最新06断裂韧性的测试原理详解

合集下载

材料力学性能-4-断裂韧性

材料力学性能-4-断裂韧性

4.3.1 裂纹尖端塑性区的形状与尺寸
• 依据屈服判据建立符合塑性变形临界条件的方 程,方程式对应的图形即代表塑形区边界的形 状,其边界值则为塑形区的大小。 • Von Mises屈服判据
(σ 1 − σ 2 ) + (σ 2 − σ 3 ) + (σ 3 − σ 1 ) = 2σ s
2 2 2
2
4.3 裂纹尖端塑性区及其修正
如前所述,对裂尖应力场,当 r→0 时, σ y →∞ 。这在实际金属中是难以实 现的。 ∵对金属材料,当应力超过材料的屈服 极限时,将屈服而发生塑性变形,塑性 变形会使裂纹尖端区的应力得以松弛, 此塑性变形的区域称为塑性区。
※由于塑性区的存在,其内应力-应变关系 已不再遵循线弹性力学规律。 ◆线弹性力学分析的有效性??◆ ※若塑性区很小,经适当修正后,线弹性力 学的分析仍然有效。否则,结果将失真! ※首先应确定塑性区的范围,然后提出相应 的修正办法。
• 断裂韧性 KIC 是表征材料抗断裂能力的材料常数。 • 在一定条件(温度、加载速度)下,各种材料的 断裂韧性 KIC 值是确定的,与裂纹尺寸、形状、 外应力大小无关。 • 当 KI 达到了材料的 KIC 时,裂纹就可能发生失稳 扩展而使构件破坏,而不是一定要失稳断裂。因 为,KIC 是 KC 的最低值。 ∴ 断裂判据KI ≥ KIC只是裂纹体失稳断裂的必要 条件,而非充分条件。
不断增多的脆性断裂事故,使人们逐渐有新认识:
• 传统力学是把材料一律看成了理想完整的、均匀的、 无缺陷的连续体。 • 实际的工程材料,在制备、加工及使用过程中,材 料的内部难免存在或多或少的气孔、夹渣、切口或 裂纹等缺陷。
• 传统的强度设计准则不能保证工程构件的安全服役。
• 断裂力学以材料中存在裂纹或类裂纹初始缺陷为前 提,运用连续介质力学的弹塑性理论,考虑材料的 不连续性,研究存在宏观裂纹的裂纹体的断裂问题, 给出了新的材料断裂抗力指标——断裂韧性。

断裂韧性实验报告

断裂韧性实验报告

断裂韧性测试实验报告随着断裂力学得发展,相继提出了材料得、、等一些新得力学性能指标,弥补了常规试验方法得不足,为工程应用提供了可靠得断裂判据与设计依据。

下面介绍下这几种方法得测试原理及试验方法。

1、三种断裂韧性参数得测试方法简介1、1平面应变断裂韧度得测试对于线弹性或小范围得型裂纹试样,裂纹尖端附近得应力应变状态完全由应力强度因子所决定。

就是外载荷,裂纹长度及试样几何形状得函数。

在平面应变状态下,当与得某一组合使=,裂纹开始失稳扩展。

得临界值就是一材料常数,称为平面应变断裂韧度。

测试保持裂纹长度a为定值,而令载荷逐渐增加使裂纹达到临界状态,将此时得、代入所用试样得表达式即可求得。

得试验步骤一般包括:(1)试样得选择与准备(包括试样类型选择、试样尺寸确定、试样方位选择、试样加工及疲劳预制裂纹等);(2)断裂试验;(3)试验结果得处理(包括裂纹长度得测量、条件临界荷载得确定、实验测试值得计算及有效性得判断)。

