三角形五心及其性质延伸
三角形五心性质
三角形五心性质三角形的五心定理一、三角形五心定义内心是三角形的三内角平分线交点.也是三角形内切圆的圆心.重心是三角形的三条中线的交点. (重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)外心是三角形的三边的垂直平分线的交点. 三角形外接圆的圆心.垂心是三角形的三条高的交点旁心是三角形一内角平分线和另外两顶点处的外角平分线的交点 . 三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心二、三角形五心性质内心: 1、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一.2、若O是ABC∠2(A∠为=BOC∠∆的外心,则A锐角或直角)或A3600(A∠为钝=∠2BOC∠-角).4、外心到三顶点的距离相等.垂心:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆.2、三角形外心O、重心G和垂心H三点共线,且2:1OG.(此直线称为三角形的欧拉:=GH线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍.4、垂心分每条高线的两部分乘积相等.=OA⋅⋅=⋅OBOAOBOCOC旁心: 1、每个三角形都有三个旁心.2、旁心到三边的距离相等.注:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。
三、三角形五心性质证明垂心:已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB .证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB重心:三角形的重心到顶点的距离是它到对边中点距离的两倍.证明:如图:△ABC中D为BC中点,E为AC中点,F为AB中点,G为△ABC重心做BG中点H,GC中点I∴HI为△GBC的中位线∴HI//BC,且 2HI=BC同理:FE是△ABC中位线∴FE//BC,且 2FE=BC∴FE//HI,且 FE=HI∴四边形FHIE是平行四边形∴HG=GE又H为BG的中点∴HG=BH∴HG=BH=GE∴2GE=BG∴三角形的重心到顶点的距离是它到对边中点距离的两倍四、有关三角形五心的诗歌三角形五心歌(重外垂内旁)三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.重心三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.外心三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点.此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键.垂心三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.内心三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然.五心性质别记混,做起题来真是好.五心的性质三角形的五心有许多重要性质,它们之间也有很密切的联系,如:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等;(2)三角形的外心到三顶点的距离相等;(3)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;(4)三角形的内心、旁心到三边距离相等;(5)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;(6)三角形的外心是它的中点三角形的垂心;(7)三角形的重心也是它的中点三角形的重心;(8)三角形的中点三角形的外心也是其垂足三角形的外心.(9)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.下面是更为详细的性质:1、垂心三角形三边上的高的交点称为三角形的垂心。
(完整版)初中几何三角形五心及定理性质
初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等垂心定理图1 图2三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
推论:1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。
三角形的五心一次看个够
三角形的五心一次看个够三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在这里分别给予介绍.一、三角形外心的性质外心定理的证明:如图,设AB 、BC 的中垂线交于点O ,则有OA =OB =OC ,故O 也在A 的中垂线上,因为O 到三顶点的距离相等,故点O 是ΔABC 外接圆的圆心.因而称为外心.设⊿ABC 的外接圆为☉G(R),角A 、B 、C 的对边分别为a 、b 、c ,p=(a+b+c)/2.1:(1)锐角三角形的外心在三角形内;(2)直角三角形的外心在斜边上,与斜边中点重合; (3)钝角三角形的外心在三角形外. 2:∠BGC=2∠A ,(或∠BGC=2(180°-∠A).3:点G 是平面ABC 上一点,那么点G 是⊿ABC 外心的充要条件是: 点G 是ABC ∆的外心⇔GA GB GC == (或GA 2=GB 2=GC 2)(点G 到三顶点距离相等)⇔(GA +GB )·AB =(GB +GC )·BC =(GC +GA )·CA =0(G 为三边垂直平分线的交点)4:点G 是平面ABC 上一点,点P 是平面ABC 上任意一点,那么点G 是⊿ABC 外心的充要条件是:PG =((tanB+tanC) PA +(tanC+tanA) PB +(tanA+tanB) PC )/2(tanA+tanB+tanC).或PG =(cosA/2sinBsinC)PA +(cosB/2sinCsinA)PB +(cosC/2sinAsinB)PC . 5:R=abc/4S ⊿ABC.正弦定理:2R=a/sinA=b/sinB=c/sinC 。
