运算放大电路实验报告
运算放大电路实验报告
运算放大电路实验报告运算放大电路实验报告引言运算放大电路是电子工程领域中一种常见的电路,它广泛应用于信号放大、滤波、积分、微分等功能。
本实验旨在通过搭建运算放大电路并进行实际测试,探究其工作原理和特性。
实验目的1. 了解运算放大电路的基本原理和组成结构;2. 熟悉运算放大电路的实际搭建和调试方法;3. 掌握运算放大电路的特性参数测量方法。
实验器材1. 运算放大器(OP-AMP);2. 电阻、电容等元件;3. 示波器、函数发生器等测试仪器。
实验步骤1. 搭建基本的非反馈运算放大电路。
将运算放大器的正、负输入端分别连接到电压源和接地,输出端接入负载电阻。
根据实验要求选择适当的电阻值,并使用示波器检测输出信号。
2. 测试运算放大器的放大倍数。
将输入信号接入运算放大器的正输入端,通过函数发生器输入不同频率和幅度的信号,并测量输出信号的幅度。
根据测量结果计算得到运算放大器的放大倍数。
3. 探究运算放大器的输入阻抗和输出阻抗。
使用电压源作为输入信号,通过改变输入电阻的值,测量输入电压和输出电压之间的关系。
同样地,通过改变负载电阻的值,测量输出电压和负载电阻之间的关系。
分析测量结果,得出运算放大器的输入阻抗和输出阻抗。
4. 实现运算放大器的反相放大功能。
在基本的非反馈运算放大电路的基础上,引入反馈电阻,并调整电阻的值,使得输出信号与输入信号呈反相关系。
通过示波器观察和测量输入信号和输出信号的波形,验证反相放大的功能。
实验结果与分析1. 在搭建基本的非反馈运算放大电路后,通过示波器观察到输出信号与输入信号具有相同的波形,且幅度有所放大。
这表明运算放大器实现了信号的放大功能。
2. 在测试运算放大器的放大倍数时,发现输出信号的幅度与输入信号的幅度成正比。
根据测量数据计算得到的放大倍数与理论值相符合,说明运算放大器具有较好的放大性能。
3. 通过测量输入电压和输出电压之间的关系,得到运算放大器的输入阻抗约为几十兆欧姆,说明输入电阻较高,不会对输入信号产生较大的负载效应。
集成运算放大器的应用实验报告
一、实验目的1. 了解集成运算放大器的基本特性和工作原理。
2. 掌握集成运算放大器的基本应用电路的设计与调试方法。
3. 熟悉集成运算放大器在实际电路中的应用,提高电子电路设计能力。
二、实验原理集成运算放大器(Op-Amp)是一种高增益、低输入阻抗、高输入电阻、低输出阻抗的直接耦合放大器。
它广泛应用于各种模拟信号处理和产生电路中。
本实验主要研究集成运算放大器的基本应用电路,包括反相比例放大电路、同相比例放大电路、加法运算电路、减法运算电路等。
三、实验仪器与设备1. 集成运算放大器:TL0822. 直流稳压电源:±15V3. 数字万用表4. 示波器5. 面包板6. 连接线7. 电阻、电容等元件四、实验内容1. 反相比例放大电路(1)电路连接:将集成运算放大器TL082的输入端分别连接到输入电阻R1和地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到反相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成反相关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成反相关系,放大倍数为-10。
2. 同相比例放大电路(1)电路连接:将集成运算放大器TL082的同相输入端连接到输入电阻R1,反相输入端连接到地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到同相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成正比关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成正比关系,放大倍数为10。
3. 加法运算电路(1)电路连接:将集成运算放大器TL082的反相输入端连接到地,同相输入端连接到两个输入电阻R1和R2,输出端连接到负载电阻R3,反馈电阻Rf与R1、R2并联后连接到同相输入端。
模电实验报告-运算放大电路
实验仪器: 稳压电源 示波器 信号发生器 运算放大器 电阻、电容
