新人教版九年级数学上圆的概念与垂径定理
九年级数学上学期期中考点大串讲(人教版):圆
B
知识大全
B
3.弧:圆上任意两点间的部分叫做圆弧,
(
简称弧.以A、B为端点的弧记作 AB ,
读作“圆弧AB”或“弧AB”.
➢半圆
·O
C
A
圆的任意一条直径的两个端点把圆分成
两条弧,每一条弧都叫做半圆.
B
·O
➢劣弧与优弧
(
小于半圆的弧叫做劣弧.如图中的AC ;
(
大于半圆的弧叫做优弧.如图中的ABC.
人教版九年级上册
第24章 圆
【十二大考点串讲+素养提升】
思维导图
知识大全
考点一、与圆有关的概念
1.圆:平面内到定点的距离等于定长的所有点组成的图形.
2.弦:连接圆上任意两点的线段(如图中的AC)叫做弦.
经过圆心的弦(如图中的AB)叫做直径.
A
C
·
O
注意
1.弦和直径都是线段.
2.直径是弦,是经过圆心的特殊弦,是圆中最长的
2
2
∴ OE=OF
又∵ AB=CD,
知识大全
考点五、圆周角及其定理、推论
1.概念:在圆中,除圆心角外,还有一类角(如图中的∠ACB),它的
顶点在圆上,并且两边都与圆相交,我们把这样的角叫做圆周角.
(两个条件必须同时具备,缺一不可)
知识大全
2.圆周角定理:
一条弧所对的圆周角等于它所对的圆心角的一半.
AB=CD
(3)如果∠AOB=∠COD,那么_______,_______.
(4)如果AB=CD,OE⊥AB,OF⊥CD,垂足分别为E,F,
OE与OF相等吗?为什么?
解:OE=OF.理由如下: ∴ AE=CF
新人教版九年级数学上册第二十四章《圆的复习》课件
6、点与圆的位置关系: ①点在圆外;②点在圆上; ③点在圆 内. 判断方法: ①交点个数 ②点与圆心的 距离d和半径r的大小 关系. 7、直线与圆的位置关系: ①相离,②相切, ③相交. 判断方法: ①交点个数 ②圆心与直线的距离d和半径r的 大小关系. 8、两圆的位置关系: ①外离 ②相切 ③相交 ④内切 ⑤ 内含 判断方法: ①交点个数 ②圆心距d与半径r1、r2的大小 关系.
AB AC BC AD 2
2019年2月23日7时9分 欢迎046班的同学们!注意听课, 积极思考呵!
填空、 1、 在同圆或等圆中,如果圆心角相等,那么它所对的 弧____,所对的弦____; 2、在同圆或等圆中,如果弧相等,那么__________相 等,__________相等; 3、在同圆或等圆中,如果弦相等,那么__________相 等,_________相等;
2019年2月23日7时9分
欢迎046班的同学们!注意听课, 积极思考呵!
切线的性质定理
圆的切线垂直于过切点的半径.
∵CD切⊙O于A, OA是⊙O的 半径
●
O D
∴CD⊥OA.
C
A
2019年2月23日7时9分
欢迎046班的同学们!注意听课, 积极思考呵!
切线的性质定理出可理解为
如果一条直线满足以下三个性质中的任意两个,那么
D
A
●
B
O ①∠AOB=∠A′O′B′
可推出
┏ A′ D′ B′ 如由条件: ③AB=A′B′
②AB=A′B′
⌒ ⌒
④ OD=O′D′
2019年2月23日7时9分 欢迎046班的同学们!注意听课, 积极思考呵!
人教版初中数学九年级上册第24章知识复习第一部分圆的有关概念和性质
在上图中,
D
若∠COD=∠AOB,则 CD=AB,CD=AB ;
若CD=AB,则 ∠COD=∠AOB,CD=AB;
若CD=AB,则 ∠COD=∠AOB,CD=AB,.
CAD=ACB.
(二)圆的有关性质 3、垂径定理:
•
垂直于弦的直径平分这条弦,并且平分弦 所对的两条弧。 推论:①平分弦(非直径)的直径垂直于这条弦,
(二)圆的有关性质 Q
A•
O•
•B
P
C
4、②在同圆或等圆中,同弧或等弧所对的 圆周角相等,都等于该弧所对的圆心角的 一半;相等的圆周角所对的弧相等。
如图:∠BOC=2∠BAC=2∠BPC=2∠BQC.