6.外心坐标:给定112233(,),(,),(,)A x y B x y C x y 求外接圆心坐标O (x ,y )①. 首先,外接圆的圆心是三角形三条边的垂直平分线的交点,我们根据圆心到顶点的距离相等,可以列出以下方程:22221122()()()()x x y y x x y y ---=--- 22223322()()()()x x y y x x y y ---=--- ②.化简得到:2222212122112()2()x x x y y y x y x y -+-=+--2222232322332()2()x x x y y y x y x y -+-=+--令1212()A x x =-;1212()B y y =-;222212211C x y x y =+-- 2232()A x x =-;2232()B y y =-;222222233C x y x y =+--A B C O7.若O 是△ABC 的外心,则S △BOC :S △AOC :S △AOB =sin ∠BOC :sin ∠AOC :sin ∠AOB=sin∠2A :sin ∠2B :sin ∠2C 故sin ∠2A ·OA +sin ∠2B ·OB +sin ∠2C ·OC =0 证明:设O 点在ABC ∆内部,由向量基本定理,有()+∈=++R r n m OC r OB n OA m ,,0,则r n m S S S AOB COA BOC ::::=∆∆设:r n m ===,,,则点O 为△DEF 的重心, 又EOF BOC S nr S ∆∆=1,DOF AOC S mr S ∆∆=1,DOE AOB S mnS ∆∆=1,∴r n m S S S AOB COA BOC ::::=∆∆若O 是△ABC 的外心,则S △BOC :S △AOC :S △AOB =sin ∠BOC :sin ∠AOC :sin ∠AOB =sin∠2A :sin ∠2B :sin ∠2C故si n ∠2A ·OA +si n ∠2B ·OB +si n ∠2C ·OC =0二、三角形的内心内心定理的证明:如图,设∠A 、∠C 的平分线相交于I 、过I 作ID ⊥BC ,IE ⊥AC ,IF ⊥AB 则有IE=IF =ID .因此I 也在∠C 的平分线上,即三角形三0aOA bOB cOC ++=。
三角形的五心定义及性质
三角形的五心定义及性质
三角形五心是指三角形的重心、外心、内心、垂心、旁心。
定义:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫作三角形。
三角形的性质
1.在平面上三角形的内角和等于180°(内角和定理)。
2.在平面上三角形的外角和等于360°(外角和定理)。
3.在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4.一个三角形的三个内角中最少有两个锐角。
5.在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6.三角形任意两边之和大于第三边,任意两边之差小于第三边。
7.在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
8.直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
*勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
9.直角三角形斜边的中线等于斜边的一半。
10.三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
11.三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
12.等底同高的三角形面积相等。
13.底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
14.三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
15.等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。
三角形五心定律
三角形五心定律
形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、外心到三顶点的距离相等。
三、三角形垂心定理
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
2、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
3、垂心分每条高线的两部分乘积相等。
四、三角形内心定理
三角形内切圆的圆心,叫做三角形的内心。
内心的性质:
1、三角形的三条内角平分线交于一点。
该点即为三角形的内心。
2、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。
3、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC
4、△ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr.
5、(内角平分线分三边长度关系)△ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.
6、内心到三角形三边距离相等。
三角形的重心、外心、垂心、内心和旁心(五心定理).doc
三角形五心定理(三角形的重心,外心,垂心,内心和旁心称Z为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理, 旁心定理的总称。
、三角形重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点, 重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离Z比为2 : 1o2、重心和三角形3个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1 +X2+X3)/3, (Y1 +Y2+Y3)/3o二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:仁三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若0是ZXABC的外心,则ZB0C=2ZA ( ZA为锐角或宜角)或Z BOC=360°-2ZA (ZA 为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时, 外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、计算外心的坐标应先计算下列临时变量:d1, d2, d3分别是三角形三个顶点连向另外两个顶点向量的点乘od=d2d3, c2=d1d3, c3=d1d2; c=c1+c2+c3o 重心坐标:((c2+c3)/2c, (c1+c3)/2c, (c1+c2)/2c )o5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1>三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且0G : GH=1 : 2。
