九年级(上)月考数学试卷(9月份)
北京市海淀区2023-2024学年上学期九年级9月月考数学试卷(含解析)
2023-2024学年北京市海淀区九年级(上)月考数学试卷(9月份)一、选择题(本大题共8小题,共16.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列四个图形中,为中心对称图形的是( )A. B. C. D.2.一元二次方程2x2+x−5=0的二次项系数、一次项系数、常数项分别是( )A. 2,1,5B. 2,1,−5C. 2,0,−5D. 2,0,53.把抛物线y=x2向上平移3个单位,得到的抛物线是( )A. y=(x−3)2B. y=(x+3)2C. y=x2−3D. y=x2+34.在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )A. (2,−3)B. (−2,3)C. (3,2)D. (−2,−3)5.在平面直角坐标系xOy中,下列函数的图象经过点(0,0)的是( )A. y=x+1B. y=x2C. y=(x−4)2D. y=1x6.用配方法解方程x2+4x=1,变形后结果正确的是( )A. (x−2)2=2B. (x+2)2=2C. (x−2)2=5D. (x+2)2=57.把长为2m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积.设较长一段的长为x m,依题意,可列方程为( )A. x2=2(2−x)B. x2=2(2+x)C. (2−x)2=2xD. x2=2−x8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=−2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是−4<x<0;其中推断正确的是( )A. ①②B. ①③C. ①③④D. ②③④二、填空题(本大题共8小题,共24.0分)9.抛物线y=−3(x−1)2+2的顶点坐标是.10.请写出一个开口向上,并且与y轴交于点(0,−2)的抛物线解析式______.11.若点A(−1,y1),B(2,y2)在抛物线.y=2x2上,则y1,y2的大小关系为:y1______y2.(选填“>”“<或“=”)12.若关于x的方程x2−2x+k=0有两个不相等的实数根,则k的取值范围为.13.如图,在平面直角坐标系xOy中,点A(−2,0),点B(0,1).将线段BA绕点B旋转180°得到线段BC,则点C的坐标为.14.如图,将△ABC绕点A顺时针旋转30°得到△ADE,点B的对应点D恰好落在边BC上,则∠ADE=______.15.如图,在边长为2的正方形ABCD中,E,F分别是边DC,CB上的动点,且始终满足DE=CF,AE,DF交于点P,则∠APD的度数为;连接CP,线段CP的最小值为.16.野兔跳跃时的空中运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,通过对某只野兔一次跳跃中水平距离x(单位:m)与竖直高度y(单位:m)进行的测量,得到以下数据:水平距离x/m00.41 1.42 2.4 2.8竖直高度y/m00.480.90.980.80.480根据上述数据,回答下列问题:①野兔本次跳跃的最远水平距离为______ m,最大竖直高度为______ m;②已知野兔在高速奔跑时,某次跳跃最远水平距离为3m,最大竖直高度为1m.若在野兔起跳点前方2m处有高为0.8m的篱笆,则野兔此次跳跃______ (填“能”或“不能”)跃过篱笆.三、解答题(本大题共10小题,共60.0分。
广东省深圳市松岗中英文实验学校2024-2025学年九年级上学期数学月考试卷(9月)
广东省深圳市松岗中英文实验学校2024-2025学年九年级上学期数学月考试卷 (9月)一、单选题1.下列方程中,是一元二次方程的是( )A .2110x x +-=B .23154x x +=+C .20ax bx c ++=D .2210m m -+= 2.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有64人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确的是( )A .()164x x x ++=B .2164x x ++=C .2(1)64x +=D .()164x x +=3.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )A .当AC =BD 时,四边形ABCD 是矩形B .当AC ⊥BD 时,四边形ABCD 是菱形C .当AC 平分∠BAD 时,四边形ABCD 是菱形D .当∠DAB =90°时,四边形ABCD 是正方形4.若关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,则m 的取值范围是( )A .0m <且1m ≠-B .0m ≥C .0m ≤且1m ≠-D .0m <5.如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒……按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .126.1x ,2x 是一元二次方程210x x --=的两个根,1322x <<,对2x 的估算正确的是( ) A .2112x -<<- B .2102x -<< C .2102x << D .2112x << 7.如图,在矩形ABCD 中,点E 为BA 延长线上一点,F 为CE 的中点,以B 为圆心,BF 长为半径的圆弧过AD 与CE 的交点G ,连接BG .若4AB =,10CE =,则AG 的长为( )A .2.5B .3C .2D .58.对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开(图1),再折叠一次,使点A 落在EF 上的1A 处,得到折痕BG ,延长1GA 交BC 于点H (图2).则下列结论:①130A BG ∠=︒;②145BGA ∠=︒;③12BG GA =;④BHG V 是等边三角形.正确的是( )A .①④B .②③C .①③④D .①②③④二、填空题9.若m 是一元二次方程2510x x --=的一个实数根,则220235m m +-的值是. 10.国庆节老同学聚会,每两个人都握一次手,所有人共握手78次,则参加聚会的有 人. 11.在如图所示的电路中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是.12.如图,在正方形ABCD 中,点E 、F 、G 分别在AB AD CD 、、上,31AB AE ==,,DG AE BF EG >=,,BF 与EG 于点P ,连接DP ,则DP 的最小值为.13.如图,在正方形ABCD 中,E 为对角线AC 上一点,连接DE ,过点E 作EF DE ⊥,交BC 延长线于点F ,以DE ,EF 为邻边作矩形DEFG ,连接CG .在下列结论中:①=DE EF ;②DAE DCG △≌△;③AC CG ⊥;④CE CF =.其中正确的结论序号是.三、解答题14.用指定方法解下列方程:(1)2x 2-5x +1=0(公式法);(2)x 2-8x +1=0(配方法).15.如果关于x 的一元二次方程()200ax bx c a ++=≠有两个实数根,且其中一个根比另一个根大2,那么称这样的方程为“邻2根方程”.例如,一元二次方程220x x +=的两个根是10x =,22x =-,则方程220x x +=是“邻2根方程”.(1)通过计算,判断方程29200x x ++=是否是“邻2根方程”;(2)已知关于x 的一元二次方程()213120x m x m --+-=(m 是常数)是“邻2根方程”,求m的值.16.为落实“双减政策”,某中学积极开展社团活动,其中艺术社团学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,绘制了如下两幅不完整的统计图.(1)该班共有学生________人,把条形统计图补充完整;(2)扇形统计图中,m ________,剪纸社团对应的扇形圆心角为________度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.17.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.18.公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少5个,为使月销售利润达到8625元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?19.如图,在Rt ABC △中,90C ∠=︒,16AC =厘米,20BC =厘米,点D 在BC 上,且12CD =厘米.现有两个动点P ,Q 分别从点A 和点B 同时出发,其中点P 以4厘米/秒的速度沿AC 向终点C 运动;点Q 以5厘米/秒的速度沿BC 向终点C 运动.过点P 作PE BC ∥交AD 于点E ,连接EQ .设动点运动时间为t 秒(0)t >.(1)CP =;(用t 的代数式表示)(2)连接CE ,并运用割补的思想表示AEC △的面积(用t 的代数式表示);(3)是否存在某一时刻t ,使四边形EQDP 是平行四边形,如果存在,请求出t ,如果不存在,请说明理由;(4)当t 为何值时,EDQ △为直角三角形.20.我们定义:对角线互相垂直且相等的四边形叫做“神奇四边形”.(1)在我们学过的下列四边形①平行四边形②矩形③菱形④正方形中,是“神奇四边形”的是 (填序号);(2)如图1,在正方形ABCD 中,E 为BC 上一点,连接AE ,过点B 作BG AE ⊥于点H ,交CD 于点G ,连AG 、EG .①求证:四边形ABEG 是“神奇四边形”;②如图2,点M 、N 、P 、Q 分别是AB 、AG 、GE 、EB 的中点.试判断四边形MNPQ 是不是“神奇四边形”;(3)如图3,点F 、R 分别在正方形ABCD 的边AB 、CD 上,把正方形沿直线FR 翻折,使得BC 的对应边B C ''恰好经过点A ,过点A 作AO FR ⊥于点O ,若2AB '=,正方形的边长为6,求线段OF 的长.。
九年级上月考数学试卷(9月份)含解析
九年级(上)月考数学试卷(9月份)一、选择题(请在答题卡上将正确答案的序号涂黑,每小题3分,共30分)1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.若a>b,则下列式子正确的是()A.﹣4a>﹣4b B.a<b C.4﹣a>4﹣b D.a﹣4>b﹣43.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤34.若凸n边形的内角和为1260°,则n的值是()A.9B.10C.11D.125.反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限6.若ax2﹣5x+3=0是一元二次方程,则不等式3a+6>0的解集是()A.a>﹣2B.a>﹣2且a≠0C.a D.a<﹣27.方程x2﹣kx﹣1=0根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关8.下列各式从左到右的变形是分解因式的是()A.2a2﹣b2=(a+b)(a﹣b)+a2B.2a(b+c)=2ab+2acC.x3﹣2x2+x=x(x﹣1)2D.(x﹣1)(y﹣1)=xy﹣x﹣y+19.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①当x<3时,y1>0;②当x<3时,y2>0;③当x>3时,y1<y2中,正确的个数是()A.0B.1C.2D.310.甲、乙两名工人加工某种零件,已知甲每天比乙多加工5个零件,甲加工80个零件和乙加工70个零件所用的天数相同.设甲每天加工x个零件,则根据题意列出的方程是()A.B.C.D.二.填空题(每小题4分,共20分)11.函数y=的自变量x取值范围是12.x2﹣10x+21可以分解为(x+n)(x﹣7),则n=.13.已知点P(2﹣a,﹣3a)在第四象限,那么a的取值范围是.14.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.15.在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,平行四边形ABCD的周长为40,则平行四边形ABCD的面积为.三、解答题:(16题每小题18分,17、18每题6分,19题10分,20题10分)16.(1)解不等式组(2)分解因式(x﹣1)(x﹣3)﹣8(3)解方程:=+17.当+|b+2|+c2=0时,求ax2+bx+c=0的解.18.先化简,后求值,其中x为0、1、2、4中的一个数.19.如图,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)先将△ABC沿y轴正方向向上平移3个单位长度,再沿x轴负方向向左平移1个单位长度得到△A1B1C1,画出△A1B1C1,点C1坐标是;(2)将△A1B1C1绕点B1逆时针旋转90°,得到△A2B1C2,画出△A2B1C2,并求出点C2的坐标是;(3)我们发现点C、C2关于某点中心对称,对称中心的坐标是.20.如图1,四边形ABCD是菱形,过点A作BC的垂线交CB的延长线于点E,过点C作AD的垂线交AD的延长线于点F.(1)说明△AEB≌△CFD的理由;(2)连接AC、BD,AC与DB交于点O(如图2),若BE=1.①当DC=2时,求FC的长度;②当CD是∠ACF的平分线时,求DB的长度与菱形ABCD的边长.一.填空题(每题4分,共20分)21.如果a+b=8,ab=15,则a2b+ab2的值为.22.关于x的方程的解是非正数,则m的取值范围是.23.如图,点D、E分别在△ABC的边AB,AC上,DE∥BC,点G在边BC上,AG交DE于点H,点O是线段AG的中点,若AD:DB=3:1,则AO:OH=.24.已知=k,则k=.25.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为.二.解答题(26题8分,27题10分,28题12分,共20分)26.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,通过一段时间摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件.(1)将售价定为多少元的时候,使每天利润为700元吗?(2)当售价定为x元时,这天所获利润为y,请写出y与x的关系式.(3)根据(2)问中的关系式,求出这天所获利润y的最大值?27.如图1,在正方形ABCD中,BD是对角线,点E在BD上,△BEG是等腰直角三角形,且∠BEG=90°,点F是DG的中点,连结EF与CF.(1)求证:EF=CF;(2)求证:EF⊥CF;(3)如图2,若等腰直角三角形△BEG绕点B按顺时针旋转45°,其他条件不变,请判断△CEF的形状,并证明你的结论.28.在矩形OABC中,OA=4,OC=2,以点O为坐标原点,OA所在的直线为x轴,建立直角坐标系.(1)将矩形OABC绕点C逆时针旋转至矩形DEFC,如图1,DE经过点B,求旋转角的大小和点D,F 的坐标;(2)将图1中矩形DEFC沿直线BC向左平移,如图2,平移速度是每秒1个单位长度.①经过几秒,直线EF经过点B;②设两矩形重叠部分的面积为S,运动时间为t,写出重叠部分面积S与时间t之间的函数关系式.九年级上月考数学试卷(9月份)参考答案与试题解析一、选择题(请在答题卡上将正确答案的序号涂黑,每小题3分,共30分)1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:C.【点评】本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识,熟记概念是解题的关键.2.若a>b,则下列式子正确的是()A.﹣4a>﹣4b B.a<b C.4﹣a>4﹣b D.a﹣4>b﹣4【分析】根据不等式的性质(①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变)逐个判断即可.【解答】解:A、∵a>b,∴﹣4a<﹣4b,故本选项错误;B、∵a>b,∴a b,故本选项错误;C、∵a>b,∴﹣a<﹣b,∴4﹣a<4﹣b,故本选项错误;D、∵a>b,∴a﹣4>b﹣4,故本选项正确;【点评】本题考查了对不等式的性质的应用,主要考查学生的辨析能力,是一道比较典型的题目,难度适中.3.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【分析】不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.【点评】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.若凸n边形的内角和为1260°,则n的值是()A.9B.10C.11D.12【分析】根据多边形内角和定理列式计算即可.【解答】解:由题意得,(n﹣2)×180°=1260°,解得,n=9,故选:A.【点评】本题考查的是多边形的内角与外角,掌握多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数)是解题的关键.5.反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【分析】因为k=2>0,根据反比例函数性质,可知图象在一、三象限.【解答】解:∵k=2>0,∴图象在一、三象限.【点评】对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.6.若ax2﹣5x+3=0是一元二次方程,则不等式3a+6>0的解集是()A.a>﹣2B.a>﹣2且a≠0C.a D.a<﹣2【分析】由于ax2﹣5x+3=0是一元二次方程,故a≠0;再解不等式即可求得a的取值范围;这样即可求得不等式的解集.【解答】解:不等式移项,得3a>﹣6,系数化1,得a>﹣2;又∵ax2﹣5x+3=0是一元二次方程,∴且a≠0;所以,a>﹣2且a≠0;故选:B.【点评】一元二次方程必须满足三个条件:(1)只含有一个未知数,未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程.同时解不等式时,两边同时乘或除一个负数时,不等号的方向要改变.7.方程x2﹣kx﹣1=0根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关【分析】求出方程的判别式后,根据判别式与0的大小关系来判断根的情况.【解答】解:∵方程的△=k2+4>0,故方程有两个不相等的实数根.故选:A.【点评】总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.下列各式从左到右的变形是分解因式的是()A.2a2﹣b2=(a+b)(a﹣b)+a2B.2a(b+c)=2ab+2acC.x3﹣2x2+x=x(x﹣1)2D.(x﹣1)(y﹣1)=xy﹣x﹣y+1【分析】根据把一个多项式转化成几个整式积的形式,可得答案.【解答】解:∵x3﹣2x2+x=x(x﹣1)2,∴C是因式分解,故选:C.【点评】本题考查了因式分解,因式分解的关键是把多项式转化成几个整式积的形式.9.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①当x<3时,y1>0;②当x<3时,y2>0;③当x>3时,y1<y2中,正确的个数是()A.0B.1C.2D.3【分析】根据一次函数图象的位置进行判断,从函数图象来看,就是确定直线y=kx+b是否在在x 轴上(或下)方.【解答】解:根据图象可知:①当x<3时,一次函数y1=kx+b的图象在x轴上方,故y1>0;②当x<3时,一次函数y2=x+a的图象一部分在x轴上方,一部分在x轴下方,故y2>0或y2=0或y2<0;③当x>3时,一次函数y1=kx+b的图象在一次函数y2=x+a的图象的下方,故y1<y2,所以正确的有①和③.故选:C.【点评】本题主要考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围.10.甲、乙两名工人加工某种零件,已知甲每天比乙多加工5个零件,甲加工80个零件和乙加工70个零件所用的天数相同.设甲每天加工x个零件,则根据题意列出的方程是()A.B.C.D.