物体的平衡问题
静力学中的平衡问题与解法
静力学中的平衡问题与解法静力学是力学中的一个分支,研究物体在静止或匀速直线运动时的力、力之间的关系以及物体的平衡条件等内容。
在静力学中,平衡问题是一个重要的研究内容。
本文将讨论静力学中的平衡问题以及常见的解法。
静力学中,平衡是指物体所受的合外力合力矩为零的状态。
平衡可以分为两种类型:平衡在点和平衡在体。
1. 平衡在点平衡在点指的是物体受力的合力通过一个点,也就是力矩为零。
这要求物体所受的合外力矢量的代数和为零,并且力矩的代数和也为零。
平衡在点的解法一般包括以下步骤:步骤一:画出物体受力的示意图,并标注出力的大小、方向。
步骤二:通过几何图形或代数方法求出合外力的代数和,判断合外力的大小和方向。
步骤三:通过几何图形或代数方法求出力矩的代数和,判断力矩的大小和方向。
步骤四:根据力矩为零的条件,确定物体的平衡条件。
如果力矩不为零,则说明物体不处于平衡状态。
平衡在点的解法中,可以利用力矩的性质,如力矩的叠加原理、力矩的向量性质等,来简化计算。
此外,还可以运用平衡条件求解未知的力或力矩。
2. 平衡在体平衡在体指的是物体受力的合外力和合力矩都为零的状态。
这要求物体所受的合外力矢量的代数和为零,并且力矩的代数和也为零。
平衡在体的解法一般包括以下步骤:步骤一:画出物体受力的示意图,并标注出力的大小、方向。
步骤二:通过几何图形或代数方法求出合外力的代数和,判断合外力的大小和方向。
步骤三:通过几何图形或代数方法求出力矩的代数和,判断力矩的大小和方向。
步骤四:根据合外力和力矩都为零的条件,确定物体的平衡条件。
如果合外力或力矩不为零,则说明物体不处于平衡状态。
平衡在体的解法中,通常需要考虑物体所受力的叠加效应。
常见的方法有力的分解、力矩的叠加等。
除了上述两种平衡问题的解法,静力学中还有一些特殊情况的解法,如斜面上物体的平衡、悬挂物体的平衡等。
对于这些特殊情况,可以利用相关的几何关系和平衡条件,采取相应的解法进行求解。
总之,静力学中的平衡问题是一个重要的内容,通过合理的求解方法可以确定物体的平衡条件。
物理人教版必修一 第三章相互作用 专题物体在力作用下的平衡问题(共60张PPT)
的相互作用的摩擦力为多大;
整体法与隔离法
• (1)第1块砖和第4块砖受到木
板的摩擦力各为多大;
整体法与隔离法
• (1)第1块砖和第4块砖受到木
板的摩擦力各为多大;
• 将4块砖看成一个整体,对整体
进行受力分析,如图所示.在 竖直方向,共受到三个力的作 用:竖直向下的重力4mg,两 个相等的竖直向上的摩擦力f, 由平衡条件可得:
衡状态。
• 平衡状态下的运动学特征: 1. 物体的速度v=0或v不变 2. 物体的加速度a=0 • 物体处于平衡状态的条件:
物体所受合力F合=0
平衡状态
判断:以下物体是否处于平衡状态? (1) 天花板下悬挂的静止的吊扇。 (2) 粗糙斜面上静止的木块。 (3) 光滑水平面上匀速直线滑动的冰块。 (4) 沿斜面匀速直线下滑的铁箱。 (5) 竖直上抛到最高点的篮球。 (6) 拿在手上铅球,松手的瞬间。
衡状态。
• 平衡状态下的运动学特征: 1. 物体的速度v=0或v不变 2. 物体的加速度a=0
平衡状态
• 物体处于静止或者匀速直线运动的状态叫做平
衡状态。
• 平衡状态下的运动学特征: 1. 物体的速度v=0或v不变 2. 物体的加速度a=0 • 物体处于平衡状态的条件:
平衡状态
• 物体处于静止或者匀速直线运动的状态叫做平
O
Fx x
力的正交分解法
• 力的正交分解:把一个已知力沿着两个互相垂
直的方向进行分解。
y F
q
• 正交分解的步骤:
• ①建立xOy直角坐标系
• ②分别向坐标轴做垂线 Fy • ③作出分力Fx、Fy
• ④利用三角函数求出Fx、O
Fy
物体的稳定平衡和不稳定平衡
物体的稳定平衡和不稳定平衡在日常生活中,我们经常会遇到物体的平衡问题。
无论是摆放书籍、搭建建筑,还是进行运动,物体的平衡性都是一个重要的考虑因素。
物体的平衡可以分为稳定平衡和不稳定平衡两种情况。
稳定平衡是指物体在受到外力作用后,能够自行恢复到原来的平衡位置。
这种平衡状态下,物体的重心处于支撑点下方,使得物体具有较高的稳定性。
例如,我们在摆放书籍时,通常会将书本的厚重一侧放在下方,这样书本才能够稳定地摆放在桌面上。
同样,在建筑设计中,建筑物的结构设计也需要考虑到稳定平衡的原理,以确保建筑物在受到外力作用时能够保持稳定。
不稳定平衡则相反,是指物体在受到外力作用后,无法自行恢复到原来的平衡位置,容易发生倾覆。
这种平衡状态下,物体的重心处于支撑点上方,使得物体具有较低的稳定性。
例如,我们放置一个竖直的杯子,如果杯子的重心偏离支撑点,就会导致杯子倾倒。
同样,在进行体育运动时,如平衡木、单车等,运动员需要通过调整身体的重心来保持平衡,一旦身体的重心偏移,就会导致失去平衡。
物体的稳定平衡和不稳定平衡是由物体的形状、重心位置以及外力的作用点等因素共同决定的。
首先,物体的形状对平衡性有着重要影响。
例如,三角形的物体比矩形的物体更容易保持稳定平衡,因为三角形的底部较窄,重心相对较低,使得物体更难被外力推倒。
其次,物体的重心位置也是决定平衡性的关键因素。
重心越低,物体的稳定性越高。
最后,外力的作用点也会影响物体的平衡性。
如果外力的作用点接近物体的重心,物体的平衡性会更好,反之则会更差。
除了物体的平衡性,我们还需要了解物体的稳定性。
稳定性是指物体在受到外力作用后,能够保持平衡的能力。
稳定性与物体的稳定平衡密切相关,但并不完全相同。
一个物体可能处于不稳定平衡状态,但由于其稳定性较高,仍能够保持平衡。
例如,一个竖直放置的圆柱体,由于其底部较宽,重心相对较低,即使稍微偏离平衡位置,也能够自行恢复平衡。
而一个处于稳定平衡状态的物体,如果其稳定性较差,可能在受到轻微的外力作用后就会失去平衡。
史上最全的物体在三个共点力作用下的平衡问题
史上最全的物体在三个共点力作用下的平衡问题一、前期准备1、平衡状态:即物体保持静止或匀速直线运动状态,此时物体(系统)加速度和所受合外力均为0,包括静态平衡与动态平衡。
2、三力平衡的总体原则:三力中的任意一个力,必在其它两个力夹角的对顶角的范围内。
二、全国Ⅱ卷最常考的八种类型1、三力平衡时:有两力垂直时,采用力的合成与分解法。
(做出两力的合力与第三力是一对平衡力;将某力沿其他两力反方向分解,所得两分力与其他两力构成两平衡力,利用三角函数关系求解)例1、如下图所示,轻绳AO和BO共同吊起质量为m的重物.AO与BO垂直,BO 与竖直方向的夹角为θ,OC连接重物,则( )例2、在竖直墙壁与放在水平面上的斜面体M间放一光滑圆球,如图所示,斜面体M在外力作用下缓慢向左移动,在移动过程中下列说法正确的是()A.球对墙的压力大小增大B.斜面体对球的支持力大小逐渐增大C.斜面体对球的支持力大小不变D.斜面体对球的支持力大小先减小后增大A.AO所受的拉力大小为mg cosθB.AO所受的拉力大小为mgsinθC.BO所受的拉力大小为mg cosθD.BO所受的拉力大小为mgcosθ2、三力平衡时:无垂直且题中给了特殊角度时,采用正交分解法。
例3、如图1-1-8所示,左侧是倾角为60°的斜面、右侧是四分之一圆弧面的物体固定在水平地面上,圆弧面底端切线水平,一根两端分别系有质量为m1、m2小球的轻绳跨过其顶点上的小滑轮.当它们处于平衡状态时,连接m2小球的轻绳与水平线的夹角为60°,不计一切摩擦,两小球可视为质点.两小球的质量之比m1∶m2等于()A.1∶1 B.2∶3 C.3∶2 D.3∶43、三力动态平衡时:一力大小方向不变,一力方向不变,采用矢量三角形法。
(图解法)例4、如上右图所示,在一个半圆环上用两根细线悬挂一个重为G的物体,设法使OA线固定不动,将OB线从竖直位置沿半圆环缓缓移到水平位置OB′,则OA 与OB线中受到的拉力FA、FB的变化情况是( )A.FA、FB都增大B.FA增大,FB减小C.FA增大,FB先增大后减小D.FA增大,FB先减小后增大例5、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将( )A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大例6、如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕O点转至水平位置,则此过程中球对挡板的压力F1和球对斜面的压力F2的变化情况是()A.F1先增大后减小,F2一直减小B.F1先减小后增大,F2一直减小C.F1和F2都一直减小D.F1和F2都一直增大4、三力动态平衡时:一力大小方向不变,两力方向均改变,两力夹角也发生改变,采用相似三角形法。
使用牛顿第三定律解释物体的平衡问题