第17讲 三角形的五心
第17讲 三角形的五心三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在本节中将分别给予介绍.三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心. 1、三角形的外心三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径. 锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 2、三角形的内心三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 三角形的内心到三边的距离相等,都等于三角形内切圆半径. 内切圆半径r 的计算:设三角形面积为S ,并记p =12(a +b +c ),则r =Sp .特别的,在直角三角形中,有 r =12(a +b -c ).3、三角形的重心三角形的三条中线交于一点,这点称为三角形的重心.上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2.4、三角形的垂心三角形的三条高交于一点,这点称为三角形的垂心.斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”.5、三角形的旁心三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心).每个三角形都有三个旁切圆.A 类例题例1 证明重心定理。
证法1 如图,D 、E 、F 为三边中点,设BE 、CF 交于G ,连接EF ,ABCOABCD EFGABC DEFI aIK HEFD ABCMABCDEFG显然EF∥=12BC,由三角形相似可得GB=2GE,GC=2GF.又设AD、BE交于G',同理可证G'B=2G'E,G'A=2G'D,即G、G'都是BE上从B到E的三分之二处的点,故G'、G重合.即三条中线AD、BE、CF相交于一点G.证法2 设BE、CF交于G,BG、CG中点为H、I.连EF、FH、HI、IE,因为EF∥=12BC,HI∥=12,所以EFHI为平行四边形.所以HG=GE、IG=GF,GB=2GE,GC=2GF.同证法1可知AG=2GD,AD、BE、CF共点.即定理证毕.C情景再现1.设G 为△ABC 的重心,M 、N 分别为AB 、CA 的中点,求证:四边形GMAN 和△GBC 的面积相等.2.三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.B 类例题例3 过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N . 作点P 关于MN 的对称点P '.试证:P '点在△ABC 外接圆上.(杭州大学《中学数学竞赛习题》)分析 分析点M 和N 的性质,即能得到解题思路。
三角形的五心
三角形的五心重心定义:三角形三条中线的交点叫做三角形重心。
性质:(1)设三角形重心为O,BC边中点为D,则有AO = 2 OD。
(2)三角形的重心与三顶点的连线所构成的三个三角形面积相等;(3)重心坐标为三顶点坐标平均值。
(4)以三角形的重心将三角形支起,三角形会保持平衡。
外心定义:三角形三边的垂直平分线的交点,称为三角形外心。
性质:(1)外心到三顶点距离相等。
(2)过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心即三角形外心,这个三角形叫做这个圆的内接三角形。
(3)三角形有且只有一个外接圆。
内心定义:三角形内心为三角形三条内角平分线的交点。
性质:(1)与三角形各边都相切的圆叫做三角形的内切圆。
(2)内切圆的圆心即是三角形内心。
(3)内心到三角形三边距离相等,这个三角形叫做圆的外切三角形。
(4)三角形有且只有一个内切圆。
垂心定义:三角形三边上的三条高线所在直线的交点,称为三角形垂心。
性质:(1)锐角三角形的垂心在三角形内;直角三角形的垂心在直角的顶点;钝角三角形的垂心在三角形外.。
(2)三角形只有一个垂心。
旁心定义:(1)与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形旁心。
(2)三角形的一条内角平分线与其他两个角的外角平分线交于一点,即三角形的旁心。
性质:(1)旁心到三角形一边及其他两边延长线的距离相等。
(2)三角形有三个旁切圆,三个旁心。
这三个旁心到三角形三条边的延长线的距离相等。
五心的性质:三角形的五心有许多重要性质,它们之间也有很密切的联系,如:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等;(2)三角形的外心到三顶点的距离相等;(3)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;(4)三角形的内心、旁心到三边距离相等;(5)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;(6)三角形的外心是它的中点三角形的垂心;(7)三角形的重心也是它的中点三角形的重心;(8)三角形的中点三角形的外心也是其垂足三角形的外心.(9)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.详细性质垂心三角形三边上的高的交点称为三角形的垂心。
三角形的五心性质
三角形的五心性质内心是三条角平分线的交点,它到三边的距离相等。
外心是三条边垂直平分线的交点,它到三个顶点的距离相等。
重心是三条中线的交点,它到顶点的距离是它到对边中点距离的2倍。
垂心是三条高的交点,它能构成很多直角三角形相似。
重心和三顶点的连线所构成的三个三角形面积相等;外心到三顶点的距离相等;垂心与三顶点这四点中,任一点是其余三点构成的三角形的垂心;内心到三边距离相等;重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍,该点叫做三角形的重心。
外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。
垂心定理:三角形的三条高交于一点,该点叫做三角形的垂心。
