高中数学经典解题技巧和方法(等差数列、等比数列)
等差数列与等比数列的应用技巧
等差数列与等比数列的应用技巧数列作为数学中的一个重要概念,具有广泛的应用。
其中,等差数列和等比数列是最为常见和常用的两种数列。
本文将介绍等差数列和等比数列的应用技巧,以帮助读者更好地理解和运用这两种数列。
一、等差数列的应用技巧等差数列是指数列中相邻两项之差保持恒定的一种数列。
以下是等差数列的几个应用技巧。
1. 求等差数列的和求等差数列的和是等差数列应用中的一个重要问题。
对于一个已知的等差数列,我们可以通过计算首项和末项之和乘以项数的一半来求得等差数列的和。
具体而言,如果等差数列的首项为a,公差为d,共有n项,那么等差数列的和Sn可以表示为:Sn = (a + an) * n / 22. 判断某个数是否是等差数列的一项当我们已知一个数列是等差数列,且知道了首项和公差,就可以利用等差数列的特点来判断某个数是否是该等差数列的一项。
如果某个数等于首项加上公差乘以一个自然数减一,那么它就是等差数列的一项。
3. 求等差数列的第n项已知一个等差数列的首项a和公差d,我们可以通过等差数列的通项公式来求解等差数列的第n项。
等差数列的通项公式为:an = a + (n - 1) * d二、等比数列的应用技巧等比数列是指数列中相邻两项之比保持恒定的一种数列。
以下是等比数列的几个应用技巧。
1. 求等比数列的和求等比数列的和同样是等比数列应用中的一个重要问题。
对于一个已知的等比数列,我们可以通过公差小于1的等比数列求和公式来求得等比数列的和。
具体而言,如果等比数列的首项为a,公比为r,共有n项且r不等于1,那么等比数列的和Sn可以表示为:Sn = (a * (1 - r^n)) / (1 - r)2. 判断某个数是否是等比数列的一项当我们已知一个数列是等比数列,且知道了首项和公比,就可以利用等比数列的特点来判断某个数是否是该等比数列的一项。
如果某个数等于首项乘以公比的自然数次幂,那么它就是等比数列的一项。
3. 求等比数列的第n项已知一个等比数列的首项a和公比r,我们可以通过等比数列的通项公式来求解等比数列的第n项。
数学中的等差数列与等比数列公式整理与推导
数学中的等差数列与等比数列公式整理与推导在数学中,等差数列和等比数列是两种常见的数列形式。
它们在数学、科学和日常生活中都有重要的应用。
本文将对这两种数列的公式进行整理和推导。
一、等差数列等差数列是一种数列,其中相邻两项之差保持恒定。
设首项为a₁,公差为d,第n项为aₙ,则等差数列的通项公式可以表示为:aₙ = a₁ + (n-1)d(1)其中,a₁为首项,n为项数,d为公差。
为了更好地理解等差数列的公式,我们可以通过一个例子进行推导。
假设我们有一个等差数列:2, 5, 8, 11, 14, ...,其中首项a₁=2,公差d=3。
我们可以按照公式(1)计算第5项的值:a₅ = a₁ + (5-1)d= 2 + 4 × 3= 2 + 12= 14因此,这个等差数列的第5项为14。
二、等比数列等比数列是一种数列,其中相邻两项之比保持恒定。
设首项为a₁,公比为r,第n项为aₙ,则等比数列的通项公式可以表示为:aₙ = a₁ × r^(n-1)(2)其中,a₁为首项,n为项数,r为公比。
同样,我们通过一个例子来推导等比数列的公式。
假设我们有一个等比数列:2, 4, 8, 16, 32, ...,其中首项a₁=2,公比r=2。
按照公式(2),我们可以计算第5项的值:a₅ = a₁ × r^(5-1)= 2 × 2^4= 2 × 16= 32因此,这个等比数列的第5项为32。
三、等差数列的公式整理与推导在前面的讨论中,我们已经给出了等差数列的通项公式,即公式(1)。
现在,我们来推导这个公式的正确性。
设等差数列的首项为a₁,公差为d。
我们知道第n项aₙ与前一项aₙ₋₁之间的关系是:aₙ = aₙ₋₁ + d(3)我们使用数学归纳法来证明等差数列的通项公式。
(1)初始条件:当n=1时,等式(3)成立,即a₁=a₁+0,初始条件满足。
(2)归纳假设:假设当n=k时等式(3)成立,即aₙ=aₙ₋₁+d。
数列题解析常见的数学题型及解题技巧
数列题解析常见的数学题型及解题技巧数列题解析:常见的数学题型及解题技巧数学中,数列是一种按照一定规律排列的数字序列。
数列题是中学数学常见的题型之一,考察学生对数列的理解和解题能力。
本文将介绍数列题的常见题型,并提供解题技巧。
一、等差数列1. 等差数列概念等差数列是指数列中相邻两项之间的差值都相等的数列。
通常用字母a表示首项,d表示公差。
等差数列的通项公式为:an = a + (n-1)d。
2. 等差数列题型及解题技巧(1) 求前n项和:可以利用等差数列的求和公式Sn = (n/2)(2a + (n-1)d)来计算。
(2) 求项数:已知等差数列的首项和公差,求第n项可以利用通项公式an = a + (n-1)d。
(3) 求公差:已知等差数列的首项和任意两项,可以利用公式d = an - a(n-1)来计算。
二、等比数列1. 等比数列概念等比数列是指数列中相邻两项之间的比值都相等的数列。
通常用字母a表示首项,q表示公比。
等比数列的通项公式为:an = a * q^(n-1)。