使用牛顿第三定律解释物体的平衡问题牛顿第三定律是经典力学中的一条基本定律,它描述了物体之间相互作用的本质。
在这篇文章中,我们将探讨如何使用牛顿第三定律来解释物体的平衡问题。
首先,让我们回顾一下牛顿第三定律的表述:对于任何两个物体之间的相互作用力,作用在一个物体上的力与作用在另一个物体上的力大小相等、方向相反。
这意味着,当一个物体对另一个物体施加力时,另一个物体也会对它施加同样大小、方向相反的力。
现在考虑一个简单的平衡问题:一个放在水平桌面上的书。
为了保持书的平衡,重力向下施加在书上的力必须得到平衡。
根据牛顿第三定律,书对桌面施加一个向上的力,这个力与重力的大小相等、方向相反。
因此,桌面对书施加一个向下的力,这个力与重力的大小相等、方向相同。
这两个力的合力为零,因此书保持在平衡状态。
同样的原理也适用于其他平衡问题。
例如,考虑一个悬挂在天花板上的吊灯。
吊灯的重力向下施加在天花板上的力必须得到平衡。
根据牛顿第三定律,天花板对吊灯施加一个向上的力,这个力与重力的大小相等、方向相反。
吊灯对天花板施加一个向下的力,这个力与重力的大小相等、方向相同。
这两个力的合力为零,因此吊灯保持在平衡状态。
牛顿第三定律还可以解释物体在斜面上的平衡问题。
考虑一个放置在斜面上的物体。
重力向下施加在物体上的力可以分解为两个分力:一个沿着斜面向下的分力,另一个垂直于斜面的分力。
根据牛顿第三定律,物体对斜面施加一个沿着斜面向上的力,这个力与沿着斜面向下的分力的大小相等、方向相反。
斜面对物体施加一个沿着斜面向下的力,这个力与沿着斜面向上的力的大小相等、方向相同。
这两个力的合力为零,因此物体保持在平衡状态。
除了平衡问题,牛顿第三定律还可以解释其他力学现象。
例如,当我们走路时,我们对地面施加一个向后的力,地面对我们施加一个向前的力,这就是我们能够向前移动的原因。
又如,当我们划船时,我们对水施加一个向后的力,水对船施加一个向前的力,这就是我们能够前进的原因。
力学中的平衡问题及解题方法
力学中的平衡问题及解题方法力学是物理学的一个重要分支,研究物体的运动和相互作用。
在力学中,平衡是一个关键概念,指的是物体在外力作用下保持静止或者匀速运动的状态。
解决平衡问题是力学学习的基础,本文将重点介绍平衡问题的概念及解题方法。
一、平衡问题概述在力学中,平衡是指物体的合力与合力矩均为零的状态。
合力指的是物体受到的所有力的矢量和,合力矩是指物体受到的所有力矩之和。
当一个物体处于平衡状态时,其合力为零,即物体受到的所有力相互抵消;合力矩也为零,即力矩的总和等于零。
通过解决平衡问题,我们可以推导出物体的受力关系及各个力的大小和方向。
二、解题方法解决平衡问题的思路和方法有很多,下面将介绍几种常用的方法。
1. 通过自由体图分析自由体图是解决平衡问题的重要工具。
通过将物体从整体中分离出来,将作用在物体上的力单独画在一张图上,即可更清晰地分析受力情况。
首先,选择心理上合适的参考点,计算该点的合力和合力矩,然后利用力的平衡条件和力矩的平衡条件,推导出物体的受力关系。
在绘制自由体图时,需要标注各个力的名称、大小和方向,以便更好地进行分析。
2. 利用转动平衡条件解题当物体可以绕某个轴进行转动时,我们可以利用转动平衡条件解题。
转动平衡条件是指物体的合力矩等于零,即物体受力矩的总和等于零。
通过将每个力的力矩与其距离乘积求和,然后令其等于零,我们可以解得物体的未知量。
在利用转动平衡条件解题时,需要注意选择正确的参考点和力臂的方向。
3. 使用迭加法解题迭加法是一种常用的解决力学问题的方法。
对于一个复杂的平衡问题,我们可以将其分解为多个简单的平衡问题来处理。
将物体逐步分解,每次只考虑其中的一部分受力情况,然后根据平衡条件解题。
最后通过迭代计算,得到物体的受力关系和未知量。
4. 运用静摩擦力解决问题在某些平衡问题中,静摩擦力起到重要的作用。
静摩擦力是指物体接触面上的摩擦力,当其超过一定程度时,可以阻止物体发生滑动。
通过利用静摩擦力的性质,我们可以解决涉及摩擦力的平衡问题。
物体平衡问题的求解方法.doc
物体平衡问题的求解方法闫俊仁(忻州第一中学 山西 忻州 034000)物体处于静止或匀速运动状态,称之为平衡状态。
平衡状态下的物体是是物理中重要的模型,解平衡问题的基础是对物体进行受力分析。
物体的平衡在物理学中有着广泛的应用,在高考中,直接出现或间接出现的概率非常大。
本文结合近年来的高考试题探讨物体平衡问题的求解策略。
1.整体法和隔离法对于连接体的平衡问题,在不涉及物体间相互作用的内力时,应道德考虑整体法,其次再考虑隔离法。
有时一道题目的求解要整体法、隔离法交叉运用。
[例1] (1998年上海高考题)有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环P ,两环质量均为m ,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图1。
现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( )A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小解析 用整体法分析,支持力mg N 2=不变。
再隔离Q 环,设PQ 与OB 夹角为θ,则不mg T =θcos ,θ角变小,cos θ变大,从上式看出T 将变小。
故本题正确选项为B 。
2.正交分解法物体受到3个或3个以上的力作用时,常用正交分解法列平衡方程,形式为0=合x F ,0=合y F 。
为简化解题步骤,坐标系的建立应达到尽量少分解力的要求。
[例2] (1997年全国高考题)如图2所示,重物的质量为m ,轻细绳AO 与BO 的A 端、B 端是固定的,平衡时AO 是水平的,BO 与水平面夹角为θ,AO 的拉力F 1和BO 的拉力F 2的大小是( )A .θcos 1mg F =B .θcot 1mg F =C .θsin 2mg F =D .θsin /2mg F =解析 选O 点为研究对象,O 点受3个力的作用。
物体系统的平衡问题
第三章 平衡方程的应用
各种力系的独立方程数
力系 名称
独立 方程数
平面任 意力系
3
平面汇 交力系
2
平面平 行力系
2
平面 力偶系
1
空间任 意力系
q = 5kN/m, = 45;求支座 A、C 的反力和中间铰 B
处的内力。
静定多跨梁一般由几个部分梁组成,组成的次序是先 固定基本部分,后加上附属部分。仅靠本身能承受荷 载并保持平衡的部分梁称为基本部分,单靠本身不能 承受荷载并保持平衡的 部分梁称为附属部分。 求解这类问题通常是先 研究附属部分,再计算 基本部分。
第三章 平衡方程的应用
解:AB 梁是基本部分, BC 梁是附属部分。
1)先取BC梁为研究 对象,列平衡方程
n
M B (Fi ) 0
i1
F 1 FC cos 2 0
FC 14.14kN
n
Fix 0
i1 n
Fiy 0
i1
FBx FC sin 0 FBy F FC cos 0
第三章 平衡方程的应用
第一节 物体系统的平衡问题
物体系统:由若干个物体通过约束联系所组成的系 统称为物体系统,简称为物系。
内力和外力:内力和外力的概念是相对的。当取整 个系统为研究对象时,系统中物体间的相互作用为 内力。但当研究物系中某一物体或某一部分的平衡 时,物系中的其它物体或其它部分对所研究物体或 部分的作用力就成为外力,必须予以考虑。
6
对于 n 个物体组成的系统,在平面任意力系作用下, 可以列出 3n 个独立平衡方程。在平面汇交力系作用 下,可以列出 2n 个独立平衡方程。
(完整word版)物体平衡问题的解题方法及技巧
《物体平衡问题的解题方法及技巧》课堂实录陈光旭(兴山一中湖北443700)物体平衡问题是高考考查的一个热点,在选择题、计算题甚至实验题中都有考查和应用。
如2010安徽卷第18题、2010广东卷第13题、2010山东卷第17题、2010新课标全国卷第18题等等……由于处于平衡状态的物体,它的受力和运动状态较为单一,往往为一些同学和老师所忽视。
但作为牛顿第二定律的一种特殊情况,它又涵盖了应用牛顿第二定律解决动力学问题的方法和技巧,所以解决好平衡问题是我们解决其它力学问题的一个基石。
物体的平衡是力的平衡。
受力分析就成了解决平衡问题的关键!从研究对象来看,物体的平衡可分为单体平衡和多体平衡;从物体的受力来看,又可分为静态平衡和动态平衡。
一、物体单体平衡问题示例:例一:(2010新课标全国卷18)如图一,一物块置于水平地面上,当用与水平方向成600角的力F1拉物块时,物块做匀速直线运动;当改用与水平方向成300的力F2推物块时,物块仍做匀速直线运动。