实验步骤: 1)首先检查所领用实验仪器、器件是否工作正常、引脚是否完好。 2)按实验图一接好电路,检查无误后接入电源,用万用表测量运放的输入、输出端的 静态电压,并记录。 3)利用信号发生器,在 Vi 端输入一正弦信号:频率为 1KHz,幅度为 100mV。 4)在 Vo 端观察信号输出,并记录输出幅度,同时比对 Vi 和 Vo 之间的相位,并记录。 5)再调整信号发生器的幅度值至 200mV,重复 3)的步骤。 6)按实验图二接好电路,检查无误后接入电源,用万用表测量运放的输入、输出端的 静态电压,并记录。 7)利用信号发生器,在 Vi 端输入一正弦信号:频率为 1KHz,幅度为 100mV。 8)重复 3) 、4)步骤,记录数据。
数据记录: 记录条目 静态工作电压 1 反相比例放大器 正向输入端: 反向输入端: 输出端: 正向输入端: 反向输入端: 输出端: 输出信号 (V0) 波形: 万用表测试 记录内容 备注
2
同相比例放大器
输入信号(Vi) 4 5 100mV
------------------------------
4
200mV
5
波形:Leabharlann ------------------------------
------------------------------
深圳大学学生实验报告用纸
实验结论:
指导教师批阅意见:
成绩评定:
指导教师签字: 年 月 日 备注:
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。 2、教师批改学生实验报告时间应在学生提交实验报告时间后 10 日内。
运算放大电路运算放大电路计算集成运算放大电路差分运算放大电路两级运算放大电路模拟运算放大电路基本运算放大电路模拟运算放大电路三差动放大电路实验负反馈放大电路实验
运算放大器的应用实验报告
运算放大器的应用实验报告运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元件,在电子电路中有着广泛的应用。
本实验旨在通过实验操作,加深对运算放大器的工作原理和应用特性的理解,同时掌握运算放大器在电路中的具体应用。
一、实验目的。
1. 了解运算放大器的基本工作原理;2. 掌握运算放大器的基本参数测量方法;3. 学习运算放大器在电路中的应用,包括比较器、放大器、积分器和微分器等。
二、实验仪器与设备。
1. 示波器。
2. 直流稳压电源。
3. 示波器探头。
4. 运算放大器集成电路。
5. 电阻、电容等元件。
6. 实验电路板。
7. 万用表。
三、实验原理。
运算放大器是一种差动放大器,具有高输入阻抗、低输出阻抗、大增益和宽带宽等特点。
在实验中,我们将通过测量运算放大器的输入输出特性、电压增益、输入偏置电流等参数,来了解其基本特性。
运算放大器在电路中的应用非常广泛,比如在比较器电路中,当输入电压超过一定阈值时,输出电压会发生跳变;在放大器电路中,运算放大器可以放大微弱的信号;在积分器和微分器电路中,可以实现信号的积分和微分运算。
四、实验内容与步骤。
1. 搭建运算放大器的输入输出特性测量电路,通过改变输入电压,测量输出电压与输入电压的关系曲线;2. 测量运算放大器的电压增益,并分析其影响因素;3. 搭建运算放大器的比较器电路,观察输入电压与输出电压的关系;4. 搭建运算放大器的放大器电路,测量放大电路的电压增益;5. 搭建运算放大器的积分器和微分器电路,观察输入输出波形,并分析其特性。
五、实验数据与分析。
1. 输入输出特性曲线如图所示(图表略),通过测量得到的数据绘制曲线,可以看出运算放大器的输入输出特性呈线性关系;2. 测量得到的电压增益为100,经分析发现电阻值的选择对电压增益有一定影响,需要合理选择电阻值以满足设计要求;3. 比较器电路的实验结果表明,运算放大器在一定输入电压范围内输出电压保持稳定,一旦超过阈值,输出电压会发生跳变;4. 放大器电路的实验结果显示,运算放大器可以有效放大输入信号,且放大倍数与电阻值的选择有关;5. 积分器和微分器电路的实验结果表明,运算放大器可以实现信号的积分和微分运算,输出波形与输入波形呈现出相应的积分和微分关系。
运放实验报告
