一元二次方程应用辅导讲义

合集下载

一元二次方程的四种解法一对一辅导讲义

一元二次方程的四种解法一对一辅导讲义

1、认识一元二次方程2、掌握一元二次方程常见解法;3、经历一元二次方程解法的发现过程,体验归纳、类比的思想方法。

第一课时 一元二次方程的四种解法知识梳理1.已知x=1是一元二次方程2210mx x -+=的一个解,则m 的值是多少?2.已知关于x 的一元二次方程222320()x m mx ++-=-的一个根是0,求m 的值。

3.已知x=1是方程210x mx -+=的根,化简226912m m m m -+--+;4.已知实数a 满足2280a a+-=,求)3)(1(12)1)(1(31a 12+++-⨯+-+-+a a a a a a a 的值。

新课标第一网5.已知m ,n 是有理数,方程20x mx n ++=有一个根是52-,求m+n 的值。

课前检测一、直接开方法:(利用平方根的定义直接开平方求一元二次方程的解) 形式:2()x a b +=举例:解方程:29(1)25x +=解:方程两边除以9,得:225(1)9x += 1251352581,13333x x x ∴+=±∴=-==--=-二、配方法:(理论依据:根据完全平方公式:2222()a ab b a b ±+=±,将原方程配成2()x a b +=的形式,再用直接开方法求解.)举例:解方程:24830x x -+= 配方法解一元二次方程20ax bx c ++= (0a ≠)的步骤:解: 23204x x -+= ①、二次项系数化为1. (两边都除以二次项系数.)2324x x -=- ②、移项.(把常数项移到=号右边.) 22232114x x -+=-+ ③、配方.(两边都加上一次项系数绝对值一半的 21(1)4x -= 平方,把原方程化成2()x a b +=的形式) ∴112x -=± ④、求解.(用直接开方法求出方程的解.) 113111,212222x x ∴=+==-+=三、公式法:(求根公式:242b b ac x a-±-=) 举例:解方程:2273x x -= 公式法解一元二次方程的步骤:解: 22730x x --= ①、把一元二次方程化为一般形式:20ax bx c ++=(0a ≠)2,7,3a b c ∴==-=- ②、确定,,a b c 的值.知识梳理60x ∴-=或10x +=216,1x x ∴==-【4】其它常见类型举例:①、解方程:(1)(3)8x x ++= ②、解方程:222x +x-1=x +x(换元法) 解:原方程可变形为: 解:令2x +x y =,原方程可化为:21y y-=, 即:220y y --= 2450x x +-= ∴(2)(1)0y y -+= ∴20y -=或10y +=(5)(1)0x x +-= ∴122,1y y ==-50x ∴+=或10x -= ∴22x x +=,即220x x +-=215,1x x ∴=-= (2)(1)0x x +-=,212,1x x ∴=-=或21x x +=-,即210x x ++=1,1,1a b c ∴=== 224141130b ac ∴-=-⨯⨯=-<∴方程210x x ++=无解。

讲义精品一元二次方程讲义精品

讲义精品一元二次方程讲义精品

讲义精品一元二次方程讲义精品考点一、概念(1)内容:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax(3)关键点:强调对最高次项的讨论:①次数为“2”;②系数不为“0”。

典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

针对练习:1、方程782=x 的一次项系数是 ,常数项是 。

2、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

考点二、方程的解⑴内容:使方程两边相等的未知数的值,就是方程的解。

⑵应用:①利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

说明:本题的关键点在于对 “代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。

例4、已知b a ≠,0122=--a a ,0122=--b b ,求=+b a变式:若0122=--a a ,0122=--b b ,则ab b a +的值为 。

针对练习:1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

2、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。

3、已知a 是0132=+-x x 的根,则=-a a 622 。

《一元二次方程的应用》PPT教学课件(第1课时)

《一元二次方程的应用》PPT教学课件(第1课时)

2.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如
图),原空地一边减少了1 m,另一边减少了2 m,剩余空地的面积为18 m2,求
原正方形空地的边长,设原正方形空地的边长为x m,则可列方程为( C )
A.(x+1)(x+2)=18
B. x2-3x+16=0
C.(x-1)(x-2)=18
D.x2+3x+16=0
3.一个直角三角形的两条直角边相差5 cm,面积是7 cm2,则
它的两条直角边长分别为 2 cm,7 cm