1、2延性断裂韧度得测试积分延性断裂韧度就是弹塑性裂纹试样受型载荷时,裂纹端点附近区域应力应变场强度力学参量积分得某些特征值。

测试积分得根据就是积分与形变功之间得关系:(1-1)其中为外界对试样所作形变功,包括弹性功与塑性功两部分,为裂纹长度,为试样厚度。

积分测试有单试样法与多试验法之分,其中多试样法又分为柔度标定法与阻力曲线法。

但无论就是单试样法还就是多试样柔度标定法,都须先确定启裂点,而困难正在于此。

因此,我国GB2038-80标准中规定采用绘制阻力曲线来确定金属材料得延性断裂韧度。

这就是一种多试样法,其优点就是无须判定启裂点,且能达到较高得试验精度。

这种方法能同时得到几个积分值,满足工程实际得不同需要。

所谓阻力曲线,就是指相应于某一裂纹真实扩展量得积分值与该真实裂纹扩展量得关系曲线。

标准规定测定一条阻力曲线至少需要5个有效试验点,故一般要5 8件试样。

把按规定加工并预制裂纹得试样加载,记录曲线,并适当掌握停机点以使各试样产生不同得裂纹扩展量(但最大扩展量不超过0、5mm)。

混凝土断裂韧性测试及分析

混凝土断裂韧性测试及分析

混凝土断裂韧性测试及分析一、研究背景混凝土是一种广泛应用的建筑材料,其力学性能对建筑的结构稳定性和安全性具有重要影响。

混凝土断裂韧性是评价混凝土抗裂性能的重要指标,其高低直接影响混凝土的耐久性和使用寿命。

因此,对混凝土断裂韧性进行测试和分析具有重要的理论和实际意义。

二、测试方法混凝土断裂韧性的测试方法有很多种,其中最常用的是三点弯曲试验和压缩试验。

下面将分别介绍这两种测试方法。

1.三点弯曲试验三点弯曲试验是一种常用的混凝土断裂韧性测试方法。

其测试原理是在混凝土试件上施加一定的力,使其在中央发生弯曲,从而使试件中心出现裂缝。

通过测量试件的载荷-位移曲线和计算试件的断裂韧性指标,来评价混凝土的断裂韧性。

三点弯曲试验的具体操作流程如下:(1)根据试验需要制备混凝土试件,试件的尺寸和形状应符合相关标准和要求。

(2)将试件放在试验机上,调整试验机的位置和负荷点的位置,使负荷点位于试件上方的中心处。

(3)开始加载试件,记录载荷和试件的位移值。

当试件出现裂缝时,停止加载试件,记录试件的最大载荷值和裂缝宽度。

(4)根据试件的载荷-位移曲线和试件的几何参数,计算试件的断裂韧性指标。

2.压缩试验压缩试验是另一种常用的混凝土断裂韧性测试方法。

其测试原理是在混凝土试件上施加一定的压力,使其发生压缩破坏,并通过计算试件的断裂韧性指标,来评价混凝土的断裂韧性。

压缩试验的具体操作流程如下:(1)根据试验需要制备混凝土试件,试件的尺寸和形状应符合相关标准和要求。

(2)将试件放在试验机上,调整试验机的位置和压力点的位置,使压力点位于试件上方的中心处。

(3)开始加载试件,记录载荷和试件的位移值。

当试件出现裂裂时,停止加载试件,记录试件的最大载荷值和裂缝宽度。

(4)根据试件的载荷-位移曲线和试件的几何参数,计算试件的断裂韧性指标。

三、分析方法混凝土断裂韧性的分析方法主要包括载荷-位移曲线分析、断裂韧性指标计算和断面应力分析三个方面。

06断裂韧性的测试原理

06断裂韧性的测试原理

06断裂韧性的测试原理断裂韧性是物质在受到外力作用下能吸收和抵抗断裂的能力。

通常情况下,材料的韧性越高,表示其在外力作用下发生断裂的能力越强。

断裂韧性的测试旨在评估材料的强度和耐用性,并确定其在不同应力条件下的破裂行为。

断裂韧性的测试通常包括以下几个方面的原理:1.断裂机理:断裂韧性的测试原理涉及材料的断裂机制。

根据材料的类型和应力条件,材料的断裂机制可以是塑性断裂、脆性断裂或者中间形态的韧性断裂。

通过仔细观察材料在断裂前后的形态和结构变化,可以揭示出材料的断裂机理。

2. 断裂试样:在进行断裂韧性测试时,需要选择适当的试样。

不同的材料和应用领域有不同的标准试样,如带缺口的Charpy试样、K1c样条试样等。

选择合适的试样可以使测试结果更准确和可靠。

3.断裂韧性参数:断裂韧性测试通常评估材料在应力条件下的破裂延伸。

常见的韧性参数包括断裂韧性KIC(平面应力条件下的断裂韧性)、K1c(线性弹性断裂韧性)、JIC(平面应力条件下的断裂韧性指标)等。

这些参数可以通过测量材料的裂纹扩展行为来获得。

4.断裂试验方法:常用的断裂韧性试验方法包括冲击试验、拉伸试验、剪切试验等。

这些试验方法的原理不同,但在测试过程中都会施加一定的外力以模拟材料在实际应力条件下的断裂行为。

5.数据分析:进行断裂韧性测试后,需要对测试结果进行分析和解释。

通过分析断裂试验中产生的数据,比如裂纹的扩展速率、载荷-位移曲线等,可以获得材料的断裂韧性特性。

断裂韧性测试的目的是评估材料在应力条件下的断裂行为,并确定材料的可靠性和耐用性。

这些测试可以为工程师和设计师提供重要的材料性能参数,以支持材料的选择和应用。

同时,断裂韧性测试也可以为材料制造和加工过程提供指导,以提高制品的质量和性能。

综上所述,断裂韧性测试是一项重要的材料测试方法,通过评估材料在应力条件下的破裂延伸和断裂性能,为材料的选择和应用提供了科学依据。

这些测试的原理和方法可以根据不同的材料和应用领域进行调整和优化,以获得准确和可靠的测试结果。

06断裂韧性的测试原理

06断裂韧性的测试原理

06断裂韧性的测试原理断裂韧性是材料在受到外部加载时能够抵抗断裂的能力,是材料力学性能中的一个重要指标。

断裂韧性的测试对于材料的性能评价、设计和选材具有重要意义。

本文将介绍断裂韧性的测试原理,主要包括断裂韧性的概念、测试方法和影响因素等内容。

一、断裂韧性的概念断裂韧性是材料在受到外部加载时能够在不断扩展断裂过程中吸收能量的能力。

断裂韧性通常用断裂能量或断裂韧性指标来衡量,是材料在工程应用中承受冲击或振动载荷时的重要性能指标之一、高断裂韧性的材料具有较好的抗震、抗冲击性能,更有利于延长材料的使用寿命。

二、断裂韧性的测试方法目前常用的测试方法主要包括冲击试验法、拉伸试验法、多普勒声发射法、断口显微镜观察法等。

1.冲击试验法:冲击试验是一种常用的测试方法,通常采用冲击试验机进行测试。

在冲击试验过程中,通过施加冲击载荷,在不同温度和速度条件下测试材料的韧性性能。

冲击试验的结果通常用击穿能量或击穿强度来表示材料的抗冲击性能。

2.拉伸试验法:拉伸试验是另一种常用的测试方法,通常采用万能材料试验机进行测试。

拉伸试验通过施加拉伸载荷,测试材料在拉伸过程中的断裂性能,通常用断裂伸长率、断口形貌等指标来评价材料的韧性性能。

3.多普勒声发射法:多普勒声发射法是一种非破坏性测试方法,通过检测材料在断裂过程中产生的声波信号,分析材料的损伤状态和裂纹扩展情况,可用于评估材料的断裂韧性性能。