(二)圆的有关性质
PQ
O •
D
A C
B
如图:若AB=CD, 则∠AOB=∠COD=2∠APB=2∠CQD.
反之,若∠APB=∠CQD,则AB=CD.
【及时巩固】
d P
P
d
O
•
r
d
P
1、设⊙O的半径为r,点P到圆心的而距离为d,
则 ①点P在⊙O上 d = r;
②点P在⊙O内 d< r;
③点P在⊙O外 d >r.
【及时巩固】
2、“经过三角形各顶点的圆叫三角形的外接圆. 外接圆的圆心叫做三角形的外心(即三角形三边 中垂线的交点),这个三角形叫圆的内接三角形.” 先分别作出锐角三角形、钝角三角形、直角三 角形的外接圆,再观察图形,填空:
并且平分弦所对的弧; ②平分弧的直径垂直平分这条弧所对的弦;...
(二)圆的有关性质
•
垂径定理及推论可归纳为: 一条直线若具有“①经过圆心; ②垂直于弦;③平分弦;④平分弦所对的 优弧;⑤平分弦所对的劣弧”这五个性质 中的两个,这条直线就具有其余三个性质. 注意:①③组合有限制.
九年级数学上人教版《圆》课堂笔记
《圆》课堂笔记一、基本概念1.圆:所有点到定点的距离等于定长的点的集合。
定点称为圆心,定长称为半径。
2.弦:连接圆上任意两点的线段。
最长的弦是直径。
3.弧:圆上两点之间的部分。
弧分为优弧和劣弧。
4.圆心角:顶点在圆心,两边与圆相交的角。
5.圆周角:顶点在圆上,两边与圆相交的角。
二、圆的性质1.圆的对称性:圆关于经过圆心的任意直线对称。
2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧。
3.圆心角、弧、弦的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
反之,如果两弦相等,那么它们所对的圆心角也相等,所对的弧也相等。
4.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
5.切线性质:切线垂直于过切点的半径。
切线与圆心的距离等于圆的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
6.圆内接四边形性质:圆内接四边形的对角互补。
三、重要公式和定理1.圆的周长公式:C = 2πr(r为半径)。
2.圆的面积公式:S = πr²(r为半径)。
3.扇形面积公式:S = (nπr²) / 360(n为圆心角度数,r为半径)。
4.圆锥侧面积公式:S = πrl(r为底面半径,l为母线长)。
5.圆的切线判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
6.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
7.垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
8.圆心角、弧、弦的关系推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
9.圆周角定理推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
10.切线性质推论:圆的切线垂直于过切点的半径。
人教版数学九年级上册24.1.2《垂径定理》教学设计2
人教版数学九年级上册24.1.2《垂径定理》教学设计2一. 教材分析《垂径定理》是人教版数学九年级上册第24章第1节的内容,本节课主要介绍圆中的垂径定理。
垂径定理是指:圆中,如果一条直线垂直于直径,那么这条直线平分这条直径,并且平分直径所对的圆周角。
教材通过生活中的实例引入垂径定理的概念,然后通过证明和应用来巩固这个定理。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的周长、直径、半径等。
同时,学生也掌握了平行线和相交线的性质。
但是,学生对于圆中的垂径定理可能比较难以理解和证明,因此需要通过生活中的实例和图形的直观展示,帮助学生理解和掌握这个定理。
三. 教学目标1.知识与技能:让学生理解和掌握圆中的垂径定理,能够运用垂径定理解决相关问题。
2.过程与方法:通过观察、操作、证明等过程,培养学生的几何思维和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.教学重点:理解和掌握垂径定理,能够运用垂径定理解决相关问题。