内心定理:三角形的三内角平分线交于一点,该点叫做三角形的内心。
重心到顶点的距离与重心到对边中点的距离之比为2:1。
重心和三角形3个顶点组成的3个三角形面积相等。
重心到三角形3个顶点距离的平方和最小。
在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3. 三角形内心的性质设⊿BC的内切圆为☉I(r),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.1、三角形的三条角平分线交于一点,该点即为三角形的内心.2、三角形的内心到三边的距离相等,都等于内切圆半径r.3、r=S/p.4、在Rt△ABC 中,∠C=90°,r=(a+b-c)/2.5、∠BIC=90°+A/2.6、点O是平面ABC上任意一点,点I是⊿ABC内心的充要条件是:a(向量OA)+b(向量OB)+c(向量OC)=向量0.7、点O是平面ABC上任意一点,点I是⊿ABC内心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).8、⊿ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么⊿ABC内心I的坐标是:(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c)).9、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr.10、(内角平分线分三边长度关系)⊿ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.三角形外心的性质设⊿ABC的外接圆为☉G(R),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心. 2、锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心在斜边上,与斜边中点重合. 3、GA=GB=GC=R. 3、∠BGC=2∠A,或∠BGC=2(180°-∠A). 4、R=abc/4S⊿ABC. 5、点G是平面ABC上一点,那么点G是⊿ABC外心的充要条件是:(向量GA+向量GB)·向量AB= (向量GB+向量GC)·向量BC=(向量GC+向量GA)·向量CA=向量0. 6、点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是⊿ABC 外心的充要条件是:向量PG=((tanB+tanC)向量PA+(tanC+tanA)向量PB+(tanA+tanB)向量PC)/2(tanA+tanB+tanC). 7、点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是⊿ABC外心的充要条件是:向量PG=(cosA/2sinBsinC)向量PA+(cosB/2sinCsinA)向量PB+(cosC/2sinAsinB)向量PC. 8、设d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。
三角形五心定律
数学定理
01 重心定理
03 垂心定理 05 旁心定理
目录
02 外心定理 04 内心定理 06 特殊
基本信息
三角形五心定理,是指三角形重心定理、外心定理、垂心定理、内心定理,以及旁心定理的总称。三角形的 重心,外心,垂心,内心和旁心称之为三角形的五心。
重心定理
重心定理
三角形的三条边的中线交于一点,该点叫做三角形的重心。 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为 5.以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
内心定理
内心定理
三角形内切圆的圆心,叫做三角形的内心。 内心的性质: 1、三角形的三条内角平分线交于一点。该点即为三角形的内心。 2、直角三角形的内心到边的距离等于两直角边的和与斜边的差的二分之一。 3、P为ΔABC所在空间中任意一点,点0是ΔABC内心的充要条件是:向量P0=(a×向量PA+b×向量PB+c×向 量PC)/(a+b+c). 4、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有 AO:ON=AB:BN=AC:CN=(AB+AC):BC 5、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^22Rr. 6、(内角平分线分三边长度关系) △ABC中,0为内心,∠A、∠B、 ∠C的内角平分线分别交BC、AC、AB于Q、P、R, 则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.
三角形的五心
三角形的五心三角形的五心一、外心. 三角形外接圆的圆心,简称外心. 与外心关系密切的有圆周角定理. 圆周角定理: 同弧所对圆周角是圆心角的一半. 证明略(分类思想,3种, 半径相等) 圆周角推论1: 半圆(弧) 和半径所对圆周角是90‵. 90‵圆周角所对弦是直径. (常用辅助线:已知直径, 作其所对圆周角; 已知90‵圆周角, 作其所对弦, 即直径.) 圆周角推论2: 同(等) 弧所对圆周角相等. 同(等) 圆中, 相等的圆周角所对弧相等.二、重心三角形三条中线的交点,叫做三角形的重心. 掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题. 中线长度公式:在三角形ABC 中,D 为BC 上的中点,设BD=DC=n,AD=m,AB=a AC=b,则有 2(m2+n2)=a2+b2三、垂心三角形的三条高线交于一点. 三角形三条高线的交点叫做三角形的垂心.锐角三角形的垂心在三角形内;直角三角形的垂心在直角的顶点;钝角三角形的垂心在三角形外。
四、内心和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 例:⊙O 是△ABC 的内切圆,△ABC 是⊙O 的一个外切三角形,点O 叫做△ABC 的内心. 张角公式:,设点C 在线段AB 上,AB 外一点P 对线段AC 、BC 的张角分别为γ、β,则sin(γ+β)/PC=sinγ/PB+sinβ/PA. 三角形内角平分线性质定理:三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。
