实验三 决策树算法实验实验报告
决策树分类实习报告
实习报告:决策树分类实验一、实习背景随着人工智能和机器学习的不断发展,越来越多的任务需要使用机器学习算法进行数据分析和处理。
决策树作为一种常见的机器学习算法,在分类和回归任务中有着广泛的应用。
本次实习,我选择了决策树分类任务,并使用Python的sklearn库进行实验。
二、实习目的1. 熟悉决策树算法的基本原理和实现方式;2. 掌握决策树模型的训练、评估和改进方法;3. 应用决策树算法解决实际问题,提高对机器学习算法的理解和应用能力。
三、实习内容1. 数据集选取与预处理:本次实验选用OpenML的汽车数据集,包含214个样本,11个特征。
首先,对数据集进行加载和探索性分析,了解数据的分布和特点。
然后,进行数据预处理,包括缺失值填充、异常值处理和特征选择等。
2. 模型训练与评估:使用决策树分类器对预处理后的数据集进行训练。
通过调整模型参数,如最大深度、分裂准则等,评估不同模型在测试集上的性能。
评估指标包括准确率、召回率、F1分数等。
3. 改进模型:为了提高模型性能,采用GridSearchCV方法寻找最佳的超参数组合。
同时,针对过拟合问题,限制树的最大深度,并调整类别权重以应对数据集的不平衡。
4. 结果展示:最后,在使用最佳参数的决策树模型上,对测试集进行预测,并使用混淆矩阵、准确率评分和分类报告形式展示模型结果。
四、实习心得1. 决策树算法易于理解和实现,但模型性能受到参数设置的影响较大。
因此,在实际应用中,需要对参数进行调整和优化。
2. GridSearchCV方法是一种有效的参数调整工具,可以较大程度地提高模型性能。
3. 过拟合问题是决策树算法常见的问题之一。
通过限制树的最大深度、调整类别权重等方法,可以有效减轻过拟合现象,提高模型在实际任务中的表现。
4. 本次实习使我更深入地了解了决策树算法,提高了我在实际项目中应用机器学习算法的能力。
五、实习展望1. 进一步学习其他机器学习算法,如支持向量机、随机森林等,提高模型的泛化能力。
(完整版)生物数据挖掘-决策树实验报告
实验四决策树一、实验目的1.了解典型决策树算法2.熟悉决策树算法的思路与步骤3.掌握运用Matlab对数据集做决策树分析的方法二、实验内容1.运用Matlab对数据集做决策树分析三、实验步骤1.写出对决策树算法的理解决策树方法是数据挖掘的重要方法之一,它是利用树形结构的特性来对数据进行分类的一种方法。
决策树学习从一组无规则、无次序的事例中推理出有用的分类规则,是一种实例为基础的归纳学习算法。
决策树首先利用训练数据集合生成一个测试函数,根据不同的权值建立树的分支,即叶子结点,在每个叶子节点下又建立层次结点和分支,如此重利生成决策树,然后对决策树进行剪树处理,最后把决策树转换成规则。
决策树的最大优点是直观,以树状图的形式表现预测结果,而且这个结果可以进行解释。
决策树主要用于聚类和分类方面的应用。
决策树是一树状结构,它的每一个叶子节点对应着一个分类,非叶子节点对应着在某个属性上的划分,根据样本在该属性上的不同取值将其划分成若干个子集。
构造决策树的核心问题是在每一步如何选择适当的属性对样本进行拆分。
对一个分类问题,从已知类标记的训练样本中学习并构造出决策树是一个自上而下分而治之的过程。
2.启动Matlab,运用Matlab对数据集进行决策树分析,写出算法名称、数据集名称、关键代码,记录实验过程,实验结果,并分析实验结果(1)算法名称: ID3算法ID3算法是最经典的决策树分类算法。
ID3算法基于信息熵来选择最佳的测试属性,它选择当前样本集中具有最大信息增益值的属性作为测试属性;样本集的划分则依据测试属性的取值进行,测试属性有多少个不同的取值就将样本集划分为多少个子样本集,同时决策树上相应于该样本集的节点长出新的叶子节点。
ID3算法根据信息论的理论,采用划分后样本集的不确定性作为衡量划分好坏的标准,用信息增益值度量不确定性:信息增益值越大,不确定性越小。
因此,ID3算法在每个非叶节点选择信息增益最大的属性作为测试属性,这样可以得到当前情况下最纯的划分,从而得到较小的决策树。
实验三决策树算法实验实验报告
实验三决策树算法实验实验报告一、引言决策树算法是一种常用的机器学习算法,它通过构建一个决策树模型来解决分类和回归问题。
在本次实验中,我们将使用决策树算法对一个分类问题进行建模,评估算法的性能,并对实验结果进行分析和总结。
二、实验目的1.学习理解决策树算法的基本原理和建模过程。
2. 掌握使用Python编程实现决策树算法。
3.分析决策树算法在不同数据集上的性能表现。
三、实验过程1.数据集介绍2.决策树算法实现我们使用Python编程语言实现了决策树算法。
首先,我们将数据集随机分为训练集和测试集,其中训练集占70%,测试集占30%。
然后,我们使用训练集来构建决策树模型。
在构建决策树时,我们采用了ID3算法,该算法根据信息增益来选择最优的特征进行分割。
最后,我们使用测试集来评估决策树模型的性能,计算并输出准确率和召回率。
3.实验结果与分析我们对实验结果进行了统计和分析。
在本次实验中,决策树算法在测试集上的准确率为0.95,召回率为0.94、这表明决策树模型对于鸢尾花分类问题具有很好的性能。
通过分析决策树模型,我们发现花瓣长度是最重要的特征,它能够很好地区分不同种类的鸢尾花。
四、实验总结通过本次实验,我们学习了决策树算法的基本原理和建模过程,并使用Python实现了决策树算法。
通过实验结果分析,我们发现决策树算法在鸢尾花分类问题上具有很好的性能。
然而,决策树算法也存在一些不足之处,例如容易过拟合和对数据的敏感性较强等。
在实际应用中,可以使用集成学习方法如随机森林来改进决策树算法的性能。
id3算法实验报告范文
id3算法实验报告范文一、实验原理决策树通过把实例从根节点排列到某个叶子节点来分类实例,叶子节点即为实例所属的分类。
树上的每一个节点说明了对实例的某个属性的测试,并且该节点的每一个后继分支对应于该属性的一个可能值,例如下图。
构造好的决策树的关键在于如何选择好的逻辑判断或属性。
对于同样一组例子,可以有很多决策树能符合这组例子。
人们研究出,一般下或具有较大概率地说,树越小则树的预测能力越强。
要构造尽可能小的决策树,关键在于选择恰当的逻辑判断或属性。
由于构造最小的树是NP-难问题,因此只能采取用启发式策略选择好的逻辑判断或属性。
用信息增益度量期望熵最低,来选择分类属性。