2.教学难点:垂径定理的证明和运用。
五. 教学方法1.情境教学法:通过生活中的实例引入垂径定理,激发学生的学习兴趣。
2.演示法:通过图形的直观展示,帮助学生理解和证明垂径定理。
3.问题驱动法:通过提出问题和解决问题,引导学生主动探索和学习。
4.小组合作学习:鼓励学生分组讨论和合作,培养学生的团队合作意识。
六. 教学准备1.教具准备:多媒体教学设备、圆规、直尺、黑板等。
2.教学素材:教材、课件、练习题等。
七. 教学过程1.导入(5分钟)通过展示生活中的实例,如自行车轮子、时钟等,引导学生观察和思考圆中的垂径定理。
让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)展示垂径定理的定义和性质,通过图形的直观展示,让学生理解和掌握垂径定理。
同时,引导学生思考如何证明这个定理。
3.操练(10分钟)让学生分组讨论和合作,尝试证明垂径定理。
初中数学常见的命题和定理垂径定理
初中数学中,垂径定理是一个常见且重要的命题和定理,它在解决相关几何问题中起到了关键的作用。
下文将从垂径定理的概念入手,深入解析其原理和应用,并列举一些相关的例题,以便读者更加深入地理解和掌握这一重要定理。
一、垂径定理的概念垂径定理是指:如果在一个圆上,直径的两端连接圆上任意一点,那么这两条线段所夹的角都是直角。
简而言之,垂径定理可以理解为描述直径和圆上一点所构成的角是直角的规律。
二、垂径定理的证明1. 引理:直径是任意一点的最短距离。
这是基本的几何定理,无需证明。
2. 证明:设在圆上有直径AB,圆上的一点C。
连接AC和BC两条线段。
假设∠ACB不是直角,而是锐角或钝角。
那么,以AC为直径作圆,由于ACB不是直角,必定有另一个点D在圆上,使得∠ADB是锐角或钝角。
根据引理,AD+DB要小于或等于AE+EB,而AE+EB等于AB,所以AD+DB小于或等于AB,这与AD+DB等于AB矛盾。
由此可知,∠ACB必须是直角。
三、垂径定理的应用垂径定理在实际问题中有着广泛的应用。
通过运用垂径定理,我们可以解决许多与圆相关的问题,如圆的切线问题、直线与圆的位置关系问题等。
1. 圆的切线问题由垂径定理可知,连接圆上点和圆心构成的线段为直径,因此连接切点和圆心的线段垂直于切线。
这一性质是圆的切线问题得以解决的基础。
2. 直线与圆的位置关系问题利用垂径定理,可以判断直线与圆的位置关系。
当直线与圆相切时,由于切点和圆心连线垂直于切线,可根据垂径定理得出直线与圆相切的结论。
四、垂径定理的例题1. 已知AB是⊙O的直径,C,D是圆周上的两点,AC与BD相交于E,割⊙O的弦AE与BE的关系为()A. AE=BEB. AE>BEC. AE<BED. 无法确定解析:根据垂径定理可知,连接圆上点和圆心构成的线段为直径,因此以AE为直径的⊙O必定经过B点,以BE为直径的⊙O必定经过A 点,所以EA=EB。
2. 如图,在直径AB上取一点C,过点C作弦CD,与⊙O交于点E,连接AE、EB,若CD与AB垂直,求证:AC=CB。
人教版九年级数学上册 24.1.2垂径定理(共21张PPT)
下课!
课堂作业:课本 家庭作业:练习册
O
A
B
E
D
∴ CD⊥弦AB ,A⌒D=
⌒
BD
,A⌒C=B⌒C
1.判断下列图形,能否满足垂径定理?
B
B
B
O
O
O
C A
(×)
DC A
DC E
(×)
(√)
注意:定理中的两个条件
(直径,垂直于弦)缺一不可!
DC
O D
A
(√)
2.如图,在圆O中,直径MN⊥AB,垂足
是C,则下列结论中错误的D是( )
A.A⌒N=⌒BN B. AC=BC
2
2
OD=OC-CD=R-7.2
在Rt△OAD中,由勾股定理,得A
C D B
OA2=AD2+OD2
R
即 R2=18.72+(R-7.2)2
O
解得:R≈27.9(m)
因此,赵州桥的主桥拱半径约为27.9m.
图一:AC、BD有什么关系? A C O D B
变式:图二AC=BD依然成立吗? (1)
AC
O
将圆心到弦的距离、半径、 弦长构成直角三角形,把问题 转化为直角三角形的问题。
B
A P
O
如图,A⌒B 所在圆的圆心是点O, 过O作OC⊥AB于点D,若CD=4 m, 弦AB=16 m,求此圆的半径.
课本例题
如图,1 400 多年前,我国隋代建造的赵州石拱桥 主桥拱是圆弧形,它的跨度(弧所对的弦长)是 37 m, 拱高(弧的中点到弦的距离)为 7.23 m,求赵州桥主桥 拱的半径(精确到 0.1 m).
