比是16:9,∴这两个相似三角形的相似比是4:3,∵其对应角平分线的比等于相似比,∴它们对应的角平分线比是4:3.故答案为4:3.点评:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.14.(4分)(•普陀区二模)有6张分别写有数字1、2、3、4、5、6的卡片,它们的背面相同,现将它们的背面朝上,从中任意摸出一张是数字5的机会是.考点:概率公式.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解答:解:由题意可知,6张卡片中1张是5,所以任意摸出一张是数字5的概率是.故答案为:.点评:本题考查概率的求法与运用.一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(4分)(•普陀区二模)如图,在平行四边形ABCD中,点E、F分别是AB、CD上的中点,记.用含、的式子表示向量=+.考点: *平面向量.分析:首先连接EF,由四边形ABCD是平行四边形与点E、F分别是AB、CD上的中点,即可得==,然后根据平行四边形法则,即可求得的值.解答:解:连接EF,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点E、F分别是AB、CD上的中点,∴DF=AE,即==,∴=+=+.故答案为:+.点评:此题考查了平面向量的知识与平行四边形的性质.解此题的关键是注意数形结合思想的应用与平行四边形法则.16.(4分)(•普陀区二模)为了了解中学生的身体发育情况,对第二中学同年龄的80名学生的身高进行了测量,经统计,身高在150.5﹣155.5厘米之间的頻数为5,那么这一组的頻率是.考点:频数与频率.分析:根据身高在150.5﹣155.5厘米之间的頻数为5,共有80个数,再根据频率=即可求出答案.解答:解:∵身高在150.5﹣155.5厘米之间的頻数为5,共有80个数,∴这一组的頻率是=;故答案为:.点评:此题考查了频数与频率,用到的知识点是频率=.17.(4分)(•普陀区二模)地面控制点测得一飞机的仰角为45°,若此时地面控制点与该飞机的距离为2000米,则此时飞机离地面的高度是1000米(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:根据题意画出示意图,利用解直角三角形的知识可得出答案.解答:解:如图所示:由题意得,∠CAB=45°,AC=2000m,则BC=ACsin∠CAB=2000×=m;即飞机离地面的高度是1000米.故答案为:1000.点评:本题考查了解直角三角形的应用,解答本题的关键是利用仰角的知识构造直角三角形.18.(4分)(•普陀区二模)已知在△AOB中,∠B=90°,AB=OB,点O的坐标为(0,0),点A的坐标为(0,8),点B在第一象限内,将这个三角形绕原点O旋转75°后,那么旋转后点B的坐标为(2,﹣2)或(﹣2,2).考点:坐标与图形变化-旋转.分析:先根据点A的坐标求出OA的长,再根据等腰直角三角形的性质求出OB的长,然后分①逆时针旋转时,过点B′作B′C′⊥y轴于C′,根据旋转角求出∠B′OC′=30°,然后求出B′C′、OC′的长,再写出旋转后点B的坐标即可;②顺时针旋转时,过点B″作B″C″⊥x轴于C″,根据旋转角求出∠B″OC″=30°,然后求出B″C″、OC″,然后写出旋转后点B对应的点的坐标即可.解答:解:∵A(0,8),∴OA=8,∵∠B=90°,AB=OB,∴△AOB是等腰直角三角形,∴OB=OA=×8=4,∠AOB=45°,①逆时针旋转时,过点B′作B′C′⊥y轴于C′,∵旋转角为75°,∴∠B′OC′=75°﹣45°=30°,∴B′C′=OB′=×4=2,OC′=4×=2,∴旋转后点B的坐标为(﹣2,2);②顺时针旋转时,过点B″作B″C″⊥x轴于C″,∵旋转角为75°,∴∠B″OC″=75°﹣45°=30°,∴B″C″=OB″=×4=2,OC″=4×=2,∴旋转后点B的坐标为(2,﹣2);综上所述,旋转后点B的坐标为(2,﹣2)或(﹣2,2).点评:本题考查了坐标与图形变化﹣旋转,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键,难点在于要分情况讨论,作出图形更形象直观.