4.在一幅长50 cm,宽30 cm的风景画的四周镶一条金色纸边,制成
一幅矩形 挂图,如图所示.如果要使整个矩形挂图的面积是1 800 cm2,
2
设金色纸边的宽为x cm,那么x满足的方程为 x +40x-75=0
所以2x=2×14=28.
答:当矩形温室的长为28 m,宽为14 m时,蔬菜种植区域的面积
是288 m2.
6. 如图1,在宽为20米,长为32米的矩形地面上修筑同样宽的道路
(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540
平方米,求道路的宽.
解:设道路宽为x米,由平移得
到图2,则宽为(20-x)米,长为
修建三条同样宽的甬路,其中两条与AB 平行,另一条与AD 平行,其余
部分种草,若使每一块草坪的面积都为144 m2,求甬路的宽度
解法1 :设甬路的宽为x m,
根据题意,得40×26-(40x+2×26x-2x2)= 144×6,
整理,得x2-46x+88 = 0,解得x1 = 44, x2 = 2.
x
得方程 2 −90x+1400=0.

二次函数和一元二次方程-辅导讲义

二次函数和一元二次方程-辅导讲义

讲义内容知识概括知识点一:一元二次方程ax2+bx+c=0(a≠0)的解的情况等价于抛物线y=ax2+bx+c(c≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax2+bx+c(a≠0)与x轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax2+bx+c与x轴有两个公共点(x1,0)(x2,0)一元二次方程ax2+bx+c=0有两个不等实根△=b2-4ac>0。

(2)抛物线y=ax2+bx+c与x轴只有一个公共点时,此公共点即为顶点一元二次方程ax2+bx+c=0有两个相等实根,(3)抛物线y=ax2+bx+c与x轴没有公共点一元二次方程ax2+bx+c=0没有实数根△=b2-4ac<0.(4)事实上,抛物线y=ax2+bx+c与直线y=h的公共点情况方程ax2+bx+c=h的根的情况。

抛物线y=ax2+bx+c与直线y=mx+n的公共点情况方程ax2+bx+c=mx+n的根的情况。

方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2y ax bx c=++中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a++≠本身就是所含字母x的二次函数;下面以0a>时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:∆>抛物线与x轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根∆=抛物线与x轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根0∆<抛物线与x轴无交点二次三项式的值恒为正一元二次方程无实数根.题型一 求字母系数的取值范围【例1】若二次函数)1(24)1(22-+--=k kx x k y 的图象与x 轴有两个交点,求k 的取值范围;练习1:已知:关于x 的函数772--=x kx y 的图象与x 轴总有交点,求k 的取值范围?练习2:已知抛物线2234y x kx k =+-(k 为常数,且k >0).证明:此抛物线与x 轴总有两个交点;练习3:已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.题型二 一次函数图象和二次函数图象的交点问题【例2】已知抛物线C 经过(-5,0),(0,25),(1,6)三点,直线l 的函数表达式为32-=x y ;(1)求抛物线的表达式;(2)证明抛物线C 与直线l 无交点;(3)若与l 平行的直线m x y +=2与抛物线C 只有一个公共点P ,求点P 的坐标;练习1:已知二次函数y=﹣x 2+bx+c 的图象如图所示,它与x 轴的一个交点坐标为(﹣1,0),与y 轴的交点坐标为(0,3).(1)求出b ,c 的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y 为正数时,自变量x 的取值范围.题型三 关于二次函数图象交点的综合问题【例3】已知抛物线2234y x kx k =+-(k 为常数,且k >0).(1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ONOM-=,求k 的值.练习1:抛物线2y x bx c =-++的部分图象如图所示,则方程02=++-c bx x 的两根为 .练习2:下列命题:①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③B.只有①③④C.只有①④D.只有②【例4】已知二次函数y=x2+bx﹣c的图象与x轴两交点的坐标分别为(m,0),(﹣3m,0)(m≠0).(1)证明4c=3b2;(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.练习:已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式;(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.。

一元二次方程及其应用讲义

一元二次方程及其应用讲义

《一元二次方程及其应用》讲义一、一元二次方程的定义【例题】1、关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。