若F1和F2的大小相等,则物块和地面间的动摩擦因数为:F 2A :2-3 B.3-1 C.3/2-1/2 D.1-3/2解析:将F 1分解到水平方向和竖直方向,如图二,水平方向受力平衡: F 1COS600=Fu竖直方向:FN -F 1=mg同理,对F2进行分解,建立方程组,解出结果为A在解决这类问题时,我们用的方法就是将物体受到的力,分解到物体的运动方向和垂直与物体的运动方向,列出两个平衡方程,解出未知问题。
这种方法不光对平衡问题适用,对非平衡问题同样适用。
例二:如图三,光滑小球放在一带有圆槽的物体和墙壁之间,处于静止状态,现将圆槽稍稍向右移动一点,则球对墙的压力和对物体的压力如何变化?解析:这是单体的动态平衡问题 图一图二 图三对小球受力分析,如图四.由于物体处于平衡,物体所受重力、墙壁的作用力的合力与圆槽的作用力等值反向。
当圆槽稍稍向右移时,θ角变小mg 恒定,F 墙的方向不变,所以,斜槽和墙壁对物体的支持力都变小。
物理动态平衡问题的基本解法五种
物理动态平衡问题的基本解法五种
物理动态平衡问题的基本解法有以下五种:
1. 力的平衡法:根据牛顿第二定律,物体的总受力为零时,物体处于力的平衡状态。
可以通过分析物体受到的各个力的大小和方向来判断物体的平衡状态,并解出未知量。
2. 力矩的平衡法:根据物体的力矩(或力矩矩阵)的平衡条件来判断物体是否处于平衡状态。
物体的力矩等于零时,物体处于力矩平衡状态。
可以根据物体的几何形状和受力情况,建立力矩平衡方程来解决问题。
3. 动力学方法:使用动力学的方法来分析物体的运动状态和平衡条件。
通过分析物体所受到的各个力和力矩,建立动力学方程组,解出未知量。
4. 能量守恒法:利用能量守恒定律来解决物体的平衡问题。
通过分析物体所受到的各个力和物体的势能和动能之间的关系,建立能量守恒方程来解决问题。
5. 作图法:根据物体的几何形状和受力情况,通过作图来解决问题。
可以根据物体的平衡条件和受力分析,将物体的受力情况转换为几何图形,然后通过几何推理和计算,解决问题。
物体的平衡解题方法、例解
物体的平衡解题方法、例解一、 正交分解法力的正交分解法在处理力的合成和分解问题时,我们常把力沿两个互相垂直的方向分解,这种方法叫做力的正交分解法。
正交分解是解决物理学中矢量问题的最得力的工具,因为矢量不仅有大小,而且有方向。
正交分解法的三个步骤第一步,建立正交x 、y 坐标,这是最重要的一步,x 、y 坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x 与y 的方向一定是相互垂直的。
第二步,将题目所给定要求的各矢量沿x 、y 方向分解,求出各分量,凡跟x 、y 轴方向一致的为正;凡与x 、y 轴反向为负,标以“—”号;凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。
第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。
这是此法的核心一步。
第四步,根据各x 、y 轴的分量,求出该矢量的大小,一定表明方向,这是最终的一步。
例1、如图所示,用一个斜向上的拉力F 作用在箱子上,使箱子在水平地面上匀速运动。
已知箱子质量为m ,F 与水平方向的夹角为θ,箱子与地面的动摩擦因数为μ。
求拉力F 的大小。
解:箱子受四个力:mg 、F N 、f 、F 作用,如图所示。
建立直角坐标系如图,将拉力F 分解为:F x = Fcos θ , F y = F sin θ.根据共点平衡条件得: x 轴上: Fcos θ = f …… ①y 轴上: Fsin θ+ F N = mg …… ②摩擦定律:f = μF N …… ③将③代入①,再将②中的F N 的表达式代入后得:F =θμθμsin cos +mg 。
二、整体法与隔离法在解物理问题过程应用的整体法,是将几个具有相互作用或影响的物体看成一个整体或系统,进行分析或思考要解决的问题。
在平衡问题中,通常所求的目标是某几个外力时,优先应用整体法。
这时几个物体通常都处于平衡状态。
02-物体的平衡问题
☆专题二☆【专题分析】1.本专题主要是复习物体的受力分析以及对物体的平衡问题。
2.本专题涉及到了力学、电磁学,是整个力学、电磁学的基础,属于每年高考必考内容.3.高考中常以选择题形式或把相关知识综合在计算题中进行考查.【热点探究】1.应用力的合成和分解讨论力的平衡类问题.2.结合受力分析,利用共点力的平衡条件解决实际问题的能力.3.带电体在电场中的平衡及导体棒在磁场中的平衡类问题.1.平衡状态的分析速度是描述物体运动状态的参量,速度变化了即物体的运动状态发生了变化.速度是矢量,大小和方向的变化都被认为物体的运动状态发生了变化.当物体的速度不变时,才能认为物体处于平衡状态,物体处于静止或匀速直线运动时即是如此值得注意的是静止状态是指速度和加速度都为零的状态,如竖直上抛运动物体到达最高点时速度为零,但加速度等于重力加速度,不为零,不是静止状态.2.平衡条件的推论:物体处于平衡状态时,它所受的某一个力与它所受的其余的力的合力等值反向.例如,一个质点在n 个力,的作用下处于平衡状态,如果把其中的一个力Fn 逆时针转动900,其余的力不变,这时质点所受的合力大小为n F 2。
判断一个物体是否,处于平衡状态的方法有几种?1.物体在同一平面上的三个不平行的力的作用下,处于平衡状态时,这三个力必为共点力.2.物体在三个共点力作用下处于平衡状态时,表示这三个力的有向线段组成一封闭的矢量三角形.(如图所示)问题解决平衡类问题的思想方法:1.解决平衡物体临界问题时的方法—假设法平衡物体的临界状态是指物体所处的平衡状态将要被破坏,而又未被破坏的状态,解决该类问题可用假设法分析,其解题基本步骤为:(1)明确研究对象;(2)画受力分析图;(3)假设可能发生的临界情况;(4)列出满足临界情况的平衡方程求解.2.列平衡方程:关于物体的平衡类问题列平衡方程一般分以下两种情况:(l)在某一方向上列平衡方程.该类问题一般是将受力归结到某一方向(如重力的方向,只在竖直方向列平衡方程),也可能是不研究其他方向上的力,或其他方向的力对该方向无影响.(2)在两个相互垂直的方向上列平衡方程:该类问题一般物体受力较复杂,两个相互垂直方向一般以少分解力为原则结合所研究问题确定.【例1】如图细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大【解析】选D.用图解法分析该题,作出力的图示如图甲.因为G、F N、F T三力共点平衡,故三个力可以构成一个矢量三角形,图乙中G的大小和方向始终不变;F N的方向也不变,大小可变,F T的大小、方向都在变,在绳向上偏移的过程中,可以作出一系列矢量三角形(如图乙所示),显而易见在F T变化到与FN垂直前,F T是逐渐变小的,然后F T又逐渐变大,故应选D.同时看出斜面对小球的支持力F N是逐渐变小的.应用此方法可解决许多相关动态平衡问题.(1)利用图解法的关键是把力的矢量三角形或平行四边形作好,并根据题意条件的变化确定图的变化趋向及其变化的临界状态.(2)要熟练把握几种常见的动态变化中最大或最小的状态,如:①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2最小的条件是:两个分力垂直,如图甲,最小的力F2 =Fsina.②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2最小的条件是:所求分力F 2与合力F 垂直,如图乙,最小的力F 2=F 1sina.③当已知合力F 的大小及一个分力F 1的大小时,另一分力F 2最小的条件是:已知大小的分力F 1与合力F 同方向,最小的力F 2 =1F F -.如图中,物体的重量为G ,保 持物体与细绳AO 的位置不变,让细绳BO 的B 端沿四分之一圆弧从D 点向E 点慢 慢地移动.试问:在此过程中AO 中的张力 F TA 、与BO 中的张力F TB 如何变化?【例2】(2006·石家庄市一质检)有三根长度均为L 的不可伸长的绝缘轻线,其中两根线的一端固定在天花板上的O 点,另一端分别拴有质量均为m 的带电小球A 和B ,它们的电荷量分别为-q 和+q,A,B 之间用第三根线连接起来.若在该空间加一个方向水平向右的匀强电场,使轻线均拉紧且处于平衡状态,如图1-12所示.不计两带电小球间相互作用的库仑力,已知重力加速度为g .求: (1)所加匀强电场场强的最小值E 为多少?(2)保持E 不变,将O,B 之间的线烧断,由于有空气阻力,A,B 两小球最后会达到新的平衡位置,此时两轻线的拉力各为多少?