课程名称:电测量技术与模拟电路实验指导老师:成绩:__________________实验名称:集成运算放大器实验类型:验证和探究性实验一、实验目的和要求研究集成运放组成的比例、加法和积分等基本运算电路的功能;掌握集成运算放大电路的三种输入方式。
了解集成运算放大器在实际应用时应考虑的一些问题;理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响;学会用集成运算放大器实现波形变换二、主要仪器设备元器件:集成运算电路实验板;通用运算放大器μA741、电阻电容等;仪器:MS8200G型数字多用表;XJ4318型双踪示波器;XJ1631数字函数信号发生器;DF2172B型交流电压表;HY3003D-3型可调式直流稳压稳流电源。
三、实验步骤与实验数据记录1、实现两个信号的反相加法运算输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值输入电压波形Time0s0.2ms 0.4ms0.6ms0.8ms1.0ms1.2ms1.4ms1.6ms1.8ms2.0ms2.2ms2.4ms2.6ms2.8ms3.0msV(A1)V(a2)-100mV-50mV0V50mV100mV输出电压波形Time0s0.2ms0.4ms0.6ms0.8ms1.0ms1.2ms1.4ms1.6ms1.8ms2.0ms2.2ms2.4ms2.6ms2.8ms3.0msV(3)-4.0V-2.0V0V2.0V4.0V实验结果:李萨如图形波形输出电压计算表达式为可算得放大倍数为-20倍实际倍数为-19.88倍 误差为0.59% 误差较小,主要由R 实际值与理论值的误差造成李萨如图形反应出输入输出特性,直线反映输入电压、输出电压为线性关系,放大倍数为一常数,斜率为负,说明放大倍数为负,与实际相符。
2、实现两个信号的减法(差分)运算输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值仿真结果:输入电压波形Time0s0.2ms 0.4ms0.6ms0.8ms1.0ms1.2ms1.4ms1.6ms1.8ms2.0ms2.2ms2.4ms2.6ms2.8ms3.0msV(A1)V(a2)-10V-5V0V5V10V输出特性波形Time0s0.2ms0.4ms0.6ms0.8ms1.0ms1.2ms1.4ms1.6ms1.8ms2.0ms2.2ms2.4ms2.6ms2.8ms3.0msV(A3)-4.0mV-2.0mV0V2.0mV4.0mV实验结果:由公式)(R R Vo 11121fV V -=得输出电压理论值为0,实际上放大倍数为0.03倍,接近于0。
运算放大器和受控源实验报告
运算放大器和受控源实验报告实验报告:运算放大器和受控源摘要:本实验通过搭建运算放大器和受控源电路,研究了其基本原理和特性。
实验结果表明,运算放大器具有高放大增益、输入阻抗高、输出阻抗低等优点;受控源能够根据输入信号调整输出电流或电压。
通过实验,我们深入了解了运算放大器和受控源的工作原理,为今后的电子电路设计和应用提供了重要参考。
一、引言运算放大器是电子电路设计中经常使用的一种重要器件。
它具有高放大增益、低输入阻抗和高输入阻抗等特性,常用于电压放大、滤波、比较器等电路中。
受控源是一种能够根据输入信号调整输出电流或电压的电路,常用于电压调整、电流控制等应用中。
本实验通过搭建运算放大器和受控源电路,探究其基本原理和特性。
二、实验目的1. 了解运算放大器的基本原理和特性;2. 研究运算放大器的放大倍数、输入和输出阻抗;3. 探究受控源的工作原理和特性;4. 实验验证运算放大器和受控源的特性。
三、实验原理1. 运算放大器运算放大器是一种具有很高放大增益的差分放大器,由一个差动放大器和一个精密的负反馈电路组成。
常见的运算放大器有理想运算放大器和非理想运算放大器,其中理想运算放大器具有放大增益无限大、输入电阻无穷大、输出电阻为零等特性。
2. 受控源受控源通常包括电压控制电流源和电流控制电压源两种类型。
电压控制电流源可以根据输入电压信号调整输出电流,电流控制电压源则可以根据输入电流信号调整输出电压。
受控源常用于各种电路的输入电流调整、电流传输和电压调整等应用。