【分析】根据题意列出乙每天加工零件的个数x﹣5,由等量关系式甲加工80个零件和乙加工70个零件所用的天数相同,列出方程即可.【解答】解:据题意列出方程得,,故选:D.【点评】解决此题的关键是:找对等量关系.二.填空题(每小题4分,共20分)11.函数y=的自变量x取值范围是x≤4且x≠3【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣3≠0且4﹣x≥0,解得x≠3且x≤4.故函数y=的自变量x取值范围是x≤4且x≠3.故答案为:x≤4且x≠3.【点评】本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.x2﹣10x+21可以分解为(x+n)(x﹣7),则n=﹣3.【分析】先多项式x2﹣10x+21分解因式可得n的值.【解答】解:x2﹣10x+21=(x﹣3)(x﹣7),∵x2﹣10x+21可以分解为(x+n)(x﹣7),∴n=﹣3,故答案为:﹣3.【点评】本题考查了因式分解与原多项式的关系,解决此类问题,由于多项式因式分解是恒等变形,根据相同项的系数相等,得到方程并求出其解.13.已知点P(2﹣a,﹣3a)在第四象限,那么a的取值范围是0<a<2.【分析】根据点所在的象限,列不等式组,求解即可.【解答】解:∵点P(2﹣a,﹣3a)在第四象限,∴,由①得a<2,由②得a>0,∴a的取值范围是0<a<2,故答案为0<a<2.【点评】本题考查了象限内点的符号特点,以及不等式组的解法,是基础知识比较简单.14.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.【分析】利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长【解答】解:∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为:1.5.【点评】本题考查了直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.15.在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,平行四边形ABCD的周长为40,则平行四边形ABCD的面积为48.【分析】由平行四边形的对边相等可得一组对边的和为20,设BC为未知数,利用两种方法得到的平行四边形的面积相等,可得BC长,乘以4即为平行四边形的面积.【解答】解:∵平行四边形ABCD的周长为40,∴BC+CD=20,=BC•AE=CD•AF,设BC为x,∵S平行四边形ABCD∴4x=(20﹣x)×6,解得x=12,∴平行四边形ABCD的面积为12×4=48.故答案为48.【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等,面积等于底×高.三、解答题:(16题每小题18分,17、18每题6分,19题10分,20题10分)16.(1)解不等式组(2)分解因式(x﹣1)(x﹣3)﹣8(3)解方程:=+【分析】(1)先求出其中各不等式的解集,再求出这些解集的公共部分即可;(2)先化简整理多项式,再根据十字相乘法进行因式分解即可;(3)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)解不等式①,可得x≥﹣2,解不等式②,可得x<3.5,∴不等式组的解集为:﹣2≤x<3.5;(2)(x﹣1)(x﹣3)﹣8=x2﹣4x+3﹣8=x2﹣4x﹣5=(x﹣5)(x+1);(3)=+方程两边同乘(x+2)(x﹣2),可得(x﹣2)2=(x+2)2+16,解得x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,∴原方程无解.【点评】本题主要考查了解一元一次不等式组,因式分解以及解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验.17.当+|b+2|+c2=0时,求ax2+bx+c=0的解.【分析】先根据算术平方根、绝对值和平方的非负性可得a、b、c的值,代入方程解出即可.【解答】解;当+|b+2|+c2=0时,则,∴,∴4x2﹣2x=0,2x2﹣x=0,x(2x﹣1)=0,x1=0,x2=【点评】本题考查了算术平方根、绝对值和平方的非负性和利用因式分解解一元二次方程,熟练掌握算术平方根、绝对值和平方的非负性是关键.18.先化简,后求值,其中x为0、1、2、4中的一个数.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣•=﹣,当x=0时,原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,在直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)先将△ABC沿y轴正方向向上平移3个单位长度,再沿x轴负方向向左平移1个单位长度得到△A1B1C1,画出△A1B1C1,点C1坐标是(﹣2,1);(2)将△A1B1C1绕点B1逆时针旋转90°,得到△A2B1C2,画出△A2B1C2,并求出点C2的坐标是(﹣5,0);(3)我们发现点C、C2关于某点中心对称,对称中心的坐标是(﹣3,﹣1).【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案;(3)直接利用关于点对称的性质得出对称中心即可.【解答】解:(1)如图所示:△A1B1C1,即为所求,点C1坐标是:(﹣2,1);故答案为:(﹣2,1);(2)如图所示:△A2B1C2,即为所求,点C2坐标是:(﹣5,0);故答案为:(﹣5,0);(3)点C、C2关于某点中心对称,对称中心的坐标是:(﹣3,﹣1).故答案为:(﹣3,﹣1).【点评】此题主要考查了旋转变换和平移变换,根据题意得出对应点位置是解题关键.20.如图1,四边形ABCD是菱形,过点A作BC的垂线交CB的延长线于点E,过点C作AD的垂线交AD的延长线于点F.(1)说明△AEB≌△CFD的理由;(2)连接AC、BD,AC与DB交于点O(如图2),若BE=1.①当DC=2时,求FC的长度;②当CD是∠ACF的平分线时,求DB的长度与菱形ABCD的边长.【分析】(1)首先这两个三角形是直角三角形,可根据菱形的性质四边相等,对边平行,可得到AB=DC,AE=CF;(2)因为三角形AEB是直角三角形,可根据勾股定理求解;(3)用角平分线上的点到两边的距离相等的性质以及勾股定理可求出DB的长度与菱形ABCD 的边长.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=CD,AD∥BC,又∵AE⊥CE,CF⊥AF,∴AE=CF,∴在直角三角形AEB和直角三角形CFD中,∴△AEB≌△CFD;(2)①∵△AEB≌△CFD,∴DF=BE=1,∴FC==,②当CD是∠ACF的平分线时∵∠DOC=90°,∠CFD=90°,∴DO=DF=1,∴DB=2,∵CD是∠ACF的平分线,∴∠ECA=∠DCA=∠DCF=30°,∴∠BCD=60°,∴△BCD是等边三角形,∴菱形ABCD的边长为2.【点评】本题考查菱形的性质,勾股定理以及角平分线上的点到两边的距离相等,和直角三角形全等的判定,关键是熟记这些性质定理和判定定理.一.填空题(每题4分,共20分)21.如果a+b=8,ab=15,则a2b+ab2的值为120.【分析】把所求的代数式整理为和所给代数式相关的式子,代入求值即可.【解答】解:a2b+ab2=ab(a+b)=15×8=120.【点评】本题考查因式分解的运用,有公因式时,要先考虑提取公因式;注意运用整体代入法求解.22.关于x的方程的解是非正数,则m的取值范围是m≥.【分析】先解方程求得x,然后根据x≤0,求出m的取值范围即可.【解答】解:去分母得,2(x+m)﹣3(2x﹣1)=6m,去括号得,2x+2m﹣6x+3=6m,移项合并得,﹣4x=4m﹣3,系数化为1得,x=,∵关于x的方程的解是非正数,∴≤0,∴m≥.故答案为:m≥.【点评】本题考查了解一元一次方程以及一元一次不等式,是一道综合题,难度不大.23.如图,点D、E分别在△ABC的边AB,AC上,DE∥BC,点G在边BC上,AG交DE于点H,点O是线段AG的中点,若AD:DB=3:1,则AO:OH=2:1.【分析】根据平行线分线段成比例定理求出,,推出AO=AG,OH=OG﹣HG=AG﹣AG,代入求出即可.【解答】解:∵DE∥BC,AD:DB=3:1,∴===,==,∴OH=OG﹣HG=AG﹣AG,∵点O是线段AG的中点,∴OA=OG=AG,∴AO:OH=(AG):(AG﹣AG)=2:1,故答案为:2:1.【点评】本题考查学生对平行线分线段成比例定理的灵活运用,关键是检查学生能否熟练地运用平行线分线段定理进行推理.24.已知=k,则k=2或﹣1..【分析】先根据比例的性质得出bk=a+c,ck=b+a,ak=c+b,再将这三个式子相加,整理得出(a+b+c)k=2(a+b+c).然后分a+b+c≠0与a+b+c=0两种情况,分别求出k的值即可.【解答】解:∵=k,∴bk=a+c,ck=b+a,ak=c+b,∴bk+ck+ak=a+c+b+a+c+b,∴(a+b+c)k=2(a+b+c).①如果a+b+c≠0,那么k=2;②如果a+b+c=0,那么a+c=﹣b,k==﹣1.故答案为2或﹣1.【点评】本题考查了比例的基本性质:两内项之积等于两外项之积.即若a:b=c:d,则ad=bc.分情况讨论是解题的关键.25.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为.【分析】根据旋转得出∠NCE=75°,求出∠NCO,设OC=a,则CN=2a,根据△CMN也是等腰直角三角形设CM=MN=x,由勾股定理得出x2+x2=(2a)2,求出x=a,得出CD=a,代入求出即可.【解答】解:∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,∴∠ECN=75°,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,设OC=a,则CN=2a,∵等腰直角三角形DCE旋转到△CMN,∴△CMN也是等腰直角三角形,设CM=MN=x,则由勾股定理得:x2+x2=(2a)2,x=a,即CD=CM=a,∴==,故答案为:.【点评】本题考查了等腰直角三角形性质,勾股定理,含30度角的直角三角形性质,旋转性质,三角形的内角和定理等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但有一定的难度.二.解答题(26题8分,27题10分,28题12分,共20分)26.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,通过一段时间摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件.(1)将售价定为多少元的时候,使每天利润为700元吗?(2)当售价定为x元时,这天所获利润为y,请写出y与x的关系式.(3)根据(2)问中的关系式,求出这天所获利润y的最大值?【分析】(1)如果设每件商品提高x元,用x表示出单件的利润以及每天的销售量,然后根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.(2)首先设应将售价提为x元时,才能使得所赚的利润最大为y元,根据题意可得:y=(x﹣8)[200﹣20(x﹣10)];(3)将(2)中关系式化简配方,即可得y=﹣20(x﹣14)2+720,即可求得答案.【解答】解:(1)设每件商品提高x元,则每件利润为(10+x﹣8)=(x+2)元,每天销售量为(200﹣20x)件,依题意,得:(x+2)(200﹣20x)=700.整理得:x2﹣8x+15=0.解得:x1=3,x2=5.∴把售价定为每件13元或15元能使每天利润达到700元;(2)设利润为y:则y=(x﹣8)[200﹣20(x﹣10)]=﹣20x2+560x﹣3200;(3)y=﹣20x2+560x﹣3200,=﹣20(x﹣14)2+720,则当售价定为14元时,获得最大利润;最大利润为720元.【点评】此题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.27.如图1,在正方形ABCD中,BD是对角线,点E在BD上,△BEG是等腰直角三角形,且∠BEG=90°,点F是DG的中点,连结EF与CF.(1)求证:EF=CF;(2)求证:EF⊥CF;(3)如图2,若等腰直角三角形△BEG绕点B按顺时针旋转45°,其他条件不变,请判断△CEF的形状,并证明你的结论.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得EF=DF=DG,CF=DF=DG,从而得证;(2)根据等边对等角可得∠FDE=∠FED,∠FCD=∠FDC,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠EFC=2∠BDC,然后根据正方形的对角线平分一组对角求出∠BDC=45°,求出∠EFC=90°,从而得证;(3)延长EF交CD于H,先求出EG∥CD,再根据两直线平行,内错角相等求出∠EGF=∠HDF,然后利用“角边角”证明△EFG和△HFD全等,根据全等三角形对应边相等可得EG=DH,EF=FH,再求出CE=CH,然后根据等腰三角形三线合一的性质证明即可.【解答】(1)证明:∵∠BEG=90°,点F是DG的中点,∴EF=DF=DG,∵正方形ABCD中,∠BCD=90°,点F是DG的中点,∴CF=DF=DG,∴EF=CF;(2)证明:∵EF=DF,CF=DF,∴∠FDE=∠FED,∠FCD=∠FDC,∴∠EFC=∠EFG+∠CFG=∠FDE+∠FED+∠FCD+∠FDC=2∠FDE+2∠FDC=2∠BDC,在正方形ABCD中,∠BDC=45°,∴∠EFC=2×45°=90°,∴EF⊥CF;(3)解:△CEF是等腰直角三角形.理由如下:如图,延长EF交CD于H,∵∠BEG=90°,∠BCD=90°,∴∠BEG=∠BCD,∴EG∥CD,∴∠EGF=∠HDF,∵点F是DG的中点,∴DF=GF,在△EFG和△HFD中,,∴△EFG≌△HFD(ASA),∴EG=DH,EF=FH,∵BE=EG,BC=CD,∴BC﹣EB=CD﹣DH,即CE=CH,∴EF⊥CF(等腰三角形三线合一),CF=EF=EH,∴△CEF是等腰直角三角形.【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,等腰直角三角形的判定,熟记各性质是解题的关键,(3)作辅助线构造出等腰直角三角形和全等三角形是解题的关键.28.在矩形OABC中,OA=4,OC=2,以点O为坐标原点,OA所在的直线为x轴,建立直角坐标系.(1)将矩形OABC绕点C逆时针旋转至矩形DEFC,如图1,DE经过点B,求旋转角的大小和点D,F 的坐标;(2)将图1中矩形DEFC沿直线BC向左平移,如图2,平移速度是每秒1个单位长度.①经过几秒,直线EF经过点B;②设两矩形重叠部分的面积为S,运动时间为t,写出重叠部分面积S与时间t之间的函数关系式.【分析】(1)根据OA=4,OC=2,BC=OA,因而就可求得BC=2CD,则可以求出∠BCD=60°,则旋转角即可求得;作DM⊥CB于点M,FN⊥CB于点N,根据三角函数即可求得:DM,CM的长,从而求得D的坐标,在Rt△CFN中,根据三角函数即可求得CN,FN的长,即得F的坐标;(2)①HB即为直线EF经过点B时移动的距离.在Rt△C′DH中利用三角函数即可求得DH,从而得到HE,再在△HEB中,利用三角函数求得BH,即可求得时间.②重合的部分可能是四边形,也可能是三角形,应分两种情况进行讨论.【解答】解:(1)如图1.在矩形OABC中,OA=4,OC=2,所以在RT△BCD中,BC=2CD,即所以∠BCD=60°.所以旋转角∠OCD=30°作DM⊥CB于点M,FN⊥CB于点N.在RT△CDM中,CM=CD•cos60°=1,DM=CD•sin60°=.所以点D到x轴的距离为.在RT△CFN中,,所以点F到x轴的距离为4.故D(1,),F((2)①如图2,HB即为直线EF经过点B时移动的距离.在RT△C′DH中,,所以.在RT△BEH中,HE=BHcos30°,则.所以直线EF经过点B时所需的时间秒②过点D作DM⊥BC于点M.在RT△DMC′中,C′M=.在RT△DHC′中,C′D=C′Hcos60°=2.当0<t<1时,重叠部分面积为四边形DGCH,如图2,C′C=t,CG=C′Ctan60°=t..当1≤t<4时,重叠部分的面积为△GCH,如图3,.所以重叠部分的面积S=CG•CH=×(4﹣t)(4﹣t)=t2﹣t+.【点评】本题是三角函数与图形的旋转相结合的题目,注意旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.得到相等关系是解决本题的关键.。
上海市徐汇区上海市西南模范中学2024-2025学年九年级上学期月考数学试卷(9月份)
上海市徐汇区上海市西南模范中学2024-2025学年九年级上学期月考数学试卷(9月份)一、单选题1.下列条件中,不能确定一个直角三角形的条件是( )A .已知两条直角边B .已知两个锐角C .已知一边和一个锐角D .已知一条直角边和斜边2.如果ABC V 的三边之比是357::,与它相似的A B C '''V 的最短边为6,那么A B C '''V 的其余两边长的和是( )A .12B .19C .21D .243.如图,在ABC V 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则( )A .c =b sinB B .b =c sin BC .a =b tan BD .b =c tan B 4.下列说法中,正确的是( )A .有一个角相等的两个菱形必相似B .有一条边相等的两个矩形必相似C .有一个角相等的两个等腰三角形必相似D .有一条边相等的两个等腰三角形必相似5.如图,在ABCD Y 中,M 、N 为对角线BD 上的两点,且::1:2:1BM MN ND =,连接AM 并延长交BC 于点E ,连接EN 并延长交AD 于点F ,则:AF FD 的值为( )A .7:1B .8:1C .9:1D .10:16.如图所示,△ABC 中,AD ⊥BC 于D ,对于下列中的每一个条件:①∠B +∠DAC =90°;②∠B =∠DAC ;③CD :AD =AC :AB ;④AB 2=BD ·BC ,其中一定能判定△ABC 是直角三角形的共有( )A .3个B .2个C .1个D .0个二、填空题7.已知23a b =,则232a b a b -=+. 8.如果两个相似三角形的对应中线的比是5:2,那么它们的周长比是.9.在比例尺为125000:的地图上,相距6cm 的两地A 、B 的实际距离为千米.10.已知点M 是线段AB 的黄金分割点AM BM <(),若4AB =,则BM =.11.在ABC V 中,3,2AB AC ==,分别反向延长AB AC 、到D 、E ,若2AD =,则当AE =时,BC DE ∥.12.已知在ABC V 中,5AB AC ==,8BC =,点G 为重心,那么GA =.13.在以O 为坐标原点的直角坐标平面内有一点()4,3A ,如果AO 与x 轴正半轴的夹角α,那么α的余弦值是.14.在ABC V 中,90ACB ∠=︒,CD AB ⊥于D .若23AD BD =,则B ∠的余切值为. 15.如图,在平行四边形ABCD 中,E 是线段AB 上一点,连结AC DE 、交于点F .若23AE EB =,则ADF AEFS S =△△.16.如图,△ABC 中,AB=AC=4,BC =6,点E 、F 在边BC 上,且∠EAF=∠C ,则BF·CE= .17.如图,四边形ABDC 中,AC 与BD 交于点O ,AC BC =,90ACB ∠=︒,AD BD ⊥于点D .若258AOB COD S S =V V ,则BC CD=.18.阅读:对于线段MN 与点O (点O 与MN 不在同一直线上),如果同一平面内点P 满足:射线OP 与线段MN 交于点Q ,且12OQ OP =,那么称点P 为点O 关于线段MN 的“准射点”.问题:如图,矩形ABCD 中,3,4AB AD ==,点E 在边AD 上,且1AE =,连接BE .设点F 是点A 关于线段BE 的“准射点”,且点F 在矩形ABCD 的内部或边上,如果点C 与点F 之间距离为d ,那么d 的取值范围为.三、解答题19.计算:22sin 302cos30tan 60sin 45︒-︒⋅︒⋅︒.20.计算:tan 304cos 45sin 60tan 45︒+︒︒-︒. 21.如图,已知在Rt ABC V 中,90C ∠=︒,3sin 5ABC ∠=,点D 在边BC 上,4BD =,连接AD ,2tan 3DAC∠=.(1)求边AC 的长;(2)求cot BAD ∠的值.22.如图,在ABC V 中,点P 、D 分别在边BC 、AC 上,PA AB ⊥,垂足为点A ,DP BC ⊥,垂足为点P ,AP BP PD CD=.(1)求证:AB AC =;(2)如果5AB =,3CD =,求AP 的长.23.如图,点A 在线段BD 上,在BD 的同侧作等腰Rt △ABC 和等腰Rt △ADE ,∠ABC =∠ADE=90° ,CD 与BE 、AE 分别交于点P 、M .求证:(1)△BAE ∽△CAD ;(2)2CB 2=CP •CM .24.如图,在平面直角坐标系中,点A −4,0 、()0,8B ,点C 在第一象限,点D 在线段OB 上,OD t =,90ADC ∠=︒,1tan 2DAC ∠=,CE OD ⊥,垂足为E ,连接AB 、BC .(1)请直接写出图中与AOD △相似的三角形,直接写出线段CE 、OE 的长(用含t 的代数式表示);(2)当CBA BAO ∠=∠时,求t 的值;(3)ABC V 的面积是否为定值?若是,请求出这个定值;若不是,请说明理由. 25.已知:如图,在梯形ABCD 中,AD BC ∥,90BAD ∠=︒,2AD =,4AB =,5BC =,在边BC 上任取一点E ,连接AE ,作F E C A E B ∠=∠,FEC ∠的另一边EF 交射线CD 于点F .(1)求cos C 的值;(2)如图1,当点F 在线段CD 上时,若12=DF CF ,求BE 的长; (3)连接AF ,当AEF △是直角三角形时,直接写出BE 的长.。