【解析】(1)当所加电场的场强E 最小时,A,B 间的绳刚好拉直而无张力,小球A 受力如图所示,由共点力的平衡条件得:Fcos θ=qE ① Fsin θ=mg ② 联立解得qmg E 33=(2)烧断细线OB 后,两球重新到达新的平衡位置,设α,β分别表示细线OA,AB 与竖直方向的夹角.A 小球受力如图所示,由共点力平衡条件得:F 1sina+F 2 sin β=qE ③ F l cosa-F 2 cos β=mg ④ B 球受力如图所示,其中F 2'=F 2, 由共点力平衡条件得:F 2 sin β=qE ⑤ F 2 cos β=mg ⑥ 联立⑤、③解得sina=0,a=0 即细线OA 竖直将⑥代入④解得F 1=2mg 由⑤、⑥解得mg F 3322=(1)正确、灵活地确定研究对象是解决问题的重要前提.本题解析中,主要采用隔离法.在第(2)中若采用整体法可迅速简明地解决问题.对A,B整体,水平方向受两电场力,等大反向,矢量和为零.竖直方向受竖直向下的重力.由平衡条件知,F l与总重力一定等大反向.故a=0. F1 =2mg. (2)确定研究对象的原则:是先整体后隔离,两者交叉使用方能解决问题.竖直墙面与水平地面均光滑且绝缘,小球A,B带有同种电荷,用指向墙面的水平推力F作用于小球B,两球分别静止在竖直墙面和水平地面上,如图所示.如果将小球B向左推动少许,当两球重新达到平衡时,与原来的平衡状态相比较()A.推力F变大B.竖直墙面对小球A的弹力变大C.地面对小球B的支持力不变D.两个小球之间的距离变大【例3】同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz(z轴正方向竖直向上),如图所示.已知电场方向沿z轴正方向,场强大小为E;磁场方向沿y轴正方向,磁感应强度的大小为B;重力加速度为g.问:一质量为m、带电荷量为+q从原点出发的质点能否在坐标轴上以速度v做匀速运动?若能,m,q,E,B,v及g应满足怎样的关系?若不能,说明理由.【解析】已知带电质点受到的电场力为qE,方向沿z轴正方向;质点受到的重力为mg,沿z轴的负方向.假设质点在x轴上做匀速运动,则它受的洛伦兹力必沿z轴正方向(当v沿x轴正方向)或沿z轴负方向(当v沿x轴负方向),要质点做匀速运动必分别有qvB+qE=mg ①或qE=qvB+mg ②假设质点在y轴上做匀速运动,即无论沿y轴正方向还是负方向,洛伦兹力都为0,要质点做匀速运动必有 qE=mg ③假设质点在z轴上做匀速运动,则它受的洛伦兹力必平行于x轴,而电场力和重力都平行于z 轴,三力的合力不可能为0,与假设矛盾,故质点不可能在z轴上做匀速运动.(1)若不考虑粒子重力,能否满足上述要求?(2)若带电粒子带-q的电荷能否满足上述要求?N BC1.如图所示,一质量为m 、电量为+q 的带电小球以与水平方向成某一角度θ的初速度v 0射入水平方向的匀强电场中,小球恰能在电场中做直线运动.若电场的场强大小不变,方向改为相反同时加一垂直纸面向外的匀强磁场,小球仍以原来的初速度 重新射入,小球恰好又能做直线运动.求电场强度的大小、磁感应强度的大小和初速度与水平方向的夹角θ。
物体系统的平衡问题
AB杆:解:1。取研究对象画受力图。
2.建立平衡方程式
∑FX = 0 : ∑Fy = 0 :
FAX 0
FAY 36 FBY FD 0
∑MA = 0 :
363 8FBY 6FD 0
3.解平衡方程
注意作用与反作用关系 所以:
FAX 0 FD 17KN
建筑力学
物体系统的平衡问题 以上讨论的都是单个物体的平衡问题。对
于物体系统的平衡问题,其要点在于如何正确 选择研究对象,一旦确定了研究对象,则计算 步骤与单个物体的计算步骤完全一样。下面举 例讲解如何正确选择研究对象的问题。
例 4 求图示结构的支座反力。 解: 一个研究对象最
多有三个平衡条件, 因此研究对象上最多 只能有三个未知力。
取右半部分为研究对象,画受力图: 由 ∑MC = 0 :
4 4 2 4FBX 4FBY 0 4 4 2 4FBX 417 0
FBX 9KN 将FBX 代入式:
FAX 20 FBX 0
FAX FBX 20 11KN
建筑力学
FAY 7KN
例 5 求图示三铰拱的支座反力。 解: 取整体为研究对象,
画受力图:
∑MA = 0 :
20 2 4 46 8FBY 0
∑MB = 0 :
20 2 4 4 2 8FAY 0
∑FX = 0 : FAX 20 FBX 0
FBY 17KN
FAy 1KN
FAX 20 FBX
注意到BC杆有三个未 知力,而AB 杆未知力
超过三个,所以应先
取BC 杆为计算对象, 然后再取AB 杆为:1。取研究对象画受力图 2.建立平衡方程式 ∑FX = 0 : FBX 0 ∑y = 0 : FBY 12 FC 0 ∑MB = 0 : 12 2 4FC 0 3.解平衡方程
高考力学平衡问题的解题方法
高考力学平衡问题的解题方法高考力学平衡问题是物理学中常见的问题之一,在考试中常常会出现。
平衡问题是指物体处于不动或匀速直线运动的状态。
在平衡问题中,我们需要考虑平衡力、受力分析、平衡条件等多个方面。
下面将介绍高考力学平衡问题的解题方法。
受力分析首先,在解决平衡问题时,我们需要进行受力分析。
受力分析是指对物体所受的各种力进行全面分析,从而找出物体的平衡状态。
受力分析包括摆图法和自由体图法。
摆图法是指将物体画为简化的示意图,并在图中标出力的方向,将所有力综合画在一起,并确定其方向和作用点。
在摆图法中,我们一般需要进行三个步骤:1. 画出物体示意图2. 将作用在物体上的各个力画在图中3. 进行力的合成,并确定合力的作用点和方向自由体图法是指将物体从整体中隔离出来,而将所有与其相邻的物体和连接器官都抽象成力,从而分析物体所受到的所有受力。
自由体图法也包括三个步骤:2. 在示意图上画出自由体图,并标出相互作用的力3. 进行力的求和,并根据平衡条件来判断受力的情况力的平衡条件力的平衡条件是指物体受到的各个力所产生的合力为零,从而保证物体处于平衡状态。
力的平衡条件包括以下几个方面:1. 作用于物体的力合成为零3. 物体受到的所有力的矢量和为零4. 在相互作用力作用的平面内,各个力的和为零以上平衡条件适用于平面内物体的平衡状态。
对于三维空间的平衡问题,我们还需要考虑轴心定理和力矩平衡条件。
轴心定理是指对于物体在平衡状态下,对任意一个轴心,沿该轴心的力矩之和为零。
轴心定理适用于圆柱体、球体等对称物体的平衡问题。
力矩平衡条件是指物体所受到的合力的力矩等于零,即力矩的综合为零。
力矩平衡条件适用于因受力点的位置而导致的平衡问题。
解题技巧在解决平衡问题时,我们需要掌握一些解题技巧:1. 画图清晰明了2. 全面认真地分析物体所受的各个力3. 应用平衡条件得出未知量4. 确保答案的正确性5. 要对结论进行合理的解释总之,在高考力学平衡问题中,我们需要全面分析受力情况,并应用相应的平衡条件来求解未知量,从而得出正确的答案。
高一物理竞赛讲义八——平衡的种类
一般物体的平衡问题物体的平衡又分为随遇平衡、稳定平衡和不稳定平衡三种.一、稳定平衡:如果在物体离开平衡位置时发生的合力或合力矩使物体返回平衡位置,这样的平衡叫做稳定平衡.如图1—1a中位于光滑碗底的小球的平衡状态就是稳定的.二、不稳定平衡:如果在物体离开平衡位置时发生的合力或合力矩能使这种偏离继续增大,这样的平衡叫做不稳定平衡,如图1—1b中位于光滑的球形顶端的小球,其平衡状态就是不稳定平衡.三、随遇平衡:如果在物体离开平衡位置时,它所受的力或力矩不发生变化,它在新的位置上仍处于平衡,这样的平衡叫做随遇平衡,如图1—1c中位于光滑水平板上的小球的平衡状态就是随遇的.从能量方面来分析:物体系统偏离平衡位置,势能增加者,为稳定平衡;物体系统偏离平衡位置,减少者为不稳定平衡;物体系统偏离平衡位置,不变者,为随遇平衡.如果物体所受的力是重力,则稳定平衡状态对应重力势能的极小值,亦即物体的重心有最低的位置.不稳定平衡状态对应重力势能的极大值,亦即物体的重心有最高的位置.随遇平衡状态对应于重力势能为常值,亦即物体的重心高度不变.类型一、物体平衡种类的问题一般有两种方法解题,一是根据平衡的条件从物体受力或力矩的特征来解题,二是根据物体发生偏离平衡位置后的能量变化来解题;例1.有一玩具跷板,如图1—2所示,试讨论它的稳定性不考虑杆的质量.分析和解:假定物体偏离平衡位置少许,看其势能变化是处理此类问题的主要手段之一,本题要讨论其稳定性,可假设系统发生偏离平衡位置一个θ角,则:在平衡位置,系统的重力势能为(0)2(cos)E L l mgα=-当系统偏离平衡位置θ角时,如图1一3所示,此时系统的重力势能为()[cos cos()][cos cos()]E mg L l mg L lθθαθθαθ=-++--2cos(cos)mg L lθθ=-()(0)2(cos1)(cos)PE E E mg L lθθ∆=-=--故只有当cosL lθ<时,才是稳定平衡.例2.如图1—4所示,均匀杆长为a,一端靠在光滑竖直墙上,另一端靠在光滑的固定曲面上,且均处于Oxy 平面内.如果要使杆子在该平面内为随遇平衡,试求该曲面在Oxy 平面内的曲线方程.