1. 内心是三角形内切圆的圆心;2. 内心到三角形三边的距离相等;3. 内心是三角形三个内角平分线的交点4. 内心都在三角形的内部;5. 内切圆的半径一般通过面积方法来解决五、旁心与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形的旁心. 例:图中⊙O1、⊙O2、⊙O3都是△ABC 的旁切圆,点O1、O2、O3叫做△ABC 的旁心. 三角形的一条内角平分线与其他两个角的外角平分线交于一点,这个交点到三角形一边及其他两边延长线的距离相等,就是三角形的旁心. 三角形有三个旁切圆,三个旁心.重心定理 :三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.上述交点叫做三角形的重心.(在坐标上是三顶点坐标之和的三分之一)外心定理三角形的三边的垂直平分线交于一点.这点叫做三角形的外心.垂心定理三角形的三条高交于一点.这点叫做三角形的垂心. 内心定理三角形的三内角平分线交于一点.这点叫做三角形的内心.旁心定理三角形一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.三角形的重心、外心、垂心、内心、旁心称为三角形的五心.它们都是三角形的重要相关点.数学中,既有大小又有方向的量叫做向量(亦称矢量)。
三角形的重心、垂心、内心、外心
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。
一、三角形重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
定理证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE ∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC ∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB 因此,垂心定理成立!四、三角形内心定理三角形内切圆的圆心,叫做三角形的内心。
三角形的五心【强烈推荐】
三角形的五心三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在本节中将分别给予介绍.三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心. 1、三角形的外心三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径. 锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 2、三角形的内心三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 三角形的内心到三边的距离相等,都等于三角形内切圆半径. 内切圆半径r 的计算:设三角形面积为S ,并记p =12(a +b +c ),则r =Sp .特别的,在直角三角形中,有 r =12(a +b -c ).3、三角形的重心三角形的三条中线交于一点,这点称为三角形的重心.上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2.4、三角形的垂心三角形的三条高交于一点,这点称为三角形的垂心.斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”.5、三角形的旁心三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心).每个三角形都有三个旁切圆.A 类例题例1 证明重心定理。
证法1 如图,D 、E 、F 为三边中点,设BE 、CF 交于G ,连接EF ,显然EF ∥=12BC ,由三角形相似可得GB =2GE ,GC =2GF . ABCOABCD EFGABC DEFI aIK HE FABCMABC EFG又设AD 、BE 交于G ',同理可证G 'B =2G 'E ,G 'A =2G 'D ,即G 、G '都是BE 上从B 到E 的三分之二处的点,故G '、G 重合.即三条中线AD 、BE 、CF 相交于一点G . 证法2 设BE 、CF 交于G ,BG 、CG 中点为H 、I .连EF 、FH 、HI 、IE ,因为EF ∥=12BC ,HI ∥=12BC , 所以 EFHI 为平行四边形.所以 HG =GE 、IG=GF ,GB =2GE ,GC =2GF .同证法1可知AG =2GD ,AD 、BE 、CF 共点. 即定理证毕.例2证明垂心定理分析 我们可以利用构造外心来进行证明。
完整版初中几何三角形五心及定理性质
初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理页6 共页1 第三角形外接圆的圆心,叫做三角形的外心。
外心的性质:、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
1为锐角或直角)或A是△ABC的外心,则∠BOC=2∠(∠A2、若O ∠为钝角)。
A(∠A∠BOC=360°-2当三角形为钝角三角形时,外心在三角形内部;、当三角形为锐角三角形时,3外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
、外心到三顶点的距离相等5垂心定理2图图1三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
页6 共页2 第垂心的性质:6个四点圆。
1、三角形三个顶点,三个垂足,垂心这7个点可以得到。
(此直︰2三点共线,且OG︰GH=1、重心2、三角形外心OG和垂心H Euler line))线称为三角形的欧拉线(倍。
、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的32 、垂心分每条高线的两部分乘积相等。
4推论:)。
(图1ABC 三边的高的垂足,则∠1 = ∠2 、1. 若 D 、 E F 分别是△(图1)2. 三角形的垂心是其垂足三角形的内心。
三角形的五心