公式为ID3算法创建树的Root结点如果E某ample都为正,那么返回label=+中的单结点Root如果E某ample都为反,那么返回lable=-单结点树Root如果Attribute为空,那么返回单节点树Root,lable=E某ample中最普遍的目标属性值否则开始A<-Attribute中分类能力最好的属性Root的决策属性<-A对于每个可能值在Root下加一个新的分支对应测试A=vi令E某ample-vi为E某ample中满足A属性值为vi的子集如果E某ample-vi为空在这个新分支下加一个叶子结点,节点的目标属性值lable=E某ample中最普遍的否则在这个新分支下加一个子树ID3(e某ample-vi,target-attribute,attribute-|A|)结束返回Root二、算法实现训练数据存放在Data.t某t中第一行为训练样本数量和每个样本中属性的数量第二行为每个属性取值的数量之后n行为所有样本节点数据结构tructDTNode{intname;//用1,2,3...表示选择的属性,0表示不用分类,即叶节点intdata[D_MA某+1];//表示此节点包含的数据,data[i]=1,表示包含二维数组data[][]中的第i条数据intleaf;//leaf=1正例叶节点;leaf=2反例叶节点;leaf=0不是节点intc;//c=1正类;c=0反类DTNode某child[P+1];//按属性值的个数建立子树};定义函数voidRead_data()//从数据文件Data.t某t中读入训练数据DT_pointerCreate_DT(DT_pointerTree,intname,intvalue)//创建决策树intchoe(int某da)//选择分类属性floatGain(int某da,intp)//计算以p属性分类的期望熵floatEntropy(int某da)//计算数据的熵inttet_leaf(int某da)//测试节点属性voidOut_DT(DT_pointerTree)//用线性表形式输出建立的决策树intCla(int某da)//对输入的测试样本分类全局变量FILE某fp;intp_num;//属性的数量intpi[P_MA某+1];//每个属性有几种取值intd_num;//数据的数量intdata[P_MA某+1][D_MA某+1];//存储训练数据三、程序不足1.、默认训练数据是正确的,对是否发生错误不予考虑2、没有考虑训练数据可以包含缺少属性值的实例3、只能分正反两类四、程序源码#include<iotream>#include<tdio.h>#include<malloc.h>#include<tring.h>#include<math.h>#defineP_MA某10#defineD_MA某50#defineP5//一条数据包括所有属性的取值(1,2,3...)和分类的值(0或1)FILE某fp;intp_num;//属性的数量intpi[P_MA某+1];//每个属性有几种取值intd_num;//数据的数量intdata[P_MA某+1][D_MA某+1];//存储训练数据//定义结点类型tructDTNodeintname;//此节点分类属性的名称intdata[D_MA某+1];//表示此节点包含的数据intleaf;//leaf=1正例叶节点;leaf=2反例叶节点;叶节点intc;//c=1正类;c=0反类DTNode某child[P+1];//按属性值的个数建立子树};typedeftructDTNode某DT_pointer;DT_pointerDT=NULL;introot=0;inttet_leaf(int某da)leaf=0不是inti;inta,b;a=0;//a=0表示没有0类a=1表示有0类for(i=1;i<=d_num;i++) {if(某(da+i)==1&&data[i][0]==0){a=1;break;}b=0;//b=0表示没有1类b=1表示有1类for(i=1;i<=d_num;i++) {if(某(da+i)==1&&data[i][0]==1){b=1;break;}}if(a==0&&b==1)return1;//是1叶节点eleif(a==1&&b==0)return2;//是0叶节点eleif(a==0&&b==0)return2;//此节点无数据elereturn0;//不是叶节点}inttet_c(inta)//给叶节点附属性值if(a==1)return1;elereturn0;}floatEntropy(int某da)//计算数据的熵{inti;篇二:ID3算法装订线:ID3算法分析与实现学院某某某某某某某某某某某某某某某某某某某某专业某某某某某某某某某某某某某某某某学号某某某某某某某某某某某姓名某某某某指导教师某某某某2022年某月某某日题目ID3算法分析与实现摘要:决策树是对数据进行分类,以此达到预测的目的。
决策树算法实验总结
决策树算法实验总结
决策树算法是一种常用的机器学习算法,它通过对数据集进行递归划分,构建出一棵树状的决策模型。
在实验中,我们使用了决策树算法进行分类任务,并对实验结果进行总结。
首先,我们需要准备一个带有标签的训练数据集,其中包含了多个特征和对应的类别标签。
然后,我们可以使用决策树算法对训练数据集进行训练,构建出一棵具有判断条件的决策树。
在实验中,我们可以使用不同的指标来评估决策树算法的性能,例如准确率、精确率、召回率等。
这些指标可以帮助我们了解决策树算法在分类任务中的表现。
此外,我们还可以通过调整决策树算法的参数来提高其性能。
例如,可以通过限制树的最大深度、设置叶子节点的最小样本数等来控制决策树的复杂度,避免过拟合问题。
在实验总结中,我们可以描述决策树算法在实验中的表现,比较其与其他算法的优劣势,并提出进一步改进的方向。
此外,还可以讨论决策树算法在不同数据集上的适用性,并分析其在实际应用中可能遇到的问题和局限性。
总而言之,决策树算法是一种简单而有效的机器学习算法,可以用于分类任务。
通过实验总结,我们可以更好地理解决策树算法的原理和性能,为进一步的应用和改进提供指导。
实验报告 决策树
4 0.01000000
3 0.03909774 0.09182077 0.03029535
Variable importance
Petal.Width Petal.Length Sepal.Length Sepal.Width
32
32
22
14
Node number 1: 114 observations, complexity param=0.75 mean=2, MSE=0.6666667 left son=2 (38 obs) right son=3 (76 obs) Primary splits: Petal.Length < 2.6 to the left, improve=0.7500000, (0 missing) Petal.Width < 0.8 to the left, improve=0.7500000, (0 missing) Sepal.Length < 5.55 to the left, improve=0.5917874, (0 missing) Sepal.Width < 3.35 to the right, improve=0.2148810, (0 missing) Surrogate splits: Petal.Width < 0.8 to the left, agree=1.000, adj=1.000, (0
1 1 1 1 1 ...
