认识平面立体的三视图

合集下载

机械制图第三章 简单体三视图及尺寸注法1

机械制图第三章  简单体三视图及尺寸注法1

e' d' a' c' b'
c"d" b"e" a"
C D
B
E A
E0
B0
E0 A0
dd0
cc0 ee0
bb0 aa0
ddo
cco
eeo
bbo
aao
遵照国家标准规定,视图中的可见轮廓线用粗实线绘制,不 可见轮廓线用细虚线绘制。
第一节 基本体三视图及尺寸标注
一、平面立体
1.平面立体的三视图 [例]作竖放正三棱柱的三视图。
dd0
aa0
d″
a″c″
C
b″
O d0″
B a0″c0″
C0
Hale Waihona Puke b0″O0B0
cc0
bb0
圆柱的俯视图是一个圆,圆的直径等于圆柱的直径;圆柱的主 视图和左视图均为矩形,矩形的宽等于圆柱的直径,矩形的高等 于圆柱的高。
第一节 基本体三视图及尺寸标注
二、曲面立体
1.曲面立体的三视图
s'
s"
V
W
s
H
圆锥的俯视图是一个圆,圆的直径等于圆锥的底圆直径;圆 锥的主视图和左视图均为等腰三角形,三角形的底边等于圆锥的 底圆直径,三角形的高等于圆锥的高。
转向轮廓线
轮廓线
在曲面立体的三视图中可能存在着两种不同含义的图线: 一种是轮廓线,它是由形体上两个相邻表面的交线得到的;另 一种是转向轮廓线,它是由形体上某个曲面在弯曲换向处被 “观察”到的。此外,绘制回转体三视图时,还要用细点画线 画出其回转轴线或代表其对称平面的位置。
第一节 基本体三视图及尺寸标注 二、曲面立体

正方体展开图和三视图的初步认识

正方体展开图和三视图的初步认识

正方体展开图和三视图的初步认识1.认识立体图形和平面图形我们常见的立体图形有长方体、正方体、球、圆柱、圆锥,此外,棱柱,棱锥也是常见的几何体。

我们常见的平面图形有正方形、长方形、三角形、圆2. 立体图形和平面图形关系立体图形问题常常转化为平面图形来研究,常常会采用下面的作法(1)画出立体图形的三视图立体图形的的三视图是指正视图(从正面看)、左视图(从左面看)、俯视图(从上面看)得到的三个平面图形。

(2)立体图形的平面展开图常见立体图形的平面展开图圆柱、圆锥、三棱柱、三棱锥、正方体(共十一种)知识梳理知识梳理1 正方体的侧面展开图(共十一种)分类记忆:第一类,中间四连方,两侧各一个,共六种。

第二类,中间三连方,两侧各有一、二个,共三种。

第三类,中间二连方,两侧各有二个,只有一种。

第四类,两排各三个,只有一种。

知识梳理2 常见立体图形的平面展开图1. 棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。

两个侧面的公共边叫做棱柱的侧棱。

侧面与底的公共顶点叫做棱柱的顶点,不在同一个面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高。

棱柱的底面可以是三角形,四边形,五边形……我们把这样的棱柱叫分别叫做三棱柱、四棱柱、五棱柱……棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)2. 棱锥:一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