广西南宁市部分校联考2024届九年级上学期9月月考数学试卷(含解析)
2023-2024学年广西南宁市部分校联考九年级(上)月考数学试卷(9月份)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.我们生活在一个充满对称的世界中,生活中的轴对称图形随处可见,下面几幅图片是校园中运动场上代表体育项目的图标,其中可以看作是轴对称图形的是( )A. 乒乓球B. 跳远C. 举重D. 武术2.下列方程中,属于一元二次方程的是( )A. B. C. D.3.以下调查中,最适合用来全面调查的是( )A. 调查柳江流域水质情况B. 了解全国中学生的心理健康状况C. 了解全班学生的身高情况D. 调查春节联欢晚会收视率4.将方程化为一元二次方程的一般形式,其中二次项系数为,一次项系数、常数项分别是( )A. 、B. 、C. 、D. 、5.关于二次函数的最大值或最小值,下列说法正确的是( )A. 有最大值B. 有最小值C. 有最大值D. 有最小值6.把函数的图象向下平移个单位长度得到新图象,则新函数的表达式是( )A. B. C. D.7.抛物线的一部分如图所示,该抛物线在轴右侧部分与轴交点的坐标是( )A.B.C.D.8.一元二次方程的一根为,则的值为( )A. B. C. D.9.从地面竖直向上抛出一小球,小球的高度单位:与小球的运动时间单位:之间的关系式是,小球运动到最高点所需的时间是( )A. B. C. D.10.在“双减政策”的推动下,某初级中学校学生课后作业时长明显减少年上学期每天作业平均时长为,经过年下学期和年上学期两次调整后,年下学期平均每天作业时长为设该校平均每天作业时长这两学期每期的下降率为,则可列方程为( )A. B. C. D.11.二次函数的图象如图所示,则该函数在所给自变量的取值范围内,函数值的取值范围是( )A. B. C. D.12.如图所示,将边长为的正方形沿其对角线剪开,再把沿着方向平移得到,若两个三角形重叠部分的面积为,则它移动的距离等于( )A. B. C. D. 或二、填空题(本大题共6小题,共12.0分)13.若在实数范围内有意义,则实数的取值范围是.14.若点,在抛物线.上,则,的大小关系为:______选填“”“或“”15.关于的一元二次方程有两个相等的实数根,则的值是______.16.如图,在菱形中,对角线,相交于点,,,,交于点,则的长为______ .17.已知等腰三角形的底边长为,腰长是的一个根,则这个三角形周长为______ .18.已知实数,,且,记代数式,记,分别为代数式的最大值与最小值,则的值为______ .三、解答题(本大题共8小题,共72.0分。
四川省成都市九年级(上)月考数学试卷(9月份)
四川省成都市九年级(上)月考数学试卷(9月份)一、选择题(每小题4分,共32分)1.下列是关于x的一元二次方程的是()A.B.x(x+6)=0C.a2x﹣5=0D.4x﹣x3=22.若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1+x2的值是()A.4B.3C.﹣4D.﹣33.若线段a,b,c,d是成比例线段,且a=1cm,b=4cm,c=2cm,则d=()A.8cm B.0.5cm C.2cm D.3cm4.菱形ABCD的对角线长分别为6和8,它的面积为()A.5B.20C.24D.485.如图,菱形ABCD的对角线AC,BD交于点O,点E为边AD的中点,若AC=8cm,BD =6cm,则线段OE的长度是()A.4cm B.3cm C.2.5cm D.2cm6.如图,矩形ABCD中,对角线AC、BD交于点O,若∠AOB=60°,BD=8,则AB的长为()A.3B.4C.D.57.在“双减政策”的推动下,我市某中学学生每天书面作业时长明显减少.2022年上学期每天书面作业平均时长为100min,经过2022年下学期和2023年上学期两次调整后,2023年上学期平均每天书面作业时长为70min.设该校这两学期平均每天作业时长每期的下降率为x,则可列方程为()A.70(1+x2)=100B.70(1+x)2=100C.100(1﹣x)2=70D.100(1﹣x2)=708.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.B.C.D.二、填空题(本大题共5个小题,每小题4分,共20分)9.已知一元二次方程x2+6x+m=0有两个相等的实数根,则m的值为.10.如图,已知:11∥12∥13,AB=6,DE=5,EF=7.5,则BC=.11.如图,E是平行四边形ABCD边BC的延长线上一点,BC=2CE,则CF:DF=.12.已知三角形两边的长分别是2和5,第三边的长是方程x2﹣7x+10=0的根,则这个三角形的周长是.13.如图,矩形ABCD的对角线AC与BD相交于点O,过点O作OE⊥BD,交CD于点E,连接BE.若∠COE=20°,则∠ABD=度.14.已知a为方程x2﹣3x﹣6=0的一个根,则代数式6a﹣2a2+5的值为.15.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=8,OH=4,则菱形ABCD的面积为.16.如图,在矩形ABCD中,E为BC上一点,以DE为边作矩形DEGF,其中GF经过点A,连接AE,若BG=AG,CE=1,AF=2,则AD的长为.17.如图,在平面直角坐标系xOy中,已知矩形ABCO,B(4,3),点D为x轴上的一个动点,以AD为边在AD右侧作等边△ADE,连接OE,则OE的最小值为.18.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.(1)则=;(2)=.三、解答题19.解下列方程:(1)x2+2x﹣3=0;(2)2(x﹣3)=3x(x﹣3).20.如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AD=2,∠CAB=30°,作∠DCB的平分线CE交AB于点E,求AE的长.21.如图,在平行四边形ABCD中,AB=8,在BC的延长线上取一点B,使.连接AE,AE与CD交于点F.(1)求证:△ADF∽△ECF;(2)求DF的长.22.已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.23.如图,在矩形ABCD中,AB=6cm,BC=8cm,动点P以2cm/s的速度从点A出发,沿AC向点C移动,同时动点Q以1cm/s的速度从点C出发,沿CB向点B移动,设P、Q 两点移动ts(0<t<5)后,△CQP的面积为Scm2.(1)在P、Q两点移动的过程中,△CQP的面积能否等于3.6cm2?若能,求出此时t的值;若不能,请说明理由;(2)当运动时间为多少秒时,△CPQ与△CAB相似.24.某商店销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低2元,平均每天可多售出4件.(1)若降价8元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?25.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E 是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,写出猜想并证明.26.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.。
上海市杨浦区复旦大学附属中学2024-2025学年九年级上学期9月月考数学试题(含答案)
2024~2025学年上海市复旦大学第二附属中学九年级上学期9月月考数学试卷(考试时间100分钟 满分150分)考生注意:1.带2B 铅笔、黑色签字笔、橡皮擦等参加考试,考试中途不得传借文具2.不携带具有传送功能的通讯设备,一经发现视为作弊。
与考试无关的所有物品放置在考场外。
3.考试期间严格遵守考试纪律,听从监考员指挥,杜绝作弊,违者由教导处进行处分。
4.答题卡务必保持干净整洁,答题卡客观题建议检查好后再填涂。
若因填涂模糊导致无法识别的后果自负。
一、选择题(共6题,每题4分,满分24分)1.是同类二次根式,那么a 的值为()A.2 B.3 C.4 D.52.方程的根的情况是( )A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法确定3.下列说法中错误的是()A.一个负数的绝对值是它的相反数B.数轴上离原点越远的点所表示的数越大C.任何有理数都有相反数D.正数都大于零4.某商场有一个可以自由转动的转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品.经过多次试行,发现转动n 次转盘时,其中指针有m 次落在“铅笔”区域,则估计“饮料”区域所在扇形的圆心角度数是( )A. B. C. D.5.已知一次函数的图象如图所示,则点所在的象限为()2220x x --=1360n m ⎛⎫-︒ ⎪⎝⎭1360m n ⎛⎫-︒ ⎪⎝⎭360m n ︒360n m︒()33y m x n =-++(),2P m n n -A.第一象限B.第二象限C.第三象限D.第四象限6.如图,一块矩形木板斜靠在墙边,,点A ,B ,C ,D ,O 在同一平面内,,,,则点A 到OC 的距离为( )A. B.C. D.二、填空题(共12题,每题4分,满分48分)7.在不等式中,m ,n 是常数且,当时,不等式的解集为_____8.已知关于x 的方程有实数根,则整数a 的最大值是_____9.在比例尺为1:3000的地图上,甲、乙两地的距离为5cm ,则甲、乙两地的实际距离为________米.10.已知:点与点关于原点成中心对称,则________11.一个三位正整数(其中a 、b 都是正整数,,),满足各数位上的数字互不相同.将n 的任意两个数位上的数字对调后得到三个不同的新三位数,把这三个新三位数的和记为.若,则_______12.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是_______13.小明希望测量出电线杆的高度,于是在阳光明媚的一天,他在电线杆旁的点处立一标杆.使标杆的影子与电线杆的影子部分重叠(即点E ,C ,A 在一直线上),量得,,,则电线杆的长为______m.14.如图,正方形的边长为a ,E ,F 分别是对角线上的两点,过点E ,F 分别作,的平行线,则图中阴影部分的面积之和为________.ABCD OC OB ⊥1AB =4AD =BCO α∠=tan 4sin αα+tan 4cos αα+sin 4cos αα+cos 4sin αα+0mx n +>0m ≠0m <()21230a x x +-+=()2025,1A -(),B a b O a b +=100103n a b =++19a ≤≤19b ≤≤()M n ()999M n =a b +=AB D CD DE BE 2m ED =6m DB =1.3m CD =AB ABCD BD AD AB15.如图,中,G 是重心,,,那么________16.在中,点,分别为,的中点,与交于点O ,已知四边形DFOE 的周长为4,的周长为_______.17.对于二次函数(a 是常数),下列结论:①将这个函数的图像向下平移3个单位长度后得到的图像经过原点;②当时,这个函数的图像在函数图像的上方;③若,则当时,函数值y 随自变量x 增大而增大;④这个函数的最小值不大于3.其中正确的是________(填写序号)18.如图,中,,,,将线段绕点B 逆时针旋转90°得到线段,取的中点E ,连接,用含m ,n 的式子表示的长是________.三、解答题(满分78分)19.计算:20.解不等式组:.21.如图是一种躺椅及其结构示意图,扶手与底座都平行于地面,前支架与后支架分ABC △GD BC ⊥AH BC ⊥GD AH=ABCD □E F AD AB AC BD ABCD □223y x ax =-+1a =-y x =-1a ≥1x >ABC △135BAC ∠=︒AB m =AC n =BC BD AD BE 212tan 602-⎛⎫︒+ ⎪⎝⎭()3121223x x x x ⎧->+⎪⎨+>-⎪⎩AB CD EF OE OF别与交于点和点,与交于点,.(1)求证:;(2)若平分,,求:扶手与靠背的夹角的度数.22.2024年春晚吉祥物“龙辰辰”,以十二生肖龙的专属汉字“辰”为名.某厂家生产大小两种型号的“龙辰辰”,大号“龙辰辰”单价比小号“龙辰辰”单价贵15元,且用2400元购进小号“龙辰辰”的数量是用2200元购进大号“龙辰辰”数量的1.5倍,(1)求:大号“龙辰辰”的单价(2)某网店在该厂家购进了两种型号的“龙辰辰”共60个,且大号“龙辰辰”的个数不超过小号“龙辰辰”个数的一半,小号“龙辰辰”售价为60元,大号“龙辰辰”的售价比小号“龙辰辰”的售价多30%.若两种型号的“龙辰辰”全部售出,求:该网店所获的最大利润23.如图,在中,,过点C 的直线,D 为边上一点,过点D 作,垂足为F ,交直线于E ,连接,.(1)求证:;(2)当D 为AB 中点时,当满足什么条件时,四边形BECD 是正方形?24.已知:如图1,二次函数的图像交x 轴于A ,B 两点(A 在B 的左侧),过点A 的直线交该二次函数的图像于另一点,交y 轴于M .CD G D AB DM N AOE BNM ∠=∠OE DM ∥OE AOF ∠30ODC ∠=︒AB DM AND ∠Rt ABC △90ACB ∠=︒MN AB ∥AB DE BC ⊥MN CD BE CE AD =ABC △2344y ax ax =++134y kx k k ⎛⎫=+> ⎪⎝⎭()11,C x y(1)直接写出A 点坐标,并求该二次函数的解析式;(2)过点B 作交于D ,若且点Q 是线段上的一个动点,求出当与相似时点Q 的坐标:(3)设,图2中连接交二次函数的图像于另一点,连接交y 轴于N ,请你探究的值的变化情况,若变化,求其变化范围;若不变,求其值25.如图,在中,AD 平分交BC 边于点D ,在CA 边上取点E ,使得,连接DE .(1)如图1,当时,求:的正切值(2)如图2,过点C 作于点F ,当时,请:的值(3)如图3,在(2)问的条件下,连接BE ,当时,若四边形ABDE 内部的点Q 到四边形ABDE 四条边的距离相等,求:的值BD AC ⊥AC (M DC DBQ △AOM △()1,2P --CP ()22,E x y AE OM ON ⋅ABC △CAB ∠CE CD =120ABC ∠=︒ADE ∠CF ED ⊥AB BC =AD CFBE AD ⊥sin QEB ∠参考答案及部分评分标准选择题(1~6题)CABBDD填空题(7~18题)7. 8.-1 9.150 10.2024 11.6 12.13.5.2 14. 15. 16.8 17.①②④解答题(19~25题)19.原式=720.21.(1)证内错角相等即可(2)85°22.(1)55(2)126023.(1)证:平行四边形ADEC(2)当时24.(1)(2)或(3)值不变,25.(1(2)2(3n x m <-1515112x x -=+22a 1334x <<45A ∠=︒()3,0A -21344x y x ++=(1,Q -(2Q -92。
吉林省吉林市第七中学校2024-2025学年九年级上学期9月月考数学试题(含答案)
2024—2025学年度上学期七年级第一次月考试题数学试卷考生须知:1.本试卷满分为120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效.4.选择题必须使用2B 铅笔填涂:非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每题3分,计27分,每题只有一个正确的答案)1.的相反数是()A .B.C .D .20242.下列化简正确的是()A .B .C .D .3.质检员抽查4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的足球是( )A .B .C .D .4.在1.5,,,,6,15%中,负分数有( )A .2个B .3个C .4个D .5个5.已知,,则的值为( )A .B .C .0D .6.若,则等于( )A .B .1C .0D .7.若,,则有( )A .,B .、异号,且正数的绝对值较大C .,D .、异号,且负数的绝对值较大8.有理数、对应的点在数轴上的位置如图所示,那么()2024-12024-120242024-()22-+=()22-=-()22+-=-22-+=2-52-0.7-3a =-a b =b 3+3-3±210a b -++=a b +1-2-0a b +<0a b >0a >0b >a b 0a <0b <a b a bA .B .C .D .9.下列说法:①两个有理数相加,它们的和一定大于每一个加数;②一个正数与一个负数相加一定得0;③绝对值是它本身的数是正数;④表示的数一定是负数,其中正确的个数有()A .3个B .2个C .1个D .0个第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共计27分)11.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若把气温为零上10℃记作,则零下3℃记作______℃.11.比较大小:______(填“>”,“<”或“=”)12.已知有理数1,,,,请你任选两个数相乘,运算结果最大是______.13.如果与互为倒数,与互为相反数,那么的值是______.14.如果两数的商是,被除数是,则除数是______.15.已知,,且,则的值为______.16.比大而比小的所有整数的和等于______.17.定义:对于一个有理数,我们把称为的有缘数.若,则.若,则.计算的结果为______.18.如图1,点,,是数轴上从左到右排列的三个点,分别对应的数为,,,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点,发现点对应刻度,点对齐刻度.若点从点处向点方向跳动,当点在之间且点到点的距离等于点到点的距离2倍时,点所表示的数是______.三、解答题:(本大题共9小题,共66分)19.(本题6分)把下列各数的序号填在相应的数集内:①2:②;③3.5;④0;⑤;⑥.(1)整数:{__________________…};(2)分数:{__________________…};(3)负有理数:{__________________…}.20.计算:(本题7分)b a ->a b -<0ab >0a b -<m -10+℃2- 1.5-8-11+2-a b c d ()2024ab c d -++516-122-3m =5n =m n >2m n +153-335[]x x 0x ≥[]113x x =-0x <[]122x x =-+[][]31+-A B C 5-b 4A B 1.8cm C 5.4cm P C B P BC P C P B P 23-π7-(1);(2).21.