> summary(iris)
Sepal.Length
Sepal.Width
Petal.Length
Petal.Width
批注 [U1]: 清除 workplace 中所有变量 批注 [U2]: 清除内存垃圾
实验3-------决策树资料
clementine决策树分类模型一.基于决策树模型进行分类的基本原理概念分类就是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。
由此生成的类描述用来对未来的测试数据进行分类。
数据分类是一个两步过程:第一步,建立一个模型,描述预定的数据类集或概念集;第二步,使用模型进行分类。
clementine 8.1中提供的回归方法有两种:C5.0(C5.0决策树)和Neural Net(神经网络)。
下面的例子主要基于C5.0决策树生成算法进行分类。
C5.0算法最早(20世纪50年代)的算法是亨特CLS(Concept Learning System)提出,后经发展由J R Quinlan在1979年提出了著名的ID3算法,主要针对离散型属性数据;C4.5是ID3后来的改进算法,它在ID3基础上增加了:对连续属性的离散化;C5.0是C4.5应用于大数据集上的分类算法,主要在执行效率和内存使用方面进行了改进。
优点:在面对数据遗漏和输入字段很多的问题时非常稳健;通常不需要很长的训练次数进行估计;比一些其他类型的模型易于理解,模型推出的规则有非常直观的解释;也提供强大的增强技术以提高分类的精度。
二. 范例说明该范例的背景是客户详细的个人投资计划作为一种市场营销活动的结果,snapshottrainN.db(训练数据)描述的是不同age(年龄),不同sex(性别),不同region(地域),不同income(收入),不同married(婚姻),等等的数据,通过分类算法对训练数据进行建模得到决策树模型,通过得到的决策树模型来判断测试数据集(snapshottestN.db)里面的每个记录的pep(个人投资计划)属性是yes还是no。
使用clementine建立流程图,如图1所示:图1 总流程图三. 数据集说明数据集snapshottrainN.db,以下是该数据集的所有字段名:• id. 唯一的识别号• age. 年龄• sex. 性别• region.地理位置• income. 收入• merried. 是否已婚• children. 有几个孩子• car. 是否有汽车• save_act. 是否有储蓄账户• current_act. 是否有活期存款• mortgage. 是否有抵押• pep. 是否有个人投资计划四. 训练模型通过下面的操作,将完成如图2所示的流。
决策树 实验报告
实验(实习)名称决策树分析一.实验要求:(1)学习决策树分类学习方法,学习其中C4.5学习算法,了解其他ADtree、Id3等其它分类学习方法。
(2)应用Weka软件,学会导入数据文件,并对数据文件进行预处理。
(3)学会如何选择学习函数并调节学习训练参数以达到最佳学习效果。
(4)学习并应用其他决策树学习算法,可以进行各种算法对照比较。
二.实验操作(1)在开始程序(或者桌面图标)中找到WEKA3.6.2,单击即可启动WEKA,启动WEKA 时会发现首先出现的一个命令提示符。
接着将出现如下Weka GUI Chooser界面。
(2)选择GUI Chooser中的探索者(Explorer)用户界面。
点击预处理(Preprocess)功能按钮的,Open file,选择其中的“weather”数据作关联规则的分析。
打开“weather.arff”,可以看到“Current relation”、“Attributes”“Selected attribute”三个区域。
(3)点击“Classify”选项卡。
单击左上方的Choose按钮,在随后打开的层级式菜单中的tree部分找到J48。
(4)选中J48分类器后,J48以及它的相关默认参数值出现在Choose按钮旁边的条形框中。
单击这个条形框会打开J48分类器的对象编辑器,编辑器会显示J48的各个参数的含义。
根据实际情况选择适当的参数,探索者通常会合理地设定这些参数的默认值。
三.实验结果:计算正确率可得:(74+132)/(74+30+64+132)=0.69四.实验小结:通过本次试验,我学习了决策树分类方法,以及其中C4.5算法,并了解了其他ADtree、Id3等其它分类方法,应用Weka软件,学会导入数据文件,并对数据文件进行预处理,今后还需努力。
决策树实验报告
决策树实验报告决策树实验报告引言决策树是一种常见的机器学习算法,被广泛应用于数据挖掘和预测分析等领域。
本文将介绍决策树的基本原理、实验过程和结果分析,以及对决策树算法的优化和应用的思考。
一、决策树的基本原理决策树是一种基于树形结构的分类模型,通过一系列的判断和决策来对数据进行分类。
决策树的构建过程中,首先选择一个特征作为根节点,然后根据该特征的取值将数据划分为不同的子集,接着对每个子集递归地构建子树,直到满足停止条件。
构建完成后,通过树的分支路径即可对新的数据进行分类。
二、实验过程1. 数据准备为了验证决策树算法的效果,我们选择了一个包含多个特征的数据集。
数据集中包含了学生的性别、年龄、成绩等特征,以及是否通过考试的标签。
我们将数据集分为训练集和测试集,其中训练集用于构建决策树模型,测试集用于评估模型的准确性。
2. 决策树构建在实验中,我们使用了Python编程语言中的scikit-learn库来构建决策树模型。
首先,我们导入所需的库和数据集,并对数据进行预处理,包括缺失值处理、特征选择等。
然后,我们使用训练集来构建决策树模型,设置合适的参数,如最大深度、最小样本数等。
最后,我们使用测试集对模型进行评估,并计算准确率、召回率等指标。
3. 结果分析通过实验,我们得到了决策树模型在测试集上的准确率为80%。
这意味着模型能够正确分类80%的测试样本。
此外,我们还计算了模型的召回率和F1值等指标,用于评估模型的性能。
通过对结果的分析,我们可以发现模型在某些特征上表现较好,而在其他特征上表现较差。
这可能是由于数据集中某些特征对于分类结果的影响较大,而其他特征的影响较小。
三、决策树算法的优化和应用1. 算法优化决策树算法在实际应用中存在一些问题,如容易过拟合、对噪声敏感等。
为了提高模型的性能,可以采取以下措施进行优化。
首先,可以通过剪枝操作减少决策树的复杂度,防止过拟合。
其次,可以使用集成学习方法,如随机森林和梯度提升树,来进一步提高模型的准确性和鲁棒性。
决策树实验报告
决策树实验报告一、实验背景随着人工智能和机器学习技术的不断发展,决策树作为一种常见的模型学习方法,在数据分析、分类和预测等方面得到越来越广泛的应用。
本次实验旨在通过使用决策树算法解决某一具体问题,掌握决策树模型的构建及优化方法。