M
C.A⌒M=⌒BM D.OC=CN
新人教版九年级数学(上)——与圆有关的角(圆周角、圆心角)
OA BE FCD课前回顾1、垂径定理的概念及其推论:2、回顾练习:如图:AB 是的直径,CD 是弦,过A 、B 两点作CD 的垂线,垂足分别为E 、F ,若AB=10,AE=3,BF=5,求EC 的长。
知识点一、圆心角1、圆心角的定义:顶点在圆心的角叫做圆心角。
2、圆心角的度数与它所对的弧的度数之间的关系:圆心角的度数等于它所对弧的度数。
3、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4、圆心角定理推论:在同圆或等圆中,两个圆心角、两条弦、两条弧、两条弦的弦心距中有一组量相等,其余各组量都相等。
例题讲练例题一、概念理解1.______________的______________叫做圆心角. 2.如图,若长为⊙O 周长的nm,则∠AOB =____________.与圆有关的角——圆心角、圆周角3.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么_ _____________________.4.在圆中,圆心与弦的距离(即自圆心作弦的垂线段的长)叫做弦心距,不难证明,在同圆或等圆中,如果两条弦相等,那么它们的弦心距也______.反之,如果两条弦的弦心距相等,那么_____________________.5. 求证:在同圆或等圆中,两条弦相等,那么它们的弦心距也相等。
例题二、基础应用6.已知:如图,A、B、C、D在⊙O上,AB=CD.求证:∠AOC=∠DOB.7.已知:如图,P是∠AOB的角平分线OC上的一点,⊙P与OA相交于E,F点,与OB 相交于G,H点,试确定线段EF与GH之间的大小关系,并证明你的结论.8.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,求∠ACO的度数.例题三:综合应用9.⊙O中,M为的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AMC.AB<2AM D.AB与2AM的大小不能确定10.如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想与之间的关系,并证明你的猜想.11.如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.CAB1、圆周角的定义:顶点在圆上,两条边与圆相交的角叫做圆周角.2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等;都等于这条弧所对的圆心角的一半。
人教版九年级上册数学课件:24.垂径垂径定理
O B
O ●C
垂径定理的应用:
1.在⊙O中,若CD ⊥AB于M,AB为直径,则
下列结论不正确的是( C )
A、A⌒C=A⌒D B、⌒BC=⌒BD
C、AM=OM D、CM=DM
2.已知⊙O的直径AB=10,弦CD
A
C M└
D
●O
⊥AB,垂足为M,OM=3,则
CD= 8 .
B
3.在⊙O中,CD ⊥AB于M,AB为直径,若CD=10, AM=1,则⊙O的半径是 13 .
B
。圆的任意一条直径的两个端
O
点把圆分成两条弧,每一条
A
弧叫做半圆.
大于半圆的弧(用三个点表示,如:ACB 或 BCA ), 叫做优弧;
小于半圆的弧叫做劣弧. 如: AB BC
3、等圆:能够重合的两个圆叫做等圆A, 半径相等的两个圆也是等圆;反过来, 同圆或等圆的半径相等。
B
M
●O
C
4、等弧:在同圆或等圆中,能够互相重合的弧。
解这个方程,得R 545.
这段弯路的半径约为545m .
小结: 垂径定理
解决有关弦的问题,经常是
过圆心作弦的垂线,
A
或作垂直于弦的直径,
连结半径等辅助线,
B
.
O
构成直角三角形,为应用垂径定理创 造条件。
挑 战自我
1、要把实际问题转变成一个数学问题来解决.
2、熟练地运用垂径定理及其推论、勾股定理,并用 方程的思想来解决问题.