计算:(本题7分)(1);(2)22.(本题8分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”号连接起来:,0,,,23.(本题5分)学习有理数的乘法后,老师给同学们这样一道题目:计算:,看谁算的又快又对,小明同学的解法如下:原式,根据上面的解法,请你再写一种你认为合适的方法计算.24.(本题6分)有资料表明,某地区高度每增加100米,气温下降0.6℃.登山队由此想出了测量山峰高度的办法:一名队员在山脚,一名队员在山顶,他们在某天上午1时整测得山脚和山顶的气温分别为和.由此可推算出该山峰高多少米?25.(本题8分)若两个有理数,满足,则称,互为“吉祥数”.如5和3就是一对“吉祥数”,回答下列问题:(1)求的“吉样数”:(2)若的“吉祥数”是,求的;(3)和9能否互为“吉祥数”?若能,请求出的值;若不能,请说明理由.26.(本题9分)外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定每天送餐量超过50单(送一次外卖称为一单)的部分记为“+”,低于50单的部分记为“-”,下表是该外卖小哥一周的送餐量:星期一二三四五六日送餐量(单位:单)(1)该外卖小哥这一周送餐量最多的一天比最少的一天多多少单?(2)求该外卖小哥这一周一共送餐多少单?()()231410+---531353246767⎛⎫⎛⎫--+--- ⎪ ⎪⎝⎭⎝⎭()13644⎛⎫÷-⨯- ⎪⎝⎭()143669⎛⎫-+⨯- ⎪⎝⎭3.5-1- 3.5-()1.5--()2449525⨯-12491249452492555=-⨯=-=-5-℃8.6-℃A B 8A B +=A B 4-3x 4-x a a 3-4+5-14+8-6+12+(3)外卖小哥每天的工资由底薪60元加上送单补贴构成,送单补贴的方案如下:每天送餐量不超过50单的部分,每单补贴2元;超过50单但不超过60单的部分,每单补贴4元;超过60单的部分,每单补贴6元.求该外卖小哥这一周的工资收入27.(本题10分)如图所示,在数轴上点表示的数是4,点位于点的左侧,若是最大负整数,点与点的距离是个单位长度.(1)点表示的数是______;(2)动点从点出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点与点的距离是2个单位长度?(3)在(2)的条件下,点出发的同时,点也从点出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点到点的距离等于到点的距离的一半?A B A aB A10aBP B P AP Q AP A Q B2024-2025学年度上学期七年级第一次月考试题数学试卷参考答案一、1-5.DCBAD6-9.BCAD ADCDB 二、10.-3 11.< 12.16 13.-1 14.8 15.1或-11 16.-9 17.52 18.0三、19.整数:①④⑥............2'分数:②③............2' 负有理数:②⑥............2'20.(1)解:原式=23+(-14)+10............1'=19............2' (2)解:原式=............1'=-8+1............2' =-7............1'21.(1)解:原式=-9×(-14)............1' =94............2'(2)解:原式=-16×(-36)+49×(-36)............1'=6+(-16)............2'=-10............1'22.描点正确............5',-3.5<-1<0<-(-1.5)< ............3'23.法一、解:原式=(49+2425)×(-5)............1'=49×(-5)+2425×(-5)............1'=-245+(-245)............1'=-24945............1'法二、解:原式=(50-125)×(-5)............1'=50×(-5)-125×(-5)............1'=-250+15............1'=-24945............1'24.解:[-5-(-8.6)]÷0.6×100............3'=3.6÷0.6×100............1')734733(]612(655[+-+-+-5.3-=600(米)............1'答:该山峰高600米.............1'25.解:(1)-4的“吉祥数”是:8-(-4)=12;............2'(2)若3x的“吉祥数”是-4,则3x+(-4)=8,............1'∴3x=8+4,∴3x=12,解得x=4;............2'(3)a和9能互为“吉祥数”,............1'则a+9=8,............1'解得:a=-1.............1'26.解:(1)14-(-8)=14+8=22(单)............2'答:该外卖小哥这一周送餐量最多的一天比最少的一天多22单;............1'(2)50×7+(-3+4-5+14-8+6+12)............2'=350+20=370(单)............1'答:该外卖小哥这一周一共送餐370单;(3)(50×7-3-5-8)×2+(4+6+10×2)×4+(4+2)×6+60×7............2'=668+120+36+420=1244(元).............1'答:该外卖小哥这一周的工资收入是1244元27.解:(1)由题意得,点B表示的数为4-10=-6,............2'(2)设运动的时间是x秒,则点P表示的数是-6+2x.根据题意,当点P在点A的左侧时,4-(-6+2x)=2 ............1'解得x=4............1'当点P在点A的右侧时-6+2x-4=2.............1'解得x=6............1'.答:经过4秒或6秒,点P,A之间的距离是2个单位长度.(3)设运动时间为t秒,由题意得,...........1'...........1'...........1'解得t=6..............1'经过103秒或6秒,点P到点A的距离等于Q到点B的距离的一半。
2024-2025学年上海市浦东新区南汇一中九年级(上)月考数学试卷(9月份)(含解析)
2024-2025学年上海市浦东新区南汇一中九年级(上)月考数学试卷(9月份)一.选择题:(本大题共6题,每题4分,满分24分)1.(4分)下列各组中的四条线段成比例的是()A .4cm 、2cm 、1cm 、3cmB .1cm 、2cm 、4cm 、6cmC .25cm 、35cm 、45cm 、55cmD .lcm 、2cm 、20cm 、40cm2.(4分)在ABC ∆中,点D 、E 分别在边BA 、CA 的延长线上(如图),下列四个选项中,能判定//DE BC 的是()A .BD CEAB AC=B .AB AEAD AC=C .AB BCAD DE =D .AB AEAC AD=3.(4分)已知3a b =-,下列说法中不正确的是()A .a与b 方向相反B .//a bC .30a b +=D .||3||a b = 4.(4分)已知△ABC 与△DEF 相似,又40A ∠=︒,60B ∠=︒,那么D ∠不可能是()A .40︒B .60︒C .80︒D .100︒5.(4分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面(AB =)A .1cmB .2cmC .3cmD .4cm6.(4分)如图,90ACB BDC ∠=∠=︒.要使ABC BCD ∆∆∽,给出下列需要添加的条件:①//AB CD ;②2BC AC CD = ;③AC BDBC CD=,其中正确的是()A .①②B .①③C .②③D .①②③二.填空题:(本大题共12题,每题4分,满分48分)7.(4分)如果34x y =,那么x yy+的值是.8.(4分)在比例尺为1:20000的地图上,相距4厘米的两地A 、B 的实际距离为米.9.(4分)点P 是线段AB 的黄金分割点,AP BP >,若6AB =,则AP =.10.(4分)计算:1()(32)2a b a b ---=.11.(4分)两个相似三角形对应高的比2:3,且已知这两个三角形的周长差为4,则较小的三角形的周长为.12.(4分)Rt △ABC 中,90BAC ∠=︒,6BC =,点G 是△ABC 的重心,则点G 到BC 的中点的距离是.13.(4分)如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若:2:3DE EC =,则:DEF ABF S S ∆∆=.14.(4分)如图,已知△ABC 中,已知点D 、E 分别在边AB 、AC 上,//DE BC ,:1:3AD BD =,若△DBE 的面积为3,则△CBE 的面积为.15.(4分)如图,从点(0,2)A 发出一束光,经x 轴反射,过点(3,4)B ,则这束光从点A 到点B 所经过的路径的长为.16.(4分)如图:在△ABC 的内接矩形DGFE ,长边DE 在边BC 上,AH BC ⊥于H ,交GF 于M ,已知30BC =,10AH =,2DE EF =,那么EF =.17.(4分)定义:如果将一个三角形绕着它一个角的顶点旋转后.使这个角的一边与另一边重叠,再将旋转后的三角形进行相似缩放,使重叠的两条边互相重合,我们称这样的图形变换为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形.如图,在ABC ∆中,4AB =,5AC =,6BC =,△11A BC 是ABC ∆以点B 为转似中心的其中一个转似三角形,那么以点B 为转似中心的另一个转似三角形△22A BC (点2A 、2C 分别与A 、C 对应)的边22A C 的长为.18.(4分)已知,在平面直角坐标系xOy 中,直线22y x =+与x 轴、y 轴相交于A 、B 两点,且点C 的坐标为(3,2),连接AC ,与y 轴相交于点D ,点E 在x 轴上,如果△ABD 和△ACE 相似,则点E 的坐标为.三.解答题:(本大题共7题,满分78分)19.(10分)已知:234x y z==,6x y z -+=,求:代数式32x y z -+的值.20.(10分)已知,如图,点E 在平行四边形ABCD 的边CD 上,且12DE CE =,设AB a = ,AD b = .(1)用a、b 表示AE ;(直接写出答案)(2)设AE c = ,在答题卷中所给的图上画出3a c -的结果.21.(10分)已知如图,////AD BE CF ,它们依次交直线a ,b 于点A 、B 、C 和点D 、E 、F .(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.22.(12分)如图,ABC ∆中,PC 平分ACB ∠,PB PC =.(1)求证:APC ACB ∆∆∽;(2)若2AP =,6PC =,求AC 的长.23.(12分)已知:如图,DE AD AEBC AB AC==,求证:(1)DAB EAC ∠=∠(2)DB AC AB EC = .24.(12分)如图:在ABC∠中,点D、E、F分别在AB、AC、BC边上,四边形BFED是菱形,AF 与DE交于点G,已知3AB=,6BC=,(1)求证:GE DG FC DE=;(2)求GE的长.25.(12分)已知在梯形ABCD中,//AD BC,AD BC<,且5AD=,2AB DC==,(1)如图:P为AD上的一点,满足BPC A∠=∠,求AP的长;(2)如果点P在AD上移动(点P与点A、D不重合),且满足BPE A∠=∠,PE交直线BC于点E,同时交直线DC于点Q,那么①当点Q在线段DC的延长线上时,设AP x=,CQ y=,求y关于x的函数解析式,并写出函数的定义域;②当1CE=时,写出AP的长(不必写出解题过程).参考答案一.选择题:(本大题共6题,每题4分,满分24分)1.(4分)下列各组中的四条线段成比例的是()A .4cm 、2cm 、1cm 、3cmB .1cm 、2cm 、4cm 、6cmC .25cm 、35cm 、45cm 、55cmD .lcm 、2cm 、20cm 、40cm解:A 、4123⨯≠⨯,故A 不符合题意;B 、6142⨯≠⨯,故B 不符合题意;C 、25553545⨯≠⨯,故C 不符合题意;D 、140220⨯=⨯,故D 符合题意;故选:D .2.(4分)在ABC ∆中,点D 、E 分别在边BA 、CA 的延长线上(如图),下列四个选项中,能判定//DE BC 的是()A .BD CEAB AC=B .AB AEAD AC=C .AB BCAD DE=D .AB AEAC AD=解:当BD CEAB AC=时,//DE BC ,A 选项正确;AB ACAD AE=时,//DE BC ,B 、C 选项错误;AB ADAC AE=时,//DE BC ,D 选项错误;故选:A .3.(4分)已知3a b =-,下列说法中不正确的是()A .a与b 方向相反B .//a bC .30a b +=D .||3||a b = 解:A . 3a b =- ,∴a与b 方向相反,故正确;B . 3a b =- ,∴//a b 或a与b 共线,故不正确;C . 3a b =- ,∴30a b +=,故正确;D . 3a b =-,∴||3||a b = ,故正确;故选:B .4.(4分)已知△ABC 与△DEF 相似,又40A ∠=︒,60B ∠=︒,那么D ∠不可能是()A .40︒B .60︒C .80︒D .100︒解: △ABC ∽△DEF ,40A ∠=︒,60B ∠=︒,40A D ∴∠=∠=︒或60B D ∠=∠=︒或180406080C D ∠=∠=︒-︒-︒=︒,故选:D .5.(4分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面(AB =)A .1cmB .2cmC .3cmD .4cm解:如图:过O 作OM CD ⊥,垂足为M ,过O '作O N AB '⊥,垂足为N ,//CD AB ,CDO ABO '∴∆∆∽,即相似比为CDAB,∴CD OMAB O N=',1578()OM cm =-= ,1174()O N cm '=-=,∴684AB =,3AB cm ∴=,故选:C .6.(4分)如图,90ACB BDC ∠=∠=︒.要使ABC BCD ∆∆∽,给出下列需要添加的条件:①//AB CD ;②2BC AC CD = ;③AC BDBC CD=,其中正确的是()A .①②B .①③C .②③D .①②③解:①若//AB CD ,ABC BCD ∴∠=∠,且90ACB BDC ∠=∠=︒,ABC BCD ∴∆∆∽,故①符合题意;②若2BC AC CD = ,∴BC CDAC BC=,且90ACB BDC ∠=∠=︒,无法判定ABC BCD ∆∆∽,故②不符合题意;③若AC BDBC CD=,且90ACB BDC ∠=∠=︒,ABC BCD ∴∆∆∽,故③符合题意;故选:B .二.填空题:(本大题共12题,每题4分,满分48分)7.(4分)如果34x y =,那么x yy+的值是74.解:由34x y =,那么34744x y y ++==,故答案为:74.8.(4分)在比例尺为1:20000的地图上,相距4厘米的两地A 、B 的实际距离为800米.解:设AB 的实际距离为x cm , 比例尺为1:20000,4:1:20000x ∴=,80000800x cm m ∴==.故答案为800.9.(4分)点P 是线段AB 的黄金分割点,AP BP >,若6AB =,则AP =3-.解: 点P 是线段AB 的黄金分割点,AP BP >,6AB =∴63AP ==⨯,故答案为:3-.10.(4分)计算:1()(32)2a b a b ---=52a b -+ .解:原式153222a b a b a b =--+=-+.故答案为:52a b -+.11.(4分)两个相似三角形对应高的比2:3,且已知这两个三角形的周长差为4,则较小的三角形的周长为8.解: 两个相似三角形对应高的比为2:3,即相似比为2:3,∴它们周长的比是2:3,设较小的三角形的周长为2x ,则较大的三角形的周长为3x ,由题意得,324x x -=,解得,4x =,则28x =,∴较小的三角形的周长为8.故答案为:8.12.(4分)Rt △ABC 中,90BAC ∠=︒,6BC =,点G 是△ABC 的重心,则点G 到BC 的中点的距离是1.解:如图所示,点G 是△ABC 的重心,90BAC ∠=︒,6BC =,1632AE ∴=⨯=, 点G 是△ABC 的重心,∴113GE AE ==.故答案为:1.13.(4分)如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若:2:3DE EC =,则:DEF ABF S S ∆∆=4:25.解: 四边形ABCD 是平行四边形,//AB CD ∴,AB CD =,DEF BAF ∴∆∆∽,∴2(DEF ABF S DE S AB∆∆=,:2:3DE EC = ,::2:5DE CD DE AB ∴==,:4:25DEF ABF S S ∆∆∴=.故答案为:4:25.14.(4分)如图,已知△ABC 中,已知点D 、E 分别在边AB 、AC 上,//DE BC ,:1:3AD BD =,若△DBE 的面积为3,则△CBE 的面积为12.解::1:3AD BD = ,::1:3ADE BDE S S AD BD ∴== ,3DBE S = ,1ADE S ∴= ,314ABE ADE BDE S S S ∴=+=+= ,//DE BC ,::1:3AE CE AD BD ∴==,::1:3ABE CBE S S AE EC ∴== ,∴△CBE 的面积为12;故答案为:12.15.(4分)如图,从点(0,2)A 发出一束光,经x 轴反射,过点(3,4)B ,则这束光从点A 到点B 所经过的路径的长为解:如图,过点B 作BD x ⊥轴于D ,(0,2)A ,(3,4)B ,2OA ∴=,4BD =,3OD =,根据题意得:ACO BCD ∠=∠,90AOC BDC ∠=∠=︒ ,AOC BDC ∴∆∆∽,∴2142OC AC OA DC BC BD ====,11123OC DC OD ∴===,2CD OD OC ∴=-=,AC ∴,BC ===,AC BC ∴+=,故答案为:.16.(4分)如图:在△ABC 的内接矩形DGFE ,长边DE 在边BC 上,AH BC ⊥于H ,交GF 于M ,已知30BC =,10AH =,2DE EF =,那么EF =6.解: 四边形DGFE 是矩形,GF DE ∴=,EF DG =,//GF BC ,90FGD GDH ∠=∠=︒,AH BC ⊥ 于H ,90DHM ∴∠=︒,90FGD GDH ∠=∠=︒,∴四边形GDHM 是矩形,GD MH ∴=,90GMH ∠=︒,MH EF ∴=,AH GF ⊥,2DE EF = ,∴设EF DG MH x ===,2DE GF x ==,则10AM x =-,//GF BC ,AGF B ∴∠=∠,AFG C ∠=∠,∴△AGF ∽△ABC ,∴AM GF AH BC=,即1021030x x -=,解得:6x =,故答案为:6.17.(4分)定义:如果将一个三角形绕着它一个角的顶点旋转后.使这个角的一边与另一边重叠,再将旋转后的三角形进行相似缩放,使重叠的两条边互相重合,我们称这样的图形变换为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形.如图,在ABC ∆中,4AB =,5AC =,6BC =,△11A BC 是ABC ∆以点B 为转似中心的其中一个转似三角形,那么以点B 为转似中心的另一个转似三角形△22A BC (点2A 、2C 分别与A 、C 对应)的边22A C 的长为152.解:根据题意作图如下,ABC ∆ ∽△22A BC ,∴222AC BA A C BA =,∴22546A C =,∴22152A C =,故答案为:152.18.(4分)已知,在平面直角坐标系xOy 中,直线22y x =+与x 轴、y 轴相交于A 、B 两点,且点C 的坐标为(3,2),连接AC ,与y 轴相交于点D ,点E 在x 轴上,如果△ABD 和△ACE 相似,则点E 的坐标为(2,0)或17(,0)3.