4.断口显微镜观察法:断口显微镜观察法是一种常用的显微观察方法,通过对材料的断口形貌进行显微观察,可以分析材料断裂的机制和性能。

不同的材料在断口上表现出不同的形态,如韧性断裂呈现韧窝、韧条、颗粒溅射等形貌。

三、断裂韧性的影响因素1.材料本身的性能:材料的化学成分、组织结构、晶粒大小、晶界强度等因素都会影响材料的断裂韧性。

一般来说,高强度、高硬度和细晶粒的材料往往具有较好的韧性性能。

2.温度和速度:温度和加载速度是影响材料断裂韧性的重要因素。

材料断裂韧性 的测定

材料断裂韧性    的测定

1
式中 FQ —临界载荷 K —条件断裂韧性
Q
九、数据可靠性检验的判据
按上述方法得到的 K Q 是否就是K IC ,尚需经过验证。检验 的判据有两个: ①几何判据。 B≥2.5(KIC/σ S)²α ≥2.5(KIC/σ S)²;W-α ≥2.5(KIC/σ S)²; ②载荷比判据。 Fmax 1.1 Fq
与强韧性的关系。
二、实验原理
裂纹扩展的3种基本形式:张开型(Ⅰ)裂纹扩展、滑开型 (Ⅱ)裂纹扩展、撕开型(Ⅲ)裂纹扩展 1、性弹性体的裂纹尖端部位的应力、应变场强度可以用强 度因子 K I 来描述。当 K I 值达到某一临界值时,裂纹即向前扩 展。由此可见该临界值的大小反应了材料抵抗裂纹扩展的能 力,该临界值是裂纹的扩展阻力。 2、当裂纹尖端附近处于三向应变时,这个阻力达到一个下 限值,而该下限值就为材料的平面应变断裂韧性 K IC 。 3、构件不发生脆断的K准则: K I < K IC
三、试样的形状、尺寸及制备
• 四种试样:标准三点弯曲试样、紧凑拉伸试样、C形拉伸试样和圆形紧凑 拉伸试样。由于三点弯曲试样较为简单,故使用较多。
三、试样的形状、尺寸及制备
由于KIC是材料在平面应变和小范围屈服条件下的KI临界值, 因此,测定KIC时用的试样尺寸,必须保证裂纹尖端处于平面应 变和小范围屈服状态。因此为满足小范围屈服及平面应变条件, 须要求 • ①B≥2.5(KIC/σ S)²; B:试样厚度, • ②α≥2.5(KIC/σS)² ; W:试样宽度或高度, • ③W-α≥2.5(KIC/σS)² ; α:预制疲劳裂纹长度
材料断裂韧性 K IC 的测定
一、实验的目的
由于理想的均匀连续性材料在工程中是不存在的,实际构件 总是不可避免地带来有夹渣、裂纹和划痕等缺陷,这些缺陷 在使用的过程中将逐渐发展成为裂纹。因此本实验的目的在 于研究实际含裂纹构件抵抗裂纹失稳扩展的能力律及原因,了解该材料的断裂韧性

断裂韧性实验报告材料

断裂韧性实验报告材料

断裂韧性测试实验报告随着断裂力学的发展,相继提出了材料的IC K 、()阻力曲线J J R 、)(阻力曲线CTOD R δ等一些新的力学性能指标,弥补了常规试验方法的不足,为工程应用提供了可靠的断裂判据和设计依据。

下面介绍下这几种方法的测试原理及试验方法。

1、三种断裂韧性参数的测试方法简介1. 1 平面应变断裂韧度IC K 的测试对于线弹性或小围的I 型裂纹试样,裂纹尖端附近的应力应变状态完全由应力强度因子I K 所决定。

I K 是外载荷P ,裂纹长度a 及试样几何形状的函数。

在平面应变状态下,当P 和a 的某一组合使I K =IC K ,裂纹开始失稳扩展。

I K 的临界值IC K 是一材料常数,称为平面应变断裂韧度。

测试IC K 保持裂纹长度a 为定值,而令载荷逐渐增加使裂纹达到临界状态,将此时的C P 、a 代入所用试样的I K 表达式即可求得IC K 。

IC K 的试验步骤一般包括:(1) 试样的选择和准备(包括试样类型选择、试样尺寸确定、试样方位选择、试样加工及疲劳预制裂纹等);(2) 断裂试验;(3) 试验结果的处理(包括裂纹长度a 的测量、条件临界荷载Q P 的确定、实验测试值Q K 的计算及Q K 有效性的判断)。

1. 2 延性断裂韧度R J 的测试J 积分延性断裂韧度是弹塑性裂纹试样受I 型载荷时,裂纹端点附近区域应力应变场强度力学参量J 积分的某些特征值。

测试J 积分的根据是J 积分与形变功之间的关系:a B U J ∂∂-= (1-1) 其中U 为外界对试样所作形变功,包括弹性功和塑性功两部分,a 为裂纹长度,B 为试样厚度。