37.4m
7.2m
C
A
E
B
O
赵州石拱桥
解:如图,用 A表B 示桥拱,A所B在圆的圆心为O,半径为Rm,
过圆心O作弦AB的垂线OD,与 A相B 交于点C. CD就是拱高. 根据垂径定理得:AD=BD。
第24章圆垂径定理-人教版九年级数学上册(教案)
举例解释:
-重点讲解垂径定理的证明,通过几何画板演示或实际操作,让学生直观感受定理的正确性;
-通过多个例题,如求圆中弦长、圆周角等,强调垂径定理的应用;
-结合实际生活中的例子,如圆形花园的设计,强化圆的对称性质在实际问题中的应用。
2.教学难点
-垂径定理的证明过程中,学生对几何证明的逻辑顺序和推理方法的理解;
-在解决实际问题时,学生对于如何正确运用垂径定理的识别和运用;
-对于圆中复杂的弦、弧关系,学生难以形成清晰的空间观念和几何直觉;
-在数学表达和书写过程中,ห้องสมุดไป่ตู้生可能出现的规范性和准确性问题。
举例解释:
-难点突破:通过小组讨论、教师引导,逐步引导学生理解垂径定理证明的逻辑性,强调证明的每一步必须严谨;
5.培养学生严谨的数学态度和科学精神,养成准确、规范的表达和书写习惯。
三、教学难点与重点
1.教学重点
-理解并掌握垂径定理的概念及其证明过程,即圆的直径垂直于弦,并且平分弦;
-学会运用垂径定理解决实际问题,如计算圆中未知长度、求解与圆相关的方程等;
-通过实例,强化圆的性质,特别是直径所对的圆周角是直角的理解;
同学们,今天我们将要学习的是《垂径定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平分弦或计算圆中未知长度的情况?”(例如,如何将一块圆形披萨平均分给两个人)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索垂径定理的奥秘。
五、教学反思
今天我们在课堂上探讨了垂径定理,我发现学生们对这个定理的理解程度不尽相同。有的同学能够迅速掌握定理的证明和应用,但也有一些同学在理解上存在困难。这让我意识到,在教授这样的几何定理时,需要从不同角度出发,用多种方法来帮助学生理解。
新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析
人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。
九年级数学上册 第二十四章 圆知识点总结素材 新人教版
圆一、知识回顾圆的周长: C=2πr 或C=πd 、圆的面积:S=πr ²圆环面积计算方法:S=πR ²-πr ²或S=π(R ²-r ²)(R 是大圆半径,r 是小圆半径)二、知识要点 一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 固定的端点O 为圆心。
连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;r dd CBAOdrd=rrd四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;rRd图3rR d五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
垂径定理九年级数学知识点
垂径定理九年级数学知识点垂径定理是九年级数学中的一个重要知识点,它涉及到平面几何的基本概念和性质。
在学习垂径定理之前,我们先来了解一下什么是垂径。
一、垂径的定义和性质垂径是在平面上与一条直线垂直相交的线段。
根据垂径的定义,我们可以得到以下性质:1. 一个点到直线的垂径只有一个。
2. 直径的两个垂径互相垂直。
3. 如果两条直径互相垂直,那么它们一定相交于圆的圆心上。
了解了垂径的定义和性质,我们就可以进一步探讨垂径定理了。
二、垂径定理的表述垂径定理是指:如果一条直径和一条垂径相交于圆上的一个点,那么这条垂径所对的弧就是直径所对的弧的一半。
换句话说,直径和垂径所对的弧互为一半。
三、垂径定理的证明垂径定理的证明可以通过利用圆的基本性质和几何知识来完成。
下面我们通过具体的例子来进行证明。
假设在圆O中,AB是直径,CD是与AB垂直相交于点E的垂径。
我们要证明的是:弧CD是弧AB的一半。
首先,连接OA和OB。
根据垂径的性质,我们知道OA和CD互相垂直,所以OA和CD构成一对垂直线段。
同样地,OB和CD也构成一对垂直线段。
由于OA和OB是圆的直径,所以它们穿过圆心O,并且与圆相交于圆上的两个点A和B。
根据圆的性质,直径的两条垂径与圆相交的弧互为一半。
因此,我们可以得出结论:弧CA等于弧CB的一半。
根据弧度的性质,我们知道弧度等于圆心角的度数。
所以弧度CA等于角CBA的度数。
同理,弧度CB等于角CAB的度数。
既然我们已经知道角CBA和角CAB是互补角,而且它们的两条弧互为一半。
所以我们可以得出结论:弧CD等于弧AB的一半。
四、垂径定理的应用垂径定理的应用非常广泛,不仅在九年级的几何学中常常被使用,而且在实际生活中也可以见到它的应用。
例如,在建筑设计中,我们经常会使用垂径定理来确定建筑物的位置和相对位置。
通过利用垂径定理,我们可以确定建筑物的中心位置,从而达到平衡和美观的效果。
此外,在航空和导航领域,垂径定理也被广泛运用。
九年级上册数学圆概念公式