解:当0x =时,则222y x =+=;当0y =时,则220x +=,解得1x =-;A ∴点的坐标为(1,0)-,B 点的坐标为(0,2);∴22125AB =+=,点C 的坐标为(3,2),∴22(13)225AC =--+=设直线AC 的解析式为(0)y kx b k =+≠,点A ,C 在直线22y x =+上,∴032k b k b -+=⎧⎨+=⎩,∴1212k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AC 的解析式为1122y x =+; 连接AC ,与y 轴相交于点D ,当0x =时,则12y =,∴1(0,)2D ,∴13222BD =-=,22151()2AD =+=, 点E 在x 轴上,∴设(,0)E m 90ADB ∠>︒ ,290CAE ∠<︒,△ABD 和△ACE 相似,1ADB CE A ∴∠=∠或2ADB ACE ∠=∠,①当△ADB ∽△1CE A 时,11AE CE AC DB AD AB==,则(1)322m --==,解得2m =,1(2,0)E ∴,②当△ADB ∽△1AE C 时,11CE AE AC DB AD AB==,32==,此时m 无解;③当△ADB ∽△2E CA 时,22CE AE AC BD AD AB==,则32==,此时173m =;④当△ADB ∽△2ACE 时,22CE AE AC BD AD AB ==,322==,此时m 无解;综上:点E 的坐标是(2,0)或17(,0)3,故答案为:(2,0)或17(,0)3.三.解答题:(本大题共7题,满分78分)19.(10分)已知:234x y z ==,6x y z -+=,求:代数式32x y z -+的值.解:设234x y z k ===,可得:2x k =,3y k =,4z k =,把2x k =,3y k =,4z k =代入6x y z -+=,可得:2346k k k -+=,解得:2k =,所以4x =,6y =,8z =,把4x =,6y =,8z =代入32121288x y z -+=-+=.20.(10分)已知,如图,点E 在平行四边形ABCD 的边CD 上,且12DE CE =,设AB a = ,AD b = .(1)用a 、b 表示AE ;(直接写出答案)(2)设AE c = ,在答题卷中所给的图上画出3a c - 的结果.解:(1) 12DE CE =,即12DE CE =,13DE DC =,13AE a b =+ (2)如图所示:延长AE 、BC 交于G ,则GB 即为3a c - 的结果.四边形ABCD 是平行四边形//AD BC∴∴12DE AE CE EG ==3AG AE∴=又 AE c=∴3AG c= ∴3GB a c =- .21.(10分)已知如图,////AD BE CF ,它们依次交直线a ,b 于点A 、B 、C 和点D 、E 、F .(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.解:(1)6AB = ,8BC =,14AC AB BC ∴=+=,////AD BE CF ,∴614DE AB DF AC ==,∴662191414DE DF ==⨯=.(2)过D 作//DH AC ,分别交BE 于点G ,CF 于点H ,如图,////AD BE CF ,∴四边形ABGD 和四边形BCHG 是平行四边形,9CH BG AD ∴===,5FH CF DH ∴=-=.//BE CF ,∴GE DE HF DF=,:2:5 DE DF=,:2:5 GE HF∴=.∴225255GE HF==⨯=.9211 BE BG GE∴=+=+=.22.(12分)如图,ABC∆中,PC平分ACB∠,PB PC=.(1)求证:APC ACB∆∆∽;(2)若2AP=,6PC=,求AC的长.解:(1)PB PC=,B PCB∴∠=∠;PC平分ACB∠,ACP PCB∴∠=∠,B ACP∠=∠,A A∠=∠,APC ACB∴∆∆∽.(2)APC ACB∆∆∽,∴AP AC AC AB=,2AP=,6PC=,8AB=,4AC∴=.6AP AC PC+==,这与三角形的任意两边之和大于第三边相矛盾,∴该题无解.23.(12分)已知:如图,DE AD AEBC AB AC==,求证:(1)DAB EAC∠=∠(2)DB AC AB EC=.【解答】证明:(1)在ADE∆和ABC∆中,DE AD AE BC AB AC==,ADE ABC∴∆∆∽(2分),DAE BAC∴∠=∠(2分),即DAB BAE BAE EAC ∠+∠=∠+∠,DAB EAC∴∠=∠(2分);(2)在ADB∆和AEC∆中,AD AEAB AC=且DAB EAC∠=∠,ADB AEC∴∆∆∽(2分),∴DB ABEC AC=(2分),DB AC AB EC∴=(2分).24.(12分)如图:在ABC∠中,点D、E、F分别在AB、AC、BC边上,四边形BFED是菱形,AF 与DE交于点G,已知3AB=,6BC=,(1)求证:GE DG FC DE=;(2)求GE的长.【解答】(1)证明: 四边形BFED是菱形,//EF AB∴,//DE BC,∴DG AG GE GF=,∴DG AG DE AF=,//DE BC,∴△AGE∽△AFC,∴GE AG FC AF=,∴GE DG FC DE=;(2)设菱形的边长为x,BD DE BF x∴===,//DE BC,∴△ADE∽△ABC,∴DE AD AE BC AB AC==,∴363x x-=,2x∴=,2 BD DE BF∴===,//DE BC,∴△AGE∽△AFC,∴GE AE FC AC=,∴13 GE ADFC AB==,∴1433 GE FC==.25.(12分)已知在梯形ABCD中,//AD BC,AD BC<,且5AD=,2AB DC==,(1)如图:P为AD上的一点,满足BPC A∠=∠,求AP的长;(2)如果点P在AD上移动(点P与点A、D不重合),且满足BPE A∠=∠,PE交直线BC于点E,同时交直线DC于点Q,那么①当点Q在线段DC的延长线上时,设AP x=,CQ y=,求y关于x的函数解析式,并写出函数的定义域;②当1CE=时,写出AP的长(不必写出解题过程).-21-【解答】(1)解: 四边形ABCD 是梯形,AB DC =,//AD BC ,D A ∴∠=∠,180ABP APB A ∠+∠+∠=︒ ,180APB DPC BPC ∠+∠+∠=︒,BPC A ∠=∠,ABP DPC ∴∠=∠,∴△PAB ∽△CDP ,∴AB APPD CD =,即:225AP AP =-,解得:1AP =或4AP =;(2)①由(1)可知:△PAB ∽△QDP ,∴AB AP PD DQ =,即:225x y x =+-,∴2152(14)22y x x x =-+-<<.②当1CE =时,△PDQ ∽△ECQ ,∴CQ CEDQ PD =,即152yx y =-+或152yx y =+-, 215222y x x =-+-,解得:2x =或35,2PA ∴=或35-。
重庆南开中学2024年九年级上学期9月月考模拟数学试卷+答案
重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4)A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。
精品解析:浙江省杭州市桐庐县实验初级中学九年级上学期9月月考数学试题(解析版)
一.选择题
1.下列函数中,是二次函数的是()
A. B. C. D.
【答案】B
【解析】
【分析】根据二次函数的定义即可判断.
【详解】A. 是反比例函数,故此选项错误;
B. 是二次函数,故此选项正确;
C. 是一次函数,故此选项错误;
【详解】解:∵y=﹣3(x﹣2)2+1,
∴抛物线对称轴为直线x=2.
故选:C.
【点睛】本题主要考查抛物线的顶点式,掌握抛物线顶点式是解题的关键,即在 中,其顶点坐标为(h,k),对称轴为直线x=h.
3.将二次函数y= 向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为( )
A. B.
C. D.
则当 时,y取得最大值,最大值为 ,
因此有 ,解得 ,符合题设;
综上, 或 ,
故答案为: 或 .
【点睛】本题考查了二次函数的图象与性质,依据题意,正确分三种情况讨论是解题关键.
三.解答题
17.已知抛物线的顶点为A(1,﹣4),且过点B(3,0).求该抛物线的解析式.
【答案】
【解析】
【分析】根据题意设抛物线的解析式为顶点式方程 ,然后利用待定系数法求抛物线的解析式即可
【详解】(1)∵二次函数 的图象过点 ,
∴ ,
∴ ,
∴这个二次函数的解析式为 ;
(2)把点 代入函数解析式 ,
,
∴点 不在抛物线上;
【点睛】本题考查了求二次函数的表达式,二次函数图象上点的坐标特征,正确的求得解析式是解题的关键.
19.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:
2022-2023学年上海市浦东新区江镇中学九年级(上)月考数学试卷(9月份)(附答案详解)
2022-2023学年上海市浦东新区江镇中学九年级(上)月考数学试卷(9月份)一、选择题(本大题共6小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1.已知ab =52,那么下列等式中正确的是( )A. 2a=5bB. a+b=7C. a=5,b=2D. a2=b52.如图,平行四边形ABCD中,点E是边BC上的一点,AE交对角线BD于点F,如果BE:BC=2:3,那么下列各式中错误的是( ) A. BEEC=2B. EFAE =23C. ECAD =13D. BFDF =233.已知点C是线段AB上的一个点,且满足AC2=BC⋅AB,则下列式子成立的是( )A. ACBC =√5−12B. ACAB=√5−12C. BCAB=√5−12D. CBAC=√5+124.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE//BC的是( )A. DEBC =23B. DEBC=25C. AEAC=23D. AEAC=255.如图,分别以下列选项作为一个已知条件,不一定能得到△AOB与△COD相似的是( )A. AOCO =DOBOB. AOCO =BODOC. AOBO =DOCOD. ∠BAC=∠BDC6.下列命题中,正确的是( )A. 如果一条直线截三角形两边的延长线所得的对应线段成比例,那么这条直线一定平行于三角形的第三边B. 有一个内角相等的两个菱形相似C. 点O 是等边三角形ABC 的中心,则向量OA ⃗⃗⃗⃗⃗ 、OB ⃗⃗⃗⃗⃗⃗ 、OC ⃗⃗⃗⃗⃗ 是相等向量D. 有一个锐角相等的两个等腰三角形相似二、填空题(本大题共12小题,共48.0分)7. 如果2x =3y ,那么y+2xx−y =______.8. 已知线段b 是线段a 、c 的比例中项,且a =9,c =4,那么b =______. 9. 如图,AD//BE//FC ,它们依次交直线l 1、l 2于点A 、B 、C 和点D 、E 、F.如果AB =4,AC =9,那么DEEF的值是______.10. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为______m.11. 如图,点G 是Rt △ABC 的重心,过点G 作矩形GECF ,当GF :GE =2:3时,则ACBC的值为______.12. 如图,Rt △ABC 中,∠C =90°,AC =8,BC =6,顺次联结在边AB 、AC 、BC 上的三点D 、E 、F 形成以点D 为直角顶点的等腰直角三角形,且EF//AB ,那么EF 的长为______.13.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=3cm,点D是BC的中点,点E在边AB 上从点A出发,以1cm/秒的速度沿着A→B的方向运动,运动到点B后停止,联结DE,当△BDE 与△ABC相似时,运动时间是______秒.14.如图,大小为4×4的正方形方格中,能作出与△ABC相似的格点三角形(顶点都在正方形的顶点上),其中最小的一个面积是______.15.如图,等边△BDE的顶点D在等边△ABC的边AC上滑动,DE与AB交于点F,当AD:DC=3:2时,AF:BF的值是______.16.如图,在△ABC中,∠ACB=90°,AC=BC,点P是△ABC内一点,AP=6,且∠APB=∠APC=135°,那么AB=______.17.定义:如果将一个三角形绕着它一个角的顶点旋转后.使这个角的一边与另一边重叠,再将旋转后的三角形进行相似缩放,使重叠的两条边互相重合,我们称这样的图形变换为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形.如图,在△ABC中,AB=4,AC=5,BC=6,△A1BC1是△ABC以点B为转似中心的其中一个转似三角形,那么以点B为转似中心的另一个转似三角形△A2BC2(点A2、C2分别与A、C对应)的边A2C2的长为______.18. 如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,点D 、E 分别是边BC 、AC 上的点,且∠EDC =∠A ,将△ABC 沿DE 对折,若点C 恰好落到了△ABC 的外部,则折痕DE 的长度范围是______.三、解答题(本大题共7小题,共78.0分。
2022-2023学年上海市部分学校九年级(上)月考数学试卷(9月份)
2022-2023学年上海市部分学校九年级(上)月考数学试卷(9月份)一、选择题(本大题共6题,每题4分,满分24分)1.用一个2倍放大镜照一个△ABC,下面说法中错误的是()A.△ABC放大后,各内角大小不变B.△ABC放大后,各边长的长度不变C.△ABC放大后,周长发生变化D.△ABC放大后,面积发生变化2.已知线段a、b、c,求作第四比例线段x,下列作图正确的是()A.B.C.D.3.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC的是()A.BD:AB=CE:AC B.DE:BC=AB:ADC.AB:AC=AD:AE D.AD:DB=AE:EC4.三角形的重心正确的叙述是()A.三角形三条角平分线的交点B.三角形三条中垂线的交点C.三角形三条中线的交点D.三角形三条高的交点5.如果两个相似三角形的面积比是1:6,则它们的相似比()A.1:36B.1:6C.1:3D.1:√66.列命题中,真命题是()A.有一个角为30°的两个等腰三角形相似B .邻边之比都等于2的两个平行四边形相似C .底角为40°的两个等腰梯形相似D .有一个角为120°的两个等腰三角形相似二、填空题(本大题共12题,每题4分,满分48分)7.如果a 3=b 5,那么2a−3b a+b 的值等于 .8.已知a =4,c =13,则a ,c 的比例中项是 .9.已知线段AB 长为1cm ,P 是AB 的黄金分割点,则线段P A 的长 .10.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ 移动,如图,当小聪正好站在广场的A 点(距N 点5块地砖长)时,其影长AD 恰好为1块地砖长;当小军正好站在广场的B 点(距N 点9块地砖长)时,其影长BF 恰好为2块地砖长,已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN ⊥NQ ,AC ⊥NQ ,BE ⊥NQ .请你根据以上信息,则小军身高BE 的长 .(精确到0.01)11.如图,△ADE ∽△ACB ,已知∠A =40°,∠ADE =14∠B ,则∠C = °.12.如图,A ,B 是河边上的两根水泥电线杆,C ,D 是河对岸不远处的两根木质电话线杆,且电线、电话线及河两边都是平行的.O 是A 、B 对岸河边上一点,且O 与A 、C 在同一直线上,与B 、D 也在同一直线上,已知AB =35m ,CD =20m ,OD =20m ,根据所给的已知条件是否一定能求出河的大约宽度 (填能或不能或不一定).13.如图,若l 1∥l 2∥l 3,如果DE =6,EF =2,BC =1.5,那么AC = .14.两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm ,则它们的周长分别为 .15.如图,AB ∥BF ∥DC ,AB =a ,DC =b ,AB BD =m n .则BF = .16.如图,BF FC =3,G 为AF 的中点,则BG BE = .17.如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于N ,那么S △DMN :S 四边形ANME = .18.如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为.三、解答题(共7小题:共78分)19.已知a、b、c分别是△ABC的三条边的边长,且a:b:c=5:7:8,3a﹣2b+c=9,求△ABC的周长.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.21.如图,在△ABC中,D是BC边上一点,E是AC边上一点,且满足AD=AB,∠ADE =∠C.(1)求证:∠AED=∠ADC,∠DEC=∠B;(2)求证:AB2=AE•AC.22.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=°,BC=;(2)判断△ABC与△DEC是否相似,并证明你的结论.23.如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)在边AB上找一点M,使得BM=BE,求证:△BEM与△PF A相似;(2)若∠AEB=75°,AB=2,求△DFP的面积.24.如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2.(1)当t=s时,点P与点Q重合;(2)当t=s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.25.如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F,连接PM,设运动时间为t秒(0<t<5).(1)当t为何值时,△APM与△ACB相似?(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.。
河南省开封 九年级(上)月考数学试卷(9月份)
