常用的数量关系式
数量关系式正确写法
数量关系式就是量与量之间的关系用式子表达。
比如说a是b的两倍,写成数量关系式是:a=2b。
常用的数量关系式:1、每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
2、1倍数×倍数=几倍数,几倍数÷1倍数=倍数,几倍数÷倍数=1倍数。
3、速度×时间=路程,路程÷速度=时间,路程÷时间=速度。
扩展资料:数学定义定理公式:1、三角形的面积=底×高÷2。
公式S=a×h÷22、正方形的面积=边长×边长公式S=a×a3、长方形的面积=长×宽公式S=a×b4、平行四边形的面积=底×高公式S=a×h5、梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷26、内角和:三角形的内角和=180度。
7、长方体的体积=长×宽×高公式:V=abh8、长方体(或正方体)的体积=底面积×高公式:V=abh9、正方体的体积=棱长×棱长×棱长公式:V=aaa10、圆的周长=直径×π公式:L=πd=2πr11、圆的面积=半径×半径×π公式:S=πr212、圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh13、圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr214、圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh15、圆锥的体积=1/3底面×积高。
公式:V=1/3Sh16、分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
17、分数的乘法则:用分子的积做分子,用分母的积做分母。
通用的数量关系式
一、常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、加数+加数=和和-一个加数=另一个加数4、被减数-减数=差被减数-差=减数差+减数=被减数5、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间二、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米三、面积单位换算1平方千米=1000000平方米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米1平方分米=100平方厘米四、质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤五、时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒六、运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
常用的数量关系式
• 因为35能被7整除,所以35是7的倍数,7是35的 约数。
• 一个数的约数的个数是有限的,其中最小的约数 是1,最大的约数是它本身。例如:10的约数有1、 2、5、10,其中最小的约数是1,最大的约数是 10。
• 2. 整数的写法:从高位到低位,一级一级地写, 哪一个数位上一个单位也没有,就在那个数位上 写0。
• 3. 小数的读法:读小数的时候,整数部分按照整 数的读法读,小数点读作“点”,小数部分从左 向右顺次读出每一位数位上的数字。
• 4. 小数的写法:写小数的时候,整数部分按照整 数的写法来写,小数点写在个位右下角,小数部 分顺次写出每一个数位上的数字。
同分母分数,叫做通分。
(四)百分数
• 1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分 数通常用"%"来表示。百分号是表示百分数 的符号。
(一)数的读法和写法
• 1. 整数的读法:从高位到低位,一级一级 地读。读亿级、万级时,先按照个级的读 法去读,再在后面加一个“亿”或“万” 字。每一级末尾的0都不读出来,其它数位 连续有几个0都只读一个零。
• 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
• 无限不循环小数:一个数的小数部分,数字排列无规律且 位数无限,这样的小数叫做无限不循环小数。 例如:π
• 循环小数:一个数的小数部分,有一个数字或者几个数字 依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
常用的数量关系式
常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2s=(a+b)× h÷28、圆形(S:面积C:周长л d=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
常用的数量关系式
常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积C:周长л d=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
常用的数量关系式
• 7、被减数-减数=差 被减数-差=减数 差+减数=被减数
• 8、因数×因数=积 积÷一个因数=另 一个因数
• 9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
• 2、面积单位换算 1平方千米=100公顷 1公顷 =10000平方米 1平方米=100 平方分米
• 如果数a能被数b(b ≠ 0)整除,a就叫做b 的倍数,b就叫做a的约数(或a的因数)。 倍数和约数是相互依存的。
• 因为35能被7整除,所以35是7的倍数,7是35的 约数。
• 一个数的约数的个数是有限的,其中最小的约数 是1,最大的约数是它本身。例如:10的约数有1、 2、5、10,其中最小的约数是1,最大的约数是 10。
• 4、重量单位换算 1吨=1000 千克 1千克 =1000克 1千克=1公斤
• 5人民币单位换算 1元=10角 1角=10分 1元 =100分
• 6、时间单位换算 1世纪=100年 1年=12月 大月 (31天)有:1\3\5\7\8\10\12月 小 月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平 年全年365天, 闰年全年366天 1日=24小时