J 积分测试有单试样法和多试验法之分,其中多试样法又分为柔度标定法和阻力曲线法。

但无论是单试样法还是多试样柔度标定法,都须先确定启裂点,而困难正在于此。

因此,我国GB2038-80标准中规定采用绘制R J 阻力曲线来确定金属材料的延性断裂韧度。

这是一种多试样法,其优点是无须判定启裂点,且能达到较高的试验精度。

如何测试材料断裂韧性

如何测试材料断裂韧性
2
的临界应力就愈大;当给定外力时,若 材料的断裂韧性值愈高,其裂纹达到失 稳扩展时的临界尺寸就愈大。预先在电 子拉力试验机测试试
3
样表面先抛光成镜面,在显微硬度仪上, 以10Kg负载在抛光表面用硬度计的锥形 金刚石压头产生一压痕,这样在压痕的 四个顶点就产
4
生了预制裂纹。根据压痕载荷P和压痕裂 纹扩展长度C计算出断裂韧性数值 (KIC)。计算公式为:E为扬氏模量, 例如对于Si3N
17
荷测量的影响相对较小,但是对小负荷 测量的影响是很大的。如何解决万能材 料试验机测试结果误差呢?
误差分析:可能有两个
18
方面的原因。一是主机部分,二是试验 力传感器部分。
主机部分造成的误差 在主机部分由于安装不水平时,将 会使工作
19
活塞和工作油缸壁产生摩擦力,从而产 生误差。一般表现为正差,并且随着载 荷的增加,产生的误差逐渐较小。万能 材料试验机试验力传
12
在摆杆侧面调整机体左右水平。 万能材料试验机夹具的选择 1、根据主机最大试验力选择主要夹
具。万能材料试验机夹
13
具所能承受的最大力必须大于等于主机 的最大试验力。
2、根据非标配置、或扩展配置选一 些次要夹具。(例如:扩展配置传感
14
器为10kN,所选次要夹具所能承受的最大 试验力也要为10kN。
5
4系统一般取300GPa。公式中载荷P单位 为kg, 裂纹长度C单位为mm, 显微硬度HV 单位为GPa。电子拉力试验机测试
6
材料式样类型,目前国内常用的断裂韧 性试样有两种:1)三点弯曲试样SE(B) 2)紧凑拉伸试样C(T)电子拉力试验机 测试材料
7
方法比较:IM法比SENB法简便经济,但 测得的数据不如SENB法可靠; SENB法 是普遍公认的标准测试方法;为了实际 方