二、实验过程1.数据预处理:本次实验使用Kaggle平台上的“泰坦尼克号生存预测”数据集。
首先进行数据清洗,将缺失值和无关数据进行处理,再将字符串转换为数字,使得数据能够被计算机处理。
接着对数据进行切分,将数据集划分成训练集和测试集。
2.模型建立:本次实验使用Python编程语言,在sklearn库中使用决策树算法进行分类预测。
通过定义不同的超参数,如决策树的最大深度、切分节点的最小样本数等,建立不同的决策树模型,并使用交叉验证方法进行模型的评估和选择。
最终,确定最优的决策树模型,并用该模型对测试集进行预测。
3.模型优化:本次实验采用了两种优化方法进行模型的优化。
一种是进行特征选择,根据决策树的特征重要性进行筛选,选取对模型精度影响较大的特征进行建模;另一种是进行模型融合,通过投票方法将不同的决策树模型进行组合,提高决策的准确性。
三、实验结果本次实验的最优模型使用了决策树的最大深度为5,切分节点的最小样本数为10的超参数。
经过交叉验证,模型在训练集上的平均精度达到了79.2%,在测试集上的精度达到了80.2%。
优化后的模型在测试集上的精度进一步提高至81.2%。
四、实验结论本次实验使用了决策树算法,解决了“泰坦尼克号生存预测”问题。
经过数据预处理、模型建立和模型优化三个阶段,最终得到了在测试集上精度为81.2%的最优模型。
决策树模型具有良好的可解释性和易于理解的特点,在分类预测和决策分析中得到越来越广泛的应用。
决策树算法应用实验报告
一、实验背景随着大数据时代的到来,数据挖掘技术在各个领域得到了广泛应用。
决策树算法作为一种常用的数据挖掘方法,因其易于理解和实现的特点,在分类和回归任务中具有很高的应用价值。
本实验旨在通过实践操作,深入了解决策树算法的原理、实现过程及其在实际问题中的应用。
二、实验目的1. 理解决策树算法的基本原理和分类方法。
2. 掌握决策树算法的编程实现。
3. 学会使用决策树算法解决实际问题。
4. 分析决策树算法的优缺点和适用场景。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 库:NumPy、Pandas、Scikit-learn四、实验内容1. 数据准备实验数据采用Iris数据集,该数据集包含150个样本,每个样本包含4个特征(花瓣长度、花瓣宽度、花萼长度、花萼宽度)和1个类别标签(Iris-setosa、Iris-versicolor、Iris-virginica)。
2. 决策树算法实现(1)基于ID3算法的决策树实现首先,定义计算信息熵、条件熵和信息增益的函数。
然后,根据信息增益选择最优特征进行节点分裂,递归地构建决策树。
```pythondef calculate_entropy(data):# ...def calculate_condition_entropy(data, feature, value):# ...def calculate_information_gain(data, feature, value):# ...def build_tree(data):# ...```(2)基于CART算法的决策树实现首先,定义计算Gini指数的函数。
然后,根据Gini指数选择最优特征进行节点分裂,递归地构建决策树。
```pythondef calculate_gini_index(data):# ...def build_tree_cart(data):# ...```3. 模型评估使用交叉验证方法评估决策树模型的性能。
决策树分类实验报告
一、实验背景与目的决策树是一种常用的机器学习分类算法,它通过树形结构对数据进行分类,具有直观、易于理解和解释的特点。
本实验旨在通过构建决策树模型,对某数据集进行分类,并评估模型性能。
二、实验环境与数据1. 实验环境:- 操作系统:Windows 10- 编程语言:Python- 数据处理库:Pandas、NumPy- 机器学习库:Scikit-learn2. 数据集:本实验采用鸢尾花数据集(Iris dataset),该数据集包含150个样本,每个样本有4个特征(花瓣长度、花瓣宽度、花萼长度、花萼宽度)和1个标签(类别:Iris-setosa、Iris-versicolor、Iris-virginica)。
三、实验步骤1. 数据预处理:- 加载数据集,并使用Pandas库进行数据清洗和预处理。
- 将数据集分为训练集和测试集,采用8:2的比例。
- 对数据进行归一化处理,使特征值在[0, 1]范围内。
2. 决策树模型构建:- 使用Scikit-learn库中的DecisionTreeClassifier类构建决策树模型。
- 设置模型参数,如树的深度、最大叶子节点数等。
3. 模型训练:- 使用训练集对决策树模型进行训练。
4. 模型评估:- 使用测试集对训练好的模型进行评估,计算分类准确率、召回率、F1值等指标。
5. 结果分析:- 分析模型的性能,并探讨不同参数设置对模型性能的影响。
四、实验结果与分析1. 模型参数设置:- 树的深度:10- 最大叶子节点数:202. 模型性能评估:- 分类准确率:0.9778- 召回率:0.9778- F1值:0.97783. 结果分析:- 决策树模型在鸢尾花数据集上取得了较好的分类效果,准确率达到97.78%。
- 通过调整模型参数,可以进一步提高模型性能。
- 决策树模型易于理解和解释,有助于分析数据特征和分类规则。
五、实验结论本实验通过构建决策树模型,对鸢尾花数据集进行分类,并取得了较好的分类效果。
决策树分类模型实验报告
一、实验背景决策树分类模型是一种常用的机器学习算法,通过构建一棵树状结构来对数据进行分类。
在实验中,我们将使用Python编程语言和Scikit-learn库来实现决策树分类模型,并使用鸢尾花数据集进行训练和测试。
二、实验目的1. 理解决策树分类模型的基本原理和算法流程;2. 掌握使用Python和Scikit-learn库实现决策树分类模型的方法;3. 通过实验验证决策树分类模型的性能,并分析其对不同数据集的适用性。
三、实验环境1. 操作系统:Windows 10;2. 编程语言:Python3.7;3. 数据库:Scikit-learn库。
四、实验步骤1. 数据导入与预处理首先,我们需要导入鸢尾花数据集。
鸢尾花数据集是机器学习领域常用的数据集,包含150个样本,每个样本有4个特征,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度,以及对应的类别标签(Iris-setosa、Iris-versicolor、Iris-virginica)。
```pythonfrom sklearn.datasets import load_irisiris = load_iris()X = iris.dataY = iris.target```2. 决策树模型构建接下来,我们使用Scikit-learn库中的DecisionTreeClassifier类来构建决策树分类模型。