分析和解:本题也是一道物体平衡种类的问题,解此题显然也是要从能量的角度来考虑问题,即要使杆子在该平面内为随遇平衡,须杆子发生偏离时起重力势能不变,即杆子的质心不变,y C 为常量; 又由于AB 杆竖直时12C y a =, 那么B 点的坐标为sin x a θ=111cos (1cos )222y a a a θθ=-=-消去参数得 222(2)x y a a +-=类型二、物体系的平衡问题的最基本特征就是物体间受力情况、平衡条件互相制约,情况复杂解题时一定要正确使用好整体法和隔离法,才能比较容易地处理好这类问题;例3.三个完全相同的圆柱体,如图1一6叠放在水平桌面上,将C 柱放上去之前,A 、B 两柱体之间接触而无任何挤压,假设桌面和柱体之间的摩擦因数为μ0,柱体与柱体之间的摩擦因数为μ,若系统处于平衡,μ0与μ必须满足什么条件分析和解:这是一个物体系的平衡问题,因为A 、B 、C 之间相互制约着而有单个物体在力系作用下处于平衡,所以用隔离法可以比较容易地处理此类问题;设每个圆柱的重力均为G,首先隔离C 球,受力分析如 图1一7所示,由∑Fc y =0可得1131)2N f G += ① 再隔留A 球,受力分析如图1一8所示,由∑F Ay =0得11231022N f N G +-+= ② 由∑F Ax =0得21131022f N N +-= ③ 由∑E A =0得12f R f R = ④ 由以上四式可得1122323f f -===+112N G =,232N G =而202f N μ≤,11f N μ≤0233μ-≥23μ≥-类型三、物体在力系作用下的平衡问题中常常有摩擦力,而摩擦力F f 与弹力F N 的合力凡与接触面法线方向的夹角θ不能大于摩擦角,这是判断物体不发生滑动的条件.在解题中经常用到摩擦角的概念.例4.如图1一8所示,有两根不可伸长的柔软的轻绳,长度分别为1l 和2l ,它们的下端在C 点相连接并悬挂一质量为m 的重物,上端分别与质量可忽略的小圆环A 、B 相连,圆环套在圆形水平横杆上.A 、B 可在横杆上滑动,它们与横杆间的动摩擦因数分别为μ1和μ2,且12l l <;试求μ1和μ2在各种取值情况下,此系统处于静态平衡时两环之间的距离AB;分析和解:本题解题的关键是首先根据物体的平衡条件,分析小环的受力情况得出小环的平衡条件f N F F μ≤,由图1—9可知sin tan cos f T NT F F F F θμθθ≥==定义tan μϕ=,ϕ为摩擦角,在得出摩擦角的概念以后,再由平衡条件成为θϕ≤展开讨论则解此题就方便多了; 即由tan tan θϕμ≤= 情况1:BC 绳松弛的情况θ1=00,不论μ1、μ2为何值,一定平衡; 情况2:二绳均张紧的情况图1—10 A 环不滑动的条件为:11θϕ≤,即111tan tan θϕμ≤= 于是有11221cos cos tan 11θϕθμ=≥=++1111221sin sin tan 11θϕθμ=≥=++又由图1—11知1122cos cos CD l l θθ==222122122sin 1cos 1cos l l θθθ=-=-所以,若要A 端不滑动,AB 必须满足22111112222211sin 1sin 11l AB l l l θθμμ=+≤-++ ① 根据对称性,只要将上式中的下角标1、2对调,即可得出B 端不滑动时,AB 必须满足的条件为:222221222211l AB l μμ≤-++ ②如果系统平衡,①②两式必须同时满足;从①式可以看出,μ1可能取任意正值和零,当μ1=0时,AB 只能取最小值2221l l -,此时θ1=0,2l 拉直但无张力;从②式可以看出μ2的取值满足222211l l μ≥-否则AB 无解,222211l l μ=-,AB 2221l l -; 综上所述,AB 的取值范围为:情况1:2l 松弛22210AB l l ≤<-μ1、μ2为任意非负数; 情况2:2l 张紧2221l l AB -≤≤①②两式右边较小的,μ1为任意非负数,222211llμ≥-类型四、一般物体平衡条件的问题主要又分为刚体定轴转动平衡问题和没有固定转动轴的刚体转动平衡问题,这类问题要按一般物体平衡条件来处理,即要么既要考虑力的平衡,又要考虑力矩平衡来求解;要么就要考虑以哪点为转动轴或哪点先动的问题;例5.质量分别为m 和M 的两个小球用长度为l 的轻质硬杆连接,并按图1一11所示位置那样处于平衡状态.杆与棱边之间的摩擦因数为μ,小球m 与竖直墙壁之间的摩擦力可以不计.为使图示的平衡状态不被破坏,参数m 、M 、μ、l 、a 和α应满足什么条件 分析和解:本题是一道典型的刚体定轴转动平衡问题,解题时对整体进行受力分析,但物体的平衡不是共点力的平衡,处理时必须用正交分解法,同时还要考虑力矩的平衡,受力分析如图,根据力的平衡条件可列出:cos sin ()m N F M m g αα+=+ ① 1sin cos m N N F αα+= ②根据力矩平衡条件可写出:cos cos NaMgl αα=③ 杆不滑动的条件为F m < Μn;由①得 ()cos sin m M m g N F N αμα+-=<,即()(cos sin )M m g N αμα+<+④用③除④得 2(1)cos (cos sin )m lM aααμα+<+ ⑤ 杆不向右翻倒的条件为N 1>0;由①和②可得出 1cos sin m N F N αα=-()cos cos sin 0sin M m g N N αααα+-=->由此可得()cos M m g N α+> ⑥ 将③中的N 代人⑥得1cos m lM aα+> ⑦ 由于cos l a α>,再考虑不等式⑦,可得21cos 1cos (cos sin )l m la M aαααμα<<+<+ ⑧为了在不等式⑧中能同时满足最后两个不等号,就必须满足条件: cos (cos sin )1ααμα+>由此可得平衡条件为:tan μα>,如果tan μα< ,就不可能出现平衡. 例6.如图1一12,匀质杆长l ,搁在半径为R 的圆柱上,各接触面之间的摩擦因数均为μ,求平衡时杆与地面的夹角α应满足的关系.分析和解:本题也是一个一般物体的平衡问题与上题的区别在 于没有固定转动轴,所以这个问题的难点在于系统内有三个接触点,三个点上的 力都是静摩擦力,不知道哪个点最先发生移动. 我们先列出各物体的平衡方程:设杆和圆柱的 重力分别为G 1和G 2; 对杆∑F x =0 F f3+F f2cos α=F N2sin α ①∑F y =0 F N3+F N2cos α+F f2sin α=G 1 ②∑M O ´=0 12cos cos 22N l G F R αα⋅⋅=⋅⋅ ③对柱∑F x =0 F f1+F f2cos α=F N2sin α ④ ∑F y =0 F f2sin α+G 2+F N2cos α=F N1 ⑤ ∑M O =0 F f1 =F f2 ⑥ ∑M O ´=0 F N2+G 2=F N1 ⑦以上七个方程中只有六个有效,由⑦式可知,F N1>F N2,又因为 F f1 =F f2 ,所以一定是2 z 处比1处容易移动,再来比较2处和O ´处. 1如果是2处先移动,必有 F f2=μF N2, 代入④式,可得tan 2αμ=,将此结果代入①②③式,即有2132(1)(sin cos )2(1)f G L F R μμαμαμ⋅-=-+2312(1)[1(sin cos )]2(1)N l F G R μμμαμμ⋅-=-++ 在这种情况下,如要F f3≤μF N3,必须有22(1)(1)R l μμμ+≤⋅- 杆要能搁在柱上,当然要tan2R Rl αμ≥=因此在22(1)(1)tan 2RRR l l μαμμμ+≥=≤≤⋅-时,α=2arctan μ;2如果是0'处先移动,必有F f3=μF N3,代入①②式,可有22tan2f N F F α=⋅21tan2cos 2N F G l R ααμ=⋅⋅⋅⋅12cos(1tan)tan22R l ααμ=⋅+⋅ ⑧满足⑧式的α即为平衡时的α,这时要求F f2<F N2·μ,须有2211R l μμμ+>⋅- 综上所述当2211RR l μμμμ+≤≤⋅-时,α=2arctan μ; 当2211R l μμμ+>⋅-时,α应满足12cos (1tan )tan 22R l αααμ=⋅+⋅; 三、小试身手如图所示,用长为错误!R 的细直杆连结两个小球A 、B ,它们的质量分别为m 和2m ,置于光滑的、半径为R 的半球形碗内,达到平衡时,半球面的球心与B 球的连线与竖直方向间的夹角的正切为 A1 B1/2 C1/3 D1/41. 如图1—13所示,长为L 的均匀木杆AB,重量为G,系在两根长均为L 的细绳的两端,并悬挂于O 点,在A 、B 两端各挂一重量分别为G 1、G 2的两物,求杆AB 处于平衡时,绳OA 与竖直方向的夹角.1.