棱锥中的多边形叫做棱锥的底面。

棱锥中除底面以外的各个面都叫做棱锥的侧面。

相邻侧面的公共边叫做棱锥的侧棱。

棱锥中各个侧面的公共顶点叫做棱锥的顶点。

棱锥的顶点到底面的距离叫做棱锥的高。

棱锥中过不相邻的两条侧棱的截面叫做对角面。

棱锥的底面可以是三角形、四边形、五边形……我们把这样的棱锥分别叫做三棱锥、四棱锥、五棱锥……棱锥的展开图是由一个多边形(作底)和几个三角形(作侧面)组成的。

三视图与立体图形

三视图与立体图形

三视图与立体图形在我们的日常生活中,我们经常会遇到各种各样的物体和形状。

为了更好地理解和描述这些物体和形状,我们需要使用一些工具和方法。

其中,三视图和立体图形是非常重要的概念。

一、三视图三视图是指对一个物体或形状从不同的角度进行观察和绘制,从而得到正视图、俯视图和侧视图。

这三个视图分别展示了物体或形状的前、上、侧面的特征和细节。

通过三视图,我们可以全面地了解一个物体或形状的外观和结构。

正视图是从物体或形状的正面观察和绘制的视图。

它展示了物体或形状的正面特征,包括长度、宽度和高度等。

俯视图是从物体或形状的上方观察和绘制的视图。

它展示了物体或形状的上方特征,包括长度和宽度等。

侧视图是从物体或形状的侧面观察和绘制的视图。

它展示了物体或形状的侧面特征,包括长度和高度等。

通过三视图,我们可以准确地了解一个物体或形状的尺寸、比例和结构。

例如,在建筑设计中,建筑师会使用三视图来展示建筑物的外观和内部结构。

在机械设计中,工程师会使用三视图来展示机械零件的形状和装配方式。

三视图是理解和交流的重要工具,它可以帮助我们更好地理解和描述物体和形状。

二、立体图形立体图形是指具有三维形状和体积的图形。

与平面图形不同,立体图形具有长度、宽度和高度等三个维度。

立体图形包括了各种各样的形状,如立方体、圆柱体、球体等。

立方体是一种最常见的立体图形,它具有六个面,每个面都是一个正方形。

立方体的六个面分别是正面、背面、左侧面、右侧面、上侧面和下侧面。

通过观察和绘制立方体的三视图,我们可以了解到它的各个面的特征和尺寸。

圆柱体是另一种常见的立体图形,它具有两个平行的圆面和一个侧面。

圆柱体的侧面是一个矩形,它的长度等于两个圆面的周长,宽度等于两个圆面的半径。

通过观察和绘制圆柱体的三视图,我们可以了解到它的圆面和侧面的特征和尺寸。

球体是一种没有面和边的立体图形,它由无数个点组成。

球体没有三视图,因为它的形状在任何角度下都是一样的。

然而,我们可以使用投影和阴影来表示球体的形状和位置。

三视图课件

三视图课件

绘制三视图基本规则
物体摆放规则
绘制三视图时,应将物体摆放成 工作位置,即自然安放且主要表
面或轴线平行于投影面。
视图布局规则
主视图应位于图纸的主要位置, 俯视图在主视图的下方,左视图 在主视图的右侧。各视图之间应 保持适当的间距,并用细实线连
接对应点。
尺寸标注规则
三视图中应标注齐全的尺寸,包 括定形尺寸、定位尺寸和总体尺 寸。尺寸标注应清晰、准确,符
掌握零件的尺寸标注
熟悉零件图中的尺寸标注方法,理解各尺寸 的含义和作用。
分析零件的视图表达
分析零件图的主视图、俯视图、左视图等视 图,理解各视图之间的投影关系。
理解零件的技术要求
了解零件图中的表面粗糙度、公差与配合等 技术要求。
装配图阅读和绘制方法
了解装配体的组成
通过观察装配图,了解装配体由哪些 零件组成,各零件之间的连接方式和 相对位置。
掌握正视图、俯视图和左视图的形成原理及 投影规律。
三视图绘制方法
学习如何根据物体的形状和结构,正确绘制 其三视图。
尺寸标注与识读
理解尺寸标注的规定和方法,能够准确识读 和理解三视图中的尺寸信息。
形体分析与表达
掌握形体分析的方法和技巧,能够运用所学 知识对复杂形体进行准确表达。
学生自我评价报告
知识掌握程度
标注零件尺寸
根据零件的结构形状和制造要求,标注必要的零 件尺寸,如定形尺寸、定位尺寸等。
ABCD
拆画零件图
根据装配图中的零件形状和连接关系,逐个拆画 出各个零件的图形。
编写技术要求
根据零件的使用要求和制造工艺,编写必要的技 术要求,如表面粗糙度、公差等。
06
课程总结与拓展延伸