2. 等比数列题型及解题技巧(1) 求前n项和:可以利用等比数列的求和公式Sn = (a(1-q^n))/(1-q)来计算。
(2) 求项数:已知等比数列的首项和公比,可以利用通项公式an = a * q^(n-1)进行转化求解。
(3) 求公比:已知等比数列的首项和任意两项,可以通过求项数的方式来计算公比。
三、递推数列递推数列是指数列中的每一项都由前一项递推而来的数列。
递推数列题型比较灵活,常见的有斐波那契数列、阶乘数列等。
解决递推数列题目的关键是找到递推关系式,将问题转化为数列的求解问题。
四、复合数列复合数列是指数列中同时具有等差和等比特征的数列。
可以通过将复合数列拆分成等差数列和等比数列两部分来解决问题。
解决复合数列题目的关键是根据题目给出的条件,分别求解等差数列和等比数列的部分,然后将结果综合起来。
五、其他常见数列题型除了上述三种常见的数列题型外,还有一些其他常见的数列题型,如费马数列、幂次数列等。
高中数学数列题型及解题方法
高中数学数列题型及解题方法高中数学中,数列是一个非常重要的概念。
对于数列题型的掌握和解题方法的运用,对于学生在数学学习中起到至关重要的作用。
常见的数列题型包括等差数列、等比数列和斐波那契数列等。
下面将介绍这几种数列的定义和解题方法。
1. 等差数列:等差数列是指数列中相邻两项之差都相等的数列。
常见的解题方法有:- 求通项公式:通过已知条件求出公差d和首项a1,然后利用通项公式an=a1+(n-1)d来求解。
- 求和公式:通过已知条件求出公差d、首项a1和项数n,然后利用求和公式Sn=n/2(a1+an)来求解。
2. 等比数列:等比数列是指数列中相邻两项之比都相等的数列。
常见的解题方法有:- 求通项公式:通过已知条件求出公比r和首项a1,然后利用通项公式an=a1*r^(n-1)来求解。
- 求和公式:通过已知条件求出公比r、首项a1和项数n,然后利用求和公式Sn=a1*(1-r^n)/(1-r)来求解。
3. 斐波那契数列:斐波那契数列是指数列中每一项都是前两项之和的数列。
常见的解题方法有:- 递推公式:利用递推关系an=an-1+an-2来计算斐波那契数列的每一项。
- 通项公式:通过特征方程x^2=x+1,求出两个根φ和1-φ,然后利用通项公式an=Aφ^n+B(1-φ)^n来求解,其中A和B为常数,通过已知条件求解得出。
在解题过程中,可以根据已知条件,选择合适的方法来求解数列问题。
同时,还需要注意理解数列的性质,例如等差数列的公差为常数,等比数列的公比为常数等。
通过对不同类型数列的学习和练习,可以提高对数列问题的理解和解题能力。
高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐
数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。
前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。
3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。
等差数列与等比数列解题技巧
等差数列与等比数列解题技巧【摘要】在高中数学课程内容中,数列作为离散函数的典型代表之一,不仅在高中数学中具有重要位置,而且,在现实生活中有着非常广泛的作用.因此掌握数列的解题技巧,在我们高中数学中是很有必要的.引言:数列在高考中主要考察用数列的递推公式、等差数列的通项公式参数的确定和性质、前n 项和公式和性质及常见的数列的求和方法. 一、求数列通向公式的方法 1、分析法通过与一些已知通向公式的基本数列进行比较、分析、归纳综合找数列的项与项数之间的关系,求出数列的通向公式.例1、写出数列的一个通向公式(1)、0.7,0.77,0.777.0.7777,... (2)、2,, (16)81,833,413,25 解:(1)原列各项可以写成有数列{}得到,而乘的每一项除以79,...999.0,99.0,9.0:n a,1.01n n a -=故原数列的一个通向公式为()n n n a b 1.019797-==(2)、原数列可改写为,...,215,214,213,212,21143210+++++故其通向公式为121-+=n n n a例2、根据下面各个数列的首项和递推公式,写出它的前4项并归纳出数列的一个通向公式 (1)、)(2,111*+∈+==N n a a a n n ;)(22,1)2(11*+∈+==N n a a a a n nn解:分析:写出前4项,找出规律,然后归纳出通向公式. (1)、由已知,得312,1121=+==a a a,1512,7123423=+==+=a a a a即,12,12221-=-=a a,12,124433-=-=a a故数列的一个通向公式为)(12*∈-=N n a n n(2)、由已知,得,3222,11121=+==a a a a,5222,2122334223=+==+=a a a a a a即.52,4221,32,2214321======a a a a故数列的一个通向公式为)(12*∈+=N n n a n注:上述题设给出,数列的前n 项或给出递推公式和初始条件,分析数列的特征,找出规律,写出通向公式. 