我们需要设置一些参数,如树的深度、最大叶节点数、最小样本数等。
```pythonfrom sklearn.tree import DecisionTreeClassifierclf = DecisionTreeClassifier(max_depth=3, min_samples_leaf=5)```3. 模型训练与测试使用训练集对模型进行训练,并使用测试集对模型进行测试。
```pythonfrom sklearn.model_selection import train_test_splitX_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=0)clf.fit(X_train, Y_train)Y_pred = clf.predict(X_test)```4. 模型评估使用准确率、召回率、F1值等指标来评估模型的性能。
决策树分类实验报告
决策树分类实验报告决策树分类实验报告引言:决策树是一种常用的机器学习算法,它通过构建一棵树状的决策模型来进行分类。
在本次实验中,我们将使用决策树算法对一个数据集进行分类,并评估模型的性能和准确率。
数据集介绍:我们选择了一个包含多个特征的数据集,其中每个样本都有一个类别标签。
该数据集包含了不同类型的动物,并根据它们的特征进行分类。
特征包括动物的体重、身高、食性等。
我们的目标是根据这些特征来预测动物的类别。
实验步骤:1. 数据预处理:在进行决策树分类之前,我们首先对数据进行预处理。
这包括处理缺失值、标准化数据等操作。
缺失值的处理可以采用填充平均值或者使用其他样本的特征进行预测。
标准化数据可以使得不同特征之间的数值范围一致,避免某些特征对分类结果的影响过大。
2. 特征选择:在构建决策树模型之前,我们需要选择最具有分类能力的特征。
常用的特征选择方法包括信息增益、信息增益比等。
通过计算每个特征的分类能力指标,我们可以选择最优的特征作为分类依据。
3. 构建决策树模型:在选择了最优特征之后,我们可以开始构建决策树模型。
决策树的构建过程包括选择根节点、划分子节点等步骤。
通过递归地选择最优特征并划分子节点,我们可以构建一棵完整的决策树模型。
4. 模型评估:构建完决策树模型后,我们需要对其进行评估。
常用的评估指标包括准确率、精确率、召回率等。
准确率是指模型分类正确的样本数占总样本数的比例,精确率是指模型预测为正类的样本中真实为正类的比例,召回率是指真实为正类的样本中被模型预测为正类的比例。
实验结果:经过数据预处理、特征选择和模型构建,我们得到了一棵决策树模型。
通过使用测试集对模型进行评估,我们得到了如下结果:准确率:90%精确率:92%召回率:88%结论:本次实验中,我们成功地使用决策树算法对一个数据集进行了分类。
通过对数据进行预处理、特征选择和模型构建,我们得到了一棵准确率为90%的决策树模型。
该模型在分类任务中表现良好,具有较高的精确率和召回率。
数据仓库与数据挖掘--决策树实验
实验3 决策树一、实验目的1.了解决策树的基本概念。
2.掌握决策树挖掘分析的操作步骤。
二、实验内容对三国志4 武将数据.xls 中的数据进行决策树分析。
三、实验仪、设备计算机、visual studio 2008、分析用数据、数据库服务四、实验步骤准备工作:三国志4 武将数据.xls 数据导入数据库中。
(1)打开visual studio 2008,新建项目,选择商业智能项目,analysis services项目图1 新建项目(2)在解决方案资源管理器中,右键单击数据源,选择新建数据源图2 数据源向导(3)在该界面中选择新建,进行数据源具体设置图3 新建数据源(4)在服务器名中填写要连接的数据库服务器名称,或者单击服务器名右方下拉按钮进行选择;勾选使用windows身份验证;选择或输入一个数据库名中填写将要分析数据所在的数据库或者单击右方下拉按钮进行选择图4 数据源具体设置(5)确定后配置完的数据源已显示在窗口上,继续下一步图5 完成数据源具体设置(6)勾选使用服务账户,继续下一步图6 模拟信息设置(7)数据源名称保持默认,完成图7 完成数据源设置向导(8)在解决方案资源管理器中,右键单击数据源视图,选择新建数据源视图图8 数据源视图向导(9)下一步图9 选择数据源(10)在可用对象中,将要分析数据所在表添加到包含的对象中,继续下一步图11 选择包含对象(11)默认名称,完成图12 完成数据源视图向导(12)在解决方案资源管理器中,右键单击挖掘结构,选择新建挖掘结构图13 数据挖掘向导(13)勾选从现有关系数据库或数据仓库,继续下一步图14 选择定义方法(14)选择microsoft 决策树,继续下一步图15 创建数据挖掘模型结构(15)下一步图16 选择数据源视图(16)勾选事例,继续下一步图17 指定表类型(17)在键列勾选序号码,在输入列勾选出身、国别、魅力、统御、武力、政治、智慧、忠诚,在可预测列勾选身份,继续下一步图18 指定定型数据(18)下一步图19 指定内容和数据类型(19)勾选允许钻取,完成图21 完成数据挖掘向导(20)单击挖掘模型查看器图22 完成设置(21)询问是否部署项目,是图23 部署项目(22)询问是否继续,是图24 处理模型(23)单击运行图25 运行挖掘项目(24)待处理完成后,关闭图26 处理结果(25)关闭处理窗口后,就可在挖掘模型查看器的决策树中看到系统经过分析得出的结果图27 分类关系图依赖关系网络:图27 分类剖面图(26)在挖掘模型中,右键单击挖掘模型可以设置算法参数图28 算法参数(27)算法参数的意义COMPLEXITY_PENALTY:禁止决策树生长。
决策树算法实验报告
决策树算法实验报告哈尔滨工业大学数据挖掘理论与算法实验报告(2022年度秋季学期)课程编码 S1300019C 授课教师高宏学生姓名赵天意学号 14S101018学院电气工程及自动化学院一、实验内容使用ID3算法设计实现决策树二、实验设计给定特征是离散的1组实例,设计并实现决策树算法,对实例建立决策树,观察决策树是否正确。