《三视图》PPT课件

《三视图》PPT课件
影。
案例二
通过三视图还原组合体的空间 形状,理解辅助线和辅助面在 投影中的作用。
案例三
比较不同辅助线和辅助面对投 影结果的影响,掌握其使用技 巧。
案例四
针对复杂组合体,综合运用辅 助线和辅助面进行投影分析。
05
CATALOGUE
尺寸标注与技术要求在三视图 中体现
尺寸标注基本原则和方法
基本原则
01
中心线平行。
辅助面构造方法及作用
基本辅助面
通过平移或旋转基本投影 面得到,用于生成新的投 影。
局部辅助面
根据需要截取形体的一部 分而构造,用于表达形体 的局部结构。
综合辅助面
结合基本辅助面和局部辅 助面的特点构造,用于解 决复杂形体的投影问题。
案例分析:组合体三视图
案例一
分析组合体的结构特点,选择 合适的辅助线和辅助面进行投
04
CATALOGUE
辅助线与辅助面在三视图中的 应用
辅助线类型及使用场景
中心线
用于表示对称形体的中 心,或用于定位非对称
形体的主要部分。
轮廓线
用于表示形体的外轮廓 或内轮廓,通常与视图
的主要轮廓线重合。
剖面线
用于表示形体被剖切后 的内部结构,通常与剖
视图的剖面线对应。
尺寸线
用于标注形体的尺寸, 通常与形体的轮廓线或
圆锥体主视图为三角形,俯视 图为圆形和圆心点,左视图为
三角形和一条斜线。
球体的三视图
球体主视图、俯视图和左视图 均为圆形。
03
CATALOGUE
物体表面交线与三视图绘制技 巧
物体表面交线类型及特点
截交线
截平面与立体表面的交线。特点 :截交线的形状取决于立体的几 何性质及其与截平面的相对位置

三视图和展开图的认识

三视图和展开图的认识

三视图和展开图的认识1.定义:三视图是指一个物体在三个不同方向上的投影,包括正视图、俯视图和侧视图。

2.作用:通过三视图可以全面了解物体的形状和结构,是工程制图和建筑设计中必不可少的一部分。

3.绘制方法:(1)正视图:物体正面朝向观察者,投影在水平面上。

(2)俯视图:物体上方朝向观察者,投影在垂直于水平面的竖直面上。

(3)侧视图:物体左侧或右侧朝向观察者,投影在垂直于水平面和俯视图所在平面的斜面上。

4.定义:展开图是将一个立体图形展开成平面图形,以便于观察和计算。

(1)矩形展开图:最常见的展开图类型,适用于各种矩形容器、包装盒等。

(2)圆形展开图:适用于圆形或近似圆形的物体,如圆筒、圆盘等。

(3)三角形展开图:适用于三角形的物体,如三角尺、三角形的包装盒等。

(4)其他多边形展开图:适用于各种多边形的物体,如六边形、八边形等。

5.绘制方法:(1)矩形展开图:将立体图形的侧面沿着高展开,得到一个长方形或正方形。

(2)圆形展开图:将立体图形的侧面沿着直径展开,得到一个扇形。

(3)三角形展开图:将立体图形的侧面沿着高展开,得到一个三角形。

(4)其他多边形展开图:根据立体图形的形状和结构,选择合适的方法将其展开。

三、三视图与展开图的相互关系1.展开图可以转化为三视图:通过观察展开图,可以确定物体的正视图、俯视图和侧视图。

2.三视图可以转化为展开图:根据三视图,可以绘制出物体的展开图。

3.展开图中的信息可用于三视图的绘制:展开图中的边长、角度等信息可以用于确定三视图中的尺寸和形状。

四、实际应用1.工程制图:在建筑设计、机械设计等领域,三视图和展开图是表达物体形状和结构的重要手段。

2.制造业:在制造过程中,通过三视图和展开图可以方便地切割、加工和组装物体。

3.教育:在三视图和展开图的教学中,有助于培养学生的空间想象能力和逻辑思维能力。

4.日常生活中:展开图在包装、折叠等方面有广泛应用,如纸箱、衣物等。

五、注意事项1.准确绘制:在绘制三视图和展开图时,要注意尺寸、形状和位置的准确性。

三视图教学(1)

三视图教学(1)

主视图
俯视图
左视图
主视图
俯视图 左视图
主视图
現在你能画出正方 体的三视图吗?
理一理:
1、从正面看到的图形叫做主视图, 从上面看到的图形叫做俯视图,从 左面看到的图形叫做左视图。 2、画三视图必须遵循的法则: “长对齐,高平齐,宽相等”
从上面看
从左面看
从正面看
主视图
左视图
俯视图
想一想,再动手画一画:
主视图
左 视 图 俯视图
画出下面几何体的主视图、左视图与俯视图
主视图
左视图
俯视图
画出下面几何体的主视图、左视图与俯视图
主视图
左视图
俯视图
利用骰子,摆成下面的图形,分别从正面、左面、上 面观察这个图形,各能得到什么平面图形?
主视图
左视图
俯视图
探究
3、下列图中,不是正方体的表面展开图的是( C ) 摺紙箱遊戲
三视图是主视图、俯视图、左视图的 统称。它是从三个方向分别表示物体形状 的一种常用视图。
三视图(1)
从左面看
从上面看 主视图 左视图 高
主视图
正面