九年级(上)月考数学试卷(9月份)题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.有下列关于x的方程是一元二次方程的是( )A. 3x(x−4)=0B. x2+y−3=0C. 1x2+x=2D. x3−3x+8=02.方程3x2-8x-10=0的二次项系数和一次项系数分别为( )A. 3和8B. 3和−8C. 3和−10D. 3和103.若关于x的方程(m-1)x2+5x+2=0是一元二次方程,则m的值不能为( )A. 1B. −1C. 12D. 04.方程x2=x的解是( )A. x=1B. x=0C. x1=−1,x2=0D. x1=1,x2=05.若α、β是方程x2+2x-2018=0的两个实数根,则αβ的值为( )A. 2018B. 2C. −2D. −20186.下列一元二次方程中,有实数根的方程是( )A. x2−x+1=0B. x2−2x+3=0C. x2+x−1=0D. x2+4=07.下列关于函数y=-x2的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点坐标为(0,0),其中正确的有( )A. 1个B. 2个C. 3个D. 4个8.已知原点是抛物线y=(m+1)x2的最低点,则m的取值范围是( )A. m<−1B. m<1C. m>−1D. m>−29.已知点A(-3,y1),B(-1,y2),C(2,y3)在函数y=-x2的图象上,则y1、y2、y3的大小关系为( )A. y1<y2<y3B. y1<y3<y2C. y3<y2<y1D. y2<y1<y310.方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A. 12B. 15C. 12或15D. 不能确定二、填空题(本大题共5小题,共15.0分)11.将方程化为一般形式:2x2-3x=3x-5是______.12.在实数范围内定义一种新运算“△”,其规则为:a△b=a2-b2,根据这个规则,4△3的值是______.13.抛物线y=5(x-4)2+3的顶点坐标是______.14.将二次函数y=2x2-1的图象沿y轴向上平移2个单位,所得图象对应的函数表达式为______.15.如图,正方形的边长为4,以正方形中心为原点建立平面直角坐标系,作出函数y=2x2与y=-2x2的图象,则阴影部分的面积是______.三、计算题(本大题共2小题,共12.0分)16.已知二次函数y=ax2的图象经过(-1,1).(1)求这个二次函数的表达式;(2)求当x=2时y的值.17.有一人患了流感,经过两轮传染后共有49人患了流感,求每轮传染中平均一个人传染了多少人?四、解答题(本大题共4小题,共32.0分)18.解方程(1)(x-5)2=16(2)x2+5x=0(3)x2-4x+1=0(4)x2+3x-4=019.新年到了,班上数学兴趣小组的同学互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共送了90张贺年卡,那么数学兴趣小组的人数是多少?20.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?21.某商场销售某种商品,统计发现:每件盈利45元时,平均每天可销售30件.经调查发现,该商品每降价1元,商场平均每天可多售出2件.(1)假如现在库存量太大,部门经理想尽快减少库存,又想销售该商品日盈利达到1750元,请你帮忙思考,该降价多少?(2)假如部门经理想销售该商品的日盈利达到最大,请你帮忙思考,又该如何降价?答案和解析1.【答案】A【解析】解:A、是一元二次方程,故此选项正确;B、不是一元二次方程,故此选项错误;C、不是一元二次方程,故此选项错误;D、不是一元二次方程,故此选项错误;故选:A.根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.此题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.【答案】B【解析】解:3x2-8x-10=0的二次项系数和一次项系数分别为3,-8,故选:B.一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.【答案】A【解析】解:由题意,得:m-1≠0,m≠1,故选:A.根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.本题利用了一元二次方程的概念.一元二次方程的一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点,也是本题列式的条件.4.【答案】D【解析】解:x2=x,移项得x2-x=0,提公因式得x(x-1)=0,解得x1=1,x2=0.故选:D.利用提公因式法解方程即可.本题主要考查了解一元二次方程.解题的关键是因式分解的应用.5.【答案】D【解析】解:∵α、β是方程x2+2x-2018=0的两个实数根,∴αβ=-2018,故选:D.根据根与系数的关系可得出α•β=-2018,此题得解.本题考查了根与系数的关系,牢记两根之积等于是解题的关键.6.【答案】C【解析】解:A、△=(-1)2-4×1×1=-3<0,没有实数根;B、△=(-2)2-4×1×3=-8<0,没有实数根;C、△=12-4×1×(-1)=5>0,有实数根;D、△=0-4×1×4=-16<0,没有实数根.故选:C.只要判断每个方程的根的判别式的值与零的关系就可以了.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.【答案】D【解析】解:①二次函y=-x2的图象是抛物线,正确;②因为a=-1<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.函数y=-x2是一种最基本的二次函数,画出图象,直接判断.本题考查了抛物线y=ax2的性质:①图象是一条抛物线;②开口方向与a有关;③对称轴是y轴;④顶点(0,0).8.【答案】C【解析】解:∵原点是抛物线y=(m+1)x2的最低点,∴m+1>0,即m>-1.故选:C.由于原点是抛物线y=(m+1)x2的最低点,这要求抛物线必须开口向上,则m+1>0,由此可以确定m的范围.本题考查了二次函数最值、二次函数的性质,二次函数有最低点,抛物线的开口向上是解题的关键.9.【答案】B【解析】解:当x=-3时,y1=-x2=-9;当x=-1时,y2=-x2=-1;当x=2时,y3=-x2=-4,所以y1<y3<y2.故选:B.根据二次函数图象上点的坐标特征,把三个点的坐标分别代入二次函数解析式,计算出y1、y2、y3的值,然后比较它们的大小.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.10.【答案】B【解析】解:方程变形得:(x-3)(x-6)=0,解得:当x=3或x=6,当3为腰,6为底时,三角形三边为3,3,6,不能构成三角形,舍去;当3为底,6为腰时,三角形三边为6,6,3,周长为6+6+3=15,故选:B.利用因式分解法求出方程的解得到x的值,分类讨论腰与底,利用三角形边角关系判断即可确定出周长.此题考查了解一元二次方程-因式分解法,熟练掌握分解因式的方法是解本题的关键.11.【答案】2x2-6x+5=0【解析】解:2x2-3x=3x-5是一般形式是2x2-6x+5=0,故答案为:2x2-6x+5=0.一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)中a、b、c分别是二次项系数、一次项系数、常数项.本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.12.【答案】7【解析】解:∵a△b=a2-b2,∴4△3=42-32=7.故答案为:7.直接利用规则a△b=a2-b2,计算得出答案.此题主要考查了实数运算,正确理解题意是解题关键.13.【答案】(4,3)【解析】解:∵y=5(x-4)2+3是抛物线解析式的顶点式,∴顶点坐标为(4,3).故答案为(4,3).根据顶点式的坐标特点直接写出顶点坐标.此题考查二次函数的性质,掌握顶点式y=a(x-h)2+k中,顶点坐标是(h,k)是解决问题的关键.14.【答案】y=2x2+1【解析】解:∵二次函数y=2x2-1的图象沿y轴向上平移2个单位,∴所得图象对应的函数表达式为:y=2x2-1+2=2x2+1.故答案为:y=2x2+1.利用二次函数与几何变换规律“上加下减”,进而求出图象对应的函数表达式.此题主要考查了二次函数与几何变换,熟练掌握平移规律是解题关键.15.【答案】8【解析】解:∵函数y=2x2与y=-2x2的图象关于x轴对称,∴图中的阴影部分的面积是图中正方形面积的一半,而边长为4的正方形面积为16,所以图中的阴影部分的面积是8.故答案为8.根据题意,观察图形可得图中的阴影部分的面积是图中正方形面积的一半,而正方形面积为16,由此可以求出阴影部分的面积.本题考查的是关于x轴对称的二次函数解析式的特点,解答此题的关键是根据函数解析式判断出两函数图象的特点,再根据正方形的面积即可解答.16.【答案】解:(1)把(-1,1)代入y=ax2得a•(-1)2=1,解得a=1,所以这个二次函数的表达式为y=x2;(2)当x=2时,y=x2=4.【解析】(1)直接把(-1,1)代入y=ax2求出a即可得到这个二次函数的表达式;(2)把x=2代入(1)中解析式即可计算对应的函数值.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.17.【答案】解:设每轮传染中平均每人传染了x人,1+x+x(x+1)=49x=6或x=-8(舍去).答:每轮传染中平均一个人传染了6个人;【解析】设每轮传染中平均每人传染了x人,根据经过两轮传染后共有49人患了流感,可求出x.此题考查了一元二次方程的应用,找出题中的等量关系是解决本题的关键.18.【答案】解:(1)x-5=±4,x=5±4,∴x1=9,x2=1;(2)x(x+5)=0x=0或x+5=0,∴x1=0,x2=-5;(3)x2-4x+4=3,(x-2)2=3,x-2=±3,x=2±3∴x1=2+3,x2=2-3;(4)x2+3x-4=0(x+4)(x-1)=0x+4=0或x-1=0,∴x1=-4,x2=1.【解析】(1)用直接开平方法比较简便;(2)用因式分解法比较简便;(3)可利用配方法或公式法求解方程;(4)利用因式分解法比较简便.本题考查了一元二次方程的解法,掌握各种解法的步骤是解决本题的关键.19.【答案】解:设数学兴趣小组的人数为x人.根据题意,得x(x-1)=90,解得x=10或x=-9(不合题意,应舍去).答:数学兴趣小组的人数为10人.【解析】设数学兴趣小组的人数为x人.根据互赠贺年卡一张,则x人共赠贺卡x(x-1)张,列方程求解.此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.注意:x人互赠贺卡,共需贺卡x(x-1)张;x人握手共握x(x-1)次.20.【答案】解:(1)设每年市政府投资的增长率为x,根据题意得:3(1+x)2=6.75,解得:x=0.5,或x=-2.5(不合题意,舍去),∴x=0.5=50%,即每年市政府投资的增长率为50%;(2)∵12(1+50%)2=27,∴2015年建设了27万平方米廉租房.【解析】(1)设每年市政府投资的增长率为x,由3(1+x)2=2015年的投资,列出方程,解方程即可;(2)2015年的廉租房=12(1+50%)2,即可得出结果.本题考查了一元二次方程的应用;熟练掌握列一元二次方程解应用题的方法,根据题意找出等量关系列出方程是解决问题的关键.21.【答案】解:(1)设每件降价x元,则每天可以售出(30+2x)件.根据题意得:(45-x)(30+2x)=1750,解得x1=10,x2=20.因为要减少库存,所以x=20.答:降价20元可使销售利润达到1750元.(2)设商场平均每天盈利y元,则商场平均每天盈利y元与每件应降价x元之间的函数关系为:y=(45-x)(30+2x)=-2(x-15)2+1800.∴当x=15时日盈利达到最大,为1800元.【解析】(1)设每件应降价x元,则每件盈利(45-x)元,每天可以售出30+2x,所以此时商场平均每天要盈利(45-x)(30+2x)元,根据商场平均每天要盈利1750元,为等量关系列出方程求解即可.(2)设商场平均每天盈利y元,由(1)可知商场平均每天盈利y元与每件应降价x元之间的函数关系为:y=(45-x)(30+2x),用“配方法”求出该函数的最大值,并求出降价多少.此题主要考查了一元二次方程与二次函数的应用,关键在于理解清楚题意找出等量关系列出方程求解,另外还用到的知识点有“根的判别式”和用“配方法”求函数的最大值.。
辽宁省沈阳市第七中学2024-2025学年九年级上学期9月考 数学试卷
九年级上数学第一次数学周考(9.10)一.选择题(共10小题)1.下列关于x 的方程中,是一元二次方程的为( ) A.B.k²-4=2yC.-2r²+3=0D.(a-1)x²-2x=0 2.下列各组线段(单位:cm) 中,成比例线段的是( )A.1 、2 、3 、4B.2 、3 、4 、6C.1 、√3 、2 、√6D.√2 、2 、√3 、3 3.用配方法解一元二次方程2x²-2x-1=0, 下列配方正确的是( )4. ·一元二次方程x²+2x-1=0 的根的情况是( )A.有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根 5.'已B. C. 口6.如图,I//1₂//l ₃,若AB=6,BC=4,DF=15, 则 EF 等于( ) A.5 B.6 C.7 D.9D. 不能确定7.如图,△ABC中,∠A=76°,AB=8,AC =6. 将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A.C.8D.8.如图,在菱形ABCD 中,点E 在边AD 上,射线CE 交BA 的延长线于点F, AB=3, 则AF 的长为( )A.1B.C.D.2 9.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P 为AB 的黄金分割点(BP<AP), 如果AB 的长度为8cm, 那么AP 的长度是( ) A.(4√5-4)cn B.(4-2√5)cm c.(8-2√5)cn D.(12-4√5)cuB.10.如图,已知OABCD,AB=2,AD=6, 将口ABCD 绕点A 顺时针旋转得到口AEFG,且点G 落在对角线AC 上,延长AB 交EF 于点H, 则FH 的长为( ) A.二.填空题(共5小愿)11.一元二次方程x²+x=0 的根是_12. 已知关于x 的一元二次方程(m-1)r+4x-1=0 有实数根,则m 的取值范围是 13. 已且a+b-2c=9, 则 c 的值为14.如图,在边长为1的正方形网格中,A 、B 、C 、D 为格点,连接AB 、CD 相交于点E, 则AE 的长为15.如图,Rt △ABC 中,∠ACB=90°, 在BC 的延长线上截取BD=AB, 连接AD, 过点 B 作BE ⊥AD 于点E, 交AC 于点F, 连接DF,点 P 为射线BE 上一个动点,若AC=9, BC=12, 当△APB 与△AFD 相似时,BP 的长为 三.解答题(共5小题) 16.解一元二次方程:(1)(2x-3)²=9(x+2)², (2)3x²+6x-4=0.17.由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次侨格的上调、口單的价格由每包10元涨到了 包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一灭 以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价 少元?C.5D. 无法确定B.18.如图,用一段77米的篱笆围成三个一边靠墙、大小相间的长方形羊圈,每个长方形都有一个1米的门,墙的最大可用长度为30米。
人教版九年级上册数学月考试卷(含答案解析)
t/小时S/千米a 44056054321D C B A O 学年度(上)学期9月份月考九年级数学试卷一、选择题(每小题3分,共计30分)1. 点M (-1,2)关于x 轴对称的点的坐标为( )(A )(-1,-2) (B )(-1,2) (C )(1,-2) (D )(2,-1)2. 下列计算正确的是( )(A )235a a a (B )326a a (C )326a a a =÷ (D )a a a 632=⨯3. 下列图案中,既是轴对称图形又是中心对称图形的是( )4. 抛物线2345y x 的顶点坐标是( )(A )(4,5) (B )(4,5) C 、(4,5) (D )(4,5)5. 等腰三角形的一边长为4 cm,另一边长为9 cm,则它的周长为( )(A )13 cm (B )17 cm (C )22 cm (D )17 cm 或22 cm6. 已知反比例函数k y x的图象经过点P(l ,2),则这个函数的图象位于( ) (A )第二、三象限 (B )第一、三象限 (C )第三、四象限 (D )第二、四象限7. 某电动自行车厂三月份的产量为1 000辆,由于市场需求量不断增大,五月份的产量提高到 l 210辆,则该厂四、五月份的月平均增长率为( )(A )12.1% (B )20% (C )21% (D )10%8. 如图,在Rt △ABC 中,∠BAC=90°,∠B=60°,△ADE 可以由△ABC 绕点 A 顺时针旋转900得 到,点D 与点B 是对应点,点E 与点C 是对应点),连接CE ,则∠CED 的度数是( )(A )45° (B )30° (C )25° (D )15°9. 如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB=600,AB=5,则AD 的长是( )(A )53 (B )52 (C )5 (D )1010. 甲乙两车分别从M 、N 两地相向而行,甲车出发1小时后,乙车出发,并以各自的速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的路程S (千米)与甲车所用时间t (小时)之间的函数图象,其中D 点表示甲车到达N 地停止运行,下列说法中正(A) (B) (C) (D) E D A C (第8题图) O C D AB (第9题图) (第10题图)确的是( )(A )M 、N 两地的路程是1000千米; (B )甲到N 地的时间为4.6小时;(C )甲车的速度是120千米/小时; (D )甲乙两车相遇时乙车行驶了440千米.二、填空题(每小题3分,共计30分)11. 将2 580 000用科学记数法表示为 .12. 函数12y x 的自变量x 的取值范围是 . 13. 计算:82= . 14. 分解因式:322_____________x xx . 15. 抛物线223y x bx 的对称轴是直线1x ,则b 的值为 .16. 如图,CD 为⊙O 的直径,AB ⊥CD 于E ,DE =8cm ,CE =2cm ,则AB = cm.17.不等式组⎩⎨⎧-≤--14352x x >的解集是 .18. 如图,在⊙O 中,圆心角∠BOC=60°,则圆周角∠BAC 的度数为 度.19. 在ΔABC 中,若AB=34,AC=4,∠B=30°,则ABC S ∆= .20. 如图,△ABC ,AB=AC ,∠BAC=90°,点D 为BC 上一点,CE ⊥BC ,连接AD 、DE ,若CE=BD ,DE=4,则AD 的长为 .三、解答题(其中21-22题各7分.23-24题各8分.25-27题各l0分.共计60分)21. 先化简,再求值:2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x=12+.22. 如图,图1和图2都是7×4正方形网格,每个小正方形的边长是1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画出一个等腰直角△ABC ;(第16题图) O C B A (第18题图) (第20题图)(2)在图2中画出一个钝角△ABD,使△ABD的面积是3.ABAB图1 图223. 某中学为了丰富校园文化生活.校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加.且只能参加一项比赛.围绕“你参赛的项目是什么?(只写一项)”的问题,校学生会在全校范围内随机抽取部分学生进行问卷调查.将调查问卷适当整理后绘制成如图所示的不完整的条形统计图.其中参加舞蹈比赛的人数与参加歌唱比赛的人数之比为1:3,请你根据以上信息回答下列问题:(1)通过计算补全条形统计图;(2)在这次调查中,一共抽取了多少名学生?(3)如果全校有680名学生,请你估计这680名学生中参加演讲比赛的学生有多少名?24. 已知:BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)如图1,求证:四边形ADEF是平行四边形;(2)如图2,若AB=AC,∠A=36°,不添加辅助线,请你直接写出与DE相等的所有线段(AF除外).25.哈尔滨地铁“二号线”正在进行修建,现有大量的残土需要运输.某车队有载重量为8吨、10吨的卡车共12台,全部车辆运输一次可以运输110吨残土.GFEDAB C图1图2(1)求该车队有载重量8吨、10吨的卡车各多少辆?(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备再新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?26. 如图,在⊙O 中,AB 、CE 是直径,BD ⊥CE 于G ,交⊙O 于点D ,连接CD 、CB.(1)如图1,求证:∠DCO=90°-21∠COB ; (2)如图2,连接BE ,过点G 作BE 的垂线分别交BE 、AB 、CD 于点F 、H 、M ,求证:MC=MD ;(3)在(2)的条件下,连接AC 交MF 于点N ,若MN=1,NH=4,求CG 的长.(第26题图1) (第26题图2) (第26题图3)27. 已知:如图,抛物线y=-x 2+bx+c 与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴正半轴交于点C ,OA=3,O B=1,点M 为点A 关于y 轴的对称点.(1)求抛物线的解析式;(2)点P 为第三象限抛物线上一点,连接PM 、PA ,设点P 的横坐标为t ,△PAM 的面积为S ,求S 与t 的函数关系式;(3)在(2)的条件下,PM 交y 轴于点N ,过点A 作PM 的垂线交过点C 与x 轴平行的直线于点G ,若ON ∶CG=1∶4,求点P 的坐标.答案一、ABCAC DDDAC二、11、2.58×106 12、x ≠2 13、23 14、-x(x+1)2 15、-4 16、817、x ≥5 18、30 19、34或38 20、22三、21、(7分)原式=2211=-x 22、(1)(3分) (2)(4分)23、(1)30%;(2分)(2)100-30-35-5=30,补图略;(3分)(3)(5÷100)×2000=100人(3分)24、(1)(4分)EB=ED=AF ,ED ∥AF∴四边形ADEF 为平行四边形;(2)(4分)CD 、BE 、BG 、FG25、(1)(4分)设89吨卡车有x 辆8x+10(12-x)=110解得:x=5,∴12-x=7;(2)(4分)设购进载重量8吨a 辆8(a+5)+10(6+7-a)≥165a≤2.5∵a 为整数,∴a 的最大值为226、(1)略 (2)略 (3)AC ∥BE ,△CNG ≌△BFH,设GN=x ,CE=x+1,BC=2x+2=FN=x+4,x=2 CN=22,CG=3227、(1)322+--=x x y (2)963S 2-+=x x (3)过点A 作CG 的垂线,垂足为E ,四边形CEAO 为正方形 △AGE ≌△MNO ,ON=EG ,CE=3ON=3,N (0,-1)直线MP 解析式为131-=x y ,⎪⎩⎪⎨⎧+--=-=321312x x y x y 解得 P (6193-7-,18193-25-) D。