2、待定系数法 例1、已知数列{}n a 的通向公式是关于n 的二次多项式,按照下列条件,写出数列{}n a 的一个通向公式.(1)、;7,3,1321===a a a (2)、;8,4,2321===a a a (3)、.0,3321===a a a分析:设出,2c bn an a n++=然后将321a a a 、、代入求出系数,c b a 、、即得通向公式.解:(1)、,2c bn an a n ++=依题意,得⎪⎩⎪⎨⎧=++=++=++,739,324,1c b a c b a c b a 解得⎪⎩⎪⎨⎧=-==,1,1,1c b a.12+-=∴n n a n(2)、设,2c bn an a n ++=依题意,得⎪⎩⎪⎨⎧=++=++=++,839,424,2c b a c b a c b a 解得⎪⎩⎪⎨⎧=-==,2,1,1c b a.22+-=∴n n a n(3)、的两个根。
高考数列解题技巧
高考数列解题技巧数列是高中数学的重要内容之一,也是高考数学的热点之一。
在解决数列问题时,学生需要掌握一些常用的解题技巧,以提高解题效率和准确性。
1. 公式法公式法是解决数列问题的基本方法之一。
对于等差数列和等比数列,学生需要熟记它们的通项公式和求和公式,以便在解题时能够迅速运用。
例如,对于等差数列{an},其通项公式为a_n=a_1+(n-1)d,其中a_1为首项,d为公差。
求和公式为S_n=n/2(a_1+a_n)。
2. 裂项相消法裂项相消法是一种常用的求和技巧,适用于一些看似复杂的数列求和问题。
通过将每一项都拆分成两个部分,然后抵消掉中间的部分,可以简化计算过程。
例如,对于数列1/2, 2/3, 3/4, ..., n/(n+1),学生可以使用裂项相消法进行求和。
将每一项都拆分成两个部分,即分子和分母,然后抵消掉中间的部分,得到结果为1-1/(n+1)。
3. 错位相减法错位相减法是一种常用的求和方法,适用于一些周期性变化的数列。
通过错位相减法,可以将一个复杂的数列转化为一个简单的数列,从而简化计算过程。
例如,对于数列1, 1/2, 1/3, 1/4, ..., 1/n,学生可以使用错位相减法进行求和。
将每一项都乘以10,得到数列10, 5, 3, 2, ..., 1/n,然后将两个数列相减,得到结果为9+4+2+...+1-1/n。
4. 倒序相加法倒序相加法是一种求解递推关系式的常用方法。
通过将一个数列的顺序倒过来,然后将正序和倒序的两个数列相加,可以得到一个常数列的和,进而求出原数列的和。
例如,对于数列a_n=S_{n-1}+S_n,学生可以使用倒序相加法求解。
将数列a_n的顺序倒过来得到a_n=S_n+S_{n-1}......(B),然后将(A)式和(B)式相加得到2a_n=2S_n+S_{n-1}+S_{n-2}+......+S_2+S_1=S_n+S_{n-1}+......+S_2+S_1+ S_0=2^n-1。
等差数列与等比数列的证明方法
等差数列与等比数列的证明方法高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。
一、 定义法01.证明数列是等差数列的充要条件的方法:{}1()n n n a a d a +-=⇔常数是等差数列{}2222()n n n a a d a +-=⇔常数是等差数列 {}3333()n n n a a d a +-=⇔常数是等差数列02.证明数列是等差数列的充分条件的方法:{}1(2)n n n a a a d n --=≥⇒是等差数列 {}11(2)n n n n n a n a a a a +--=-≥⇒是等差数列03.证明数列是等比数列的充要条件的方法:{}1(00)n n na q q a a +=≠≠⇔1且为常数,a 为等比数列 04.证明数列是等比数列的充要条件的方法:1nn a q a -=(n>2,q 为常数且≠0){}n a ⇒为等比数列 注意事项:用定义法时常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义,等比中一样有:2n ≥时,有1nn a qa -==(常数0≠);②n *∈N 时,有1n na q a +==(常数0≠).例1. 设数列12,,,,n a a a 中的每一项都不为0。
证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有1223111111n n n na a a a a a a a +++++=。
证明:先证必要性设{}n a 为等差数列,公差为d ,则当d=0时,显然命题成立当d≠0时,∵111111n n n na a d a a++⎛⎫=-⎪⎝⎭∴再证充分性:∵122334111a a a a a a++⋅⋅⋅1111n n nna a a a++++=⋅⋅………①∴122334111a a a a a a++⋅⋅⋅11212111n n n n nna a a a a a++++++++=⋅⋅⋅………②②﹣①得:12121111n n n nn na a a a a a+++++=-⋅⋅⋅两边同以11n na a a+得:112(1)n na n a na++=+-………③同理:11(1)n na na n a+=--………④③—④得:122()n n nna n a a++=+即:211n n n na a a a+++-=-{}n a为等差数列例2.设数列}{na的前n项和为n S,试证}{na为等差数列的充要条件是)(,2)(*1NnaanS nn∈+=。