解:以ΔOAB 整体为研究对象,并以O 为转动轴,其受力情况如图所示,设OA 与竖直线夹角为α,OC 与竖直线夹角为β,因为ΔOAB 为等边三角形,C 为AB 边的中点,所以1302AOC AOB ∠=∠=,30αβ+=,即030βα=-,03sin 602OC L L ==,03sin sin(30)2CF OC L βα==-,00cos(60)cos(30)BD L L βα=-=+,sin AE L α=,以O 为转动轴,则由刚体的平衡条件0M =∑可知12G AE G CF G BD ⋅=⋅+⋅, 即00123sin sin(30)cos(30)2G L GL G L ααα=-++ 展开后整理得:2123(2tan 432G GG G G α+=++所以,AB 处于平衡时,绳OA 与竖直方向的夹角为AB2123arctan432G G G α=++(2G +G )一足够长的斜面,最高点为O 点,有一长为l =1.00 m 、质量为m ′=0.50 kg 且质量分布均匀木条AB ,A 端在斜面上,B 端伸出斜面外.斜面与木条间的摩擦力足够大,以致木条不会在斜面上滑动.在木条A 端固定一个质量为M =2.00 kg 的重物可视为质点,B 端悬挂一个质量为m =0.50 kg 的重物.若要使木条不脱离斜面, OA 的长度需满足什么条件 画出均匀木条的受力情况图;解:设G 为木条重心,由题意可知12AG l =当木条A 端刚刚离开斜面时,受力情况如图所示.2分由①中的分析可知,若满足cos MgOA θ>cos cos mg OB mg OG θθ+6分木条就不会脱离斜面;解得:OA >0.25 m 2分长度为L 的相同的砖块平放在地面上,上面一块相对于下面一块伸出L/4,如图所示,试问,最多可以堆几块砖刚好不翻到1、图示A 、B 分别是固定墙上的两个相同的钉子,一根长2L,质量为m,质量分布均匀的细杆搁在两钉子间处于静止状态,开始时AB 间距离为2/3L,杆的上端恰好在A 点,且杆与水平方向的夹角为30°;1求A 、B 两点上受到的弹力;2如果让钉子A 不动,钉子B 以A 为圆心绕A 慢慢地逆时针转动,当转过15°时,杆刚好开始向下滑动;求杆与钉子间的滑动摩擦系数是多少3如果细杆与水平方向保持30°不变,钉子B 沿着杆方向向下改变位置,则B 移动到距A 多大距离处时,杆不再能保持平衡X=3232+L =0.928L2. 一长为L 的均匀薄板与一圆筒按图1—14所示放置,平衡时,板与地面成θ角,圆筒与薄板相接触于板的中心.板与圆筒的重量相同均为G .若板和圆筒与墙壁之间无摩擦,求地面对板下端施加的支持力和静摩擦力.画受力图 A BO GB30°A解:如图所示,圆筒所受三个力沿水平和竖直方向平衡的分量式为1sin 0N N F F θ-=,cos 0N F G θ-=板所受五个力沿水平和竖直方向平衡的分量式为2sin 0f NN F F F θ'+-= 3cos 0N NF G F θ'--= 板所受各力对圆筒和板的交点为转动轴的力矩平衡方程为23sin sin cos 0222N f N L L LF F F θθθ+-= 根据牛顿第三定律,有NN F F '= 联立以上各式,可解得地面对板的支持力和静摩擦力分别为F N3=2G,12f F G θθ=(cot -tan )3. 如图1—15,两把相同的均匀梯子AC 和BC,由C 端的铰链 连起来,组成人字形梯子,下端A 和B 相距6m,C 端离水平地面4m,总重200 N,一人重600 N,由B 端上爬,若梯子与地面的静摩擦因数μ=0.6,则人爬到何处梯子就要滑动解:进行受力分析,如图所示,把人和梯子看成一个整体,整个系统处于平衡状态:AB=6m,CD=4m,∴AC=BC=5m 设人到铰链C 的距离为l 满足0F =∑, 0M =∑所以12AC BC N N G G G F F ++=+12f f F F =111cos 2BC N N G l G BD F CD F BD θμ⋅⋅+⋅+⋅⋅=⋅整理后:12400N N F F N ==, 2.5l m =所以人在爬到梯子中点处时梯子就要滑动2、塔式起重机的结构如图所示,设机架重P =400 kN,悬臂长度为L =10 m,平衡块重W =200 kN,平衡块与中心线OO /的距离可在1 m 到6 m 间变化,轨道A 、B 间的距离为4 m; ⑴当平衡块离中心线1 m,右侧轨道对轮子的作用力f B 是左侧轨道对轮子作用力f A 的2倍,问机架重心离中心线的距离是多少⑵当起重机挂钩在离中心线OO /10 m 处吊起重为G =100 kN 的重物时,平衡块离OO /的距离为6 m,问此时轨道B 对轮子的作用力F B 时多少机架平衡块挂钩轮子轨道2m 2mLOO /解:⑴空载时合力为零:600 kN A B f f P W +=+=已知:f B =2f A 求得:f A =200 kN f B =400 kN设机架重心在中心线右侧,离中心线的距离为x ,以A 为转轴,力矩平衡4(21)(2)B f W P x ⨯=⨯-+⨯+ 求得:x =1.5 m⑵以A 为转轴,力矩平衡(62)4(2 1.5)(102)B W F P G ⨯-+⨯=⨯++⨯+求得:F B =450 kN5.7. 如图1—19所示,有六个完全相同的长条薄片A i B i i=1,2,... 6依次架在水平碗口上,一端搁在碗口、另一端架在另一薄片的正中位置不计薄片的质量将质量为m 的质点置于A 1A 6的中点处,试求A 1B 1薄片对A 6B 6的压力.7. 解:本题中六个物体,其中通过分析可知A 1 B 1、A 2B 2、A 3B 3、A 4B 4、A 5B 5的受力情况完全相同,因此将A 1 B 1、A 2B 2、A 3B 3、A 4B 4、A 5B 5作为一类,对其中一个进行受力分析、找出规律,求出通式即可.以第i 个薄片AB 为研究对象,受力情况如图1所示, 第i 个薄 片受到前一个薄片向上的支持力Ni F 、碗边 向上的支持力和后一个薄片向下的压力1Ni F +.选碗边 B 点为轴,根据力矩平衡有12Ni Ni LF L F +⋅=⋅,得12Ni Ni F F +=所以512361111()2222N N N N F F F F ==⨯=⋅⋅⋅= ① 再以A 6B 6为研究对象,受力情况如图2所示,A 6B 6受到薄片A 5B 5向上的支持力F N6、碗边向上的支持力和后一个薄片A 1 B 1向下的压力F N1、质点向下的压力mg;选 B 6点为轴,根据力矩平衡有 ② 由①②联立,解得142N mgF =所以A 1B 1薄片对A 6B 6的压力为42mg。
第3章 静力学平衡问题
第3章 静力学平衡问题 §3.1 平衡与平衡条件一、平衡的概念物体的平衡,在工程上是指物体相对于地面保持静止或作匀速直线运动的状态。
平衡是相对于确定的参考系而言的。
静力学所讨论的平衡问题可以是单个刚体,也可以是由若干个刚体组成的刚体系统。
刚体或刚体系统是否平衡取决于作用在其上的力系。
二、平衡条件要使物体保持平衡状态,作用在其上的力必须满足一定的条件,这种条件我们称为力的平衡条件。
从效应上看,物体保持平衡应是既不移动,又不转动。
因此,力系的平衡条件是,力系的主矢和力系对任一点的主矩等于零。
其解析表达式称为平衡方程。
§3.2 平面力系的平衡方程一、平面力系的平衡方程1)基本形式⎪⎩⎪⎨⎧=∑=∑=∑0)(000F M Y X2)二矩式⎪⎩⎪⎨⎧=∑=∑=∑0)(0)(0F F B A M M X 附加条件为:A 、B 两点连线不垂直于x 轴3)三矩式⎪⎩⎪⎨⎧=∑=∑=∑0)(0)(0)(F F F C B A M M M 附加条件为:A 、B 、C 三点不共线特殊力系的平衡方程 1)共线力系:=∑i F2)平面汇交力系:⎩⎨⎧=∑=∑00Y X3)平面力偶系: 0i m =∑4)平面平行力系: )//( 0)(0轴y M Y i o F F ⎩⎨⎧=∑=∑§3.3 空间力系的平衡方程一、空间力系的平衡方程其基本形式的平衡方程为:ΣX=0 ΣM x(F)=0ΣY=0 ΣM y(F)=0ΣZ=0 ΣM z(F)=0必须指出,空间一般力系有六个独立的平衡方程可以求解六个未知量。
具体应用时,不一定使3个投影轴或矩轴互相垂直,也没有必要使矩轴和投影轴重合,而可以选取适宜轴线为投影轴或矩轴,使每一个平衡方程中所含未知量最少,以简化计算。
此外,还可以将投影方程用适当的力矩方程取代,得到四矩式、五矩式以至六矩式的平衡方程。
使计算更为简便。