初三总复习知识点总结------圆(1)(2) (3)(4)(4)∵CD=AD=BD ∴ΔABC是RtΔ5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.几何表达式举例:∵ABCD是圆内接四边形∴∠CDE=∠ABC∠C+∠A=180°6.切线的判定与性质定理:如图:有三个元素,“知二可推一”;需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;※(3)经过圆心且垂直于切线的直线必经过切点;※(4)经过切点且垂直于切线的直线必经过圆心.几何表达式举例:(1)∵OC是半径∵OC⊥AB∴AB是切线(2)∵OC是半径∵AB是切线∴OC⊥AB (3)……………7.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角.几何表达式举例:∵PA、PB是切线∴PA=PB∵PO过圆心PABO11.关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦;(2)如果两圆相切,那么切点一定在连心线上.(1)(2)几何表达式举例:(1)∵O 1,O 2是圆心∴O 1O 2垂直平分AB (2)∵⊙1、⊙2相切∴O 1、A 、O 2三点一线12.正多边形的有关计算:(1)中心角αn ,半径R N ,边心距r n ,边长a n ,内角βn ,边数n ;(2)有关计算在RtΔAOC 中进行.公式举例:(1)αn =n 360︒;(2)n1802n ︒=α几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:圆的几何定义和集合定义、弦、弦心距、弧、等弧、弓形、弓形高三角形的外接圆、三角形的外心、三角形的内切圆、三角形的内心、圆心角、圆周角、弦切角、圆的切线、圆的割线、两圆的内公切线、两圆的外公切线、两圆的内(外)、公切线长、正多边形、正多边形的中心、正多边形的半径、正多边形的边心距、正多边形的中心角.二定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.ABO1O2AO1O2αnβnABCDEOa r n nnR3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形.三公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180Rn π;(3)圆的面积S=πR 2.(4)扇形面积S 扇形=LR 21360R n 2=π;(5)弓形面积S 弓形=扇形面积S AOB ±ΔAOB 的面积.(如图)2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧=2πrh ;(r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧=LR 21.(L=2πr ,R 是圆锥母线长;r 是底面半径)四常识:1.圆是轴对称和中心对称图形.2.圆心角的度数等于它所对弧的度数.3.三角形的外心⇔两边中垂线的交点⇔三角形的外接圆的圆心;三角形的内心⇔两内角平分线的交点⇔三角形的内切圆的圆心.4.直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交⇔d <r ;直线与圆相切⇔d=r ;直线与圆相离⇔d >r.5.圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R≥r)两圆外离⇔d >R+r ;两圆外切⇔d=R+r ;两圆相交⇔R-r<d <R+r ;两圆内切⇔d=R-r ;两圆内含⇔d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径”的方法加辅助线.7.关于圆的常见辅助线:。
九年级上册数学 人教版 垂径定理
垂径定理一、错题回顾1、已知抛物线过A(-4,m)和B(8,m),求对称轴的直线方程。
2、已知抛物线与x轴的一个交点为(-3,0),对称轴为直线x=1,求抛物线与x轴的另一个交点坐标。
3、某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少买10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元。
(1)求与的函数关系式并直接写出自变量x的取值范围。
(2)每件商品的售价定为多少元时,每个月可获得最大利润,最大月利润是多少元。
4、要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请队参加。
课题:垂径定理圆中相关概念的结构示意图 圆()()⎩⎨⎧⇒⇒ 等圆大小半径同心圆位置圆心相关概念⎪⎪⎩⎪⎪⎨⎧⇒⇒⇒圆周角圆心角等弧半圆、优弧、劣弧弧直径弦例1、如图,圆中弦的条数为( )A .2条B .3条C .4条D .5条 例2、判断题(1)直径是弦 ( ) (2)弦是直径 ( ) (3)半圆是弧 ( ) (4)弧是半圆 ( ) (5)长度相等的两段弧是等弧( ) (6)等弧的长度相等 ( )知识点一:垂径定理圆的轴对称性:过圆心的任一条直线(直径所在的直线)都是它的对称轴。
垂径定理⎩⎨⎧平分弦所对的两条弧。
)的直径垂直于弦,且推论:平分弦(非直径对的两条弧;平分弦,并且平分弦所定理:垂直于弦的直径垂径定理包含两个条件和三个结论,即条件⇒⎩⎨⎧)直线和弦垂直,()直线过圆心,(21结论⎪⎩⎪⎨⎧弧。
)直线平分弦所对的优(弧,)直线平分弦所对的劣()直线平分弦,(543 符号语言:⎩⎨⎧⊥ AB CD O ,O ,的弦,为圆的直径是圆AB CD ⎪⎩⎪⎨⎧===⇒BDAD BC AC BEAE 推论1:在(1)、(2)、(3)、(4)、(5)中,任意两个成立,都可以推出另外三个都成立。
人教版数学九年级上册24.垂径定理课件
自学指点
认真学习课本p81—83练习上方完。 1.完成“探究”中的问题。 2.垂径定理的内容是什么?如何证明?