等差等比数列的公式与技巧
第13讲等差、等比数列的公式与方法(一)知识归纳:1 .概念与公式:①等差数列:1° .定义:若数列{a n}满足a ni-a n=d(常数),则{a n}称等差数列;2通项公式:a n =a i (n-1)d = a k (n- k)d; 3° .前n项和公式:公式:S n』a1an)=na1n(n「)d.2 2②等比数列:a1° .定义若数列{a n}满足亠丄q (常数),则{a n}称等比数列;2° .通a n项公式:a n - a1q - a k q ,3 .前n 项和公式:S n - - (q^1),当1 -q 1-qq=1 时S n = n &1.2 .简单性质:①首尾项性质:设数列{a*}: Qaa, ,a n,1 °•若{a n}是等差数列,则a1■ a n= a2■a n = a3■a n ^ ='';2 .右{a n}是等比数列,则&1,a n = a?,a n4 = *3 a n.②中项及性质:.设a, A , b成等差数列,则A称a、b的等差中项,且2:设a,G,b成等比数列,则G称a、b的等比中项,且G二-.ab.③设p、q、r、s为正整数,且p r s,1 ° .若{a n}是等差数列,则a p +a q =a「+a$;2° .若{a n}是等比数列,则a p a q =a r a s;④ 顺次n 项和性质:n 2n 3nn 2d 的等差数1 ° .若{a n }是公差d 的等差数列,则 a a k , z a k , a a k 组成公差为k 二k :n 1 k 3 1列;n2n3n2 ° .若{a n }是公差q 的等比数列,则v ak,'a k , 7 a k 组成公差为q n 的等比数kJ k m 1 k :n 1列•(注意:当q=— 1, n 为偶数时这个结论不成立)⑤ 若{a n }是等比数列,2则顺次n 项的乘积:a 1a^ a n ,a n 1a n 2…a 2n ,a 2n 1a 2n a 3n 组成公比这q n 的等比数列•⑥ 若{a n }是公差为d 的等差数列,1 ° .若n 为奇数,则S n 二na 中且S 奇-S 偶 = a 中 (注:a 中指中项,即a^ = a n d ,而S 奇、S 偶指所有奇数项、所有偶数项的和);2。
如何求解等差数列和等比数列
如何求解等差数列和等比数列等差数列和等比数列是数学中常见且重要的数列。
在解题过程中,我们需要掌握一些基本的求解方法和公式。
本文将详细介绍如何求解等差数列和等比数列的方法和步骤。
一、等差数列的求解方法等差数列是指数列中相邻两项之差都相等的数列。
设等差数列的首项为a₁,公差为d,第n项为aₙ。
1. 求解等差数列的前n项和要求解等差数列的前n项和,可以使用等差数列求和公式。
等差数列的前n项和公式为:Sn = (n/2) * (a₁ + aₙ)其中,Sn表示前n项和,n表示项数,a₁表示首项,aₙ表示第n项。
2. 求解等差数列的第n项要求解等差数列的第n项,可以使用等差数列通项公式。
等差数列的通项公式为:aₙ = a₁ + (n-1) * d其中,aₙ表示第n项,n表示项数,a₁表示首项,d表示公差。
二、等比数列的求解方法等比数列是指数列中相邻两项的比值都相等的数列。
设等比数列的首项为a₁,公比为q,第n项为aₙ。
1. 求解等比数列的前n项和要求解等比数列的前n项和,可以使用等比数列求和公式。
等比数列的前n项和公式为:Sn = (a₁ * (q^n - 1)) / (q - 1)其中,Sn表示前n项和,a₁表示首项,q表示公比。
2. 求解等比数列的第n项要求解等比数列的第n项,可以使用等比数列通项公式。
等比数列的通项公式为:aₙ = a₁ * q^(n-1)其中,aₙ表示第n项,a₁表示首项,q表示公比。
通过上述的求解方法和公式,我们可以轻松求解等差数列和等比数列的问题。
在实际应用中,我们可以根据题目给出的条件,确定问题所涉及的数列类型,并选择恰当的求解方法进行计算。
总结:等差数列和等比数列是数学中常见的数列类型,求解它们的方法和步骤相对简单。
对于等差数列,我们可以使用求和公式和通项公式来求解前n项和和第n项;对于等比数列,我们可以使用求和公式和通项公式来求解前n项和和第n项。
掌握了这些基本方法和公式,我们就可以有效地解决等差数列和等比数列的问题。
等差等比数列求解技巧
等差等比数列求解技巧等差数列和等比数列是在数学中经常遇到的一类数列,对于求解等差等比数列的问题,我们可以用到一些常见的技巧来简化计算过程。
在本文中,我将向您介绍并详细解释以下几种等差等比数列的求解技巧。
一、等差数列的求和公式等差数列是指数列中的每两个相邻项之间差值相等的数列,也就是说,每个后项与前项的差都是相等的。
1. 求等差数列的前n项和设等差数列的首项为a1,公差为d,要求前n项和Sn,我们可以应用求和公式来求解:Sn = (a1 + an) * n / 2其中,a1是首项,an是前n项的最后一项。