几种特殊力系的平衡方程1)空间汇交力系ΣX=0ΣY=0ΣZ=02)空间力偶系ΣM x(F)=0ΣM y(F)=0ΣM z(F)=03)空间平行力系(若各力//z轴)ΣZ=0ΣM x(F)=0ΣM y(F)=04)平面任意力系(若力系在Oxy平面内)∑X==∑YM(=∑F)z§3.4 平衡方程的应用一、一般应用举例例3-1,例3-3,例3-4,例3-5(改求起重机不翻平衡块的重量就应是多少?),例3-6,例3-7 补充:已知:带轮D :D1=400 mm ,FT=2000 N ,Ft=1000 N ;齿轮C :D2=200 mm ,a=20° 求:齿轮C 的啮合力Fn ,轴承A 、B 的约束力FA 、FB轴承A 、B 的约束力FA 、FB 就是圆轴受支座中圆孔的约束力,圆孔销钉就是固定铰链两个分力 为说明两分力方向,建立空间直角坐标系Oxyz ?y 轮轴线,z 轴铅直,Oxy 是水平面,三轴垂直 轴承支座表示方法(下图),其约束两分力为xz 方向,用F Ax 、F Az 和F Bx 、F Bz ,或X A 、Z A 和X B 、Z B 侧视图(将轮轴及其受力投影到Oxz 平面上)受力图,没有画轴承A 、B 的约束力,因为没有解除这两个轴承约束=B M ∑02cos 2221t 1T =⨯⨯⨯D F D F D F n a --2000×200-1000×200-Fncos20°×100=0 Fn=2130 N主视图(将轮轴及其受力投影到Oyz 平面上)受力图,其中Fnz=Fncos20°=2130×0.9396=2000 N因主动力Fnz=2000 N 作用点到A 、B 两个支座距离相同,方向向上显然,与之平衡的两支座约束力大小相等,实际方向向下,和受力图所画的方向相反,所以N10002N 20002-====--nzB A F Z Z俯视图(将轮轴及其受力投影到Oxy 平面上) 受力图,其中Fnx=Fnsin20°=2130×0.3420=729 NΣMA=0 -(FT+Ft)×0.15+Fnx ×0.25-XB ×0.5=0 -(2000+1000)×0.15+729×0.25-XB ×0.5=0 XB=-536 NΣFx=0 -FT-Ft+XA-Fnx+XB=0 -2000-1000+XA-729+(-536)=0 XA=4265 N 结论:Fn=2130 NXA=4265 N ; XB=-536 N ZA=-1000 N ; ZB=-1000 N 小结:①轮轴类部件平面解法:1.侧视图求未知主动力 2.主视图求铅直向约束力 3.俯视图求水平向约束力在每一视图上,使用平面力系力的投影方程和力矩平衡方程求解未知力 ②皮带拉力,无论倾斜与否,总是和轮缘相切,对轮轴的力矩等于拉力乘以半径齿轮啮合力一定和其分度圆不相切,对轮轴的力矩=啮合力×cosa ×半径(啮合力×cosa=圆周方向分力)③侧视图上没有画轴承A 、B 的约束力,因为没有解除两个轴承约束(若画有XA 、ZA 和XB 、ZB 四力) 不能用ΣFx=0,-FT-Ft-Fnsina=0求Fn ,因为在x 方向,实际上还有XA 、XB 两力的投影 二、重心1、物体的重心物体的重量(力):物体每一微小部分地球引力的合力。
物理 必修一 第三章 平衡问题总结
专题四.共点力作用下物体的平衡一、共点力作用下物体的平衡◎知识梳理1.共点力的判别:同时作用在同一物体上的各个力的作用线交于一点就是共点力。
这里要注意的是“同时作用”和“同一物体”两个条件,而“力的作用线交于一点”和“同一作用点”含义不同。
当物体可视为质点时,作用在该物体上的外力均可视为共点力:力的作用线的交点既可以在物体内部,也可以在物体外部。
,2.平衡状态:对质点是指静止状态或匀速直线运动状态,对转动的物体是指静止状态或匀速转动状态。
(1)二力平衡时,两个力必等大、反向、共线;(2)三力平衡时,若是非平行力,则三力作用线必交于一点,三力的矢量图必为一闭合三角形;(3)多个力共同作用处于平衡状态时,这些力在任一方向上的合力必为零;(4)多个力作用平衡时,其中任一力必与其它力的合力是平衡力;(5)若物体有加速度,则在垂直加速度的方向上的合力为零。
3.平衡力与作用力、反作用力对作用力反作用力都是大小相等、方向相反,作用在一条直线上的两个力。
【注意】①一个力可以没有平衡力,但一个力必有其反作用力。
②作用力和反作用力同时产生、同时消失;对于一对平衡力,其中一个力存在与否并不一定影响另一个力的存在。
4.正交分解法解平衡问题正交分解法是解共点力平衡问题的基本方法,其优点是不受物体所受外力多少的限制。
解题依据是根据平衡条件,将各力分解到相互垂直的两个方向上.正交分解方向的确定:原则上可随意选取互相垂直的两个方向;但是,为解题方便通常的做法是:①使所选取的方向上有较多的力;②选取运动方向和与其相垂直的方向为正交分解的两个方向。
在直线运动中,运动方向上可以根据牛顿运动定律列方程,与其相垂直的方向上受力平衡,可根据平衡条件列方程。
③使未知的力特别是不需要的未知力落在所选取的方向上,从而可以方便快捷地求解。
解题步骤为:选取研究对象一受力分析一建立直角坐标系一找角、分解力一列方程一求解。
5.解平衡问题的基本步骤:⑴选择恰当的研究对象,对研究对象进行受力分析。
物体平衡问题解法
物体平衡问题解法长沙市明德中学李启洪1.正交分解法这是最基本的方法。
这种方法是利用物体所受合外力为0这一条件来求解。
建立一适当的直角坐标系,将物体所受各力分别向两坐标轴分解,转化为同一直线上的力来合成。
山于物体受的合外力为0,故y轴上的合力Fy二0,x轴上的合力Fx二0。
山此列方程求解。
例如图所示,重为G的物体放在水平面上,物体与水平面间的动摩擦因数为U二l/J eq o(sup 1K-), 3),物体做匀速直线运动。
求牵引力F的最小值和方向角0。
解:物体的受力图如图。
建立坐标系,有:Feos 0 - u N=0 ①Fsin0+N-G=0 ②山①、②消去N得:F= M G / (cos 0 + P sin 0 )台GJl + ¥ C0£ © - 0 ) _____ 4)|Jcos 0 + M sin 0 = V 1+ y 'cos ( 0 - ")・•・F二当0=4)时,cos(0-<l>)取极大值1, F有最小值。
<l>=30°0=30°2.正弦定理法正弦定理在解决三力平衡问题中有广泛应用,它可使解题过程大大简化。
物体在三个互成角度的共点力作用下处于平衡,则这三个力组成一个闭合三角形。
如图所示,有:例2:如图,C 点为光滑转轴,绳AB 能承受的最大拉力为1000N, 杆AC 能承受的最大压力为2000No 问A 点最多能挂多重的物体?(绳.杆的自重不计)解:选节点A 为研究对象。
受力如图。
由正弦定理:F : / sin45°=F 2/sin60°=G/sin75°当 F F IOOON 时,G=Fisin757sin45°=1366N、"l F 2=2000N 时G'二 F :sin75o /sin6O 0=2230・ 7N 故G 不能超过1366No3.图象法sin a sin sin yA图2图象法即利用力的合成的平行四边形法则,也称矢量三角形法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物体的平衡问题物体的平衡又分为随遇平衡、稳定平衡和不稳定平衡三种.一、稳定平衡:如果在物体离开平衡位置时发生的合力或合力矩使物体返回平衡位置,这样的平衡叫做稳定平衡.如图1—1(a)中位于光滑碗底的小球的平衡状态就是稳定的.二、不稳定平衡:如果在物体离开平衡位置时发生的合力或合力矩能使这种偏离继续增大,这样的平衡叫做不稳定平衡,如图1—1(b)中位于光滑的球形顶端的小球,其平衡状态就是不稳定平衡.三、随遇平衡:如果在物体离开平衡位置时,它所受的力或力矩不发生变化,它在新的位置上仍处于平衡,这样的平衡叫做随遇平衡,如图1—1(c)中位于光滑水平板上的小球的平衡状态就是随遇的.从能量方面来分析,物体系统偏离平衡位置,势能增加者,为稳定平衡;减少者为不稳定平衡;不变者,为随遇平衡.如果物体所受的力是重力,则稳定平衡状态对应重力势能的极小值,亦即物体的重心有最低的位置.不稳定平衡状态对应重力势能的极大值,亦即物体的重心有最高的位置.随遇平衡状态对应于重力势能为常值,亦即物体的重心高度不变.二、方法演练类型一、物体平衡种类的问题一般有两种方法解题,一是根据平衡的条件从物体受力或力矩的特征来解题,二是根据物体发生偏离平衡位置后的能量变化来解题。