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.(10分)(•普陀区二模)计算:.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:本题涉及二次根式化简、零指数幂、特殊角的三角函数值、绝对值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式==.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式、绝对值等考点的运算.20.(10分)(•普陀区二模)解方程组:.考点:高次方程.分析:先由①得:x﹣y=2,再由②得(x﹣y)2+2(x+y)=12,最后把x﹣y=2代入(x﹣y)2+2(x+y)=12中,得到一个关于x,y的方程组,求出x,y的值即可.解答:解:,由①得:x﹣y=2,③由②得:(x﹣y)2+2(x+y)=12,④将③代入④得:x+y=4,可得:,解方程组得:,则原方程组的解为:.点评:此题考查了高次方程,解题的关键是把高次方程转化成低次方程,再按照低次方程的步骤进行求解即可.21.(10分)(•普陀区二模)如图:已知,四边形ABCD是平行四边形,AE∥BD,交CD的延长线于点E,EF⊥BC交BC延长线于点F,求证:四边形ABFD是等腰梯形.考点:等腰梯形的判定;平行四边形的性质.专题:证明题.分析:首先证明四边形ABDE是平行四边形,可得AB=DE,再根据平行四边形的性质可得CD=DE,再根据直角三角形的性质可证明DF=CD=DE,进而得到AB=DE,再说明线段AB与线段DF不平行即可得到四边形ABFD是等腰梯形.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC;AB∥CD,AB=CD,∴AB∥DE;又∵AE∥BD,∴四边形ABDE是平行四边形.∴AB=DE.∴CD=DE.∵EF⊥BC,∴DF=CD=DE.∴AB=DF.∵CD、DF交于点D,∴线段AB与线段DF不平行.∴四边形ABFD是等腰梯形.点评:此题主要考查了平行四边形的性质与判定,以及等腰梯形的判定,关键是掌握两腰相等的梯形叫做等腰梯形.22.(10分)(•普陀区二模)一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,求这辆车第二、三年的年折旧率.考点:一元二次方程的应用.专题:增长率问题.分析:设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为20(1﹣20%)(1﹣x)元,第三年折旧后的而价格为20(1﹣20%)(1﹣x)2元,与第三年折旧后的价格为11.56万元建立方程求出其解即可.解答:解:设这辆车第二、三年的年折旧率为x,有题意,得20(1﹣20%)(1﹣x)2=11.56.整理得:(1﹣x)2=0.7225...解得:x1=0.15,x2=1.85(不合题意,舍去).∴x=0.15,即x=15%.答:这辆车第二、三年的年折旧率为15%.点评:本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键.23.(12分)(•普陀区二模)已知:如图,⊙O的半径为5,弦AB的长等于8,OD⊥AB,垂足为点D,DO的延长线与⊙O相交于点C,点E在弦AB的延长线上,CE与⊙O相交于点F,cosC=.求:(1)CD的长;(2)EF的长.考点:垂径定理;勾股定理;解直角三角形.分析:(1)连接OA,根据垂径定理求出AD,根据勾股定理求出OD,即可求出CD(CD=OD+OA);(2)作OH⊥CE,垂足为点H,根据cosC=求出CH,求出CF,在△CDE中,根据cosC=求出CE,相减即可求出EF.解答:解:(1)连接OA.∵OD⊥AB,AB=8,∴AD=AB=4,∵OA=5,∴由勾股定理得:OD=3,∵OC=5,∴CD=8.(2)作OH⊥CE,垂足为点H.,∵OC=5,cosC=,∴CH=4,∵OH⊥CE,∴由垂径定理得:CF=2CH=8,又∵CD=8,cosC=,∴CE=10,∴EF=10﹣8=2.