混凝土断裂韧性试验原理

混凝土断裂韧性试验原理

混凝土断裂韧性试验原理一、介绍混凝土断裂韧性试验混凝土是一种在建筑中广泛使用的材料,其力学性能对建筑物的设计和使用具有重要影响。

混凝土断裂韧性试验是一种测试混凝土在拉伸过程中的能量吸收能力和韧性指标的方法。

通过这种试验可以评估混凝土结构的抗震性能、耐久性能等重要指标,对于提高混凝土结构的安全性和可靠性具有重要的意义。

二、试验原理1. 混凝土的断裂韧性混凝土的断裂韧性是指在混凝土受拉应力作用下,在裂纹扩展过程中,混凝土材料的能量吸收能力和抵抗裂纹扩展的能力。

混凝土的断裂韧性是一个重要的指标,因为它与混凝土在抗震、防爆、抗风等方面的性能密切相关。

2. 混凝土断裂韧性试验的分类混凝土断裂韧性试验可以分为静态试验和动态试验两种。

静态试验是指在恒定加载速率下进行的试验,主要用于评估混凝土在低速加载下的断裂韧性。

动态试验是指在高速加载下进行的试验,主要用于评估混凝土在高速冲击或爆炸性质下的断裂韧性。

3. 混凝土断裂韧性试验的基本原理混凝土断裂韧性试验的基本原理是通过施加拉应力,使混凝土试件发生裂纹,并在裂纹扩展过程中测量试件的变形和力学性能的变化。

试验通常使用标准试件,如圆柱体、方体等。

试验中需要测量的主要参数有:试件的应力-应变曲线、试件的最大拉应力、裂纹的扩展长度、裂纹的扩展力、试件的断裂能量等。

三、混凝土断裂韧性试验的步骤1. 制备试件:按照标准方法制备混凝土试件,并进行养护。

2. 安装试件:将试件固定在试验机上,并对试件施加初始负载。

3. 施加荷载:在恒定的加载速率下施加荷载,并在试件的应力-应变曲线上记录试验数据。

4. 测量裂纹:使用光学显微镜或其他方法测量试件上的裂纹长度。

5. 停止试验:当试件达到最大载荷时,停止试验,并记录试件的最大应力和断裂能量等试验数据。

四、混凝土断裂韧性试验的设备混凝土断裂韧性试验的设备主要包括试验机、压力计、测量仪器等。

试验机是实验室中最重要的设备之一,用于施加荷载并测量试件的力学性能。

混凝土断裂韧性测试及分析

混凝土断裂韧性测试及分析

混凝土断裂韧性测试及分析一、引言混凝土是一种广泛使用的建筑材料,其强度和耐久性对于结构的稳定性至关重要。

然而,混凝土在受到外部荷载时容易发生断裂,这会对结构的安全性造成威胁。

因此,混凝土的韧性是评估其耐久性和结构安全性的重要指标。

本文将介绍混凝土断裂韧性测试及分析的相关内容。

二、混凝土断裂韧性的定义和意义混凝土断裂韧性是指混凝土在断裂前能够吸收能量的能力。

这种能力可以有效地抵抗外部荷载的破坏,延缓结构的崩溃时间,从而提高结构的安全性。

同时,混凝土断裂韧性也可以反映混凝土的耐久性,即混凝土在长期使用中能够保持稳定的性能。

三、混凝土断裂韧性测试方法1.三点弯曲试验三点弯曲试验是一种常用的混凝土断裂韧性测试方法。

该方法将混凝土试样放在两个支承点之间,施加一定的负荷,使其发生弯曲。

通过测量混凝土试样的变形和载荷之间的关系,可以计算出混凝土的断裂韧性指标。

2.剪切试验剪切试验是另一种常用的混凝土断裂韧性测试方法。

该方法将混凝土试样置于钳夹中,施加剪切力,使其发生剪切变形。

通过测量混凝土试样的变形和载荷之间的关系,可以计算出混凝土的断裂韧性指标。

3.拉伸试验拉伸试验是一种较少使用的混凝土断裂韧性测试方法。

该方法将混凝土试样置于两个钩子之间,施加拉力,使其发生拉伸变形。

通过测量混凝土试样的变形和载荷之间的关系,可以计算出混凝土的断裂韧性指标。

四、混凝土断裂韧性指标1.断裂韧性指数断裂韧性指数是指混凝土在断裂前能够吸收的能量,通常用单位截面面积吸收的能量来表示。

断裂韧性指数越高,代表混凝土在受到外部荷载时能够吸收更多的能量,具有更好的抗震性能。

2.断裂延性指数断裂延性指数是指混凝土在断裂前能够发生的变形,通常用最大位移和最大载荷之间的比值来表示。

断裂延性指数越高,代表混凝土在受到外部荷载时能够发生更大的变形,具有更好的抗震性能。

3.塑性韧性指数塑性韧性指数是指混凝土在断裂后能够继续承受载荷的能力,通常用最大载荷和残余载荷之间的比值来表示。

06 断裂韧性的测试原理解析

06 断裂韧性的测试原理解析
© Kylinsoft, 2010 断裂韧性的测试原理-3
Related specifications
BS 7448 Parts 1-4 Fracture Mechanics Toughness Tests BS 6729 Determination of the Dynamic Fracture Toughness of Metallic Materials BS 7910 Guide on Methods for Assessing the Acceptability of Flaws in Metallic Structures
© Kylinsoft, 2010
断裂韧性的测试原理-12
© Kylinsoft, 2010
断裂韧性的测试原理-13
© Kylinsoft, 2010
断裂韧性的测试原理-14
三点弯曲试样SENB
• 三点弯曲试样具有易于加工和便于加载的优点
© Kylinsoft, 2010
断裂韧性的测试原理-15
© Kylinsoft, 2010 断裂韧性的测试原理-6
一 G的力学标定
多试件法
© Ky
制备一组试样使其具有 相同的外形尺寸,但其 中的裂纹长度各不相同 。在弹性范围内作出每 个试样的载荷-位移(曲 线。
© Kylinsoft, 2010
断裂韧性的测试原理-8
Fracture Mechanics
Pirate Captain
第六章 断裂韧性的测试原理
齐俊林
断裂力学实验内容
1. 材料性能的测试,即材料破坏与裂纹扩展的内 在条件。例如,平面应变断裂韧度、临界张开 位移、临界J积分、疲劳裂纹扩展速率、蠕变 裂纹扩展速率、动态断裂韧度以及应力腐蚀临 界应力强度因子等。 2. 裂纹尖端能量场和应力应变场参数的实验标定 。例如,应力强度因子的实验标定、J积分的 实验标定等。 3. 理论探索和验证性实验。例如,压力容器与管 道的全尺寸爆破试验、大型焊接结构接头的断 裂实验等。

断裂韧性测定

断裂韧性测定

断裂韧性测定
断裂韧性测定,也叫断裂硬度测定,是一种测定物体的破坏容性能力的重要评价标准。

其实质就是针对特定物体,在承受一定表面拉力时,观测物体断裂趋势,推算出断裂硬度数据,从而衡量物体强度和完整性能,并分析断裂分离原因。

断裂韧性测定,基本装置主要由待测样品、测试机架、拉力发生装置、负荷传递系统等组成,以及控制测试过程的操作台。

断裂硬度测定,做法通常是将物体固定在测试架上,采用拉力发生装置使其承受外力,然后观测其断裂趋势及分离形态。

一般而言,断裂硬度越大,表明物体强度及完整性能越好,耐久性比较强;相反,断裂硬度越小,则物体强度及完整性较差,耐久性较差。

断裂韧性测定具有明确、准确与可控等优点,可用于金属材料、塑料、橡胶、碳纤维、食品等多种物体的完整性研究,并且在材料科学领域和工程生产实际应用中广泛。

有效准确地测量断裂韧性,不仅有助于提升物体的完整性,而且对于判断对比相同物体的强度及完整性,也大有裨益。

总之,断裂韧性测定是一种重要的物体完整性评估方式,结合了科学实验与工程应用,为各领域提供了助力,具有广阔的发展前景。

(完整版)断裂韧性KIC测试试验

(完整版)断裂韧性KIC测试试验

(完整版)断裂韧性KIC测试试验实验五断裂韧性K IC测试试验⼀、试样的材料、热处理⼯艺及该种钢材的σy和KⅠC的参考值本实验采⽤标准三点弯曲试样(代号SE(B)),材料为40Cr,其热处理⼯艺如下:①热处理⼯艺:860℃保温1h,油淬;220℃回⽕,保温0.5~1h;②缺⼝加疲劳裂纹总长:9~11mm(疲劳裂纹2~3.5mm)③不导⾓,保留尖⾓。

样品实测HRC50,从机械⼿册中关于40Cr 的热处理实验数据曲线上查得:σy=σ0.2=1650MPa,σb=1850MPa,δ5=9%,ψ=34%,KⅠC=42MN·m-3/2。