如何用几何语言表示?
3.垂径定理的推论是什么?如何证明? 如何用几何语言表示?
4.注意例2的格式和步骤。 6分钟后,比一比谁能正确的做出检测题
1.如图,在⊙O中,弦AB的长为8cm,圆心
O
到A解 B的距 : 离O为 E3AcmB,求⊙O的半径.
A E21A B2184 在 Rt△ AO 中
A
E
O·
B
O2AEO2E A2E
O AO2 E A2 E3 2 4 2 5c m
答:⊙O的半径为5 cm。
2.如图,在⊙O中,AB、AC为互相垂直且相等
垂径定理推论
平分弦(不是直径)的直径垂直于
弦,并且平分弦所对的两条弧。
C
符号语言
∵ CD是直径, AE=BE
·O
∴ CD⊥ABA,⌒C ⌒ A⌒D ⌒
AE
B
=BC, =BD.
D
3.辨析定理的应用条件:
下列哪些图形能直接满足垂径定理的题设条件?
O
O
O
(1)
(2)
(3)
O
O
(4)
(5)
(6)
检测二
C
(2)线段:AE=BE
弧: AC=BC
·O
把圆沿A着D直=径BCDD折叠时,CD两侧的两个半圆
E
重合,点A与点B重合,AE与BE重合,AC、AD A
B
分别与 B、C B重合。
D
D
2.垂径定理的内容是什么?画出合适题意的图形, 用符号语言表示出来. 垂直于弦的直径平分弦,且平分弦所对的两条弧.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的概念与垂径定理
知识点一、圆的定义
1、圆的第一定义:
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 所形成的图形叫做圆.
这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作:⊙O,读作圆O.
2.战国时期的《墨经》中对圆的定义是:圆,一中同长也.
3.圆的第二定义:
由圆的定义可知:
(1)圆上的各点到圆心的距离都等于定长(即半径r);在一个平面内,到圆心的距离等于半径长的点都在圆上.因此,圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.
:一个是圆心,另一个是半径,其中,注意:由圆的概念可知:○1“圆”指的是“圆周”,即一条封闭的曲线,而
不是圆面。
○2确定一个圆取决于两个因素:圆心和半径。
例题1
○1经过P点的圆有无数个;
○2以P为圆心的圆有无数个;
○3半径为3cm且经过P点的圆有无数个;
○4以p为圆心,以3cm为半径的圆有无数个。
A、1个
B、2个
C、3个
D、4个
知识点二、圆的有关概念
1.弦:
连结圆上任意两点间的线段叫做弦.经过圆心的弦叫做直径.并且直径是同一圆中最长的弦.
2. 弧:圆上任意两点间的部分叫做圆弧,简称弧,以A,C为端点的弧记作»AC,
读作圆弧AC或弧AC.
3.圆的直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
ABC叫做优弧)
4.在一个圆中大于半圆的弧叫做优弧;(如图所示¼
小于半圆的弧叫做劣弧.(如图所示)»AC或»BC叫做劣弧.5.半径相等的两个圆叫做等圆.反过来,等圆的半径相等;在同圆或等圆中,能够完全重合的弧叫做等弧。
例题2:下列命题中,正确的个数是()。
○1直径是圆中最长的弦;○2弧是半圆;○3过圆心的直线是直径;○4半圆不是弧。
A、1个
B、2个
C、3个
D、4个
例题3:下列几个命题中,正确的是()
·
B C
D
O
M 第2题图
A .两条弧的长度相等,那么他们是等弧 B. 等弧只有在同圆中存在 C. 度数相等的弧的长度相等 D. 等弧的长度相等
巩固练习.