2、下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x-2x=1;(4)ax 2+bx+c=0;(5)12x 2=0. 3、关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________.【习题】1、下列方程中是一元二次方程的是( ).A.xy +2=1B. 09212=-+xx C. x 2=0 D.02=++c bx ax 2、下列方程中,不是一元二次方程的是( ) A.2x 2+7=0 B.2x 2+23x +1=0 C.5x 2+x 1+4=0 D.3x 2+(1+x ) 2+1=03、关于x 的方程(m -4)x 2+(m +4)x +2m +3=0,当m __________时,是一元二次方程,当m __________时,是一元一次方程.4、下列说法正确的是( )A .一元二次方程的一般形式是20ax bx c ++= B .一元二次方程20ax bx c ++=的根是242b b ac x a -±-= C .方程2x x =的解是x =1D .方程(3)(2)0x x x +-=的根有三个 二、一元二次方程的根【例题】1、若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值是( )A 、1B 、2C 、-1D 、-22、若x =1是方程ax 2+bx +c =0的解,则( )A.a +b +c =1B.a -b +c =0C.a +b +c =0D.a -b -c =03、已知0和1-都是某个方程的解,此方程是( )A. 012=-xB. 0)1(=+x xC. 02=-x xD. 1+=x x4、如果21x -2x -8=0,则1x 的值是________.5、已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根是( )A. 0B. 1C. -1D. 2【习题】1、若x =-1是方程ax 2+bx +c =0的解,则( )A.a +b +c =1B.a -b +c =0C.a +b +c =0D.a -b -c =02、已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ).A .-5或1B .1C .5D .5或-13、已知m 是一元二次方程x 2–2005x +1=0的解,求代数式22200520041m m m -++的值.4、已知x = –5是方程x 2+mx –10=0的一个根,求x =3时,x 2+mx –10的值.三、一元二次方程的解法【例题】1、填写解方程3x (x +5)=5(x +5)的过程解:3x (x +5)__________=0(x +5)(__________)=0x +5=__________或__________=0∴x 1=__________,x 2=__________2、用配方法解方程x 2+2x -1=0时①移项得__________________②配方得__________________即(x +__________)2=__________③x +__________=__________或x +__________=__________④x 1=__________,x 2=__________3、方程2(x+2)2-8=0的根是 。

一元二次方程_辅导讲义(一)

一元二次方程_辅导讲义(一)

教学讲义教师姓名学生姓名上课时间检查签名教学目标1.理解一元二次方程的概念;2.会用因式分解法解一元二次方程.重点、难点重难点:一元二次方程的判断;一元二次方程的解法。

知识要点解析一元二次方程基本知识:㈠一元二次方程:方程两边都是整式,只含有一个未知数,并且未知数的最高次数是2次。

一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成a x2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现,但二次项必须存在,而且左边通常按未知数的次数从高到低排列,特别注意的是“=”的右边必须整理成0。

注意:判断某个方程是否为一元二次方程,必须满足:①整式方程;②只含有一个未知数;③未知数的最高次数是2 三个条件。

特别注意一元二次方程的左右两边不应有分母和根号中出现未知数。

【例题与练习】例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.例2.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成a x2+bx+c=0(a≠0)的形式.巩固练习1判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2-5x=0 (4) x2-4=(x+2) 2(5) a x2+bx+c=0例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.练习:1.方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?2.当m 为何值时,方程(m+1)x 4m 2-2+27mx+5=0是关于的一元二次方程3.关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 的取值范围是________.4.a 满足什么条件时,关于x 的方程a (x 2+x )=3x-(x+1)是一元二次方程?5.关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗?为什么?例4.若x=1是关于x 的一元二次方程a x 2+bx+c=0(a ≠0)的一个根,求代数式2007(a+b+c)的值练习:关于x 的一元二次方程(a-1) x 2+x+a 2-1=0的一个根为0,则求a 的值巩固练习:1.方程ax (x-b )+(b-x )=0的根是( ).A .x 1=b ,x 2=aB .x 1=b ,x 2=1aC .x 1=a ,x 2=1aD .x 1=a 2,x 2=b 2 2.已知x=-1是方程a x 2+bx+c=0的根(b ≠0),则a cb b+=( ). A .1 B .-1 C .0 D .2 3.方程(x+1)2+2x (x+1)=0,那么方程的根x 1=______;x 2=________.4.如果x=1是方程a x 2+bx+3=0的一个根,求(a-b )2+4ab 的值.5.如果关于x 的一元二次方程a x 2+bx+c=0(a ≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.6.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在(21x x -)2-2x 21x x -+1=0,•令21x x-=y ,则有y 2-2y+1=0,根据上述变形数学思想(换元法),解决小明给出的问题:在(x 2-1)2+(x 2-1)=0中,求出(x2-1)2+(x2-1)=0的根.㈡一元二次方程的解法:1、因式分解法:把一个多项式化成几个整式的积的形式叫做因式分解。