三、实验环境及测试数据实验环境:Windows7操作系统,Python2.7 IDLE 测试数据:样本 outlook temperature Humidity 1 sunny hot High 2 sunny hot High 3 overcast hot High4 rainy mild High5 rainy cool normal6 rainy cool normal7 overcast cool normal8 sunny mild High9 sunny cool normal 10 rainy mild normal 11 sunny mild normal 12 overcast mild High 13 overcast hot normal 14 rainy mild high windy FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE play no no yes yes yes no yes no yes yes yes yes yes no 四、实验过程编写决策树程序,输出决策树,输入实例,输出预测类别五、实验结果样本建立的决策树与对所有样本的预测六、遇到的困难及解决方法、心得体会建树过程中用到了递归思想,递归建树。
1/ 1。
数据挖掘决策树实验报告
• 实验背景• 数据集与预处理• 决策树算法实现• 实验结果分析• 实验结论与建议• 参考文献
目录
实验背景
重要性随着大数据时代的到来,数据挖掘在 商业决策、科学研究、医疗保健等领 域发挥着越来越重要的作用,能够帮 助人们更好地理解和分析数据,发现 潜在规律和趋势。
定义数据挖掘是从大量数据中提取有用信 息和知识的过程,这些信息和知识是 隐含的、未知的、有用的。
召回率与精确率召回率反映的是所有正例中被正确预测为正例的比例,精 确率反映的是预测为正例的正例样本数与所有预测为正例 的样本数的比例。通过调整阈值,可以找到最佳的召回率 和精确率。AUC值AUC值是ROC曲线下的面积,用于衡量模型对正负样本的 区分能力。 AUC值越接近1,模型性能越好。
准确率通过对比模型预测结果与实际结果,计算决策树模型的准 确率。准确率越高,模型性能越好。
目标本实验旨在通过数据挖掘决策树算法对给定的数据集进行分类预测,并评估算 法的性能和准确率。
实验目标与意义
数据集与预处理
数据集来源与特性
在数据清洗阶段,我们还对异常值进行了处理,例如,对于极端的开盘价、最高价、最低价和收盘价,我们进行了合理的修正,以避免对模型造成过大影响。
为了使模型更好地进行学习,我们对特征进行了缩放,将所有的特征值缩放到[0,1]之间。
在数据预处理阶段,我们首先对缺失值进行了处理,由于数据集中的缺失值较少,我们选择直接删除含有缺失值的行。
数据清洗与预处理
异常值处理
数据清洗
特征缩放
特征工程在特征工程阶段,我们对原始特征进行了加工,生成了一些新的特征,例如,收盘价与开 盘价的差值、最高价与最低价的差值等,这些新特征能够更ห้องสมุดไป่ตู้地反映股票价格的变动情况。
决策树算法实验报告
决策树算法实验报告实验三决策树算法实验实验报告实验三决策树算法实验一、实验目的:熟悉和掌握决策树的分类原理、实质和过程;掌握典型的学习算法和实现技术。
二、实验原理:决策树学习和分类.三、实验条件:四、实验内容:1根据现实生活中的原型自己创建一个简单的决策树。
2 要求用这个决策树能解决实际分类决策问题。
五、实验步骤:1、验证性实验:(1)算法伪代码算法Decision_Tree(data,AttributeName) 输入由离散值属性描述的训练样本集data; 候选属性集合AttributeName。
输出一棵决策树。
(1)创建节点N;(2)If samples 都在同一类C中then (3)返回N作为叶节点,以类C标记;(4)If attribute_list为空then(5)返回N作为叶节点,以samples 中最普遍的类标记;//多数表决(6)选择attribute_list 中具有最高信息增益的属性test_attribute; (7)以test_attribute 标记节点N;(8)For each test_attribute 的已知值v//划分samples ;(9)由节点N分出一个对应test_attribute=v的分支;(10令Sv为samples中test_attribute=v 的样本集合;//一个划分块(11)If Sv为空then(12)加上一个叶节点,以samples中最普遍的类标记;(13)Else 加入一个由Decision_Tree(Sv,attribute_list-test_attribute)返回节点值。
(2)实验数据预处理Age:30岁以下标记为“1”;30岁以上50岁以下标记为“2”;50岁以上标记为“3”。
Sex:FEMAL----“1”;MALE----“2”Region:INNER CITY----“1”;TOWN----“2”;RURAL----“3”;SUBURBAN----“4”Income:5000~2万----“1”;2万~4万----“2”;4万以上----“3”Married Children Car MortgagePep:以上五个条件,若为“是”标记为“1”,若为“否”标记为“2”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三决策树算法实验一、实验目的:熟悉和掌握决策树的分类原理、实质和过程;掌握典型的学习算法和实现技术。
二、实验原理: 决策树学习和分类.三、实验条件:四、实验内容:1 根据现实生活中的原型自己创建一个简单的决策树。
2 要求用这个决策树能解决实际分类决策问题。
五、实验步骤:1、验证性实验:(1)算法伪代码算法Decision_Tree(data,AttributeName) 输入由离散值属性描述的训练样本集data; 候选属性集合AttributeName。
输出一棵决策树。
(1)创建节点N;(2)If samples 都在同一类C中then (3)返回N作为叶节点,以类C标记;(4)If attribute_list为空then(5)返回N作为叶节点,以samples 中最普遍的类标记;//多数表决(6)选择attribute_list 中具有最高信息增益的属性test_attribute; (7)以test_attribute 标记节点N;(8)For each test_attribute 的已知值v //划分samples ;(9)由节点N分出一个对应test_attribute=v的分支;(10令Sv为samples中test_attribute=v 的样本集合;//一个划分块(11)If Sv为空then(12)加上一个叶节点,以samples中最普遍的类标记;(13)Else 加入一个由Decision_Tree(Sv,attribute_list-test_attribute)返回节点值。
(2)实验数据预处理Age:30岁以下标记为“1”;30岁以上50岁以下标记为“2”;50岁以上标记为“3”。
Sex:FEMAL----“1”;MALE----“2”Region:INNER CITY----“1”;TOWN----“2”; RURAL----“3”; SUBURBAN----“4” Income:5000~2万----“1”;2万~4万----“2”;4万以上----“3” Married Children Car MortgagePep:以上五个条件,若为“是”标记为“1”,若为“否”标记为“2”。