点评:本题考查了垂径定理,勾股定理,锐角三角形函数定义等知识点,主要考查学生运用定理进行计算的能力,题目比较典型,是一道比较好的题目.24.(12分)(•普陀区二模)如图,抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标;(3)点M为平面直角坐标系上一点,写出使点M、A、B、D为平行四边形的点M的坐标.考点:二次函数综合题.专题:综合题.分析:(1)对于一次函数y=x﹣3,分别令x与y为0求出对应y与x的值,确定出A与B的坐标,代入抛物线解析式得到关于b与c的方程组,求出方程组的解得到b与c的值,即可确定出抛物线解析式;(2)由抛物线解析式求出C与D坐标,根据P为抛物线上的点,设P(a,a2﹣2a﹣3),三角形APC由AC为底,P纵坐标绝对值为高,利用三角形面积表示出,三角形ACD面积由AC为底,D 纵坐标绝对值为高表示出,根据题意列出关于a的方程,求出方程的解得到a的值,即可确定出此时P的坐标;(3)画出图形,如图所示,根据题意得到A、B、C分别为M1M3、M1M2、M2M3的中点,由四边形ADBM1为平行四边形,利用平行四边形的对角线互相平分得到AB与M1D互相平分,即E为AB中点,E为M1D中点,根据A与B的坐标求出E的坐标,再利用线段中点坐标公式求出M1坐标;进而求出M2、M3的坐标即可.解答:解:(1)∵直线y=x﹣3与坐标轴的两个交点A、B,∴点B(0,﹣3),点A(3,0),将A与B坐标代入抛物线y=x2+bx﹣c得:,解得:c=3,b=﹣2,则抛物线的解析式是y=x2﹣2x﹣3;(2)∵抛物线的解析式是y=x2﹣2x﹣3,∴C(﹣1,0),顶点D(1,﹣4),由点P为抛物线上的一个动点,故设点P(a,a2﹣2a﹣3),∵S△APC:S△ACD=5:4,∴(×4×|a2﹣2a﹣3|):(×4×4)=5:4,整理得:a2﹣2a﹣3=5或a2﹣2a﹣3=﹣5(由△<0,得到无实数解,舍去),解得:a1=4,a2=﹣2,则满足条件的点P的坐标为P1(4,5),P2(﹣2,5);(3)如图所示,A、B、C分别为M1M3、M1M2、M2M3的中点,∵四边形ADBM1为平行四边形,∴AB与M1D互相平分,即E为AB中点,E为M1D中点,∵A(3,0),B(0,﹣3),∴E(,﹣),又∵D(1,﹣4),∴M1(2,1),∴M2(﹣2,﹣7),M3(4,﹣1),则满足题意点M的坐标为:M1(2,1),M2(﹣2,﹣7),M3(4,﹣1).点评:此题考查了二次函数综合题,涉及的知识有:平行四边形的判定与性质,坐标与图形性质,一次函数与坐标轴的交点,二次函数的性质,以及待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.25.(14分)(•南京)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.考点:圆与圆的位置关系;勾股定理;直线与圆的位置关系;相似三角形的判定与性质.专题:几何综合题;动点型.分析:(1)根据已知求出AB=10cm,进而得出△PBD∽△ABC,利用相似三角形的性质得出圆心P到直线AB的距离等于⊙P的半径,即可得出直线AB与⊙P相切;(2)根据BO=AB=5cm,得出⊙P与⊙O只能内切,进而求出⊙P与⊙O相切时,t的值.解答:解:(1)直线AB与⊙P相切,如图,过P作PD⊥AB,垂足为D,在Rt△ABC中,∠ACB=90°,∵AC=6cm,BC=8cm,∴AB=10cm,∵P为BC中点,∴PB=4cm,∵∠PDB=∠ACB=90°,∠PBD=∠ABC,∴△PBD∽△ABC,∴,即,∴PD=2.4(cm),当t=1.2时,PQ=2t=2.4(cm),∴PD=PQ,即圆心P到直线AB的距离等于⊙P的半径,∴直线AB与⊙P相切;(2)∵∠ACB=90°,∴AB为△ABC的外接圆的直径,∴BO=AB=5cm,连接OP,∵P为BC中点,PO为△ABC的中位线,∴PO=AC=3cm,∵点P在⊙O内部,∴⊙P与⊙O只能内切,∴当⊙P在⊙O内部时:5﹣2t=3,当⊙O在⊙P内部时2t﹣5=3,∴t=1或4,∴⊙P与⊙O相切时,t的值为1或4.点评:此题主要考查了相似三角形的性质与判定以及直线与圆的位置关系和圆与圆的位置关系,正确判定直线与圆的位置关系是重点知识同学们应重点复习.。