俯视图
从正面看
P116 三视图(2)
主视图
主视图 左视图 高
正面
长 宽 俯视图

从上面看
从左边看
俯视图
长方体
左视图
从正面看
主视图
俯视图
左视图
练一练: 画出圆柱 的三视图
圆柱的形成
空间想象力
2. 正 视 图 左 视 图
试一试
俯 视 图
空间想象力 正视图
试一试
侧视图
俯视图

第六章 几何图形初步 第二节 立体图形的三视图

第六章 几何图形初步 第二节 立体图形的三视图

第六章几何图形初步
§6.2立体图形的三视图
【知识要点】
1.三视图是从三个正向视角看几何体,所得到的平面图形.主视图:从前往后看,是从前往后的正投影;
左视图:从左往右看,是从左往右的正投影;
俯视图:从上往下看,是从上往下的正投影;
2.常见几何体的三视图如下表所示:
一般,将看得见的轮廓线画成实线,看不见的轮廓线画成虚线.类型一投影法画三视图
例1请画出下列几何体的三视图.
(1)(2)(3)
练习1请画出下列几何体的三视图.
(1)(2)(3)(4)
类型二从不同方向看立体图形
例2如图是由5个相同的小正方体搭成的几何体,从上面看到的形状图是( )
A.B.C.D.
练习2请画出下列几何体的三视图.
(1)(2)
(3) (4)
类型三 根据不同方向看到的图形还原几何体的形状
例3如图用若干小正方体搭成的几何体的三视图,则原几何体是( )
A .
B .
C .
D .
练习3(1)如图是几个小正方体搭成的几何体的三视图,则原几何体中小正方体的个数为 ;
(2)若正方体的棱长为1,则还原后的几何体的表面积为对少?
主视图
左视图
俯视图
俯视图
左视图
主视图
练习4如图是几个小正方体搭成的几何体的俯视图,其中数字表示从上面看一列有几个小正方体,请画出主视图和左视图.
2
21
1
主视图
左视图。

平面立体三视图课件

平面立体三视图课件

平面立体
曲面立体
基本立体(平面体)的三视图
常见的平面立体有棱柱和棱锥(包括棱台)。
棱柱
棱锥
棱台
基本立体(平面体)的三视图
一、棱柱
1.棱柱的三视图 棱柱的形体特征: 棱柱的各棱线互相平行。 棱柱的上下两底面平行且相同。
基本立体(平面体)的三视图
一、棱柱
1.棱柱的三视图 棱柱的三视图
及画法
基本立体(平面体)的三视图
c
b/ /
棱锥表面上取点
采用辅助直线法
作直线方法有两种
过顶点的直线法
作棱(底)边的平行线法
表面上点的可见性需要判断
若点所在的平面的投影可见,点的投影也可见。
Y
基本立体(平面体)的三视图
三、平面立体的尺寸注法
棱柱
基本立体(平面体)的三视图
三、平面立体的尺寸注法
棱锥
基本立体(平面体)的三视图
小结
平面立体三视图 平面立体表面的点和线 平面立体的尺寸注法
一、棱柱
1.棱柱的三视图 棱 柱的投影特点
在平行于棱柱底面的投影面上,棱柱的投影是一平面多边形, 它反映底面真形(特征投影)。
在垂直于棱柱底面的投影面上,棱柱的投影是一系列矩形。
一、棱柱
基本立体(平面体)的三视图
2.棱柱表面Байду номын сангаас的点
K
k/
k //
直棱柱表面上取点可利 用棱面投影的积聚性。
表面上点的可见性需要判断
b//
棱锥表面上取点 采用辅助直线法
c
作直线方法有两种
过顶点的直线法
作棱(底)边的平行线法 表面上点的可见性需要判断 若点所在的平面的投影可见,点的投影也可见。

常见几何体的三视图

常见几何体的三视图
1.2.1 空间几何体的三视图
-基本几何体的三视图
欣赏三视图
欣赏三视图
欣赏三视图
平行投影
斜投影
中心投影
A
正投影
B
D
C
长方体投பைடு நூலகம்图
正方体的三视图
俯 侧
长方体的三视图