n是项数。
例如,要求等差数列1, 3, 5, 7, 9的前3项和,则a1=1,d=2,n=3,代入求和公式得:S3 = (1 + 5) * 3 / 2 = 9。
2. 求等差数列的末项根据等差数列的性质可知,等差数列的末项an可以表示为:an = a1 + (n-1) * d其中,a1是首项,n是项数,d是公差。
例如,已知等差数列的首项为3,公差为2,求其第10项的值,则代入公式得:a10 = 3 + (10-1) * 2 = 21。
二、等比数列的求和公式等比数列是指数列中的每两个相邻项之间的比值相等的数列,也就是说,每个后项与前项的比都是相等的。
1. 求等比数列的前n项和设等比数列的首项为a1,公比为q,要求前n项和Sn,我们可以应用求和公式来求解:Sn = (a1 * (1 - q^n)) / (1 - q)其中,a1是首项,q是公比,n是项数。
例如,要求等比数列2, 4, 8, 16的前3项和,则a1=2,q=2,n=3,代入求和公式得:S3 = (2 * (1 - 2^3)) / (1 - 2) = 14。
2. 求等比数列的末项根据等比数列的性质可知,等比数列的末项an可以表示为:an = a1 * q^(n-1)其中,a1是首项,q是公比,n是项数。
例如,已知等比数列的首项为3,公比为2,求其第10项的值,则代入公式得:a10 = 3 * 2^(10-1) = 1536。
数列中等差数列和等比数列的解题方法
数列中等差数列和等比数列的解题方法一、等差数列的解题方法1.通项公式的应用:已知首项a1,公差d,求第n项an。
2.求和公式的应用:已知首项a1,末项an,项数n,求数列的和Sn。
3.等差数列的性质:已知数列是等差数列,求出中间项、项数的应用。
4.等差数列的通项公式和求和公式的推导过程。
5.等差数列的递推关系式的应用。
6.等差数列的函数特性:求最大值、最小值、函数图像的分析。
二、等比数列的解题方法1.通项公式的应用:已知首项a1,公比q,求第n项an。
2.求和公式的应用:已知首项a1,公比q,项数n,求数列的和Sn。
3.等比数列的性质:已知数列是等比数列,求出中间项、项数的应用。
4.等比数列的通项公式和求和公式的推导过程。
5.等比数列的递推关系式的应用。
6.等比数列的函数特性:求最大值、最小值、函数图像的分析。
三、等差数列和等比数列的综合应用1.等差数列与等比数列的混合问题:求解数列的前n项和、某项的值等。
2.等差数列和等比数列的交叉问题:已知数列既是等差数列又是等比数列,求解相关问题。
3.等差数列和等比数列在实际问题中的应用:如人口增长、放射性衰变等。
四、解题技巧与策略1.数列问题的转化:将数列问题转化为函数问题、方程问题等。
2.数列的拆分与合并:将数列拆分成多个小数列,或合并成一个大数列,便于求解。
3.数列的递推关系式的运用:通过递推关系式,简化问题,便于求解。
4.数列的图像分析:通过数列的图像,直观地了解数列的性质,找出解题思路。
五、常见题型和解题方法1.求数列的第n项:根据通项公式,直接求解。
2.求数列的和:根据求和公式,直接求解。
3.求数列的项数:根据已知条件,求解项数。
4.数列的单调性、周期性分析:通过通项公式,分析数列的单调性、周期性。
5.数列的极值问题:通过通项公式,求解数列的最大值、最小值。
6.等差数列和等比数列的定义、性质、通项公式和求和公式。
7.等差数列和等比数列的解题方法:求某项的值、求数列的和、分析数列的性质等。
高中数学数列题型及解题方法
高中数学数列题型及解题方法一、基本概念在高中数学中,数列是一个数的有序集合,按照一定的规律排列。
数列中的每一个数称为该数列的项,通常用字母表示。
数列中的项的位置或顺序称为项数。
数列一般通过通项公式或递推式来表示。
通项公式直接给出数列中第n个项与n之间的关系,递推式则通过前一项得出后一项,常见的数列有等差数列和等比数列。
二、等差数列等差数列是指数列中相邻两项的差是一个常数的数列。
若一个等差数列的前n 项和可递推出通项公式,即第n项的表达式。
解题方法1.根据已知条件列出等差数列的性质2.利用通项公式或递推式解决问题3.注意区分公差和项数的不同,避免混淆三、等比数列等比数列是指数列中相邻两项的比是一个常数的数列。
等比数列也有通项公式和前n项和的性质。
解题方法1.确定数列是等比数列2.利用通项公式或递推式解决问题,计算项之间的比3.注意等比数列的比值,及时列出通项公式或递推式四、常见题型及解题方法1. 求等差数列第n项或前n项和•要求:已知等差数列的公差和首项,求第n项或前n项和•解题方法:利用通项公式或递推式计算第n项或前n项和2. 求等比数列第n项或前n项和•要求:已知等比数列的比和首项,求第n项或前n项和•解题方法:利用通项公式或递推式计算第n项或前n项和3. 求等差数列或等比数列的一些特殊性质•要求:已知等差数列或等比数列的相关条件,求解一些特殊的性质•解题方法:根据数列的性质列出条件,运用相关知识推导出需要的结果以上是高中数学数列题型及解题方法的简要介绍,希望能对学习数列有所帮助。
如果想深入了解更多数列知识,可以继续深入学习相关内容。
2024年高考复习数学知识点+题型15+等差数列、等比数列的性质及其前n项和解题技巧
(
)
3 A. 10
B.