2022-2023学年江苏省南京一中初中部九年级(上)月考数学试卷(9月份)
2022-2023学年江苏省南京一中初中部九年级(上)月考数学试卷(9月份)一、选择题1.下列方程中,关于x的一元二次方程的是()A.ax2+bx+c=0B.(x﹣1)2=x2+3x+2C.x2=x+1D.2x2﹣+1=02.一元二次方程3x2+1=6x的一次项系数为6,二次项系数和常数项分别为()A.3,1B.﹣3,﹣1C.3,﹣1D.﹣3x2,﹣1 3.用配方法解方程x2﹣6x+8=0时,方程可变形为()A.(x﹣3)2=1B.(x﹣3)2=﹣1C.(x+3)2=1D.(x+3)2=﹣1 4.如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论一定正确的个数有()①CE=DE;②BE=OE;③=;④∠CAB=∠DAB.A.4个B.3个C.2个D.1个5.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°6.如图,AB,CD为⊙O的两条弦,若∠A+∠C=120°,AB=2,CD=4,则⊙O的半径为()A.2B.2C.D.二、填空题7.方程x2=1的根为.8.已知⊙O的半径为5,点P到O的距离为4,则点P在⊙O.9.某店4月份利润为16万元,要使6月份利润达到25万元,则平均月增长率是.10.若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为.11.在平面直角坐标系中,以点(3,4)为圆心,3为半径的圆必定与x轴.12.用准确的文字语言描述“垂径定理”:垂直于弦的直径平分.13.如图,△ABC是⊙O的内接三角形,∠A=30°,BC=3,则⊙O的半径为.14.如图,P A,PC是⊙O的两条切线,点A、C为切点,点B为⊙O上任意一点,连接AB、BC,若∠B=52°,则∠P的度数为.15.在半径为r的圆中,长度为r的弦所对的圆周角的度数是.16.如图,已知半圆O的直径AB=9,C是半圆上一点,沿AC折叠半圆得到,交直径AB于点D,若D在半径OA上,且为直径的三等分点,则AC的长是.三、解答题17.解下列方程:(1)x2﹣4=0;(2)x2+2x=0;(3)2x2﹣x﹣1=0;(4)(x﹣3)2﹣2x(x﹣3)=0.18.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的取值范围;(2)若该方程的两个实数根为x1,x2,且(x1+x2)2﹣4x1x2+m2=21,求m的值.19.某商店以每件16元的价格购进了一批热销商品,当售价为每件36元时,每月可售出160件商品.因某些原因商家需尽快将这批商品售出,决定降价出售,经过市场调查发现:售价每下降1元,每个月多卖出2件,当降价多少元时商品每月的利润可达到1800元?20.某居民小区要在一块一边靠墙(墙长8米)的空地上建长方形花园ABCD,花园一边靠墙,另三边用总长为20米的栅栏围成,如图,设AB=x米,请问:当x取何值时,花园的面积为18平方米?21.已知:如图,在⊙O中,AB=CD,AB与CD相交于点M,(1)求证:=;(2)求证:AM=DM.22.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的角度;(只(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,则∠BAF=°.填答案)23.用一个直角边长分别为3和4的直角△ABC纸片剪半圆,要求剪出的半圆的直径在△ABC的边AB上,且半圆的弧与另两边都相切,请用尺规作出示意图,并求出相应半圆的半径.24.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若=,AF=10,求⊙O的半径.25.探究:如图①,点P在⊙O上,利用直尺(没有刻度)和圆规过点P作⊙O的切线,小明所在的数学小组经过合作探究,发现了很多作法,精彩纷呈.作法一:①作直径P A的垂直平分线交⊙O于点B;②分别以点B、P为圆心,OP为半径作弧,交于点C;③作直线PC.作法二:①作直径P A的四等分点B、C;②以点A为圆心,CA为半径作弧,交射线P A于点D;③分别以点A、P为圆心,PD、PC为半径作弧,两弧交于点E;④作直线PE.以上作法是否正确?选一个你认为正确的作法予以证明.26.(1)发现:如图1,在平面内,已知⊙A的半径为r,B为⊙A外一点,且AB=a,P为⊙A上一动点,连接P A,PB,易得PB的最大值为,最小值为;(用含a,r的代数式表示)(2)应用:①如图2,在矩形ABCD中,AB=6,BC=4,E为AD边中点,F为AB边上一动点,在平面内沿EF将△AEF翻折得到△PEF,连接PB,则PB的最小值为;②如图3,点P为线段AB外一动点,分别以P A、PB为直角边,P为直角顶点,作等腰Rt△APC和等腰Rt△BPD,连接BC、AD.若AP=3,AB=7,求AD的最大值;(3)拓展:如图4,已知以AB为直径的半圆O,C为弧AB上一点,∠ABC=60°,P 为弧BC上任意一点,CD⊥CP交AP于D,连接BD,若AB=6,则BD的最小值为.2022-2023学年江苏省南京一中初中部九年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题1.下列方程中,关于x的一元二次方程的是()A.ax2+bx+c=0B.(x﹣1)2=x2+3x+2C.x2=x+1D.2x2﹣+1=0【分析】根据一元二次方程的定义逐个判断即可.【解答】解:A.当a=0时,方程ax2+bx+c=0不是一元二次方程,故本选项不符合题意;B.是一元一次方程,不是一元二次方程,故本选项不符合题意;C.是一元二次方程,故本选项符合题意;D.是分式方程,不是整式方程,不是一元二次方程,故本选项不符合题意;故选:C.2.一元二次方程3x2+1=6x的一次项系数为6,二次项系数和常数项分别为()A.3,1B.﹣3,﹣1C.3,﹣1D.﹣3x2,﹣1【分析】根据一次项系数是6化成一元二次方程的一般形式,再求出答案即可.【解答】解:3x2+1=6x,3x2+1﹣6x=0,﹣3x2+6x﹣1=0,∵一次项系数是6,∴二次项系数是﹣3,常数项是﹣1,故选:B.3.用配方法解方程x2﹣6x+8=0时,方程可变形为()A.(x﹣3)2=1B.(x﹣3)2=﹣1C.(x+3)2=1D.(x+3)2=﹣1【分析】移项后两边都加上一次项系数一半的平方即可.【解答】解:∵x2﹣6x+8=0,∴x2﹣6x=﹣8,则x2﹣6x+9=﹣8+9,即(x﹣3)2=1,故选:A.4.如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论一定正确的个数有()①CE=DE;②BE=OE;③=;④∠CAB=∠DAB.A.4个B.3个C.2个D.1个【分析】已知直径AB垂直于弦CD,那么可根据垂径定理来判断所给出的结论是否正确.【解答】解:∵AB是⊙O的直径,且AB⊥CD,∴CE=DE,=;(故①、③正确)∴∠CAB=∠DAB;(故④正确)由于没有条件能够证明BE=OE,故②不一定成立;所以一定正确的结论是①③④;故选:B.5.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°【分析】连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB 的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.【解答】解:连接OC,如图所示:∵圆心角∠BOC与圆周角∠CDB都对,∴∠BOC=2∠CDB,又∠CDB=20°,∴∠BOC=40°,又∵CE为圆O的切线,∴OC⊥CE,即∠OCE=90°,则∠E=90°﹣40°=50°.故选:B.6.如图,AB,CD为⊙O的两条弦,若∠A+∠C=120°,AB=2,CD=4,则⊙O的半径为()A.2B.2C.D.【分析】连接OB,OA,OC,OD,证明∠AOB+∠COD=90°,在⊙O上点D的右侧取一点E,使得DE=AB,过点E作ET⊥CD交CD的延长线于点T,则,利用勾股定理求解即可.【解答】解:如图,连接OB,OA,OC,OD,∵∠BOC=2∠CAB,∠AOD=2∠ACD,∠CAB+∠ACD=120°,∴∠BOC+∠AOD=240°,∴∠AOB+∠COD=120°,在⊙O上点D的右侧取一点E,使得DE=AB,过点E作ET⊥CD交CD的延长线于点T,则,∴∠AOB=∠DOE,∴∠COE=120°,∴∠CDE=120°,∴∠EDT=60°,∵DE=AB=2,∴DT=1,ET=,∴CT=CD+DT=4+1=5,∴CE===,作OF⊥CE,则∠COF=60°,CF=,∴OC=OE=,故选:D.二、填空题7.方程x2=1的根为x=±1.【分析】利用直接开平方法即可求解.【解答】解:x2=1,开方得,x=±1,故答案为:x=±1.8.已知⊙O的半径为5,点P到O的距离为4,则点P在⊙O内.【分析】根据⊙O的半径为r和点P到圆心的距离OP=d的大小关系判断即可.【解答】解:∵⊙O的半径为5,点P到圆心O的距离为4,4<5,∴点P在⊙O内,故答案为:内.9.某店4月份利润为16万元,要使6月份利润达到25万元,则平均月增长率是25%.【分析】设平均月增长率为x,根据4月份的利润为16万元,要使6月份的利润达到25万元,列出一元二次方程,解方程即可.【解答】解:设平均月增长率为x,由题意得:16(1+x)2=25,解得:x=0.25=25%或x=﹣2.25=﹣225%(不符合题意舍去).即平均月增长率是25%.故答案为:25%.10.若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为﹣1.【分析】根据一元二次方程的解的定义把x=0代入(m﹣1)x2+x+m2﹣1=0得关于m的方程,然后解关于m的方程后利用一元二次方程的定义确定m的值.【解答】解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m1=1,m2=﹣1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.11.在平面直角坐标系中,以点(3,4)为圆心,3为半径的圆必定与x轴相离.【分析】本题应将该点的横纵坐标分别与半径对比,大于半径的相离,等于半径的相切.【解答】解:∵点(3,4)到x轴的距离为4,到y轴的距离为3,∴以点(3,4)为圆心,3为半径的圆与x中相离,故答案为:相离.12.用准确的文字语言描述“垂径定理”:垂直于弦的直径平分这条弦及其所对的两条弧.【分析】根据垂径定理的内容解答即可.【解答】解:“垂径定理”的内容为:垂直于弦的直径平分这条弦及其所对的两条弧.故答案为:这条弦及其所对的两条弧.13.如图,△ABC是⊙O的内接三角形,∠A=30°,BC=3,则⊙O的半径为3.【分析】作直径CD,连接BD,根据圆周角定理和推论得到∠CBD=90°,∠D=∠A=30°,然后根据含30度的直角三角形三边的关系求解.【解答】解:作直径CD,连接BD,如图,∵CD为直径,∴∠CBD=90°,∵∠D=∠A=30°,∴CD=2BC=2×3=6,∴⊙O的半径为3.故答案为:3.14.如图,P A,PC是⊙O的两条切线,点A、C为切点,点B为⊙O上任意一点,连接AB、BC,若∠B=52°,则∠P的度数为76°.【分析】连接OA、OC,根据圆周角定理求出∠AOC,根据切线的性质得到∠P AO=∠PCO=90°,根据四边形内角和等于360°计算即可.【解答】解:连接OA、OC,∵∠B=52°,∴∠AOC=2∠B=104°,∵P A,PC是⊙O的两条切线,∴∠P AO=∠PCO=90°,∴∠P=360°﹣90°﹣90°﹣104°=76°,故答案为:76°.15.在半径为r的圆中,长度为r的弦所对的圆周角的度数是45°或135°.【分析】先利用垂径定理得出AD=AB=r,再解直角三角形可得∠AOD=45°,再得∠AOB=90°,根据原圆周角定理求出圆周角即可.【解答】解:如图,作OD⊥AB,垂足为D,则由垂径定理知,点D是AB的中点,∴AD=AB=r,∴sin∠AOD===,∴∠AOD=45°,∴∠AOB=2∠AOD=90°,∴∠ACB=∠AOB=45°,∵A、C、B、E四点共圆,∴∠ACB+∠AEB=180°,∴∠AEB=135°,故答案为:45°或135°.16.如图,已知半圆O的直径AB=9,C是半圆上一点,沿AC折叠半圆得到,交直径AB于点D,若D在半径OA上,且为直径的三等分点,则AC的长是3.【分析】连接CD,CB,CO,过点C作CH⊥OB于点H,根据圆周角定理及勾股定理求解即可.【解答】解:如图,连接CD,CB,CO,过点C作CH⊥OB于点H,∵∠CAD=∠CAB,∴=,∴CB=CD,∵CH⊥OB,∴DH=BH,∵AB=9,D在半径OA上,且为直径的三等分点,∴OA==OC=OB,AD=3,BD=6,∴OD=OA﹣AD=,∴OH=DH﹣OD=,∴AH=OA+OH=6,在Rt△COH中,CH==3,∴AC==3,故答案为:3.三、解答题17.解下列方程:(1)x2﹣4=0;(2)x2+2x=0;(3)2x2﹣x﹣1=0;(4)(x﹣3)2﹣2x(x﹣3)=0.【分析】(1)利用直接开平方法求解可得;(2)利用因式分解法求解可得;(3)利用因式分解法求解可得;(4)利用因式分解法求解可得.【解答】解:(1)x2﹣4=0,x2=4,∴x1=2,x2=﹣2;(2)x2+2x=0,x(x+2)=0,则x=0或x+2=0,∴x1=0,x2=﹣2;(3)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,则2x+1=0或x﹣1=0,∴x1=﹣,x2=1;(4)(x﹣3)2﹣2x(x﹣3)=0,(x﹣3)(x﹣3﹣2x)=0,x﹣3=0或x﹣3﹣2x=0,∴x1=3或x2=﹣3.18.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的取值范围;(2)若该方程的两个实数根为x1,x2,且(x1+x2)2﹣4x1x2+m2=21,求m的值.【分析】(1)根据一元二次方程根的情况得Δ=4m+9≥0,即可求出m的取值范围;(2)根据根与系数的关系,可得x1+x2=﹣(2m+1),x1x2=m2﹣2,根据(x1+x2)2﹣4x1x2+m2=21列方程,即可求出m的值.【解答】解:(1)∵该方程有两个实数根,∴Δ=(2m+1)2﹣4(m2﹣2)=4m+9≥0,解得m;(2)∵x1+x2=﹣(2m+1),x1x2=m2﹣2,又∵(x1+x2)2﹣4x1x2+m2=21,∴[﹣(2m+1)]2﹣4(m2﹣2)+m2=21,整理,得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m,∴m=2.19.某商店以每件16元的价格购进了一批热销商品,当售价为每件36元时,每月可售出160件商品.因某些原因商家需尽快将这批商品售出,决定降价出售,经过市场调查发现:售价每下降1元,每个月多卖出2件,当降价多少元时商品每月的利润可达到1800元?【分析】设降价x元时商品每月的利润可达到1800元,由题意:当售价为每件36元时,每月可售出160件商品.降价出售,经过市场调查发现:售价每下降1元,每个月多卖出2件,列出一元二次方程,解方程即可.【解答】解:设降价x元时商品每月的利润可达到1800元,由题意得:(36﹣x﹣16)(160+2x)=1800,解得:x=10或x=﹣7(不符合题意舍去),∴x=10,答:降价10元时商品每月的利润可达到1800元.20.某居民小区要在一块一边靠墙(墙长8米)的空地上建长方形花园ABCD,花园一边靠墙,另三边用总长为20米的栅栏围成,如图,设AB=x米,请问:当x取何值时,花园的面积为18平方米?【分析】设AB=x米,则BC=(20﹣2x)米,由题意:长方形花园的面积为18平方米,列出一元二次方程,解方程,即可解决问题.【解答】解:设AB=x米,则BC=(20﹣2x)米,由题意得:x(20﹣x)=18,解得:x=1或x=9,当x=1时,20﹣2x=20﹣2×1=18>8,不符合题意舍去;当x=9时,20﹣2x=20﹣2×9=2<8,符合题意;答:当x为2时,花园的面积为18平方米.21.已知:如图,在⊙O中,AB=CD,AB与CD相交于点M,(1)求证:=;(2)求证:AM=DM.【分析】(1)由在⊙O中,AB=CD,根据弦与弧的关系,可证得=,继而可证得=;(2)首先连接AC,BD,易证得△ACM≌△DBM,继而证得AM=DM.【解答】证明:(1)∵在⊙O中,AB=CD,∴=,∴﹣=﹣,∴=;(2)连接AC,BD,∵=,∴AC=BD,在△ACM和△DBM中,,∴△ACM≌△DBM(ASA),∴AM=DM.22.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的角度;(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,则∠BAF=18°.(只填答案)【分析】(1)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°;(2)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.【解答】解:(1)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠DAC=30°;(2)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B=180°﹣108°=72°,∴∠BAF=90°﹣∠B=90°﹣72°=18°.故答案为:18.23.用一个直角边长分别为3和4的直角△ABC纸片剪半圆,要求剪出的半圆的直径在△ABC的边AB上,且半圆的弧与另两边都相切,请用尺规作出示意图,并求出相应半圆的半径.【分析】根据切线的性质得到OE⊥AC,OF⊥BC,根据三角形的面积公式求出半圆的半径.【解答】解:如图,作∠ACB的平分线交AB于O,则点O为所要剪出的半圆的圆心,设半圆与AC、AB切于E、F,连接OE、OF,则OE⊥AC,OF⊥BC,设半圆的半径为r,则×3×4=×3×r+×r×4,解得:r=,答:半圆的半径为.24.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若=,AF=10,求⊙O的半径.【分析】(1)连接OD,进而判断出OD∥AB,即可得出结论;(2)设AE=2m,DE=3m,进而表示出AD=m,再判断出△ABD∽△ADE,得出比例式,进而表示出AB=m,BD=m,再判断出△ADB∽△CFB,得出比例式建立方程求出m,最后根据勾股定理求出AC=26,即可求出答案.【解答】(1)证明:如图1,连接OD,则OD=OC,∴∠ODC=∠OCD,∵AB=AC,∴∠B=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AD,∵=,∴设AE=2m,DE=3m,∵DE⊥AB,∴∠AED=∠BED=90°,在Rt△ADE中,根据勾股定理得,AD==m,∵AC为直径,∴∠ADB=∠ADC=90°=∠AED,∴∠A=∠A,∴△ABD∽△ADE,∴=,∴,∴AB=m,BD=m,∵AB=AC,∠ADC=90°,∴DC=m,BC=2BD=3m,连接AF,则∠ADB=∠F,∵∠B=∠B,∴△ADB∽△CFB,∴,∵AF=10,∴BF=AB+AF=m+10,∴,∴m=4,∴AD=4,CD=6,在Rt△ADC中,根据勾股定理得,AC==26,∴⊙O的半径为AC=13.25.探究:如图①,点P在⊙O上,利用直尺(没有刻度)和圆规过点P作⊙O的切线,小明所在的数学小组经过合作探究,发现了很多作法,精彩纷呈.