一元二次辅导讲义(全面)

一元二次辅导讲义(全面)

杭州教育辅导讲义
2、知识要点归纳
由实际情景加工整理成抽象实际的问题,通过数学化变成数学问题.经过求解、检验、修正改进等进而产生的问题称为数学应用问题,数学应用题是经过加工的数学应用问题,是呈现在我们中学生面前的数学应用问题从数学应用问题到数学应用题作了以下几个方面的“加工”.
(1)加工“背景”:让背景材料为学生所熟悉的材料;让背景材料较为简洁
(2)加工“数学”:让“数学化”的过程较为简单,让各环节中使用的数学思想、方法和知识都是学生所能接受的.
(3)加工“检验”:在问题中的检验和讨论“实际化”即检验数学结果是否合乎实际问题,有验证的意识。

一元二次方程的应用讲义

一元二次方程的应用讲义

面积的一半。

的长方形养鸡场,为了节约材料,鸡场的一另三边用竹篱笆围成,已知篱笆总长为
越过点C,不合要求.
25
2
+x.
)
2(=
解析:考察一元二次方程的面积问题,可以适当的平移图中的道路,将图形转化成更方便、更直接的得出答案的形式。

励志小故事——相信自己是一只雄鹰
一个人在高山之巅的鹰巢里,抓到了一只幼鹰,他把幼鹰带回家,养在鸡笼里。

这只幼鹰和鸡一起啄食、嬉闹和休息。

它以为自己是一只鸡。

这只鹰渐渐长大,羽翼丰满了,主人想把它训练成猎鹰,可是由于终日和鸡混在一起,它已经变得和鸡完全一样,根本没有飞的愿望了。

主人试了各种办法,都毫无效果,最后把它带到山顶上,一把将它扔了出去。

这只鹰像块石头似的,直掉下去,慌乱之中它拼命地扑打翅膀,就这样,它终于飞了起来!。

一元二次方程的概念及解法一对一辅导讲义

一元二次方程的概念及解法一对一辅导讲义

教学目标 1、了解一元二次方程的概念;2、了解一元二次方程的解,并能熟练运用四种方法去解;3、经历一元二次方程的概念的发现过程,体验归纳、类比的思想方法。

重点、难点1、一元二次方程的概念2、如何解一元二次方程考点及考试要求 一元二次方程的概念及解法教 学 内 容第一课时 一元二次方程的概念及解法知识梳理1、如果()a a 21122-=-,则( ) A 、21<a B 、21≤a C 、21>a D 、21≥a2、若a a a a +-+--=21212成立,则a 为__________3、已知0 <x <1,化简:4)1(2+-x x -4)1(2-+x x课前检测4、 981431321211++⋅⋅⋅++++++5、x y xy -==512,,求x xy y 22-+的值一、一元一次方程的概念(1)定义:只含有一个未知数........,并且未知数的最高次数是.........2.,这样的整式方程....就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax注:当b=0时可化为02=+c ax 这是一元二次方程的配方式(3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:02=++c bx ax 时,应满足(a≠0)(4)难点:如何理解 “未知数的最高次数是2”:知识梳理①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

二、一元一次方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;三、一元二次方程的解法(1)基本思想方法:解一元二次方程就是通过“降次”将它化为两个一元一次方程。

《一元二次方程——应用一元二次方程》数学教学PPT课件(8篇)

《一元二次方程——应用一元二次方程》数学教学PPT课件(8篇)
已知两次降价的百分率相同,求每次降价的百分率.设每次降
价的百分率为x,下面所列的方程中正确的是(
)
A.560(1+x)2=315
B.560(1-x)2=315
C.560(1-2x)2=315
若直线AB将它分成面积相等的两部分,则x的值是(
)
A.1或9
B.3或5
C.4或6
D.3或6
(来自《典中点》)
求解面积问题的方法:
1. 规则图形,套用面积公式列方程
2. 不规则图形,采用割补的办法,使其成为规则图形,
根据面积间的和、差关系求解
第二十一章
一元二次方程
应用一元二次方程
第2课时
1
2
课堂讲解 营销利润问题
央是一个与整个封面长宽比例相同的矩形.如果要使四周的
彩色边衬所
占面积是封面面积的四分之—,
上、下边衬等宽,左、右边衬等
宽,应如何设计四周边衬的宽度
(结果保留小数点后一位)?
知2-讲
分析:封面的长宽之比是27∶21=9∶7,中央的矩
形的长宽之比也应是9∶7.设中央的矩形的长
和宽分别是9a cm和7a cm,由此得上、下边
际问题的要求,所以解方程后一定要检验看哪个
根是符合实际问题的解.
知2-练
1
如图,在宽为20米,长为30米的矩形地面上修建两条同样
宽的道路,余下部分作为耕地,若耕地面积需要551平方米,
则修建的路宽应为(
A.1米
B.1.5米
C.2米
D.2.5米
)
知2-练
2 如图是由三个边长分别为6,9和x的正方形所组成的图形,
知1-练
1 某校准备修建一个面积为180平方米的矩形活动场地,它的