长方体
圆柱的三视图


圆柱
圆锥的三视图


圆锥
球的三视图


球体
三视图有关概念
“视图”是将物体按正投影法向投影面投射 时所得到的投影图.
光线自物体的前面向后投影所得的投影图称 为“正视图” ,自左向右投影所得的投影图称 为“侧视图”,自上向下投影所得的投影图称 为“俯视图”.
用这三种视图即可刻划空间物体的几何结构, 这种图称之为“三视图”.即向三个互相垂直 的投影面分别投影,所得到的三个图形摊平在 一个平面上,则就是三视图.
三视图的形成
正 视 图
侧 视 图
俯 视 图
正视图和俯视图长对正 正视图和侧视图高平齐 俯视图和侧视图宽相等
基本几何体三视图
对于基本几何体棱柱、棱锥、棱台以及圆 台的三视图是怎样的?
棱柱的三视图


六棱柱
棱锥的三视图


正三棱锥
棱锥的三视图


正四棱锥
棱台的三视图


正四棱台
圆台的三视图


圆台
由三视图想象几何体
下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
侧视图
俯视图
四棱柱
由三视图想象几何体

立体的三面投影三视图

立体的三面投影三视图

平面立体旳投影 是平面立体各表面投影旳集合 ----由直线段构成旳封闭图形。
➢1 棱 柱
(1). 三棱柱旳视图
由两个底面和三个侧棱面构成。侧棱面 与侧棱面旳交线叫侧棱线,侧棱线相互平行。
三棱柱旳 两底面为水平 面,在俯视图 中反应实形。 其他三个侧棱 面都是铅垂面, 水平投影积聚, 与三角形旳边 重叠。
➢(2) 三棱柱表面旳点
因为三棱柱旳表面都是平面,所以在三棱 柱旳表面上取点与在平面上取点旳措施相同。
点旳可见性鉴别: 若点所在旳
平面旳投影可见, 点旳投影也可见; 若平面旳投影积 聚成直线,点旳 投影也可见。
➢2.棱锥
S
⑴ 棱锥旳构成
由一种底面和若干侧 棱面构成。侧棱线交于有 限远旳一点——锥顶。
S称为锥顶,圆锥面上过锥顶旳任一直线 称为圆锥面旳素线。
➢1. 圆锥旳视图
如图示位置,俯视图为一圆。另两
注意:轮廓线旳投影与 曲面旳可见性旳判断
个视图为等边三角形,三角形旳底 边为圆锥底圆旳投影,两腰分别为 圆锥面不同方向旳两条轮廓素线旳
➢2. 圆锥面上旳点 投影。
1) 素线法






素 线
2)纬线圆法
⑵ 棱锥旳三视图
A
C
B
s
s
⑶ 在棱锥面上取点
棱锥处于图示位置时,
其底面ABC是水平面,在俯
视图上反应实形。侧棱面 a SAC为侧垂面,另两个侧棱 a 面为一般位置平面。
k n
b s kn
k (n)
c a(c) b c
b
➢4.2.2 曲面立体旳投影
工程中常见旳曲面立体,是回转体。 回转曲面是由母线(直线或曲线)绕 定轴线作回转运动生成旳。

第6讲 立体的三面视图

第6讲 立体的三面视图

例:求圆柱表面AB线段的侧面投影和水平投影。 求圆柱表面AB线段的侧面投影和水平投影 AB A
O
a′ ′ c′ ′ b′ ′
a″ ″ b″ ″ c″ ″
B O1
圆柱面在俯视图上 1.先求三个特殊点,、B、C 先求三个特殊点A、 、 先求三个特殊点 的投影有积聚性, 的投影有积聚性 利用 投影的积聚性 的三个投影; 的三个投影;
k′ ′
k″
圆的半径? 圆的半径?
k
辅助圆法
小 结 重点掌握: 重点掌握:
★立体三视图的投影规律: 立体三视图的投影规律: 长对正 高平齐 宽相等 ★平面基本体与曲面基本体的投影特点,表面的 平面基本体与曲面基本体的投影特点, 取点方法。 取点方法。
作业: 作业:A21 用A3图纸绘制四个简单体模型 图纸绘制四个简单体模型
● ●
S O (N)● A O1 s″ ″