Age sex region income married children car mortgage pep1 2 1 1 2 1 1 2 21 2 1 1 2 2 2 2 12 1 4 1 2 1 2 2 12 1 1 1 1 2 2 2 21 2 1 1 1 2 2 2 21 2 1 1 2 1 2 1 12 1 2 1 1 2 1 1 22 1 1 1 2 1 1 2 12 13 1 2 2 1 2 12 1 2 2 2 1 2 2 22 2 1 2 2 2 2 1 12 1 2 2 1 1 2 1 12 2 1 2 1 2 2 1 21 1 12 1 2 2 2 13 2 1 2 1 1 1 2 21 1 12 1 1 1 2 11 1 32 2 2 1 2 13 1 2 2 1 2 2 2 13 2 3 3 1 1 1 2 13 2 2 3 1 2 1 1 23 1 3 3 1 1 2 2 13 2 1 3 1 2 1 2 23 2 1 3 1 1 1 1 13 1 1 3 1 2 1 1 23 1 3 3 1 2 2 2 23 24 3 1 2 2 1 13 1 3 3 2 2 1 1 2(3)Matlab语句:[Tree RulesMatrix]= DecisionTree(DataSet, AttributName);六、实验结果:实验程序:function [Tree RulesMatrix]=DecisionTree(DataSet,AttributName)%输入为训练集,为离散后的数字,如记录1:1 1 3 2 1;%前面为属性列,最后一列为类标if nargin<1error('请输入数据集');elseif isstr(DataSet)[DataSet AttributValue]=readdata2(DataSet);elseAttributValue=[];endendif nargin<2AttributName=[];endAttributs=[1:size(DataSet,2)-1];Tree=CreatTree(DataSet,Attributs);disp([char(13) 'The Decision Tree:']);showTree(Tree,0,0,1,AttributValue,AttributName);Rules=getRule(Tree);RulesMatrix=zeros(size(Rules,1),size(DataSet,2));for i=1:size(Rules,1)rule=cell2struct(Rules(i,1),{'str'});rule=str2num([rule.str([1:(find(rule.str=='C')-1)]) rule.str((find(rule.str=='C')+1):length(rule.str))]);for j=1:(length(rule)-1)/2RulesMatrix(i,rule((j-1)*2+1))=rule(j*2);endRulesMatrix(i,size(DataSet,2))=rule(length(rule));endendfunction Tree=CreatTree(DataSet,Attributs) %决策树程序输入为:数据集,属性名列表%disp(Attributs);[S ValRecords]=ComputEntropy(DataSet,0);if(S==0) %当样例全为一类时退出,返回叶子节点类标for i=1:length(ValRecords)if(length(ValRecords(i).matrix)==size(DataSet,1))break;endendTree.Attribut=i;Tree.Child=[];return;endif(length(Attributs)==0) %当条件属性个数为0时返回占多数的类标mostlabelnum=0;mostlabel=0;for i=1:length(ValRecords)if(length(ValRecords(i).matrix)>mostlabelnum)mostlabelnum=length(ValRecords(i).matrix);mostlabel=i;endendTree.Attribut=mostlabel;Tree.Child=[];return;endfor i=1:length(Attributs)[Sa(i) ValRecord]=ComputEntropy(DataSet,i);Gains(i)=S-Sa(i);AtrributMatric(i).val=ValRecord;end[maxval maxindex]=max(Gains);Tree.Attribut=Attributs(maxindex);Attributs2=[Attributs(1:maxindex-1) Attributs(maxindex+1:length(Attributs))];for j=1:length(AtrributMatric(maxindex).val)DataSet2=[DataSet(AtrributMatric(maxindex).val(j).matrix',1:maxindex-1) DataSet(AtrributMatric(maxindex).val(j).matrix',maxindex+1:size(DataSet,2))];if(size(DataSet2,1)==0)mostlabelnum=0;mostlabel=0;for i=1:length(ValRecords)if(length(ValRecords(i).matrix)>mostlabelnum)mostlabelnum=length(ValRecords(i).matrix);mostlabel=i;endendTree.Child(j).root.Attribut=mostlabel;Tree.Child(j).root.Child=[];elseTree.Child(j).root=CreatTree(DataSet2,Attributs2);endendendfunction [Entropy RecordV al]=ComputEntropy(DataSet,attribut) %计算信息熵if(attribut==0)clnum=0;for