一元二次辅导讲义(全面)

一元二次辅导讲义(全面)

杭州教育辅导讲义21xx的形式,然后利用根与系数的关系代入求值.要特别注意如下公式:(1)()2122122212xxxxxx-+=+;(2)21212111xxxxxx+=+;(3)()()212212214xxxxxx-+=-;(4)()()212132132313xxxxxxxx+-+=+;(5)()21221214xxxxxx-+=-;(6)()21221214xxxxxx-+±=-;(7)()2121221221xxxxxxxx++=+;(8)()21212212122xxxxxxxx+-+=+.五、实际应用:1、知识结构2、知识要点归纳由实际情景加工整理成抽象实际的问题,通过数学化变成数学问题.经过求解、检验、修正改进等进而产生的问题称为数学应用问题,数学应用题是经过加工的数学应用问题,是呈现在我们中学生面前的数学应用问题.从数学应用问题到数学应用题作了以下几个方面的“加工”.(1)加工“背景”:让背景材料为学生所熟悉的材料;让背景材料较为简洁.(2)加工“数学”:让“数学化”的过程较为简单,让各环节中使用的数学思想、方法和知识都是学生所能接受的.(3)加工“检验”:在问题中的检验和讨论“实际化”即检验数学结果是否合乎实际问题,有验证的意识就可以了.3解一元二次方程的数学应用题的一般步骤(1)找——找出题中的等量关系(2)设——设未知数(3)列——列出方程,即根据找出的等量关系列出含有未知数的等式(4)解——解出所列的方程(5)验——将方程的解代入方程中检验,回到实际问题中检验(6)答——作答下结论4、中考改革趋势一元二次方程的应用是中考数学重点考查的内容之一,它的试题背景与二元一次方程组的应用、简单分式方程的应用、一元一次方程的应用一样,随着改革的继续而更富有时代的气息,更宣于生活化,更贴近学生的实际.考点回放1考察一元二次方程概念1.下列方程不是整式方程的是()年我省森林覆盖率为家庭轿车将达到多少辆(2) 为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的倍,求该小区最多可建两种车位各多少个试写出所有可能的方案.11.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台12..(2009年潍坊)要对一块长60米、宽40米的矩形荒地ABCD 进行绿化和硬化.(1)设计方案如图①所示,矩形P 、Q 为两块绿地,其余为硬化路面,P 、Q 两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD 面积的14,求P 、Q 两块绿地周围的硬化路面的宽. (2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为1O 和2O ,且1O 到AB BC AD 、、的距离与2O 到CD BC AD 、、的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立若成立,求出圆的半径;若不成立,说明理由.24.已知m,n 是一元二次方程0719992=++x x 的两个根,求)82000)(61998(22++++n n m m 的值。

一元二次辅导讲义(全面)

一元二次辅导讲义(全面)

杭州教育辅导讲义学员编号年级:初三第课时学员姓名辅导科目:数学教师:课题二次函数授课时间:备课时间:教学目标掌握一元二次方程的解法、运用重点、难点一元二次方程根的判别式、根与系数的关系(韦达定理)考点及考试要求本节内容会以选择、天空题、解答题形式出现,是重要的得分点。