(n″) ″
k″ ″ b″
如何在圆锥面 过锥顶作 上作直线? 上作直线? 一条素线。 一条素线。 圆的半径? 圆的半径?
d
k
3.圆球 3.圆球 ⑴ 圆球的形成
圆母线以它的直 径为轴旋转而成。 径为轴旋转而成。
K
⑵ 圆球的三视图
三个视图分别为三 ⑶ 轮廓线的投影与曲 个和圆球的直径相等的 面可见性的判断 圆,它们分别是圆球三 ⑷ 圆球面上取点 。 个方向轮廓线的投影。 个方向轮廓线的投影
a″ ″ b″ ″
2.棱锥 2.棱锥 ⑴ 棱锥的组成 由一个底面和若干 侧棱面组成。 侧棱面组成。侧棱线交 A 于有限远的一点——锥 于有限远的一点 锥 顶。 ⑵ 棱锥的三视图
S
C B
s′ ′ s″ ″
棱锥处于图示位置时, 棱锥处于图示位置时, a′ ′ 其底面ABC是水平面, ABC是水平面 其底面ABC是水平面,在俯 a 视图上反映实形。 视图上反映实形。侧棱面 SAC为侧垂面,另两个侧棱 SAC为侧垂面, 为侧垂面 面为一般位置平面。 面为一般位置平面。

三视图第1课时三视图的认识及画法课件数学湘教版九年级下册

三视图第1课时三视图的认识及画法课件数学湘教版九年级下册

解:这个圆锥的三视图如图所示. 不要漏画点
例3 这是一个底面为等边三角形的正三棱柱,画出它的三视图.
分析: 从正面看,这个三棱柱的投影是 一个矩形及其内部,其中侧棱 C1C 的投 影是这个矩形的上、下两边中点的连线 段,由于看不见,因此用虚线表示;从 左面看,这个三棱柱的投影是一个矩形 及其内部;从上面看,这个正三棱柱的 投影是正三角形及其内部.
分析 一个球无论在哪个平面上的正投影 都是圆,并且圆的半径与球的半径相等, 所以球的主视图、左视图、俯视图都是 半径与球的半径相等的圆及其内部.
解:这个球的三视图如图所示.
为表示圆柱、圆锥 、球等几何体的对 称轴,可在视图中 加画点划线.
例2 画圆锥的三视图.
分析 从正面看这个圆锥,它的投影是一 个等腰三角形及其内部;从左面看这个 圆锥,它的投影是和主视图一样的等腰 三角形及其内部;从上面看这个圆锥, 它的投影是一个圆及其内部,其中圆锥 顶点的投影是这个圆的圆心.
从前面、左面、上面三个方向视察物体,并分别画出这三个方 向上的正投影.
1. 当我们从某一角度视察物体在这种正投影下的像就称为该物 体的视图. 2. 画物体视图的方法(以图示几何体进行说明):
第一步:从前往后看,画出立于它后面的竖直平面上 的正投影,如下右图,这称为“主视图”.
主视图
第二步:从左往右看,画出立于它右边的竖直平面上 的正投影,如下右图,这称为“左视图”.
心对称图形 D.该圆锥的主视图既不是轴对称图形,也不
是中心对称图形
5.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均 匀切成了 8 块,并将其中一块(经抽象后)按如图所示的方式放 在自己正前方的水果盘中,则这块西瓜的三视图是( B )
6.下图是一根钢管的直观图,画出它的三视图. 解:下图是钢管的三视图,其中的虚线表示钢管的内壁.

三视图投影性质及画法

三视图投影性质及画法

(一) 回转体的形成方法
名称 圆 锥 体
圆柱体
圆球体
圆环体
回 转 面 形 成
直母线绕和 它相交的轴线回 转而成圆锥面
O S
直母线绕和 它平行的轴线回 转而成圆柱面
O
A
圆母线绕以 它的直径为轴线 回转而成圆球面
O
圆母线绕和 它的共面但不过 圆心的轴线回转 而成圆环面
O





A
O
A1 O
O
O
形体 由圆锥面和一个圆 由圆柱面和两个圆 由圆球面围成的 由圆环面围成的
o'
o”
o
以底面对称中心作为坐标原点
二、平面立体及其表面上的点和线
(三) 平面立体的画法
棱线的可见投影画成粗实线,棱线的不可见投影画成细虚线。
注意:
s'
s”
1.所有投影的边缘轮 廓线都是可见的,要用粗 实线画出。
a'
1' c' 2'
2.边缘轮廓线内直线
c
b' s
的可见性,要利用交叉两
1(2)
直线上的重影点来判断。 a
各点投影符合 三面投影特性
俯视图:从上向下做正投射得到的图形。 左视图:从左向右做正投射得到的图形。
§7-1 立体及其表面上的点和线
一、立体的三视图及其投影规律
(一) 三棱锥的三视图
Z
V
s'
s”
a' b'
c'
a”
X
O (c”)
a
sc
b
b” Y
投影过程: (1)建立坐标系; (2)作正投影; (3)投影面展开;