三角形的五心三角形中有许多重要的特殊点,特别是三角形的“五心〞,在解题时有很多应用,在本节中将分别给予介绍.三角形的“五心〞指的是三角形的外心,内心,重心,垂心和旁心. 1、三角形的外心三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 三角形的外心到三角形的三个顶点距离相等.都等于三角形的外接圆半径. 锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 2、三角形的内心三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 三角形的内心到三边的距离相等,都等于三角形内切圆半径. 内切圆半径r 的计算:设三角形面积为S ,并记p =12(a +b +c ),那么r =Sp .特别的,在直角三角形中,有r =12(a +b -c ).3、三角形的重心三角形的三条中线交于一点,这点称为三角形的重心.上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2.4、三角形的垂心三角形的三条高交于一点,这点称为三角形的垂心.斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组〞.5、三角形的旁心三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心).每个三角形都有三个旁切圆.A 类例题例1 证明重心定理。
证法1 如图,D 、E 、F 为三边中点,设BE 、CF 交于G ,连接EF ,显然EF ∥=12BC ,由三角形相似可得GB =2GE ,GC =2GF .又设AD 、BE 交于G ',同理可证G 'B =2G 'E ,G 'A =2G 'D ,即G 、G '都是BE上从B 到E 的三分之二处的点,故G '、G 重合.ABCOABCD EFGABC DEFI aIK HE FABCMABC D EFG即三条中线AD 、BE 、CF 相交于一点G .证法2 设BE 、CF 交于G ,BG 、CG 中点为H 、I .连EF 、FH 、HI 、IE ,因为EF ∥=12BC ,HI ∥=12BC ,所以 EFHI 为平行四边形.所以 HG =GE 、IG=GF ,GB =2GE ,GC =2GF .同证法1可知AG =2GD ,AD 、BE 、CF 共点. 即定理证毕.例2证明垂心定理分析 我们可以利用构造外心来进行证明。
三角形五心性质[]
三角形的五心定理一、三角形五心定义内心是二角形的二内角平分线交点.也是二角形内切圆的圆心.重心是三角形的三条中线的交点.(重心原是一个物理概念,对于等厚度的质量均匀的 三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)文档来自于网络搜索 外心是三角形的三边的垂直平分线的交点.三角形外接圆的圆心. 垂心是三角形的三条高的交点旁心是三角形一内角平分线和另外两顶点处的外角平分线的交点.三角形的旁切圆 (与三角形的一边和其他两边的延长线相切的圆)的圆心 文档来自于网络搜索二、三角形五心性质 内心:1、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一2、P 为AABC 所在平面上任意一点,点 0是A ABC 内心的充要条件是:向量— (ax PA + bx PB +c x PC)a +b +c3、O 为三角形的内心, A 、B 、C 分别为三角形的三个顶点,延长AO 交BC 边于 N ,则有 AO : ON = AB : BN =AC :CN =(AB + AC): BC . 重心:1、重心到顶点的距离与重心到对边中点的距离之比为 2、重心和三角形3个顶点组成的3个三角形面积相等.即重心到三条边的距离与三 条边的长成反比.3、重心到三角形3个顶点距离的平方和最小4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为 (X 1 + X 2 + X 3 y 1 + y 2 + y 3)3 3外心:1、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心 在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合 档来自于网络搜索2、若0是 MBC 的外心,则N BOC=2NA (N A 为锐角或直角)或N BOC =360°-2N A (N A 为钝角).向另外两个顶点向量的点乘。
c^ d 2d 3, c^d 1d 3, c^ = d 1d 2 ;c = ci +c 2+c 3. 重心坐标:(°十°3 c '十c3 G + c2).文档来自于网络搜索2c ' 2c ' 2c2 : 1.3、计算外心的坐标应先计算下列临时变量:d i , d 2 , d 3分别是三角形三个顶点连4、外心到三顶点的距离相等垂心:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆.2、三角形外心0、重心G和垂心H三点共线,且OG:GH =1:2.(此直线称为三角形的欧拉线(Eulerline ))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的4、垂心分每条高线的两部分乘积相等.OA OB =OB OC =OC OA旁心:1、每个三角形都有三个旁心2、旁心到三边的距离相等注:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。
三角形的五心
三角形的五心1、三角形的外心三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径. 锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 2、三角形的内心三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 三角形的内心到三边的距离相等,都等于三角形内切圆半径. 内切圆半径r 的计算:设三角形面积为S ,并记p =12(a +b +c ),则r =Sp . 特别的,在直角三角形中,有 r =12(a +b -c ). 3、三角形的重心三角形的三条中线交于一点,这点称为三角形的重心.上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2.ABCD EFGIK HEFABCMA类例题例1 证明重心、内心、外心定理。