教学内容一基本概念1. 方程定义:含有未知数的等式叫方程。

2. 方程的解:使方程左右两边相等的未知数的值叫做方程的解。

3. 解方程:求方程的解的过程叫做解方程。

4.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.一般形式为02c bx ax(0a ).二、一元二次方程的解法1.直接开方法(1)用直接开平方求一元二次方程的解的方法叫做直接开平方法.如果一个一元二次方程,左边是一个含有未知数的完全平方式,右边是一个非负数,就可以用直接开平方法求解.2.配方法(1)用配方法解方程是以配方为手段,以直接开平方法为基础的一种解题方法.是中学数学中常用的数学方法.(2)配方的关键步骤是:在方程两边同时加上一次项系数的绝对值一半的平方.理论根据是:222)(2b a bab a(3)配方的结果是使方程的一边化为一个完全平方式,另一边为非负实数,再利用直接开平方法求解.3.公式法(1)用求根公式解一元二次方程的方法叫求根公式法.(2)一元二次方程)0(02a cbx ax求根公式是:aacbb x242(3)在解一元二次方程时,先把方程化为一般开式,确定c b a ,,的值,在042ac b 的情况下:代入求根公式即可求解. 4.因式分解法1.对于在一元二次方程的一边是0,而另一边易于分解成两个一次因式的积时,可用因式分解法来解这个方程。

2.理论依据:两个因式的积等于零,那么这两个因式中至少有一个等于零。

例如:如果0)5)(1(x x ,那么x -1=0或x +5=0。

因式分解法简便易行,是解一元二次方程的最常用的方法。

一元二次方程的应用-ppt课件

一元二次方程的应用-ppt课件

例1
如图,某小区计划在一块长为 20 m,宽为 12 m

型 的矩形场地上修建三条互相垂直且宽度一样的小路,其余

破 部分种花草,若要使花草的面积达到 160 m2,则小路的宽
为 ______ m.
第一课时 几何图形面积问题
[解析]如解析图,设小路的宽为 x m,将小路进行平


题 移,则其余部分可合成相邻两边的长分别为(20-2x) m,
握手问题、照相问
素之间算一 题、比赛问题(每

双循环
每两个元素
之间算两次
两队之间赛一场)
循环次数


n(n-1)
互赠贺卡、比赛问
题(每两队之间赛 n(n-1)
两场)
第三课时 循环问题、销售问题及数字问题
归纳总结


解决循环问题,首先确定是单循环还是双循环,即确定

单 每两个元素之间算一次还是算两次,再代入公式列方程求解


2 的
26
m)的空旷场地为提前到场的观众设立面积为
300
m

读 封闭型矩形等候区.如图,为了方便观众进出,在两边空出
两个宽各为 1 m 的出入口,共用去隔栏绳 48 m.求工作人
员围成的这个矩形的相邻两边的长度.
第一课时 几何图形面积问题
[答案] 解:设 AB=x m,则 BC=(48-2x+1+1) m,由
重 ■题型一 传播问题

例 1 某种病毒传播非常快,如果一个人被传染,经过

型 两轮传染后就会有 64 个人被传染.


清 题意得 x(48-2x+1+1)=300,解得 x1=10,x2=15.当 x=10

一元二次方程讲义

一元二次方程讲义

一元二次方程讲义(总13页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第6讲 判别式和根与系数的关系【学习目标】1、 使学生会运用根与系数关系解题 2、对一元二次方程以及其根有更深刻的了解,培养分析问题和解决问题的能力【知识要点】1、一元二次方程的判别式:ac b 42-=∆,(1)当042>-ac b 时,方程有两个不相等的实数根,aacb b x 242-±-=;(2)当042=-ac b 时,方程有两个相等的实数根,abx x 221-==; (3)当042<-ac b 时,方程无实数解。

2、一元二次方程根与系数关系的推导:对于一元二次方程02=++c bx ax 其中0≠a ,设其根为21,x x ,由求根公式a acb b x x 24221-±-==,有ab x x -=+21,a cx x =⋅213、常见的形式:(1)212212214)()(x x x x x x -+=- (2))(3)(21213213231x x x x x x x x +-+=+ (3)21221214)(x x x x x x -+±=-【典型例题】例1 当m 分别满足什么条件时,方程2x 2-(4m+1)x +2m 2-1=0,(1)有两个相等实根;(2)有两个不相实根;(3)无实根;(4)有两个实根.例2、已知方程022=--c x x 的一个根是3,求方程的另一个根及c 的值。