上海中考各区二模数学试题及答案汇总

上海中考各区二模数学试题及答案汇总

2014学年虹口区调研测试九年级数学。

(满分分,考试时间分钟)考生注意:1.本试卷含三个大题,共题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共题,每题分,满分分).计算的结果是().;.;.; ...下列代数式中,的一个有理化因式是( ).; .;.;...不等式组的解集是( ).; .;.;...下列事件中,是确定事件的是( ).上海明天会下雨;.将要过马路时恰好遇到红灯;.有人把石头孵成了小鸭;.冬天,盆里的水结成了冰..下列多边形中,中心角等于内角的是().正三角形;.正四边形; .正六边形;.正八边形..下列命题中,真命题是().有两边和一角对应相等的两个三角形全等;.有两边和第三边上的高对应相等的两个三角形全等;.有两边和其中一边上的高对应相等的两个三角形全等;.有两边和第三边上的中线对应相等的两个三角形全等.二、填空题:(本大题共题,每题分,满分分).据报道,截止年月某市网名规模达人。

请将数据用科学记数法表示为。

.分解因式:。

.如果关于的方程有两个相等的实数根,那么。

.方程的根是。

初三数学基础考试卷—1—初三数学基础考试卷—2—(第题图) (第题图) (第题图)(第题图).函数的定义域是 。

.在反比例函数的图像所在的每个象限中,如果函数值随自变量的值的增大而增大,那么常数的取值范围是 。

.为了了解某中学学生的上学方式,从该校全体学生名中,随机抽查了名学生,结果显示有名学生“步行上学”.由此,估计该校全体学生中约有 名学生“步行上学"。

.在中,,点是的重心,如果,那么斜边的长等于 。

.如图,在中,点、分别在边、上,∥,,若,,则 。

.如图,、的半径分别为、,圆心距为.将由图示位置沿直线向右平移,当该圆与内切时,平移的距离是 ..定义为函数的“特征数".如:函数“特征数”是,函数“特征数"是.如果将“特征数”是的函数图像向下平移个单位,得到一个新函数图像,那么这个新函数的解析式是 。

上海市普陀区2015届高三二模数学(理)试题 含解析

上海市普陀区2015届高三二模数学(理)试题 含解析

一、填空题(共14题,每题4分,满分56分)1.不等式01xx>-的解集为 .【答案】{}10|<<x x 【解析】 试题分析:由()()10010101<<⇒<-⇒>-⇒>-x x x x x xx ,所以不等式01xx >-的解集为{}10|<<x x . 考点:不等式.2。

若1m ii i+=+(i 为虚数单位),则实数m = 。

【答案】—1考点:复数的运算。

3.若函数()()sin sin 022x x f x ωπωω+=>的最小正周期为π,则ω= . 【答案】2 【解析】试题分析:()x x x x x x f ωωωωπωsin 212cos 2sin 2sin 2sin ==+=,因为函数的最小正周期为π,所以2=ω.考点:三角函数的性质. 4。

集合{}{}21,4,RA x y xB x y x x =-==∈,则AB。

【答案】{}10|≤≤x x【解析】试题分析:因为{}{}1|1|≤=-==x x x y x A ,{}{}0|,4|2≥=∈==x x R x x y x B ,所以{}10|≤≤=⋂x x B A .考点:集合的基本运算。

5。

若0x π≤≤,则函数sin cos 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的单调递增区间为 。

【答案】⎥⎦⎤⎢⎣⎡65,3ππ考点:三角函数的性质。

6.如图,若6OFB π∠=,6OF FB ⋅=-,则以OA 为长半轴,OB 为短半轴,F 为左焦点的椭圆的标准方程为 。

【答案】12822=+y x【解析】试题分析:由题意可得:34665cos65=⇒-===•ac ac FB OF FB OF ππ, 且b a 2=又因为222c b a +=,所以2,822==b a ,所以椭圆的方程为12822=+y x 。

考点:椭圆的性质. 7。

函数())11f x x x -≤,若函数()2g x xax=+是偶函数,则()f a = 1 。

上海市普陀区2015年中考一模(即期末)

上海市普陀区2015年中考一模(即期末)