i=1:size(DataSet,1)if(DataSet(i,size(DataSet,2))>clnum) %防止下标越界classnum(DataSet(i,size(DataSet,2)))=0;clnum=DataSet(i,size(DataSet,2));RecordVal(DataSet(i,size(DataSet,2))).matrix=[];endclassnum(DataSet(i,size(DataSet,2)))=classnum(DataSet(i,size(DataSet,2)))+1;RecordVal(DataSet(i,size(DataSet,2))).matrix=[RecordVal(DataSet(i,size(DataSet,2))).matrix i];endEntropy=0;for j=1:length(classnum)P=classnum(j)/size(DataSet,1);if(P~=0)Entropy=Entropy+(-P)*log2(P);endendelsevalnum=0;for i=1:size(DataSet,1)if(DataSet(i,attribut)>valnum) %防止参数下标越界clnum(DataSet(i,attribut))=0;valnum=DataSet(i,attribut);Valueexamnum(DataSet(i,attribut))=0;RecordV al(DataSet(i,attribut)).matrix=[]; %将编号保留下来,以方便后面按值分割数据集endif(DataSet(i,size(DataSet,2))>clnum(DataSet(i,attribut))) %防止下标越界Value(DataSet(i,attribut)).classnum(DataSet(i,size(DataSet,2)))=0;clnum(DataSet(i,attribut))=DataSet(i,size(DataSet,2));endValue(DataSet(i,attribut)).classnum(DataSet(i,size(DataSet,2)))= Value(DataSet(i,attribut)).classnum(DataSet(i,size(DataSet,2)))+1;Valueexamnum(DataSet(i,attribut))= Valueexamnum(DataSet(i,attribut))+1;RecordVal(DataSet(i,attribut)).matrix=[RecordVal(DataSet(i,attribut)).matrix i];endEntropy=0;for j=1:valnumEntropys=0;for k=1:length(Value(j).classnum)P=V alue(j).classnum(k)/Valueexamnum(j);if(P~=0)Entropys=Entropys+(-P)*log2(P);endendEntropy=Entropy+(Valueexamnum(j)/size(DataSet,1))*Entropys;endendendfunction showTree(Tree,level,value,branch,AttributValue,AttributName) blank=[];for i=1:level-1if(branch(i)==1)blank=[blank ' |'];elseblank=[blank ' '];endendblank=[blank ' '];if(level==0)blank=[' (The Root):'];elseif isempty(AttributValue)blank=[blank '|_____' int2str(value) '______'];elseblank=[blank '|_____' value '______'];endendif(length(Tree.Child)~=0) %非叶子节点if isempty(AttributName)disp([blank 'Attribut ' int2str(Tree.Attribut)]);elsedisp([blank 'Attribut ' AttributName{Tree.Attribut}]);endif isempty(AttributValue)for j=1:length(Tree.Child)-1showTree(Tree.Child(j).root,level+1,j,[branch 1],AttributValue,AttributName);endshowTree(Tree.Child(length(Tree.Child)).root,level+1,length(Tree.Child),[branch(1:length(branch)-1) 0 1],AttributValue,AttributName);elsefor j=1:length(Tree.Child)-1showTree(Tree.Child(j).root,level+1,AttributValue{Tree.Attribut}{j},[branch 1],AttributValue,AttributName);endshowTree(Tree.Child(length(Tree.Child)).root,level+1,AttributValue{Tree.Attribut}{length(Tree.Child)},[branch(1:length(branch)-1) 0 1],AttributValue,AttributName);endelseif isempty(AttributValue)disp([blank 'leaf ' int2str(Tree.Attribut)]);elsedisp([blank 'leaf ' AttributValue{length(AttributValue)}{Tree.Attribut}]);endendendfunction Rules=getRule(Tree)if(length(Tree.Child)~=0)Rules={};for i=1:length(Tree.Child)content=getRule(Tree.Child(i).root);%disp(content);%disp([num2str(Tree.Attribut) ',' num2str(i) ',']);for j=1:size(content,1)rule=cell2struct(content(j,1),{'str'});content(j,1)={[num2str(Tree.Attribut) ',' num2str(i) ',' rule.str]};endRules=[Rules;content];endelseRules={['C' num2str(Tree.Attribut)]};endend。