四、实验设备和器件1. 信号发生器2. 电压表3. 万用表4. 运算放大器集成电路5. 电阻、电容和二极管等被测器件五、实验步骤1. 搭建运算放大器电路,将信号发生器的输出接入运算放大器的输入端,通过电压表测量输出电压大小;2. 测量运算放大器的输入和输出阻抗,将万用表连接到输入和输出端口进行测量;3. 搭建受控源电路,输入电压信号并测量输出电流大小;4. 根据实验结果,分析运算放大器和受控源的特性。
电路模电实验之运算放大器实验报告
目录1实验目的2 2实验原理23实验设计33.1实验I基础型实验 (3)3.1.11、电压跟随器——检测运放是否正常 (3)3.1.2反相比例运算放大器电压放大特性 (3)3.2实验II设计型实验 (4)3.2.1减法器的设计 (4)4实验预习仿真44.1电压跟随器——检测运放是否正常 (4)4.2反相比例运算放大器电压放大特性 (5)4.3减法器设计 (6)5数据处理7 6实验总结9 7思考题9 8实验讨论91实验目的•深刻理解集成放大器工作在线性工作区时,遵循的两条基本原则——虚短、虚断•熟悉集成运算放大器的线性应用。
•掌握比例运算等电路、训练设计运放电路的能力。
2实验原理集成运算放大器是一种高电压放大倍数的多级直耦放大电路,在深度负反馈条件下,集成运放工作在线性工作区,它遵循两条基本原则:1.虚短:U i=U−−U+≈02.虚断:I N≈I p≈0(非线性区也成立)用途:广泛应用于各种信号的运算处理、测量以及信号的产生、变换等电路中。
图1:运算放大器符号3实验设计3.1实验I基础型实验3.1.11、电压跟随器——检测运放是否正常3.1.2反相比例运算放大器电压放大特性3.2实验II设计型实验3.2.1减法器的设计1.自行设计运放电路,要求实现u0=2u i2−u i12.将u i分别设置为以下两组信号,验证电路是否满足要求4实验预习仿真4.1电压跟随器——检测运放是否正常图2:Multisim接线图3:Multisim结果4.2反相比例运算放大器电压放大特性图4:Multisim 接线图5:Multisim 结果U i (V )理论值(V )实测值(V )U N U P U O U O U iU N U P U O U O U i-0.300310455.314µV 564.134µV 3.012V 10.040.3-310563.904µV489.999µV-2.987V9.964.3减法器设计设计如图所示:表3:验证结果波形频率u i u0直流0u i1=1V,u i2=2V3.04V正弦波500Hz u i1=1V,u i2=2V2.98V5数据处理表1U i(V)理论值(V)实测值(V)U N U P U O U OU iU N U P U O U OU i-0.3003100.1mV0.2mV 3.66V12.20.300-310-0.1mV0-3.65V12.16表2波形频率u i u0直流0u i1=1V,u i2=2V 3.00V正弦波500Hz u i1=1V,u i2=2V 3.24V1.完成表1,并绘制基础型实验的运放的电压传输特性;2.列出基础型实验中U i和U o理论关系式,并和仿真数据、实际数据比较;•电压跟随器u i=u o仿真数据中u i=u o,实验数据u i=1.00V,u o=1.04V,在误差允许范围内,所以等式也成立。
运算放大器的应用实验报告
运算放大器的应用实验报告运算放大器的应用实验报告引言:运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元器件,具有高增益、高输入阻抗和低输出阻抗等特点。
它在现代电子电路中有着广泛的应用。
本实验旨在通过实际操作和测量,探索运算放大器在不同电路中的应用,并验证其性能。
一、直流放大电路实验:1. 实验目的:通过搭建直流放大电路,观察运算放大器的放大效果,并测量其放大倍数。
2. 实验步骤:(1)搭建直流放大电路,将运算放大器的正、负输入端分别连接到输入信号源和地线。
(2)调节输入信号源的幅度,记录输出信号的幅度。
(3)改变输入信号的频率,观察输出信号的变化。
3. 实验结果和分析:通过实验数据的测量,我们得到了输入信号和输出信号的幅度数据,并计算了放大倍数。