如下图,(1)若点O 为⊙O 的圆心,则线段__________是圆O 的半径;线段________是圆O 的弦,其中最长的弦是______;______是劣弧;______是半圆.
(2)若∠A =40°,则∠ABO =______,∠C =______,∠ABC =______. 综合讲练.
讲练1:如图,在同心圆中,大圆的弦AB 交小圆于C ,D 两点. (1)求证:∠AOC =∠BOD ;
(2)试确定AC 与BD 两线段之间的大小关系,并证明你的结论.
讲练2:如图,已知AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°,求∠C 及∠AOC 的度数.
知识点三、垂直于弦的直径(垂径定理)
说明:①圆的对称轴是直径所在的直线,而不是直径本身. ②圆有无数条对称轴.
2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧. ∵⊙O 中CD 是直径、AB 是弦,且CD ⊥AB 于M ,
∴AM =BM ,»»AC BC =,»»AD BD =. 你能试着证明吗?
说明:①垂径定理中的直径可以是过圆心的的直线或线段;
②在有关计算直径或半径、弦长以及圆心到弦
的距离等
问题中,垂径定理常常和勾股定理结合使用,
即:(弦的一半)2+(圆心到弦的距离)2=(半径)2. 例1 如图,直线与两个同心圆分别交于图示的各点,则正确的是 A .MP 与RN 的大小关系不定 B.MP=RN C.MP <RN D.MP >RN
例2 如图,AB 是⊙O 的弦,半径OC ⊥AB 于D 点,且AB =6cm ,OD =4cm ,求DC 的长 【课堂操练】
1.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小
为( ) A 、25° B 、30° C 、40° D 、50°
2.如图,在直径AB =12的⊙O 中,弦C D ⊥AB 于M ,且M 是半径OB 的中点,求弦C D 的长(结果保留根号).
3.如图,⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,
OM :OC =3:5,求AB 的长
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
推论2:平分弦所对的一条弧的直径垂直于弦,并且平分弦所对的另一条弧。
推论3:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
问:你能分别用符号语言描述吗?请试着表示!
概念理解:
1.下面四个命题中正确的一个是()
A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦
C.弦的垂线必过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心
2.下列命题中,正确的是().
A.过弦的中点的直线平分弦所对的弧B.过弦的中点的直线必过圆心
C.弦所对的两条弧的中点连线垂直平分弦,且过圆心D.弦的垂线平分弦所对的弧
跟踪练习:
1、.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.
1题图
2.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=______cm,∠AOB=______.
2题图
3.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.
3题图
4.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,且AB=CD,则圆心O到CD的距离是______.
4题图
5.如图,P为⊙O的弦AB上的点,PA=6,PB=2,⊙O的半径为5,则OP=______.
5题图
6.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.
6题图
综合讲练:
A
C
D B
A
B
C
D
E
M
N
O
讲练1.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,求CD的长.
讲练2.已知:如图,试用尺规将它四等分.
讲练3.已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离.
讲练4.已知:如图,A,B是半圆O上的两点,CD是⊙O的直径,∠AOD=80°,B是的中点.
(1)在CD上求作一点P,使得AP+PB最短;
(2)若CD=4cm,求AP+PB的最小值.
随堂练习:
1.如图所示,⊙O的直径AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求CD的长.
2、如图,AB、AC为⊙O的两条弦,D、E分别为»AB、»AC中点,求证:
AM=AN.
3、如图所示,在Rt△ABC中,∠C=900,AC=3,BC=4,以
点C为圆心,CA为半径的圆与AB、BC分别交于点D、
E,求AB和AD的长。
4、如图,已知:在⊙O中,AB是直径,CD是弦,CD
CE⊥
交AB于E,CD
DF⊥交AB于F.求证:BF
AE=.
5、如图所示,P为弦AB上一点,CP⊥OP交⊙O于点C,AB=8,AP:PB=1:3,求PC的长。
6.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB 于点C,交弦AB于点D。
已知:AB=24cm,CD=8cm (1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.
7、如图,AB、CD是半径为5的⊙O的两条弦,AB=8,C
A B
D
E
O A
P
B
C
CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为多少?。