1 3
1 C. 8
D.
1 9
【详解】由等差数列的性质可知 S3 、 S6 S3 、 S9 S6 、 S12 S9 成等差数列,
∵
S3 S6
1 3 ,即 S6
3S3 , S6
S3
S3
S3
,∴
S9
S6
3S3 , S12
S9
4S3 ,∴
S9
6S3
,
S12 10S3 ,
例 4-2.
(2023·全国·统考高考真题)
记 Sn 为等比数列an的前 n 项和,若 S4 5, S6 21S2 ,则 S8 ( ).
A.120 B.85 C. 85 D. 120
方法一:设等比数列an的公比为 q,首项为 a1 ,
若 q 1 ,则 S4 0 5 ,与题意不符,所以 q 1 ;
S2 21S2
5 ,解得: S2
1 或 S2
5 4
,
当 S2 1 时, S2,S4 S2,S6 S4,S8 S6 ,即为 1, 4,16,S8 21 ,
易知, S8 21 64 ,即 S8 85 ;
当 S2
5 4
时, S4
a1
a2
a3
a4
a1
a2
1
q2
1 q2
例 1-1.
(江西·高考真题)
已知等差数列an ,若 a1 a2 a3 a12 21 ,则 a2 a5 a8 a11 .
根据等差数列的性质可得 a1
a2
a3
a12
6(a1
a12
)
21
,解得 a1
a12
7 2
高中数学知识点总结等差数列与等比数列
高中数学知识点总结等差数列与等比数列高中数学知识点总结:等差数列与等比数列等差数列和等比数列是高中数学中重要的数列概念。
它们在数学和实际问题中都具有广泛的应用。
本文将对等差数列和等比数列进行详细的总结和学习。
一、等差数列(Arithmetic Progression,简称AP)等差数列是指数列中任意两个相邻的项之间的差都是一个常数。
这个常数称为公差,通常用字母d表示。
等差数列的一般形式可以表示为:an = a1 + (n-1)d,其中an表示数列的第n项。
等差数列常见的性质和公式如下:1. 第n项公式:an = a1 + (n-1)d2. 前n项和公式:Sn = (n/2)(a1 + an) = (n/2)(2a1 + (n-1)d)3. 公差d的求法:d = (an - a1)/(n-1)4. 通项公式:an = a1 + (n-1)d5. 前n项和公式(求和公式):Sn = (n/2)(a1 + an)等差数列的应用非常广泛,特别是在数学、物理和工程学中。
等差数列可以帮助我们推导出一些重要的关系式,解决许多实际问题。
二、等比数列(Geometric Progression,简称GP)等比数列是指数列中任意两个相邻的项之间的比都是一个常数。
这个常数称为公比,通常用字母r表示。
等比数列的一般形式可以表示为:an = a1 * r^(n-1),其中an表示数列的第n项。
等比数列常见的性质和公式如下:1. 第n项公式:an = a1 * r^(n-1)2. 前n项和公式:Sn = a1 * (1 - r^n) / (1 - r),其中r ≠ 13. 公比r的求法:r = √(an / a1)4. 通项公式:an = a1 * r^(n-1)5. 前n项和公式(求和公式):Sn = a1 * (1 - r^n) / (1 - r),其中r ≠1等比数列的应用同样非常广泛,在数学、物理、经济学等领域都有重要的作用。
等差数列等比数列相关性质和公式以及数列的求和方法
等差数列等比数列相关性质和公式以及数列的求和方法数列是数学中重要的概念之一,是由一系列按照特定规律排列的数所组成的序列。
其中,等差数列和等比数列是最常见且最重要的两种数列。
本文将介绍等差数列和等比数列的相关性质和公式,以及数列的求和方法。
一、等差数列等差数列是指数列中的任意两个相邻的项之差都相等的数列。
常见的等差数列通常以"a"开头,公差为"d"。
以"an"表示等差数列的第n项,其通项公式为:an = a + (n - 1)d其中,a为首项,d为公差,n为项数。
等差数列的性质和公式有:1.任意连续三个项可以构成一个等差中项数列,中项数等于项数减一2.等差数列的前n项和公式为:Sn=(2a+(n-1)d)*n/2其中,Sn为前n项和。
二、等比数列等比数列是指数列中的任意两个相邻的项之比都相等的数列。
常见的等比数列通常以"a"开头,公比为"r"。
以"an"表示等比数列的第n项,其通项公式为:an = a * r^(n - 1)其中,a为首项,r为公比,n为项数。
等比数列的性质和公式有:1.任意连续三个项可以构成一个等比中项数列,中项数等于项数减一2.等比数列的前n项和公式为:Sn=a*(r^n-1)/(r-1)其中,Sn为前n项和。
数列的求和是指计算数列中一定项数的所有项的和。
常见的数列求和方法有以下几种:1.直接相加法:即将数列中的每一项相加得到和。
适用于项数较少、数值较小的数列。
2.通项法:利用数列的通项公式计算出每一项的值,再将这些值相加得到和。
适用于项数较多的数列。
3.分组求和法:将数列分成若干组,然后计算每组的和,最后将每组的和相加得到总和。
适用于数列中存在规律性的分组。