例2证明垂心定理情景再现1.设G为△ABC的重心,M、N分别为AB、CA的中点,求证:四边形GMAN 和△GBC的面积相等.2.三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.CB类例题例3 过等腰△ABC底边BC上一点P引PM∥CA交AB于M;引PN∥BA交AC于N.作点P关于MN的对称点P'.试证:P'点在△ABC外接圆上.(杭州大学《中学数学竞赛习题》)例4 AD,BE,CF是△ABC的三条中线,P是任意一点.证明:在△PAD,△PBE,△PCF中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克)C类例题例6 H为△ABC的垂心,D,E,F分别是BC,CA,AB的中心.一个以H为圆心的⊙H交直线EF,FD,DE于A1,A2,B1,B2,C1,C2.求证:AA1=AA2=BB1=BB2=CC1=CC2. (1989,加拿大数学奥林匹克训练题)例7 已知⊙O内接△ABC,⊙Q切AB,AC于E,F且与⊙O内切.试证:EF中点P是△ABC之内心.(B·波拉索洛夫《中学数学奥林匹克》)情景再现6.△ABC的外心为O,AB=AC,D是AB中点,E是△ACD的重心.证明OE丄CD.(加拿大数学奥林匹克训练题)7.△ABC中∠C=30°,O是外心,I是内心,边AC上的D点与边BC上的E点使得AD=BE=AB.求证:OI丄DE,OI=DE. (1988,中国数学奥林匹克集训题)习题1.在△ABC 中,∠A 是钝角,H 是垂心,且AH =BC ,则cos ∠BHC =( )A .-12 2B .12 2C .33D .122.如果一个三角形的面积与周长都被一条直线平分,则此直线一定通过三角形的( )A .内心B .外心C .重心D .垂心(全国初中联赛)3.(安徽省初中数学竞赛)若0°<α<90°,那么,以sin α,cos α,tan αcot α为三边的三角形有内切圆、外接圆的半径之和是( )A .sin α+cos α2B .tan α+cot α2C .2sin αcos αD .1sin αcos α 4.ΔABC 中,∠A =45︒,BC =a ,高BE 、CF 交于点H ,则AH =( )A .12aB .122a C .a D .2a 5.下面三个命题中:⑴ 设H 为ΔABC 的高AD 上一点,∠BHC +∠BAC =180︒,则点H 是ΔABC 的垂心; ⑵ 设G 为ΔABC 的中线AD 上一点,且S ΔAGB =S ΔBGC ,则点G 是ΔABC 的重心; ⑶ 设E 是ΔABC 的外角∠BAK 的角平分线与ΔABC 的外接圆⊙O 的交点,ED 是⊙O 的直径,I 在线段AD 上,且DI =DB ,则I 是ΔABC 的内心.正确命题的个数是( )A .0个B .1个C .2个D .3个6.设ΔABC 的∠A =60︒,求证:ΔABC 的外心O 、内心I 、垂心H 及点B 、C 五点在同一个圆上.7.已知P 是□ABCD 内的一点,O 为AC 与BD 的交点,M 、N 分别为PB 、PC 中点,Q 为AN 与DM 的交点.求证: ⑴ P 、Q 、O 三点在一条直线上; ⑵ PQ =2OQ .8.I 为△ABC 之内心,射线AI ,BI ,CI 交△ABC 外接圆于A ′,B ′,C ′.则AA ′+BB ′+CC ′>△ABC 周长.(澳大利亚数学奥林匹克)9.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(捷克数学奥林匹克)10.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(美国数学奥林匹克)11.AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.12.△ABC 中∠C <90°,从AB 上M 点作CA ,CB 的垂线MP ,MQ .H 是△CPQ 的垂心.当M 是AB 上动点时,求H 的轨迹.(IMO -7)rRI O C BA A BCEFHABCDOPNM Q。
百度百科三角形五心定律http
百度百科三角形五心定律/view/1611086.htm一、三角形重心定理二、三角形外心定理三、三角形垂心定理四、三角形内心定理五、三角形旁心定理有关三角形五心的诗歌三角形五心定理三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。
一、三角形重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。
二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若O 是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A (∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。
c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。
外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。
5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形五心及其性质延伸
1.内心:三角形三条内角平分线的交点,也是三角形内切圆的圆心。
角平分线性质:到角两边距离相等. 内心性质:到三角形三边距离相等。
延伸:①内角平分线定理
如图,AD 为△ABC 中BAC ∠的平分线,则有
(=)AB BD AC DC =上左下左
上右下右
证明过程如下:
作BE//AC 交其延长线于E,则E DAC ∠=∠. ∵BAD DAC ∠=∠,∴E BAD ∠=∠,AB BE ==c. 又∵BE//AC,易证△ADC ∽ △EDB, ∴
BD
=
DC
AB EB AC AC =,得证。
②外角平分线定理
如图,AD 为△ABC 的外角平分线,交BC 延长线于D ,则有
()AB BD
AC DC
=同上 证明过程如下:
作CE//AB 交AD 于E,则AEC EAF ∠=∠.∵EAF EAC ∠=∠, ∴AEC EAC ∠=∠,AC AE =. 又∵CE//AB,易证△ADB ∽ △EDC, ∴
BD
=
DC
AB AB AC CE =,得证。
A
B
D
C
E
c
b
c
A
B
C
D
E F
③三角形内角平分线长公式
如图,AD 为△ABC 中BAC ∠的平分线,则有
2bccos 2cos 2211b+c +b c
A A
AD =
(或
) 证明过程如下:
作BE//AC 交其延长线于E,BF ⊥AE 交其于F 。
由前文的内角平分线定理可知,△ADC ∽ △EDB, ∴
b
c
AD AC DE BE ==. 又+DE=AE AD ,即b
b+c
AD AE =
.而△ABE 为等腰三角形, BF ⊥AE, ∴22sin =2csin
2
A
AE AF AB BAF ==∠,∴2bccos
2cos 2211b+c +b c
A A
AD =(或
). ④内心到三边距离r(三角形内切圆半径)
设三角形面积为S ,则有
2r=a+b+c
S
(即面积的2倍除以周长)
证明过程如下:
连接OA,OB,OC. ∵相切,∴OF AB ⊥,即S △AOB =
11
cr 22
AB OF •=,同理 S △AOC = 1
br 2
,S △BOC = 1ar 2.又∵S=S △AOB + S △AOC + S △BOC ,即S= 1(a+b+c)r 2,
∴2r=a+b+c
S
.