作法一:①作直径P A的垂直平分线交⊙O于点B;②分别以点B、P为圆心,OP为半径作弧,交于点C;③作直线PC.作法二:①作直径P A的四等分点B、C;②以点A为圆心,CA为半径作弧,交射线P A于点D;③分别以点A、P为圆心,PD、PC为半径作弧,两弧交于点E;④作直线PE.以上作法是否正确?选一个你认为正确的作法予以证明.【分析】选作法一、连接BC,判断出四边形OBCP为菱形,得出∠BOP=90°,进而判断出∠OPC=90°,即可得出结论;选作法二、连接DE,设PD=5x,AP=4x,PC=3x,得出PE2+P A2=25x2=AE2,进而得出∠APE=90°,即可得出结论.【解答】解:选作法一、如图作法一,连接BC,由题意得,OB⊥OP,OB=OP=BC=PC,∴四边形OBCP为菱形,∴∠BOP=90°,∴OB∥CP,∵∠BOP=90°,∴∠OPC=90°,∵OP为⊙O的半径,∴PC是⊙O的切线;选作法二、如图作法二,连接DE,由题意设,PD=5x,AP=4x,PC=3x,∴PE=3x,AE=PD=5x,∴PE2+P A2=25x2=AE2,∴△APE是直角三角形,∠APE=90°,∵OP为⊙P的半径,∴PE是⊙O的切线.26.(1)发现:如图1,在平面内,已知⊙A的半径为r,B为⊙A外一点,且AB=a,P为⊙A上一动点,连接P A,PB,易得PB的最大值为a+r,最小值为a﹣r;(用含a,r的代数式表示)(2)应用:①如图2,在矩形ABCD中,AB=6,BC=4,E为AD边中点,F为AB边上一动点,在平面内沿EF将△AEF翻折得到△PEF,连接PB,则PB的最小值为2﹣2;②如图3,点P为线段AB外一动点,分别以P A、PB为直角边,P为直角顶点,作等腰Rt△APC和等腰Rt△BPD,连接BC、AD.若AP=3,AB=7,求AD的最大值;(3)拓展:如图4,已知以AB为直径的半圆O,C为弧AB上一点,∠ABC=60°,P 为弧BC上任意一点,CD⊥CP交AP于D,连接BD,若AB=6,则BD的最小值为3﹣3.【分析】(1)当P在BA延长线上时,PB最大,PB最大为AB+P A=a+r,当P在线段BA上时,PB最小,PB最小为:AB﹣P A=a﹣r;(2)①由沿EF将△AEF翻折得到△PEF,可知EA=EP=AD=BC=2,即P的轨迹是以E为圆心,以2为半径的半圆,故当E、P、B共线时,PB最小,此时BE==2,即得PB最小值为:BE﹣EP=2﹣2;②连接BC,由△APC和△BPD是等腰直角三角形,可证明△DP A≌△BPC(SAS),即得AD=BC,故当BC最大时,AD就最大,而AP=3,△APC是等腰直角三角形,可得当C、A、B共线时,BC最大此为AC+AB=13,故AD最大为13;(3)以AC为边,在△ABC异侧作等边△GAC,连接GD、GB,由AB为半圆O的直径,∠ABC=60°,可得∠ACB=90°,∠APC=∠ABC=60°,AC=AB•cos30°=3,从而有∠ADC=∠DCP+∠APC=150°,根据∠ADC+∠AGC=180°,即知D的轨迹是以G为圆心,3为半径的,由∠GAB=∠GAC+∠CAB=90°,得BG==3,即有△BGD中,BD>3﹣3,可得当G、D、B共线时,BD最小为3﹣3.【解答】解:(1)当P在BA延长线上时,PB最大,如图:∴PB最大为:AB+P A=a+r,当P在线段BA上时,PB最小,如图:∴PB最小为:AB﹣P A=a﹣r,故答案为:a+r,a﹣r;(2)①如图:∵沿EF将△AEF翻折得到△PEF,∴EA=EP=AD=BC=2,即P的轨迹是以E为圆心,以2为半径的半圆,∴当E、P、B共线时,PB最小,此时BE===2,∴PB最小值为:BE﹣EP=2﹣2;故答案为:2﹣2;②连接BC,如图:∵△APC和△BPD是等腰直角三角形,∴PD=PB,P A=PC,∠DPB=∠APC,∴∠DPB+∠APB=∠APC+∠APB,即∠DP A=∠BPC,∴△DP A≌△BPC(SAS),∴AD=BC,∴当BC最大时,AD就最大,∵AP=3,△APC是等腰直角三角形,∴AC=AP=6,∵AB=7,∴当C、A、B共线时,BC最大,如图:∴此时BC=AC+AB=13,∴AD最大为13;(3)以AC为边,在△ABC异侧作等边△GAC,连接GD、GB,如图:∵AB为半圆O的直径,∠ABC=60°,∴∠ACB=90°,∠APC=∠ABC=60°,∴∠CAB=30°,∴AC=AB•cos30°=3,∵CD⊥CP,∴∠ADC=∠DCP+∠APC=150°,∵△GAC是等边三角形,∴∠AGC=∠GAC=60°,GA=AC=3,∴∠ADC+∠AGC=180°,即D的轨迹是以G为圆心,3为半径的,而∠GAB=∠GAC+∠CAB=90°,∴BG===3,△BGD中,BD>BG﹣GD,∴BD>3﹣3,∴当G、D、B共线时,BD最小,如图:∴BD最小值为3﹣3,故答案为:3﹣3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级(上)月考数学试卷(9月份)一、选择题1.下列运算正确的是()A.B.C.D.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=93.下列二次根式中与是同类二次根式的是()A.B.C.D.4.若,则=()A.B.C.D.5.如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE :S四边形DBCE=1:8,那么AE:AC等于()A.1:9 B.1:3 C.1:8 D.1:26.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.07.如图,等边三角形ABC的边长为4,点P为BC边上一点,且BP=1,点D为AC边上一点.若∠APD=60°,则CD的长为()A. B. C. D.18.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.4二、填空题9.=2x﹣3,x的取值范围是.10.如图,△ABC是一块锐角三角形材料,边BC=80mm,高AD=60mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是mm.11.如图所示,在四边形ABCD中,AD∥BC,如果要使△ABC∽△DCA,那么还要补充的一个条件是.(只要求写出一个条件即可)12.小亮的身高是1.6米,某一时刻他在水平面上的影长是2米,若同一时刻测得附近一古塔在水平地面上的影长为20米,则古塔的高度是米.13.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是.14.如图,在△ABC中,∠B=90°,AB=3厘米,BC=4厘米,点P从A沿AB边向点B以1厘米/秒的速度移动,点Q从B沿BC边向点C以2厘米/秒的速度移动,如P与Q同时出发,且当一点移动到端点并停止时,另一点也同时停下,秒后三角形PBQ的面积为2平方厘米.三、解答题15.(1)计算:﹣﹣;(2)计算:()﹣2﹣|2﹣3|+.16.解方程:(1)x2﹣2x=0;(2)30x2﹣45=0.17.解方程:x2+3x+1=0.18.解方程:(x﹣5)(x﹣6)=x﹣5.19.已知y=++3,求﹣的值.20.某企业xx年盈利3000万元,xx年克服全球金融危机的不利影响,仍实现盈利4320万元,从xx年到xx年,如果该企业每年盈利的年增长率相同,求:(1)该企业每年盈利的年增长率?(2)若该企业盈利的年增长率继续保持不变,预计xx年盈利多少万元?21.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.22.已知▱ABCD的两边AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,当m 为何值时,四边形ABCD是菱形?求出这时菱形的边长.23.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.24.如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF ⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.xx吉林省长春108中学九年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题1.下列运算正确的是()A. B. C. D.【考点】二次根式的混合运算.【分析】根据二次根式的混合运算的相关知识进行解答.需要注意的是,无论怎么化简、变形,原式值的符号不能改变.【解答】解:A、原式=6×=3,故A错误;B、原式=﹣,故B错误;C、a2=a2×=a,故C错误;D、原式=3﹣2=,故D正确.故选D.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.3.下列二次根式中与是同类二次根式的是()A. B. C. D.【考点】同类二次根式.【分析】根据同类二次根式的定义,先化简,再判断.【解答】解:A、=2,与的被开方数不同,不是同类二次根式,故A选项错误;B、=,与的被开方数不同,不是同类二次根式,故B选项错误;C、=,与的被开方数不同,不是同类二次根式,故C选项错误;D、=3,与的被开方数相同,是同类二次根式,故D选项正确.故选:D.4.若,则=()【考点】比例的性质.【分析】由题干可得2b=3a ﹣3b ,根据比等式的性质即可解得a 、b 的比值.【解答】解:∵,∴5b=3a ,∴,故选D .5.如图,已知D 、E 分别是△ABC 的AB ,AC 边上的点,DE ∥BC ,且S △ADE :S 四边形DBCE =1:8,那么AE :AC 等于( )A .1:9B .1:3C .1:8D .1:2【考点】相似三角形的判定与性质.【分析】由题可知:△ADE ∽△ABC ,相似比为AE :AC ,由S △ADE :S 四边形DBCE =1:8,得S △ADE :S △ABC =1:9,根据相似三角形面积的比等于相似比的平方.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE :S △ABC =AE 2:AC 2,∵S △ADE :S 四边形DBCE =1:8,∴S △ADE :S △ABC =1:9,∴AE :AC=1:3.故选B .6.关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项为0,则m 等于( ) A .1 B .2 C .1或2 D .0【考点】一元二次方程的一般形式.【分析】根据一元二次方程成立的条件及常数项为0列出方程组,求出m 的值即可.【解答】解:根据题意,知,,解方程得:m=2.故选:B .7.如图,等边三角形ABC 的边长为4,点P 为BC 边上一点,且BP=1,点D 为AC 边上一点.若∠APD=60°,则CD 的长为( )【考点】相似三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形性质求出AB=BC=AC=4,∠B=∠C=60°,推出∠BAP=∠DPC,证△BAP∽△CPD,得出=,代入求出即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∴∠BAP+∠APB=180°﹣60°=120°,∵∠APD=60°,∴∠APB+∠DPC=180°﹣60°=120°,∴∠BAP=∠DPC,即∠B=∠C,∠BAP=∠DPC,∴△BAP∽△CPD,∴=,∵AB=BC=4,CP=BC﹣BP=4﹣1=3,BP=1,即=,解得:CD=,故选C.8.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.4【考点】相似三角形的判定.【分析】由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【解答】解:有三个.①∠B=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选:C.二、填空题9.=2x﹣3,x的取值范围是x≥.【考点】二次根式的性质与化简.【分析】根据公式=|a|,可得出x的取值范围.【解答】解:∵=2x﹣3,∴3﹣2x≤0,解得x≥,∴x的取值范围是x≥,故答案为x≥.10.如图,△ABC是一块锐角三角形材料,边BC=80mm,高AD=60mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是mm.【考点】相似三角形的应用.【分析】如图,设正方形EFGH的边长为x,EF与AD交于点K.由EF∥BC,得到△AEF ∽△ABC,得到=,得=,列方程即可.【解答】解:如图,设正方形EFGH的边长为x,EF与AD交于点K.∵EF∥BC,∴△AEF∽△ABC,∴=,∴=,∴x=,故答案为.11.如图所示,在四边形ABCD中,AD∥BC,如果要使△ABC∽△DCA,那么还要补充的一个条件是∠B=∠DCA或∠BAC=∠D或.(只要求写出一个条件即可)【考点】相似三角形的判定.【分析】本题主要根据平行推出角的等量关系,再根据对应边的关系,利用两三角形相似的判定定理,做题即可.【解答】解:∵AD∥BC∴∠DAC=∠ACB∴当∠B=∠DCA或∠BAC=∠D或AD:AC=AC:BC∴都可得相似.答案不唯一,如∠B=∠DCA或∠BAC=∠D或AD:AC=AC:BC.12.小亮的身高是1.6米,某一时刻他在水平面上的影长是2米,若同一时刻测得附近一古塔在水平地面上的影长为20米,则古塔的高度是16米.【考点】相似三角形的应用;平行投影.【分析】利用相似及投影知识解题,因为某一时刻,实际高度和影长之比是一定的,进而得出答案.【解答】解:由题意可得:=,解得:古塔的高=16,故答案为:16.13.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是(32﹣2x)(20﹣x)=570.【考点】由实际问题抽象出一元二次方程.【分析】设宽为xm,从图(2)可看出剩下的耕田面积可平移成长方形,且能表示出长和宽,从而根据面积可列出方程.【解答】解:设宽为xm,(32﹣2x)(20﹣x)=570.故答案为:(32﹣2x)(20﹣x)=570.14.如图,在△ABC中,∠B=90°,AB=3厘米,BC=4厘米,点P从A沿AB边向点B以1厘米/秒的速度移动,点Q从B沿BC边向点C以2厘米/秒的速度移动,如P与Q同时出发,且当一点移动到端点并停止时,另一点也同时停下,1秒或2秒后三角形PBQ 的面积为2平方厘米.【考点】一元二次方程的应用.【分析】根据题意表示出BP,BQ的长,进而利用三角形面积求出答案.【解答】解:设x秒后三角形PBQ的面积为2平方厘米,根据题意可得:BP=3﹣x,BQ=2x,故×2x(3﹣x)=2,解得:x1=1,x2=2,故1或2秒后三角形PBQ的面积为2平方厘米.故答案为:1或2.三、解答题15.(1)计算:﹣﹣;(2)计算:()﹣2﹣|2﹣3|+.【考点】实数的运算;负整数指数幂.【分析】(1)原式化简后,合并即可得到结果;(2)原式利用负整数指数幂法则,绝对值的代数意义,以及分母有理化计算即可得到结果.【解答】解:(1)原式=3﹣﹣2=﹣;(2)原式=4﹣3+2+=1+.16.解方程:(1)x2﹣2x=0;(2)30x2﹣45=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)原方程有公因式x,先提取公因式,然后再分解因式求解;(2)系数化为1后,利用直接开平方法求出方程的解.【解答】解:(1)∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.(2)∵30x2﹣45=0,∴x2=,∴x=±,∴x1=,x2=﹣17.解方程:x2+3x+1=0.【考点】解一元二次方程-公式法.【分析】先找出a,b,c,再求出△,代入求根公式即可.【解答】解:a=1,b=3,c=1,…∴△=b2﹣4ac=9﹣4×1×1=5>0,…∴x=﹣3±,…∴x1=﹣3+,x2=﹣3﹣….18.解方程:(x﹣5)(x﹣6)=x﹣5.【考点】解一元二次方程-因式分解法.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:(x﹣5)(x﹣6)﹣(x﹣5)=0,分解因式得:(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7.19.已知y=++3,求﹣的值.【考点】分式的化简求值;二次根式有意义的条件.【分析】先算括号里面的,再算除法,最后求出x、y的值代入进行计算即可.【解答】解:原式=﹣==,∵与有意义,∴,解得x=2,∴y=3,∴原式==﹣9.20.某企业xx年盈利3000万元,xx年克服全球金融危机的不利影响,仍实现盈利4320万元,从xx年到xx年,如果该企业每年盈利的年增长率相同,求:(1)该企业每年盈利的年增长率?(2)若该企业盈利的年增长率继续保持不变,预计xx年盈利多少万元?【考点】一元二次方程的应用.【分析】(1)设每年盈利的年增长率为x,就可以表示出xx年的盈利,根据xx年的盈利为4320万元建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.【解答】解:(1)设每年盈利的年增长率为x,根据意,得3000(1+x)2=4320解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得4320(1+0.2)=5184万元答:预计xx年该企业盈利5184万元.21.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.【考点】相似三角形的判定与性质;三角形内角和定理.【分析】(1)从图中得到AC=3,CD=2,BC=6,CE=4,∠ACB=∠DCE=90°,故有,所以△ACB∽△DCE;(2)由1知,∠B=∠E,可得∠B+∠A=∠E+A=180°﹣∠AFE=90°,即∠EFA=90°,故EF ⊥AB.【解答】证明:(1)∵,,∴.又∵∠ACB=∠DCE=90°,∴△ACB∽△DCE.(2)∵△ACB∽△DCE,∴∠ABC=∠DEC.又∵∠ABC+∠A=90°,∴∠DEC+∠A=90°.∴∠EFA=90°.∴EF⊥AB.22.已知▱ABCD的两边AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,当m 为何值时,四边形ABCD是菱形?求出这时菱形的边长.【考点】菱形的判定;根的判别式.【分析】由题意可知:AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,也就是方程有两个相等的实数根,利用根的判别式为0即可求得m,进而求得方程的根即为菱形的边长.【解答】解:∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5.故当m=1时,四边形ABCD是菱形,菱形的边长是0.5.23.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.【考点】一元二次方程的应用.【分析】可设矩形草坪BC边的长为x米,则AB的长是,根据长方形的面积公式列出一元二次方程求解.【解答】解:设BC边的长为x米,则AB=CD=米,根据题意得:×x=120,解得:x1=12,x2=20,∵20>16,∴x2=20不合题意,舍去,答:矩形草坪BC边的长为12米.24.如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF ⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.【考点】相似三角形的判定;正方形的性质.【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【解答】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)解:若△EFP∽△ABE,则∠PEF=∠EAB.∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE==2,∴EF=AE=.∵,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.xx年12月12日23216 5AB0 媰29913 74D9 瓙33039 810F 脏40267 9D4B 鵋R20983 51F7 凷30721 7801 码23662 5C6E 屮Y32954 80BA 肺9?39290 997A 饺!20537 5039 倹。