4.差分法:对等差数列求和,可以通过差分法简化计算。
差分法是指利用等差数列的性质,将数列的求和问题转化为差分的求和问题。
高考数列求解技巧
高考数列求解技巧高考数列题目在高中数学中占据很大的比例,掌握解题技巧对于提高解题速度和准确性非常重要。
下面介绍一些高考数列题目的求解技巧:1. 常见数列类型:高考中常见的数列类型有等差数列、等比数列、斐波那契数列等。
了解不同数列类型的性质和特点,对于解答题目非常有帮助。
2. 等差数列的求解技巧:对于等差数列,常见的求解技巧有:- 求公差:通过已知条件求出公差,进而推算出数列中任意一项。
- 求和公式:利用等差数列的求和公式,可以快速求解数列的和。
- 求项数:已知数列的首项、末项和公差,可以通过求解项数的方程得出项数。
3. 等比数列的求解技巧:对于等比数列,常见的求解技巧有:- 求公比:通过已知条件求出公比,进而推算出数列中任意一项。
- 求和公式:利用等比数列的求和公式,可以快速求解数列的和。
- 求项数:已知数列的首项、末项和公比,可以通过求解项数的方程得出项数。
4. 数列的递推关系:数列题目中经常会给出递推公式,通过利用递推关系可以求解数列中的任意一项。
递推关系的求解方法有: - 利用前后项之间的关系求解。
有时候可以通过前一项和后一项的关系,得出递推公式。
- 利用首项和递推步长求解。
有时候可以通过知道数列的首项和递推步长,推算出递推公式。
5. 数列的性质和特点:不同类型的数列有其特点和性质,通过了解数列的性质和特点,可以更加快速地解决题目。
例如:- 等差数列:相邻项之间的差值是常数。
- 等比数列:相邻项之间的比值是常数。
- 斐波那契数列:每一项等于其前两项之和。
6. 选项中的数列特征:在选择题中,有时候题目给出一系列数列,并要求选择符合某种特征的数列。
这时候可以通过观察选项中数列的特征,判断是否符合题目要求。
7. 尝试常用的数列运算技巧:在解题过程中,可以尝试一些常用的数列运算技巧,例如:- 差分法:将数列中的一项与前一项的差值构成一个新的数列,可以通过观察差分后的数列特点来求解题目。
- 通项归纳法:通过观察数列的通项公式,利用归纳和推理来求解题目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学经典的解题技巧和方法(等差数列、等比数列)
跟踪训练题
一、选择题(本大题共6个小题,每小题6分,总分36分) 1.已知等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( ) (A)12
(B)10
(C)8
(D)6
2.设数列{x n }满足log 2x n+1=1+log 2x n ,且x 1+x 2+x 3+…+x 10=10,则x 11+x 12+x 13+…+x 20的值为( ) (A)10×211 (B)10×210 (C)11×211
(D)11×210
3.已知正数组成的等差数列{a n },前20项和为100,则a 7·a 14的最大值是( ) (A)25
(B)50
(C)100
(D)不存在
4.已知{}n a 为等比数列,S n 是它的前n 项和。
若2312a a a ⋅=, 且4a 与27a 的等差中项为5
4,则5S =( )
A .35 B.33 C.31 D.29 5. 设
{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立
的是( ) A 、2X Z Y += B 、()()
Y Y X Z Z X -=-
C 、2
Y XZ =
D 、
()()
Y Y X X Z X -=-
6.(2010·潍坊模拟)已知数列{a n }是公差为d 的等差数列,S n 是其前n 项和,且有S 9<S 8=S 7,则下列说法
不正确的是
( )
A .S 9<S 10
B .d<0
C .S 7与S 8均为S n 的最大值
D .a 8=0
二、填空题(本大题共3个小题,每小题6分,总分18分)
7.将正偶数划分为数组:(2),(4,6),(8,10,12),(14,16,18,20),…,则第n 组各数的和是 .(用含n 的式子表示)
8.已知数列{a n }满足:a 4n-3=1,a 4n-1=0,a 2n =a n ,n ∈N *,则a 2 009=_______;a 2 014=_______.
9.已知等差数列{a n }的前n 项和为S n ,a 4=15,S 5=55,则过点P(3,a 3),Q(10,a 10)的直线的斜率为_______. 三、解答题(10、11题每小题15分,12题16分,总分46分)
10.数列{}n a 的通项()()10111n
n a n n N *⎛⎫
=+∈ ⎪⎝⎭试问该数列有没有最大项?若有,求出最大项和最大项的
项数;若没有,说明理由
11.在等比数列{a n }中,前n 项和为S n ,若S m ,S m+2,S m+1成等差数列,则a m ,a m+2,a m+1成等差数列. (1)写出这个命题的逆命题;
(2)判断逆命题是否为真?并给出证明.