c
b c
A
F
B
D
C
E
.O A F B
C
E
2.重心:三角形三条中线交点
中线性质:将三角形面积等分成两部分.
重心性质:分三角形的中线两段长比例为2:1(长:短) 如图:AD,BE,CF 为△ABC 三条中线,G 为其重心,则有 :::2:1AG GC BG GE CG GF === 证明过程如下:
作BH//FC 交AD 延长线于H,易证△GDC ≌ △HDB ,∴,2GD DH GH GD == 又∵BH//FG ,F 为AB 中点,∴G 也为AH 中点,即2AG GH GD ==, ∴:2:1AG GC =,其他同证.
延伸:三角形中线长公式 如图,AD 为△ABC 的中线,则有
22
1b +c +2bccos 2
AD A =
证明过程如下:
作BE//AC 交AD 延长线于E,易证△ADC ≌ △EDB ,
∴1
,=
2AD DE AD AE =即,
∵BE//AC ,∴ABF A ∠=∠。
作AF ⊥EB 交其 延长线于F 。
又AB=c ,∴BF=AB cos ABF ∠=cos c A ,AF=sin c A , 故EF=cos c A b +。
∴12AD AE =
2222
11(cos )(sin )b +c +2bccos 22
c A b c A A ++= A
G F
E C
B
D H A
F
B
E
D
C
3.外心:三角形三边垂直平分线的交点,三角形外接圆圆心。
垂直平分线性质:到线段两端点距离相等。
外心性质:到三角形三个顶点距离相等。
内心到三顶点距离R(三角形外接圆半径) R=
2sin c
C
(某边除以它对角正弦的2倍) 证明过程于下:
连接AO 并延长交圆O 于D,则AD 为圆直径,AD=2R.
又90ABD ∠=︒(直径所对的圆周角是90︒),AB=c, ADB C ∠=∠(同弧AB
所对的圆周角相等),∴AD= sin AB ADB ∠,即2R sin c C =, R= 2sin c
C .
延伸①:正弦定理 由于R=
2sin c C ,同理易证2sin 2sin 2sin c b a
R C B A
===,变形得到 正弦定理:
2sin sin sin a b c
R A B C
===(每边除以它所对角的正弦为2R) 延伸②:余弦定理
2
2
2
2cos a b c bc A =+- (222
cos 2b c a A bc
+-=)
证明过程如下:
作CD ⊥AB 交其于D ,∴cos cos AD AC A b A ==,BD= cos c b A -,
sin CD b A =,又222BC BD CD =+,即222(cos )(sin )a c b A b A =-+=
22222222cos cos sin 2cos c bc A b A b A b c bc A -++=+-,其他边角也同求
.O
A
B
D
C
A B
C
D
4.旁心:三角形一个内角平分线与另外两个外角的平分线的交点。
旁心性质:三角形的四心(内心、重心、垂心、外心)只有一个,但旁心有三个,旁心到三角形三边所在直线距离相等。
证明过程如下:
如图,P
1、P
2
、P
3
为△ABC三个旁心。
以P
1为例,P
1
在
2
BAM
∠平分线上,
∴P
1到AB、AM
2
距离相等,即P
1
到
AB、AC所在直线M
1N
1
、M
2
N
2
距离相等,
同理,P
1在
3
ABM
∠平分线上,∴P1到AB、BM3距离相等,即P1到AB、BC
所在直线M
1N
1
、M
3
N
3
距离相等,故得到旁心到三边所在直线距离相等。
补充:三角形面积公式
①
1
2
S ah
=(
1
2
底⨯高)
②
111
sin sin sin 222
S ab C ac B bc A ===
(1
2
某角的正弦值乘以它两边长度的积)
证明过程如下:
作AD⊥BC,则
1
·=
2
S BC AD
=
1
·sin
2
a AC C
1
·sin
2
a b C
=,得证,其他边角
同理可求。
P2
A
C
P3
P1
B
M2
M3
N1
N3
N2
1
M
A
B D C。