普陀区2015届度第一学期初三质量调研数学试卷一. 选择题1. 如图,直线1l ∥2l ∥3l ,两直线AC 和DF 与1l ,2l ,3l 分别相交于点A 、B 、C 和点D 、 E 、F ,下列各式中,不一定成立的是( ) A. AB DE BC EF =; B. AB DE AC DF =; C. AD BE BE CF =; D. EF BC FD CA=;2. 用一个2倍放大镜照一个△ABC ,下面说法中错误的是( )A. △ABC 放大后,是原来的2倍;B. △ABC 放大后,各边长是原来的2倍;C. △ABC 放大后,周长是原来的2倍;D. △ABC 放大后,面积是原来的4倍;3. 在Rt △ABC 中,已知90ACB ∠=︒,1BC =,2AB =,那么下列结论正确的是( )A. sin A =;B. 1tan 2A =; C. cosB = D. cot B = 4. 如果二次函数2y ax bx c =++(0a ≠)的图像如图所示,那么( )A. 0a <,0b >,0c >;B. 0a >,0b <,0c >;C. 0a >,0b <,0c <;D. 0a >,0b >,0c <;5. 下列命题中,正确的个数是( )(1)三点确定一个圆; (2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等; (4)正五边形是轴对称图形;A. 1个;B. 2个;C. 3个;D. 4个;6. 下列判断错误的是( )A. 00a =;B. 如果12a b =(b 为非零向量),那么a ∥b ; C. 设e 为单位向量,那么||1e =; D. 如果||||a b =,那么a b =或a b =-;二. 填空题7. 已知:5:2x y =,那么():x y y += ;8. 计算:523()3a ab --= ;9. 如图,在△ABC 中,DE ∥BC ,DE 与边AB 相交于点D ,与边AC 相交于点E ,如果3AD =,4BD =,2AE =,那么AC = ;10. 已知线段MN 的长为2厘米,点P 是线段MN 的黄金分割点,那么较长的线段MP 的长是 厘米;11. 二次函数223y x x =--的图像与y 轴的交点坐标是 ;12. 如果将抛物线22y x =-平移,使顶点移到点(3,1)P -的位置,那么所得新抛物线的表达式是 ;13. 正八边形的中心角为 ;14. 用一根长50厘米的铁丝,把它弯成一个矩形框,设矩形框的一边长为x 厘米,面积为y 平方厘米,写出y 关于x 的函数解析式: ;15. 在地面上离旗杆20米处的地方用测角仪器测得旗杆顶端的仰角为α,如果测角仪的高为1.5米,那么旗杆的高为 米(用含α的三角比表示);16. 如图,已知O 的半径为5,O 的一条弦AB 长为8,那么以3为半径的同心圆与弦AB 位置关系是 ;17. 我们定义:如果一个图形上的点A '、B '、...、P '和另一个图形上的点A 、B 、...、P 分别对应,并且满足:(1)直线AA '、BB '、...、PP '都经过同一点O ;(2)...OA OB OP k OA OB OP'''====,那么这两个图形叫做位似图形,点O 叫做位似中心,k 叫做位似比,如图,在平面直角坐标系中,△ABC 和△A B C '''是以坐标原点O 为位似中心的位似图形,且OB BB '=,如果点5(,3)2A ,那么点A '的坐标为 ;18. 如图,已知△ABC 中,AB AC =,tan 2B =,AD ⊥BC 于点D ,G 是△ABC 的重心,将△ABC 绕着重心G 旋转,得到△111A B C ,并且点1B 在直线AD 上,联结1CC ,那么11tan CC B 的值等于 ;三. 解答题19. 计算:4sin 304560︒︒︒-+20. 如图,已知AB ∥CD ,AD 与BC 相交于点O ,且23AB CD =(1)求AO AD的值 (2)如果AO a =,请用a 表示DA21. 如图,已知二次函数的图像与x 轴交于点(1,0)A 和点B ,与y 轴交于点(0,6)C ,对称轴为直线2x =,求二次函数解析式并写出图像最低点坐标22. 如图,某新建公园有一个圆形人工湖,湖中心O 处有一座喷泉,小明为测量湖的半径,在湖边选择A 、B 两个点,在A 处测得45OAB ︒∠=,在AB 延长线上的C 处测得30OCA ︒∠=,已知50BC =米,求人工湖的半径(结果保留根号)23. 