12.已知数列}{n a 中,前n 项和为n S ,51=a ,并且2122++++=n n n n a S S (+∈N n ),
(1)求2a ,3a 的值;
(2)设
n n n a b 2λ
+=
,若实数λ使得数列}{n b 为等差数列,求λ的值。
(3)在(2)的条件下,设数列}1{
1+⋅n n b b 的前n 项和为n T ,求证:
51<
n T 参考答案
一、选择题
1. 【解析】选C.S 4=
=2×(1+3)=8.
2. 【解析】选B.∵log 2x n+1-log 2x n =1,∴{x n }为等比数列,其公比q=2,
又∵x 1+x 2+…+x 10=10,∴x 11+x 12+…+x 20=q 10(x 1+x 2+…+x 10)=210×10.
3. 【解析】选A.∵S 20=×20=100,∴a 1+a 20=10,
∵a 1+a 20=a 7+a 14,∴a 7+a 14=10. ∵a n >0,∴a 7·a 14≤()2=25.
4. 【解析】选 C
由
2311414222a a a a a a a ⋅=⇒⋅=⇒=,又
475224a a +=⨯
得 71
4a =
所以,37411428a q a ===,∴ 12q =,41321618a a q ===, 5
5116[1()]231112S -==-
5. 【解析】选 D ,设等比数列
{}n a 的公比为q (0)q ≠,由题意,12n X a a a =++
+
12122n n n n Y a a a a a a ++=++
++++
+
1212221223n n n n n n n Z a a a a a a a a a ++++=++
++++++++
+
∴Y X
q
X -=,Z X q Y -=,所以()()Y Y X X Z X -=-,故D 正确。
6. 【解析】选A 由题意知d<0,a 8=0,所以10981091090..a a a S S a S <<=∴=+<
二、填空题
7. 【解析】前1n -组共有偶数的个数为
(1)
123(1).2n n n -++++-=
故第n 组共有n 个偶数,且第一
个偶数是正偶数数列{}2n 的第2
(1)(1)12[1]222n n n n n n --+⨯+=-+项,即,
所以第n 组各数的和为
23(1)
(2)2.2
n n n n n n n --++
⨯=+
答案:3.n n +
8. 【解析】依题意,得a 2 009=a 4×503-3=1,a 2 014=a 2×1 007=a 1 007=a 4×252-1=0. 答案:1 0
9. 【解析】∵a 4=15,S 5=55. ∴55==5a 3,∴a 3=11. ∴公差d=a 4-a 3=15-11=4.
a 10=a 4+6d=15+24=39. ∴P(3,11),Q(10,39) k PQ ==4.答案:4
三、解答题
10. 【解析】方法1:
()()1
110101092111111111n n n
n n n
a a n n ++-⎛⎫
⎛⎫⎛⎫-=+-+=⋅
⎪
⎪ ⎪⎝⎭⎝⎭⎝⎭
∴当n <9时,110n n n n a a a a ++->∴>
当9n =时
110n n n n a a a a ++-=∴=, 当n >9时,110n n n n a a a a ++-<∴≤
,
故
129101112a a a a a a <<
<=>>>
,
∴数列{}n a 中最大项为9a 或10a .其值为
9
101011⎛⎫⋅ ⎪
⎝⎭,其项数为9或10
()()()()()()1
11
11021,
111010129,111110.1010111111,910.n
n n n n n n n n n a n n N n n a a n a a n n n n N n *++--*
⎛⎫
=+∈ ⎪⎝⎭
⎧⎛⎫⎛⎫+≥+⎪ ⎪ ⎪
≥≥⎧⎧⎪⎝⎭⎝⎭∴⇔⇔⎨⎨⎨≥≤⎩⎩⎛⎫⎛⎫⎪
+≥- ⎪ ⎪⎪⎝⎭⎝⎭⎩
∈∴=方法或
∴数列{}n a 中最大项为9a 或10a .其值为
9
101011⎛⎫
⋅ ⎪
⎝⎭,其项数为9或10
11. 【解析】(1)在等比数列{a n }中,前n 项和为S n ,若a m ,a m+2,a m+1成等差数列,则S m ,S m+2,S m+1成等差数列.
(2)设数列{a n }的首项为a 1,公比为q.由题意知:2a m+2=a m +a m+1, 即 2a 1q m+1=a 1q m-1+a 1q m . ∵a 1≠0,q ≠0,∴2q 2-q-1=0,
12. 【解析】(1)由2122++++=n n n n a S S (+∈N n )得
2122+++=-n n n n a S S 即2122+++=n n n a a (+∈N n ) ∵51=a ∴
188********=+=+=+a a 521636222223=+=+=+a a
(2)由条件
25211λ
λ+=+=
a b
4182
2
22λ
λ+=+=
a b
8522
3
33λλ+=+=
a b ∵
}{n b 为等差数列∴3122b b b += 即
852254182λ
λλ+++=+⨯
解得0=λ
∴
n n n a b 2=
且
25
1
=b ,292=b ∴212=-b b ,
即数列
}{n b 是公差为2=d ,首项为
25
1=
b 的等差数列
(3)由(2)得
2142)1(25+=⨯-+=
n n b n (+∈N n )
∴541
141)54)(14(411
+-
+=++=⋅+n n n n b b n n ∴n T =1322
1111++++n n b b b b b b =)541141()13191()9151(+-+++-+-n n =5154151<+-n ∴ 51
<
n T。