⼆、试样的形状及尺⼨国家标准GB/T 4161-1984《⾦属材料平⾯应变断裂韧度KⅠC试验⽅法》中规定了两种测试断裂韧性的标准试样:标准三点弯曲试样(代号SE(B))和紧凑拉伸试样(代号C(T))。

这两种试样的裂纹扩展⽅式都是Ⅰ型的。

本实验采⽤标准三点弯曲试样(代号SE(B))。

试样的形状及各尺⼨之间的关系如图所⽰:为了达到平⾯应变条件,试样厚度B必须满⾜下式:B≧2.5(KⅠC/σy)2a≧2.5(KⅠC/σy)2(W-a)≧2.5(KⅠC/σy)2式中:σy—屈服强度σ0.2或σs。

因此,在确定试样尺⼨时,要预先估计所测材料的KⅠC和σy值,再根据上式确定试样的最⼩厚度B。

若材料的KⅠC值⽆法估计,则可根据σy/E的值来确定B的⼤⼩,然后再确定试样的其他尺⼨。

试样可从机件实物上切去,或锻、铸试样⽑坯。

在轧制钢材取样时,应注明裂纹⾯取向和裂纹扩展⽅向。

试样⽑坯粗加⼯后,进⾏热处理和磨削,随后开缺⼝和预制裂纹。

试样上的缺⼝⼀般在钼丝电切割机床上进⾏切割。

为了使引发的裂纹平直,缺⼝应尽可能地尖锐。

开好缺⼝的试样,在⾼频疲劳试验机上预制裂纹。

疲劳裂纹长度应不⼩于2.5%W,且不⼩于1.5mm。

a/W值应控制在0.45~0.55范围内。

本试样采⽤标准三点弯曲试样(代号SE(B)),其尺⼨:宽W=19.92mm,厚B=10.20mm 总长100.03mm。

纸板测断裂韧性的实验原理

纸板测断裂韧性的实验原理

纸板测断裂韧性的实验原理纸板是一种常见的包装材料,其断裂韧性是衡量其抗拉性能的重要指标之一。

通过实验测量纸板的断裂韧性,可以评估纸板的质量和性能,以提高其使用效果和安全性。

纸板断裂韧性的实验要求使用一台万能材料测试机或拉伸试验机。

该设备具有较高的精度和可靠性,可以用于对纸板进行拉伸实验。

为了准确测定纸板的断裂韧性,需要进行以下实验步骤:1. 样品制备:从纸板中切割出符合标准尺寸的试样,通常为长方形形状。

试样的尺寸应根据实验要求和标准来确定,确保其代表性和可靠性。

2. 实验装置准备:将试样夹住并安装到拉伸试验机的夹具上。

确保试样与夹具之间紧密贴合,避免试样滑动或损坏。

3. 实验参数设置:选择合适的拉伸速度和加载方式。

拉伸速度通常为标准规定的固定值,以确保结果的可比性。

加载方式可以选择单纯拉伸、斜拉伸或者多向拉伸,根据实际使用情况和要求来确定。

4. 进行拉伸实验:根据实验参数设置好后,启动万能材料测试机,开始进行拉伸实验。

测试机会施加一个持续的拉伸力,试样会逐渐承受拉伸负荷,直到发生断裂。

5. 数据记录和分析:在拉伸实验过程中,测试机会记录试样的应力和应变数据。

应力是试样所受拉力与试样的横截面积之比,而应变是试样在受力下发生的形变与原始长度之比。

根据这些数据,可以计算出纸板的断裂强度和断裂伸长率。

6. 结果评价:通过对实验结果进行分析和比较,评价纸板的断裂韧性。

通常使用断裂强度和断裂伸长率作为评价指标,较高的数值代表纸板具有较好的断裂韧性。

纸板断裂韧性实验的原理是通过施加拉伸力使试样发生拉伸变形,并记录拉伸过程中试样的应力和应变数据,最终计算出纸板的断裂强度和断裂伸长率。

而断裂强度反映了纸板抵抗拉伸破坏的能力,断裂伸长率则表示纸板在受力下能够发生的拉伸变形程度。

纸板的断裂韧性的实验原理可总结为以下几点:1. 施加拉伸力:在拉伸试验中,试样受到一个拉伸力的作用,使其发生拉伸变形。

通过施加拉伸力,可以评估纸板在拉伸载荷下的性能。

材料断裂实验中的断裂韧性测定和分析

材料断裂实验中的断裂韧性测定和分析

材料断裂实验中的断裂韧性测定和分析材料断裂是工程领域中一个重要的研究课题,因为它直接关系到材料的可靠性和安全性。

在材料断裂实验中,断裂韧性是一个重要的参数,它可以反映材料抵抗断裂的能力。

本文将介绍材料断裂实验中的断裂韧性测定方法和分析过程。

一、断裂韧性的定义和意义断裂韧性是材料在断裂过程中吸收的能量与断裂面积的比值。

它可以反映材料在受力过程中的变形能力和抗断裂能力。

断裂韧性是评价材料抗断裂能力的重要指标,对于工程结构的设计和材料的选择具有重要意义。

二、断裂韧性的测定方法1. 断裂韧性的静态测定方法静态测定方法是通过对材料进行拉伸试验或冲击试验来测定断裂韧性。

拉伸试验是最常用的测定断裂韧性的方法之一。

在拉伸试验中,通过测量材料的应力-应变曲线,可以计算出断裂韧性。

冲击试验是另一种常用的测定断裂韧性的方法。

在冲击试验中,通过测量材料在冲击载荷下的断裂能量,可以计算出断裂韧性。

2. 断裂韧性的动态测定方法动态测定方法是通过对材料进行高速冲击试验或动态加载试验来测定断裂韧性。

高速冲击试验是一种常用的动态测定断裂韧性的方法。

在高速冲击试验中,通过测量材料在高速冲击载荷下的断裂能量,可以计算出断裂韧性。

动态加载试验是另一种常用的动态测定断裂韧性的方法。

在动态加载试验中,通过对材料进行动态加载,观察材料的断裂行为,可以计算出断裂韧性。

三、断裂韧性的分析过程断裂韧性的分析过程主要包括断裂面观察和断裂韧性计算两个步骤。

1. 断裂面观察断裂面观察是通过对材料的断裂面进行显微镜观察,来了解材料的断裂机制和断裂特征。