如图,已知在△ABC 中,90ACB ︒∠=,点D 在边BC 上,CE AB ⊥,CF AD ⊥,E 、F 分别是垂足(1)求证:2AC AF AD =⋅(2)联结EF ,求证:AE DB AD EF ⋅=⋅24. 如图,在平面直角坐标系xOy 中,点(,0)A m -和点(0,2)B m (0)m >,点C 在x 轴上(不与点A 重合)(1)当△BOC 与△AOB 相似时,请直接写出点C 的坐标(用m 表示)(2)当△BOC 与△AOB 全等时,二次函数2y x bx c =-++的图像经过A 、B 、C 三点,求m 的值,并求点C 的坐标(3)P 是(2)的二次函数图像上的一点,90APC ︒∠=,求点P 的坐标及ACP ∠的度数25. 如图,等边△ABC ,4AB =,点P 是射线AC 上的一动点,联结BP ,作BP 的垂直平分线交线段BD 于点D ,交射线BA 于点Q ,分别联结PD ,PQ(1)当点P 在线段AC 的延长线上时,① 求DPQ ∠的度数,并求证:△DCP ∽△PAQ② 设CP x =,AQ y =,求y 关于x 的函数解析式,并写出它的定义域(2)如果△PCD 是等腰三角形,求△APQ 的面积参考答案1-5 CADCA 6、D7、7:2 8、 9、 10、 11、 12、13、 14、 15、 16、相切 17、(5,6) 18、21、24、25、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年普陀区数学中考二模试卷(含答案)
2015年普陀区初三数学二模卷
(时间:100分钟,满分:150分) 一、选择题:(本大题共6题,每题4分,满分24分)
1、 下列分数中,能化为有限小数的是( )
A 、
1
15
B 、
215
C 、
315
D 、
515
2、 下列说法中,不正确的是( ) A 、10
B 、2-是4的一个平方根
C 、
49的平方根是23
D 、0.01的算术平方根是0.1
3、 数据0、1、1、3、3、4的平均数和方差分别是( ) A 、2和1.6 B 、2和2
C 、2.4和1.6
D 、2.4和2 4、 在下列图形中,中心对称图形是( )
A 、等腰梯形
B 、平行四边形
C 、正五边形
D 、等腰三角形
5、 如果点
1122(,),(,)A x y B x y 都在反比例函数1
y x
=-
的图像上,并且120x x <<,那么下列各式中正确的是( )
A 、
120y y <<
B 、120y y <
<
C 、
120y y >> D 、120y y >
>
6、 在下列4⨯4的正方形网格图中,每个小正方形的边长都是1,三角形的顶点都在格点上,那
么与图1中△ABC 相似的三角形所在的网格图是( )
A 、
B 、
C 、
D 、
二、填空题:(本大题共12题,每题4分,满分48分)
7、 分解因式:2
ab ab -= ;
8、
5=的根是 ; 9、
= ;
图1
10、一元二次方程2
90x +=根的判别式的值是 ;
11、
函数
y =的定义域是 ;
12、某彩票共发行100,000份,其中设特等奖1名,一等奖2名,二等奖5名,三等奖10名,那么抽中特
等奖的概率是 ; 13、O e
的直径为10,弦AB 的弦心距OM 是3,那么弦AB 的长是 ;
14、如图2,已知△ABC 中,中线AM 、BN 相交于点G ,如果AG a =u u u r r ,BN b =u u u r r ,那么BC =u u u r
(用a r 和b r
表示);
15、如图3,在△ABC 中,点D 、E 分别在AB 、AC 上,ADE
C ∠=∠,如果AE=2,△ADE 的面积
是4,四边形BCED 的面积是5,那么AB 的长是 ;
16、某区有6000名学生参加了“创建国家卫生城市”知识竞赛,为了了解本次竞赛成绩分布情况,竞赛
组委会从中随机抽取部分学生的成绩(得分都是整数..)作为样本,绘制成频率分布直方图(图4),请根据提供的信息估计该区本次竞赛成绩在89.5分—99.5分的学生大约有 名;
图2
G
N M
C
B
A
图3
E D
C
B
A
图4
17、如图5-1,对于平面上不大于90°的∠MON ,我们给出如下定义:如果点P 在∠MON 的内部,作PE
⊥OM ,PF ⊥ON ,垂足分别为点E 、F ,那么称PE+PF 的值为点P 相对于∠MON 的“点角距离”,记为(,)d P MON ∠。