制图基础-第3节立体的三视图

制图基础-第3节立体的三视图

例:求两正交圆柱的相贯线。
a'
b'
• 1'
• c'
(•d')2•'•
d •
a •
•b
1• c• •2
d"•
a" •b
1"" (2 ") • • c"
相贯线投影
作图:求特殊点:a'、b' 就是两圆柱表面共有点的 分析:正两面圆投柱影体,轴也线是垂相直贯相线的 交,其最轴高线点分、别最为左铅点垂、线最和右点。 侧垂线从,侧因面此投小影圆轮柱廓的线水的平交点 投影和求大得圆相柱贯的线侧最面前投点影、都最后 具有积点聚的性侧。面相投贯影线c"的、水d"平,由 投影积从聚属在关圆系周求上出,其侧余面两投面投 影积聚影于。圆周的一部分。
截平面与圆锥轴线的相对位置不同,截交线的 形状不同。
α
截平面垂直于圆锥轴 线,倾角为θ=90ο, 截交线为圆形。
截平面与圆锥轴线 倾斜,倾角θ>α 截交线为椭圆。
截平面与圆锥轴 线倾斜面,倾角 θ=α截交线为抛 物线。
截平面与圆锥轴 线平行或倾角 θ<α,截交线为 双曲线。
截平面过锥顶截 交线为三角形。
例:圆锥被正平面截切,补全主视图。
3′

● 4′

5′


1′
2′
1●

4
3



52
3


4 (5 )

1 (2 )
截交线的空 间形状? 截交线的投 影特性?
Ⅲ Ⅳ ⅤⅡ

3.平面与圆球相交

三视图(全面)

三视图(全面)

立体几何初步一、空间几何体的类型1、多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2、旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

二、几种空间几何体的结构特征1、柱、锥、台、球的结构特征⑴棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱ABCDE?ABCDE或用对角线的端点字母,如五棱柱AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

⑵棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P?ABCDE几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

⑶棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P?ABCDE几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点⑷圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

⑸圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

1三视图和斜二测画法''''''''''''''''。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s
s
n (n)
a a
b
c c
a (c )
y1
b
y 1
n
s
b
2.2.4平面立体尺寸标注
平面立体一般标注长、宽、高三个方向的尺寸,如图所示。其中正 方形的尺寸可采用如图3-10(f)所示的形式注出,即在边长尺 寸数字前加注“□”符号。图3-10(d)、(g)中加“()” 的尺寸称为参考尺寸。
10
20
18
2.2.2棱柱的三视图
1.三视图
作图时先画反映底面实形的那个投影,然后再画其 它两面投影。
2.棱柱表面上的点
a'
(b')
b"
b
a
a"
平面立体表面上的点与平面上取点的 方法相同,要判别投影的可见性。
四棱柱体表面定线
d
c b
(d )
c b
ad abcyya三棱锥的投影
2.2.3棱锥的三视图
1.三视图
Z
V
s
s
s
S
s
a
b
c
W
A X
C a (c ) O
a
b
c a (c )
b
a
c
s
a
B
c
b
s
H
b
b Y
直观图
展开
2.棱锥表面上的点
S'
S"
k'
a'
1'
b'
a
1 kS
k"
c' a" (c'')
c
b
b"
表面上的点采用辅 助线的方法作图。
三棱锥表面上的点
d'
d'
d'
作法一
//ab 作法二
作法三
三棱锥体表面定点
简单的立体变成平面图形
认识平面立体的三视图
基本体的分类构成
1.平面立体
它们的表面都是由平面形围成的,因此,绘制平面立体的三视图,实质 是画出组成平面立体各表面的平面形及交线的投影。
2.曲面立体
回转体——一动线绕一定直线旋转而成的曲面,称为回 转面。由回转面或回转面与平面所围成的立体称为回转体。
18
18 11
15
15
20
16
(13.9)
12
11
20
10
6
18
12
10
18
15
(18.5)
16
20
相关文档
最新文档