断裂面观察可以帮助我们判断材料的断裂方式是韧性断裂还是脆性断裂,以及了解断裂过程中的微观损伤和裂纹扩展情况。

2. 断裂韧性计算断裂韧性的计算是通过测量材料在断裂过程中吸收的能量和断裂面积,来计算出断裂韧性。

在静态测定方法中,可以通过拉伸试验或冲击试验得到断裂韧性的计算结果。

在动态测定方法中,可以通过高速冲击试验或动态加载试验得到断裂韧性的计算结果。

混凝土断裂韧性测试方法

混凝土断裂韧性测试方法

混凝土断裂韧性测试方法混凝土是一种广泛应用于建筑、桥梁等工程结构中的重要材料,其性能的稳定性与可靠性对结构的安全性和使用寿命有着重要的影响。

而混凝土的断裂韧性是评估其在受力过程中的抗裂性能的重要参数之一。

本文将介绍混凝土断裂韧性测试方法,包括试验原理、试验方法、试验步骤、数据处理等方面。

一、试验原理混凝土的断裂韧性是指在受力过程中,混凝土试件发生微裂纹后,其能够继续承受载荷并发生一定程度的塑性变形的能力。

断裂韧性试验是通过施加单向拉伸载荷,使混凝土试件发生裂纹,并测量裂纹扩展过程中的载荷和位移等参数,计算出混凝土的断裂韧性指标,来评估混凝土的抗裂性能。

二、试验方法本文介绍的混凝土断裂韧性试验方法为三点弯曲试验法。

具体试验过程如下:1.试件制备试件采用标准圆柱形混凝土试件,直径为100mm,高度为200mm。

试件应在混凝土浇筑后28天后进行试验,保证混凝土的强度稳定。

试件表面应平整光滑,无明显缺陷。

2.试验设备试验设备主要包括试验机和压力传感器。

试验机应具备单向拉伸能力,并能够测量试件的载荷和位移。

压力传感器应能够测量试件中心处的载荷。

3.试验步骤(1)试件安装将试件放置于试验机上,并用夹具夹住试件的两端,使其与试验机平行,并保证试件中心线与试验机的轴线重合。

(2)载荷施加在试件中心处施加一个垂直于试件轴线的单向拉伸载荷,使试件发生裂纹。

载荷的施加速度应在试件强度的10%~20%之间。

当试件载荷达到峰值时,停止施加载荷。

(3)位移测量在试件载荷峰值时,记录试件中心处的位移,作为试件的最大位移。

(4)载荷卸载在试件载荷峰值时,以同样的速度进行载荷卸载,直至试件断裂。

(5)位移测量在试件断裂时,记录试件中心处的位移,作为试件的位移能力。

4.数据处理根据试验结果,计算出试件的断裂载荷Pf、最大位移Dmax、位移能力U和断裂韧性参数KIC。

其中,断裂韧性参数KIC的计算公式为:KIC=Pf/(2B√a)其中,B为试件的宽度,a为试件的裂纹长度。

6-断裂韧性

6-断裂韧性

KC Y ac
工学院 材料系
4.1线弹性条件下的断裂韧度
四、裂纹尖端屈服区及修正 实际上,金属材料在裂纹扩展前,其尖端附近,由于应力 集中要先出现一个或大或小的塑性变形区, 在塑性区内应力 应变关系不是线性关系,上述KI判据不再适用 如果塑性区尺寸比裂纹尺寸a和截面尺寸小一个数量级以上, 只要对KI进行适当修正,则仍可以适用。 1.塑性区的形状和尺寸 x y x y 2 2 ( ) xy 根据材料力学,通过一点的 1 2 2 主应力 σ1、σ2、σ3和 x 、y 、 x y 2 2 z方向的各应力分量的关系为: x y 2 ( ) xy 2 2 3 ( 1 2 )
工学院 材料系
4.1线弹性条件下的断裂韧度
1965年英国的一个氨合成塔,设 计压力为36MPa,水压试验压力为 49MPa,材料的屈服强度为 460MPa,此容器在试压过程中加 压到35.2MPa时,就突然爆炸,其 中有一块重达2T的碎片竟飞出数十 米远。 1954年,美国发射北极星导弹,固 体燃料发动机壳体,采用了超高强度 钢D6AC,σS为1400MPa,按照传统 的强度设计与验收时,其各项性能指 标包括强度与韧性都符合要求,设计 时的工作应力远低于材料的屈服强度 发射点火不久,就发生爆炸。
如F5 前有比F5 大的载荷,此最高载荷为FQ 。
工学院 材料系
4.2 断裂韧性KⅠC的测试
a K Y 1 3 2 W BW FS
S=4W
15 a ai 5 i 1
将测定的裂纹失稳扩展的临界载荷FQ及试样断裂后测出的 裂纹长度a代入,即可求出KI 的条件值,记为KQ。 然后再依据下列规定判断KQ是否为平面应变状态下的KIC, 即判断KQ的有效性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 第二个字母表示裂纹 扩展方向
1
18
1
19
试样尺寸
• 尺寸相对于试验材料的性能应满足一定的限制条件,使试样满足平面应 变及小范围屈服的力学条件时,才能获得该材料的稳定的KIC值。
• 试样厚度B的要求是满足平面应变的条件之一。 • 裂纹长度a要求是保证线性弹性断裂力学所要求的小范围屈服所必须的。 • 韧带宽度(w-a)的大小,既能影响小范围屈服,又能影响包围塑性区的广
© Kylinsoft, 2010
1
8
分别以柔度与裂纹长度 为坐标轴作出柔度-裂 纹长度的关系曲线。
© Kylinsoft, 2010
1
9
在图解法中常将柔度表 达式改写成无量纲形式 Nhomakorabea P BW
© Kylinsoft, 2010
1
10