如图5-2,在平面直角坐标系xOy 中,点P 在第一象限内,且点P 的横坐标比纵坐标大1,对于xOy ∠,满足(,)5d P xOy ∠=,点P 的坐标是 ; 18、如图6,在矩形纸片ABCD 中,AB<BC ,点M 、N 分别在边AD 、BC 上,沿直线MN 将四边形DMNC
翻折,点C 恰好与点A 重合,如果此时在原图中△CDM 与△MNC 的面积比是1:3,那么MN
DM

值等于 ;
图5-1
M
E
F
P
N
O
图5-2
图6
D
C
B A
三、解答题:(本大题共7题,满分78分)
19、(本题满分10分) 计算:1
02
(31)sin 452
21
-

-+--
+
20、(本题满分10分)
解方程组:22
30
240
x y x xy y -=⎧⎨-+-=⎩;
21、(本题满分10分)
已知,如图7,在平面直角坐标系xOy 中,直线
11
22
y x =
+与x 轴交于点A ,在第一象限内与反比例函数图像交于点B ,BC 垂直于x 轴,垂足为点C ,且OC=2OA 。

求 (1)点C 的坐标; (2)反比例函数的解析式。

22、(本题满分12分)
本市为了给市容营造温馨和谐的夜间景观,准备在一条宽7.4米的道路上空利用轻轨桥墩,安装呈大中小三个同心圆的景观灯带,如图8,已知EF 表示路面宽度,轻轨桥墩上设有两处限高标志,分别表示等腰梯形的下底边到路面的距离为2.9米和等腰梯形的上底边到路面的距离为3.8米,大圆直径等于AD ,三圆半径的比等于1:2:3.试求这三个圆形灯带的总长为多少米?(结果保留π) (





sin 370.6,cos370.8,tan 370.75︒︒︒≈≈≈)
3.8m
2.9m
2.9m
D
C
A
O
23、(本题满分12分)
如图9,在△ABC 中,点D 、E 分别在边BC 、AC 上,BE 、AD 相交于点G ,EF ∥AD 交BC 于点F ,
且2
BF
BD BC =g ,联结FG 。

(1)求证:FG ∥CE ;
(2)设∠BAD=∠C ,求证:四边形AGFE 是菱形。

24、(本题满分12分)
如图10,在平面直角坐标系xOy 中,二次函数的图像经过点
(1,0)A -,(4,0)B ,(0,2)C ,点D 是
点C 关于原点的对称点,联结BD ,点E 是x 轴上的一个动点,设点E 的坐标为(,0)m ,过点E 作x 轴的垂线l 交抛物线于点P 。

(1)求这个二次函数解析式;
(2)当点E 在线段OB 上运动时,直线l 交BD 于点Q ,当四边形CDQP 是平行四边形时,求m 的值; (3)是否存在点P ,使△BDP 是不以BD 为斜边的直角三角形,如果存在,请直接写出点P 的坐标;如果不存在,请说明理由。

图9
G
F
E
D
C
B
A
25、(本题满分14分)
如图11-1,已知梯形ABCD 中,AD ∥BC ,∠D=90°,BC=5,CD=3,cotB=1,P 是边BC 上的一个动点(不与点B 、点C 重合),过点P 作射线PE ,使射线PE 交射线BA 于点E ,∠BPE=∠CPD 。

(1)如图11-2,当点E 与点A 重合时,求∠DPC 的正切值; (2)当点E 落在线段AB 上时,设BP=x ,BE=y ,试求y 与x 之间的函数解析式,并写出x 的取值范
围;
(3)设以BE 长为半径的B e 和以AD 长为直径的O e 相切,求BP 的长。

图11-1
D
C
B
A
图11-2
P A(E)
B
C
D
备用图
A
B
C
D
参考答案。

相关文档
最新文档