• 1不是质数也不是合数,自然数除了1外,不是质 数就是合数。如果把自然数按其约数的个数的不 同分类,可分为质数、合数和1。
• 每个合数都可以写成几个质数相乘的形式。 其中每个质数都是这个合数的因数,叫做 这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
• 把一个合数用质因数相乘的形式表示出来, 叫做分解质因数。
• 例如把28分解质因数
• 几个数公有的约数,叫做这几个数的公约 数。其中最大的一个,叫做这几个数的最 大公约数,例如12的约数有1、2、3、4、6、 12;18的约数有1、2、3、6、9、18。其 中,1、2、3、6是12和1 8的公约数,6是 它们的最大公约数。
常用的数量关系式
一、常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、加数+加数=和和-一个加数=另一个加数4、被减数-减数=差被减数-差=减数差+减数=被减数5、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间二、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米三、面积单位换算1平方千米=1000000平方米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米1平方分米=100平方厘米四、质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤五、时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒六、运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
常用的数量关系式
一、常用得数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、加数+加数=与与-一个加数=另一个加数4、被减数-减数=差被减数-差=减数差+减数=被减数5、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数得除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度与×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度与速度与=相遇路程÷相遇时间二、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米三、面积单位换算1平方千米=1000000平方米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米1平方分米=100平方厘米四、质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤五、时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)得有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒六、运算定律1、加法交换律:两个数相加,交换加数得位置,它们得与不变,即a+b=b+a 。
2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加它们得与不变,即(a+b)+c=a+(b+c) 。
3、乘法交换律:两个数相乘,交换因数得位置它们得积不变,即a×b=b×a。
4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再与第一个数相乘,它们得积不变,即(a×b)×c=a×(b×c) 。
数学 常用数量关系等式
常用数量关系等式1、份数
每份数ⅹ份数 = 总数
总数÷每份数 = 份数
总数÷份数 = 每份数
2、倍数
1倍数ⅹ倍数 = 几倍数
几倍数÷ 1倍数=倍数
几倍数÷倍数 = 1倍数
3、路程
速度ⅹ时间 = 路程
路程÷时间 = 速度
路程÷速度 = 时间
4、价量
单价ⅹ数量 = 总价
总价÷单价 = 数量
总价÷数量 = 单价
5、工作量
工作效率ⅹ工作时间 =工作总量
工作总量÷工作时间 = 工作效率
工作总量÷工作效率 = 工作时间
6、数据运算
加数 + 加数 = 和
和−一个加数 = 另一个加数被减数–减数 = 差
被减数–差 = 减数
差 + 减数 = 被减数
因数ⅹ因数 = 积
积÷一个因数 = 另一个因数被除数÷除数 = 商
被除数÷商 =除数
商ⅹ除数 = 被除数。
常用的数量关系式
1、每份数X 份数=总数 总数*每份数=份数 总数* 份数 =每份数5、三角形(s :面积 a :底 h :高 )面积=(上底+下底)X 高* 2 s=(a+b) X h * 26、加数 +加数 =和 和- 一个加数 =另一个加数8、圆形(S :面积C :周长 J d=直径r=半径)7、被减数 -减数=差 被减数 -差=减数 差+减数=被减 数9、被除数*除数=商 被除数*商=除数 商X 除数 被除数9、圆柱体 (v: 体积 h: 高 s :底面积 r: 底面半径 c: 底面周长 )(1)侧面积=底面周长X 高=ch (2 JI r 或刃d ) (2)表面积=侧面积+底面积X 21、正方形 (C :周长 S :面积 a :边长 )⑶ 体积=底面积X 高(4)体积=侧面积十2 X 半径周长=边长X 4 C=4a2、1倍数X 倍数=几倍数 几倍数* 1倍数=倍数 几倍 数*倍数 =1倍数 面积=底乂高十2 s=ah - 23、速度X 时间=路程 路程*速度=时间 路程*时间= 速度 三角形高 =面积 X 2十底三角形底=面积X 2十高6、平行四边形(s:面积 a :底 h :高 )4、单价X 数量=总价 总价*单价=数量 总价*数量= 单价 面积=底乂咼s=ah5、工作效率X 工作时间 =工作总量 工作总量*工作 效率 =工作时间 工作总量*工作时间 =工作效率7、梯形 (s :面积 a :上底 b :下底 h :高 )8、因数X 因数=积 积十一个因数=另一个因数(2)面积=半径X 半径Xj面积=边长X 边长S=a X a2、正方体 (V: 体积 a: 棱长 )表面积=棱长X 棱长X 6 S 表=a X a X 6体积=棱长X 棱长X 棱长 V=a X a X a3、长方形(C :周长S :面积a :边长)周长=(长 +宽)X 2 C=2(a+b)面积=长乂宽S=ab4、长方体 (V: 体积 s: 面积 a: 长 b: 宽 h: 高) (1) 表 面 积 ( 长 X 宽 + 长 X 高 + 宽 X 高 ) XS=2(ab+ah+bh)10、圆锥体 (v: 体积 h: 高 s :底面积体积=底面积X 高十311、总数十总份数= 平均数12 、和差问题的公式(和+差)* 2=大数(和-差)* 2=小数13 、和倍问题和* (倍数-1)=小数 小数X 倍数=大数 数=大数)14、差倍问题差* (倍数-1)=小数 小数X 倍数=大数=大数 )r :底面半径 )或者 和-小或 小数 +差⑵ 体积=yx 宽X 高 v=abh(1)周长=直径Xj =2XjX 半径 C= J d=2 J r小学数学图形计算公式1 立方厘米 =1 毫升 1 立方米 =1000 升溶液的重量X 浓度=溶质的重量溶质的重量十浓度=溶液的重量平年 2月 28天, 年全年 366天 1 日=24 小时1平方千米=100公顷 1 公顷=10000平方米 1 平方米 =100 平方分米一( 个) 、十、百、千、万、十万、 百万、 千万、 亿 都是计数单位。
常用的数量关系式
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算1平方千米=1000000平方米 1公顷=10000平方米 1平方千米=100公顷1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米1立方分米=1升 1立方厘米=1毫升 1升=1000毫升质量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算1世纪=100年 1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时1时=60分 1分=60秒 1时=3600秒练习:填空(1). 1时30分=()时 40分=()时时=()分时=()分平方米=()平方分米 125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶ 10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。
常用的数量关系式
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时时=()分0.7时=()分平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶ 10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。
(完整版)常用的数量关系式
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时时=()分0.7时=()分平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶ 10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。
常用的数量关系式
常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b:宽h:高)(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2s=(a+b)×h÷28、圆形(S:面积C:周长лd=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%) ............。
常用的数量关系式
一、常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量二、量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒三、运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、常用的数量关系式
1、速度×时间=路程
路程÷速度=时间
路程÷时间=速度
2、单价×数量=总价
总价÷单价=数量
总价÷数量=单价
3、加数+加数=和
和-一个加数=另一个加数
4、被减数-减数=差
被减数-差=减数
差+减数=被减数
5、因数×因数=积
积÷一个因数=另一个因数
6、被除数÷除数=商
被除数÷商=除数
商×除数=被除数
在有余数的除法中: (被除数-余数)÷除数=商
7、总数÷总份数=平均数
8、相遇问题
相遇路程=速度和×相遇时间
或相遇路程=快车速度×相遇时间+慢车速度×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
二、长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米
1米=100厘米 1厘米=10毫米
三、面积单位换算
1平方千米=1000000平方米=100公顷 1公顷=10000平方米
1平方米=100平方分米=10000平方厘米 1平方分米=100平方厘米四、质量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
五、时间单位换算
1世纪=100年 1年=12月=4个季度
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天
1日=24小时 1时=60分 1分=60秒 1时=3600秒
六、运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
7.除法的性质:
一个数连续除以两个数等于除以这两个数的积。
即a÷b÷c=a÷(b×c) 。
8.加减法混合运算:
若交换数的位置,那么数前面的符号也要一起交换。
如:
9.乘除法混合运算:
若交换数的位置,那么数前面的符号也要一起交换。
七、运算顺序
1. 同级运算从左往右依次运算;
两级运算先算乘、除法,后算加减法。
2. 有括号的混合运算:
先算小括号里面的,再算中括号里面的,最后算括号外面的。
3. 第一级运算:
加法和减法叫做第一级运算。
4. 第二级运算:
乘法和除法叫做第二级运算。
四.练习;
1. 修一条高速公路,原计划每月修3600米,10个月完成任务,实际每月修900米,实际几个月完成了任务?