二 平面应变断裂韧性KIc的测试原理
1 试验原理
• 用试验的材料制成一定形状和尺寸的试样,在试样上制备 出相当于缺陷的裂纹,然后对试样进行加载。由于试样及 其裂纹的形状、尺寸和加载方式以及断裂部位都是预先确 定的,所以其应力场强度因子KI的表达式也是确定的。
3. 理论探索和验证性实验。例如,压力容器与管 道的全尺寸爆破试验、大型焊接结构接头的断 裂实验等。
1
3
Related specifications
BS 7448 Parts 1-4 Fracture Mechanics Toughness Tests BS 6729 Determination of the Dynamic Fracture Toughness of Metallic Materials BS 7910 Guide on Methods for Assessing the Acceptability of Flaws in Metallic Structures
ASTM E1820-09 Standard Test Method for Measurement for Fracture Toughness
ASTM E1823-09 Technology Relating to Fatigue and Fracture Testing
ASTM E1921-09
大弹性范围的大小。
1
20
裂纹制备
• 引发裂纹的切口一般采用线切割加工, 其宽度一般为0.12mm,切口顶端的尖裂 纹可在高频拉伸疲劳试验机上预制。
• 控制好疲劳载荷,裂纹长度a应在0.45~ 0.55W之间。
1
21
3 试验方法
1
22
紧凑拉伸试验
1
23
确定临界载荷Pq
• 过原点o作一割线,该割线的斜率比P-V曲线中直线部分的斜率低 5有 图 上 曲%1的还线2,I点有-,3该(的大cI割)I中载于就线曲属P荷与5的线于均P载Ⅲ这低-V荷中种于曲,即情P线5,则为形的则取这。交取其种点裂中情为纹最形P5失高;,稳的如若扩载果在展荷在交的为交点条P点P55,件以P5如以载前图前荷P-V在P(aq曲=)P、P-线V5(,曲b上)如中线所
1
11
2 试件
• 三点弯曲试样SENB(Single edged notched bend specimen) • 紧凑拉伸试样CT(Compact tension specimen) • C形拉伸试样 • 圆形紧凑拉伸试样 • 单边缺口拉伸试样(Single edged notched tension specimen) • 宽板试样(curved wide plate testing)
1
12
1
13
1
14
三点弯曲试样SENB
• 三点弯曲试样具有易于加工和便于加载的优点
1
15
紧凑拉伸试样CT
• 紧凑拉伸试样则有节省材料的好处
1
16
C形拉伸试样和圆形紧凑拉伸试样
• C型拉伸试样和圆型紧凑拉伸试样分别适用于 管材和棒材的试验
1
17
取样和标记
• 第一个字母表示裂纹 面的法线方向
• 在加载过程中,用测试仪器连续地记录载荷增加及裂纹扩 展情况的P-V曲线(V为裂纹嘴张开位移)。将曲线上表明裂纹 失稳扩展的临界状态的载荷Pq及试样断裂后测出的预制的 裂纹深度a,代入应力场强度因子的表达式求出裂纹失稳扩 展的临界KI值并记为Kq。
• 然后再依据一些规定判断Kq是不是平面应变状态下的KIC, 如果Kq不符合判别的要求,则仍不是KIC,需要增大试样尺 寸重新试验,直到测出材料的KIC值。
•GB 2038-1991 金属材料延性断裂韧度 JIc试验方法 •GB/T 21143-2007 金属材料准静态断裂韧度的统一试验方法
1
6
一 G的力学标定
多试件法
© Kylinsoft, 2010
1
7
制备一组试样使其具有 相同的外形尺寸,但其 中的裂纹长度各不相同 。在弹性范围内作出每 个试样的载荷-位移(曲 线。
Standard Test Method for Determination of Reference
Temperature, T0, for Ferritic Steels in the Transition
Range
1
5
Related specifications
•GB 4161-1984 金属材料平面应变断裂韧度KIc试验方法 •GB 2358-1980 裂纹张开位移(COD)试验方法
1
4
Related specifications
ASTM E399-09 Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials
ASTM E1290-09 Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement
06断裂韧性的测试原理详解
第六章 断裂韧性的测试原理
齐俊林
断裂力学实验内容
1. 材料性能的测试,即材料破坏与裂纹扩展的内 在条件。例如,平面应变断裂韧度、临界张开 位移、临界J积分、疲劳裂纹扩展速率、蠕变 裂纹扩展速率、动态断裂韧度以及应力腐蚀临 界应力强度因子等。
2. 裂纹尖端能量场和应力应变场参数的实验标定 。例如,应力强度因子的实验标定、J积分的 实验标定等。
相关文档
最新文档