例3、已知方程0652=--x x 的根是x 1和x 2,求下列式子的值: (1)2221x x + + 21x x (2)1221x x x x +例4、已知关于x 的方程3x 2-mx-2=0的两根为x 1 ,x 2,且31121=+x x , 求 ①m 的值; ②求x 12+x 22的值.例5、已知关于x 的方程(1)03)21(22=-+--a x a x 有两个不相等的实数根,且关于x 的方程(2)01222=-+-a x x 没有实数根,问a 取什么整数时,方程(1)有整数解【经典练习】姓名: 成绩:一、选择题1、方程012=--kx x 的根的情况是( )A 、有两个不相等的实数根B 、有两个相等的实数根C 、 没有实数根D 、 与k 的取值有关2、已知关于x 的一元二次方程0)1()1(22=+--k x k 的两根互为倒数,则k 的取值是( ).A 、2±B 、2C 、 2-D 、03、设方程0532=+-q x x 的两根为1x 和2x ,且0621=+x x ,那么q 的值等于( ). A 、32-B 、-2C 、91D 、92-4、如果方程12=+mx x 的两个实根互为相反数,那么m 的值为( ) A 、0 B 、-1 C 、1 D 、±15、已知ab ≠0,方程02=++c bx ax 的系数满足ac b =⎪⎭⎫⎝⎛22,则方程的两根之比为( )A 、0∶1B 、1∶1C 、1∶2D 、2∶3 二、填空题1、已知方程0432=--x x 的两个根分别是x 1和x 2,则21x x += _____,21x x =_____2、已知方程02=++b ax x 的两个根分别是2与3,则=a ,=b3、已知方程032=++k x x 的两根之差为5,k=?4、(1)已知方程x 2-12x+m=0的一个根是另一个根的2倍,则m= (2)方程 05242=++mx x 的一个根是另一个根的5倍,则m= ;51为根构造一个一元二次方程 三、简答题1、讨论方程04)1(4)1(22=----x m x m 的根的情况并根据下列条件确定m 的值。

《一元二次方程及应用》讲义

《一元二次方程及应用》讲义

一元二次方程及应用【基础知识回顾】一元二次方程:方程两边都是整式,只含有一个未知数,并且未知数的最高次数是2次。

一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成a x2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现,但二次项必须存在,而且左边通常按未知数的次数从高到低排列,特别注意的是“=”的右边必须整理成0。

注意:判断某个方程是否为一元二次方程,必须满足:①整式方程;②只含有一个未知数;③未知数的最高次数是2 三个条件。

特别注意一元二次方程的左右两边不应有分母和根号中出现未知数。

【提醒:因为通常情况下一元二次方程有两个根,所以解一元二次方程的应用题一定要验根,检验结果是否符合实际问题或是否满足题目中隐含的条件】【重点考点例析】考点一:一元二次方程的解例1 若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是()A.2018B.2008C.2014D.2012点评:此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式a+b的值.考点二:一元二次方程的解法例2 一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和2考点三:根的判别式的运用例5 已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC是等腰三角形时,求k的值.思路分析:(1)先计算出△=1,然后根据判别式的意义即可得到结论;(2)先利用公式法求出方程的解为x1=k,x2=k+1,然后分类讨论:AB=k,AC=k+1,当AB=BC或AC=BC 时△ABC为等腰三角形,然后求出k的值.考点四:一元二次方程的应用2.一元二次方程x2-3x=0的根是.3.解方程:(2x-1)2=x(3x+2)-7.4.关于x的一元二次方程为(m-1)x2-2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?5.下列一元二次方程中,有两个不相等实数根的方程是()A.x2-3x+1=0B.x2+1=0C.x2-2x+1=0D.x2+2x+3=06.若关于x的方程式x2-x+a=0有实根,则a的值可以是()A.2B.1C.0.5D.0.257.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<-2B.k<2C.k>2D.k<2且k≠1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的应用
1.市场经济不仅让我们走上富裕之路,而且让我们学会了科学的经营方法。

个体户张某原计划按600/套销售一批西服,但上市后销售不佳。

为了使资金正常运转,减少库存积压,张某将这批西服连续两次降价处理,价格调整到了384元/套,如两次降价折扣相同,求每次降价率为多少?两次打折均打多少折?
2.某人将2000元人民币按一年定期存入银行。

到期后支取100元用作购物。

剩下的1000元及其应得利息又全部按一年定期存入银行。

若存款利息不变,到期后得本金和利息共1320元。

求这种存款方式的年利率。

3.把一个长方形铁片的四角剪去四块边长为5㎝的正方形,组成一个无盖的长方形,长方形的体积是3000㎝3,铁片长和宽的长度之比为4:3,求这块铁片的长和宽各是多少?
4.机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克。