例1.有一玩具跷板,如图1—2所示,试讨论它的稳定性(不考虑杆的质量).分析和解:假定物体偏离平衡位置少许,看其势能变化是处理此类问题的主要手段之一,本题要讨论其稳定性,可假设系统发生偏离平衡位置一个θ角,则:在平衡位置,系统的重力势能为(0)2(c o s )E L l m g α=- 当系统偏离平衡位置θ角时,如图1一3所示,此时系统的重力势能为()[c o s c o s ()][c o s c o s E m g L l m g L l θθαθθαθ=-++--2c o s (c o s m g L l θθ=- ()(0)2(c o s 1)(cP E E E m g L l θθ∆=-=-- 故只有当cos L l θ<时,才是稳定平衡.例2.如图1—4所示,均匀杆长为a ,一端靠在光滑竖直墙上,另一端靠在光滑的固定曲面上,且均处于Oxy 平面内.如果要使杆子在该平面内为随遇平衡,试求该曲面在Oxy 平面内的曲线方程.分析和解:本题也是一道物体平衡种类的问题,解此题显然也是要从能量的角度来考虑问题,即要使杆子在该平面内为随遇平衡,须杆子发生偏离时起重力势能不变,即杆子的质心不变,y C 为常量。
又由于AB 杆竖直时12C y a =, 那么B 点的坐标为sin x a θ=111cos (1cos )222y a a a θθ=-=- 消去参数得222(2)x y a a+-= 类型二、物体系的平衡问题的最基本特征就是物体间受力情况、平衡条件互相制约,情况复杂解题时一定要正确使用好整体法和隔离法,才能比较容易地处理好这类问题。
例3.三个完全相同的圆柱体,如图1一6叠放在水平桌面上,将C 柱放上去之前,A 、B 两柱体之间接触而无任何挤压,假设桌面和柱体之间的摩擦因数为μ0,柱体与柱体之间的摩擦因数为μ,若系统处于平衡,μ0与μ必须满足什么条件?分析和解:这是一个物体系的平衡问题,因为A 、B 、C 之间相互制约着而有单个物体在力系作用下处于平衡,所以用隔离法可以比较容易地处理此类问题。
设每个圆柱的重力均为G ,首先隔离C 球,受力分析如 图1一7所示,由∑Fc y =0可得11312()22N f G += ① 再隔留A 球,受力分析如图1一8所示,由∑F Ay =0得11231022N f N G +-+= ② 由∑F Ax =0得 21131022f N N +-= ③ 由∑E A =0得12f R f R = ④ 由以上四式可得11223223N f f G -===+112N G =,232N G =而202f N μ≤,11f N μ≤0233μ-≥,23μ≥- 类型三、物体在力系作用下的平衡问题中常常有摩擦力,而摩擦力F f 与弹力F N 的合力凡与接触面法线方向的夹角θ不能大于摩擦角,这是判断物体不发生滑动的条件.在解题中经常用到摩擦角的概念.例4.如图1一8所示,有两根不可伸长的柔软的轻绳,长度分别为1l 和2l ,它们的下端在C 点相连接并悬挂一质量为m 的重物,上端分别与质量可忽略的小圆环A 、B 相连,圆环套在圆形水平横杆上.A 、B 可在横杆上滑动,它们与横杆间的动摩擦因数分别为μ1和μ2,且12l l <。
试求μ1和μ2在各种取值情况下,此系统处于静态平衡时两环之间的距离AB 。
分析和解:本题解题的关键是首先根据物体的平衡条件,分析小环的受力情况得出小环的平衡条件f N F F μ≤,由图1—9可知sin tan cos f T NT F F F F θμθθ≥==定义tan μϕ=,ϕ为摩擦角,在得出摩擦角的概念以后,再由平衡条件成为θϕ≤展开讨论则解此题就方便多了。
即由tan tan θϕμ≤= 情况1:BC 绳松弛的情况θ1=00,不论μ1、μ2为何值,一定平衡。
情况2:二绳均张紧的情况(图1—10) A 环不滑动的条件为:11θϕ≤,即111tan tan θϕμ≤=于是有1122111cos cos tan 11θϕθμ=≥=++1111221tan sin sin tan 11θμθϕθμ=≥=++又由图1—11知1122cos cos CD l l θθ==222122122sin 1cos 1cos l l θθθ=-=-所以,若要A 端不滑动,AB 必须满足22111112222211sin 1sin 11l l AB l l l μθθμμ=+≤+-++ ① 根据对称性,只要将上式中的下角标1、2对调,即可得出B 端不滑动时,AB 必须满足的条件为:222221222211l l AB l μμμ≤+-++ ②如果系统平衡,①②两式必须同时满足。
从①式可以看出,μ1可能取任意正值和零,当μ1=0时,AB 只能取最小值2221l l -,此时θ1=0,2l 拉直但无张力。
从②式可以看出μ2的取值满足222211l l μ≥-否则AB 无解,222211l l μ=-时,AB 取最小值2221l l -。
综上所述,AB 的取值范围为:情况1:2l 松弛22210AB l l ≤<-,μ1、μ2为任意非负数。
情况2:2l 张紧2221l l AB -≤≤[①②两式右边较小的],μ1为任意非负数,222211l l μ≥-。
类型四、一般物体平衡条件的问题主要又分为刚体定轴转动平衡问题和没有固定转动轴的刚体转动平衡问题,这类问题要按一般物体平衡条件来处理,即要么既要考虑力的平衡,又要考虑力矩平衡来求解;要么就要考虑以哪点为转动轴或哪点先动的问题。
例5.质量分别为m 和M 的两个小球用长度为l 的轻质硬杆连接,并按图1一11所示位置那样处于平衡状态.杆与棱边之间的摩擦因数为μ,小球m 与竖直墙壁之间的摩擦力可以不计.为使图示的平衡状态不被破坏,参数m 、M 、μ、l 、a 和α应满足什么条件?分析和解:本题是一道典型的刚体定轴转动平衡问题,解题时对整体进行受力分析,但物体的平衡不是共点力的平衡,处理时必须用正交分解法,同时还要考虑力矩的平衡,受力分析如图,根据力的平衡条件可列出:cos sin ()m N F M m g αα+=+ ①1sin cos m N N F αα+= ② 根据力矩平衡条件可写出:cos cos NaMgl αα=③ 杆不滑动的条件为F m < Μn 。
由①得 ()c o ss i n m M m g N F N αμα+-=<,即()(cos sin )M m g N αμα+<+④用③除④得 2(1)c o s (c o ss i n )m l M aααμα+<+ ⑤杆不向右翻倒的条件为N 1>0。
由①和②可得出 1c o s s i n m N F N αα=- ()cos cos sin 0sin M m g N N αααα+-=->由此可得()cos M m g N α+> ⑥ 将③中的N 代人⑥得1cos m lM aα+> ⑦ 由于cos l a α>,再考虑不等式⑦,可得 21c o s 1c o s (c o s s i n )l m l a M aαααμα<<+<+ ⑧为了在不等式⑧中能同时满足最后两个不等号,就必须满足条件:c o s (c o s s i n )ααμα+> 由此可得平衡条件为:tan μα>,如果tan μα< ,就不可能出现平衡. 例6.如图1一12,匀质杆长l ,搁在半径为R 的圆柱上,各接触面之间的摩擦因数均为μ,求平衡时杆与地面的夹角α应满足的关系.分析和解:本题也是一个一般物体的平衡问题与 上题的区别在 于没有固定转动轴,所以这个问 题的难点在于系统内有三个接触点,三个点上的 力都是静摩擦力,不知道哪个点最先发生移动. 我们先列出各物体的平衡方程:设杆和圆柱的 重力分别为G 1和G 2。
对杆∑F x =0 F f3+F f2cos α=F N2sin α ① ∑F y =0 F N3+F N2cos α+F f2sin α=G 1 ②∑M O ´=0 12cos cos 22N l G F R αα⋅⋅=⋅⋅ ③对柱∑F x =0 F f1+F f2cos α=F N2sin α ④ ∑F y =0 F f2sin α+G 2+F N2cos α=F N1 ⑤ ∑M O =0 F f1 =F f2 ⑥ ∑M O ´=0 F N2+G 2=F N1 ⑦以上七个方程中只有六个有效,由⑦式可知,F N1>F N2,又因为 F f1 =F f2 ,所以一定是2 z 处比1处容易移动,再来比较2处和O ´处. (1)如果是2处先移动,必有 F f2=μF N2, 代入④式,可得tan 2αμ=,将此结果代入①②③式,即有2132(1)(sin cos )2(1)f G L F R μμαμαμ⋅-=-+ 2312(1)[1(sin cos )]2(1)N l F G R μμμαμμ⋅-=-++在这种情况下,如要F f3≤μF N3,必须有22(1)(1)R l μμμ+≤⋅- 杆要能搁在柱上,当然要tan2R Rl αμ≥=因此在22(1)(1)tan 2RRR l l μαμμμ+≥=≤≤⋅-时,α=2arctan μ。
(2)如果是0'处先移动,必有F f3=μF N3,代入①②式,可有22tan2f N F F α=⋅21tan2cos 2N F G l R ααμ=⋅⋅⋅⋅12cos(1tan )tan 22R l ααμ=⋅+⋅ ⑧ 满足⑧式的α即为平衡时的α,这时要求F f2<F N2·μ,须有2211R l μμμ+>⋅- 综上所述当2211RR l μμμμ+≤≤⋅-时,α=2arctan μ。