2. 从甲地到乙地共行13千米,前1.5小时,平均每小时行4千米,后在山地行走,平均每小时行
3.5千米。
在山地行走了多少小时?
列方程解应用题
列方程解应用题的一般步骤:
①弄清题意,找出题中已知条件和所求问题。
②分析题意,找出题中等量关系式。
③用x表示未知数量,列出方程,解方程。
④检验是否正确,写出答语。
列方程解应用题的关键是找出题中的等量关系式。
有的应用题,等量关系式很明显,直接可得到;有的应用题等量关系式不明显,要分析题意才能找出;有的应用题等量关系式隐藏,如周长公式、面积公式、体积公式不会出现在题目中,所以熟记学过所有的字母公式很重要。
练习:
1.找等量关系把方程列完整。
(1) 小思看一本96页的科幻小说。
她每天看X页,看了5天还剩24页没看。
(2)妈妈买了2千克白菜,每千克2.4元,又买了X千克萝卜,每千克2.8元。
一共用去13.6元。
2.列方程解下列各题。
(1)长方形周长30cm,长8cm。
宽是多少cm?
(2)某田径队有男队员30人,比女队员的少3人,女队员有多少人?
(3)商店运来苹果750㎏,比运来橘子的2倍多250㎏,运来橘子多少吨?(4)一支工程队修一条公路。
第一天修了38米,第二天修了42米。
第二天比第一天多修的是这条路全长的。
这条路全长多少米?
用不同方法解答应用题
把题中的关键条件转化成另一种说法是难点,我们要克服思维定势,提倡最佳解法。
练习:
1.图书室新购了文学书和科技书共750本,己知文学书是科技书的2倍,文学书和科技书各有多少本?
2.西山村去年收晚稻30000千克,相当于早稻谷的 2.5倍。
去年共收稻谷多少千克?
3.学校买来62.5米电线,每12.5米可做5根插头线。
照这样计算,买来的电线能做多少根插头线?
4.学校买来乒乓球60个,比买来的篮球少,买来乒乓球和篮球共多少个?
5.养鸡场肉用鸡是蛋用鸡的5倍,蛋用鸡比肉用鸡少1800只。
蛋用鸡比肉用鸡各养多少只?
6.一个长方体棱长和是72㎝,已知长宽高的长度比是3:2:1,这个长方体体积是多少?
7.一批零件,前3天完成总任务的。
照这样计算,再过几天可以完成任务?
8.一个长方形的周长是7.8cm,长是宽的2倍,这个长方形面积是多少?
9.和倍问题(差倍问题)
已知两个数量的和(或差)与它们的倍数关系,求这两个数量。
关键找出1倍数量(或说单位1),画线段图表示题意。
练习:
1.甲乙的和是36,甲是乙的2倍。
甲、乙各是多少?
2.妈妈比女儿大28岁,妈妈年龄是女儿的5倍,妈妈和女儿各有几岁?
3.一张课桌比一把椅子贵10元,椅子的单价是课桌的,课桌和椅子的单价各是多少元?
4.一个数的小数点向右移动二位后增加了87.12,这个数原来是多少?
相遇问题
重点理解关键词:同时相对(相向)而行速度和两地路程相遇
相遇问题基本数量关系式:
两地距离=速度和×相遇时间
练习:
1.两列火车同时从两地对开。
甲车每小时行62千米,乙车每小时行70千米,经过时两车相遇。
两地间的铁路长多少千米?
2.两台机器生产同一种零件。
第一台时生产20个零件,第二台每小时生产80个零件。
两台机器同时生产98个零件需要几小时?
3.甲乙两车同时从相距90千米的两地相对开出,时后两车在途中相遇。
已知甲车每小时行60千米,那么乙车每小时行多少千米?
4.两列火车同时从两地对开。
甲车每小时行62km,乙车每小时行70km,经过时两车还相距12km。
两地间的铁路长多少km?
5.一辆客车从A市行驶到B市,60km/时,2时后一辆货车从B市行驶到A市, 80km/时,货车行了5时正好与客车相遇。
A B两市公路长多少km?
(注:可编辑下载,若有不当之处,请指正,谢谢!)。