为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量而进行攻关。

(1)甲车间通过技术革新后,加式一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍为60%,问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少?
(2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油每减少1千克,用油量的重复利用率将增加1。

6%,这样乙车间加工一台大型机械设备的实际耗油量下降到12千克。

问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少?用油的重复利用率是多少?
5.将一条长为20㎝的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形。

(1)要使这两个正方形的面积之和等于17㎝2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12㎝2吗?若能,求出两段铁丝的长长;若不能,请说明理由。

基础能力训练:
一、填空题:
1、若从一块正方形的铁板上的一侧裁去一块3m宽的长方形铁板,剩下的面积为40m2,则原来的
这块铁板的面积为。

2、某种手表,原来每只售价96元,经过连续两次降价后,现要每只售价54元。

则平均每次降价
的百分率是。

3、某书店搞促销活动,推出一种优惠卡,每张卡售价20元,凭卡购书可享受八折优惠,李明同
学到该书店购书,他先买优惠卡,再凭卡付款,结果节省了12元,则李明同学共花钱,
书的总定价是 。

4、某电脑公司在5月1日500台电脑投放市场,经市场调研发现,该批电脑每隔10天平均日销售量减少2台,现准备用38天销售完该批电脑,则预计该项公司5月1日到5月10日的平均日销售量是 台。

二、选择题:
1、某超市一月份的营业额200万元,一月、二月、三月的营业额共1000万元,如果平均每月增长率为x ,则由题意列方程为( )
A 、200(1 + x )2
= 1000 B 、200 + 200×2x =1
C 、200 +200×3x =1000
D 、200[ 1 +(1 +x ) +(1+ x )2
] =1000 2、某商品连续两次降价10% ,结果价格为m 元,则该商品原价为( ) A 、
21.1m 元 B 、1.21元 C 、21
.1m 元 D 、0.81元 3、小宇买了20本练习本,店主给他八折(即标价的80%)优惠,结果便宜了1。

60元,则每本
练习本的标价是( )
A 、0.20元
B 、0。

40元
C 、0。

60元
D 、0。

80元
4、下表给出的是某月份的日历表,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )
A 、24
B 、43
C 、57
D 、69
5以高出进价80%的价格标价,若你想买下标价360元的这种商品,最多降价( ),商店老板才能出售。

A 、80元
B 、100元
C 、120元
D 、160元 三、解答题:
1、在矩形场地的中央修建一个正方形花坛,花坛四周的面积与花坛面积相等,如果场地的长比花
坛的边长多6m ,场地的宽比花坛的边长多4m ,求矩形的长和宽。

2、某工厂计划2年后使产值翻一番,求平均每年的增长率。

(精确到0.01)
3、某工厂规定,该厂家属区的每户居民如果一个月的用电量不超过A 度,则这个月只需交10元
电费,如果超过A 度,则这个月除了要交10元电费外,超过部分还要按每度
100
A
元交费。

(1)该厂某户居民2月份用电90度,超过了规定的A 度,则超过的这部分应交电费为多少元?
(用含A 的代数式表示)
(2
月份用电(度)交电费总额(元)
3月80 25
4月45 10
根据以上表中的数据,求A的值。

4、某年第一季度宁波完成国内生产总值(GDP)354亿元,比杭州少45亿元,宁波和杭州构成了
全省经济的第一集群,绍兴(230亿元)和温州(227。

5元)两城市组成了第二集群,第三集群有台州(194。

4亿元)、嘉兴(167。

6亿元)、金华(161。

7亿元)。

(1)求杭州、宁波、绍兴、温州、台州、嘉兴、金华七市今年第一季度GDP的平均值(精确到1亿元);
(2)经预测,宁波市今年第三季度GDP可达到407亿元,则平均每季度增长的百分率是多少?
(精确到0。

1%)
5、某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件。

后来经过市场调查,发现这种商品单价每降低1元,其销售量可增加10件。

(1)求商场经营该商品原来一天可获利润多少元?
(2)设若后来该商品每件降价x元,商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
6、如图, 在△ABC中, ∠B = 90°, AB=6cm,BC=12cm,点P从点 A 开始沿AB边向点B以 1cm / s 的速度移动, Q 从点B开始沿 BC 边向C点以 2 cm / s 的速度移动, 如果点P、Q分别从A、B同时出发, 几秒钟后, △PBQ 的面积等于8 cm2 ?。

相关文档
最新文档