结果显示,运算放大器能够将输入信号放大数倍,并且在一定频率范围内保持较好的线性放大特性。
二、反相放大电路实验:1. 实验目的:通过搭建反相放大电路,探索运算放大器的反相放大功能,并测量其放大倍数和频率响应。
2. 实验步骤:(1)搭建反相放大电路,将运算放大器的正输入端接地,负输入端连接到输入信号源。
(2)调节输入信号源的幅度,记录输出信号的幅度。
(3)改变输入信号的频率,观察输出信号的变化。
3. 实验结果和分析:实验数据显示,反相放大电路能够将输入信号进行反向放大,并且放大倍数与输入信号的幅度成反比。
此外,随着输入信号频率的增加,输出信号的幅度逐渐下降,表明运算放大器的频率响应存在一定的限制。
三、非反相放大电路实验:1. 实验目的:通过搭建非反相放大电路,研究运算放大器的非反相放大功能,并测量其放大倍数和频率响应。
2. 实验步骤:(1)搭建非反相放大电路,将运算放大器的正输入端连接到输入信号源,负输入端接地。
(2)调节输入信号源的幅度,记录输出信号的幅度。
(3)改变输入信号的频率,观察输出信号的变化。
3. 实验结果和分析:实验数据显示,非反相放大电路能够将输入信号进行非反向放大,并且放大倍数与输入信号的幅度成正比。
运放的实验报告
运放的实验报告运放的实验报告引言:运放(Operational Amplifier,简称Op-Amp)是一种非常重要的电子元件,广泛应用于各种电路中。
本次实验旨在通过实际操作,深入了解运放的基本原理、特性以及应用。
实验一:运放的基本原理在本实验中,我们使用了一款常见的运放芯片LM741。
该芯片具有8个引脚,分别是正电源(Vcc+)、负电源(Vcc-)、非反馈输入端(-IN)、反馈输入端(+IN)、输出端(OUT)、空载补偿电容(NC1)、空载补偿电容(NC2)和空载补偿电阻(NC3)。
我们首先将运放芯片与其他电路元件连接,然后将信号输入到运放的非反馈输入端,观察输出端的电压变化。
实验二:运放的特性在这个实验中,我们研究了运放的特性,包括增益、输入电阻和输出电阻。
我们通过改变输入信号的幅度和频率,观察输出信号的变化,并记录下相应的数据。
实验结果表明,运放具有很高的增益,能够放大输入信号,同时具有很高的输入电阻和很低的输出电阻,能够有效地与其他电路元件进行连接。
实验三:运放的应用在这个实验中,我们探索了运放在不同电路中的应用。
首先,我们使用运放实现了一个简单的反相放大电路,将输入信号进行反相放大。
然后,我们使用运放实现了一个非反相放大电路,将输入信号进行非反相放大。
此外,我们还使用运放实现了一个比较器电路,通过比较输入信号与参考电压的大小,输出高电平或低电平。
这些实验结果表明,运放在电子电路中具有非常广泛的应用,能够满足不同的设计需求。
实验四:运放的限制在这个实验中,我们研究了运放的一些限制。
首先,我们发现运放具有一定的输入偏置电流和输入偏置电压,这会对输出信号产生一定的影响。
其次,我们发现运放在输出端具有一定的饱和电压,当输出信号超过这个饱和电压时,运放无法继续放大信号。
此外,运放还具有一定的带宽限制,当输入信号的频率超过运放的带宽时,输出信号将出现失真。
这些限制需要在实际设计中予以考虑,以确保电路的正常工作。
protel99se 集成运算放大电路实验报告
实验目的1. 研究集成运算放大器的组成及其工作原理。
2. 学习并掌握运用Protel 99se 软件绘制集成运算放大器原理图及PCB 文件。
二、 实验原理 1集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时, 可以灵活地实现各种特定的函数关系。
在线性应用方面, 可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
2 反相比例运算放大器反相比例运算放大器电路是集成运放的一种最基本的接法, 如图2.6.1所示。
电路的输出电压 与输入电压 的关系式为: 。
oU i图1 反相比例运放电路3 反相加法器如果在运算放大器的反相端同时加入几个信号, 接成图2.6.2的形式, 就构成了能对同时加入的几个信号电压进行代数相加的运算反相加法器电路。
电路的输出电压 与输入电压 的关系式为: 。
oU U图2 反相加法器电路4 差动运算放大电路差动输入运算放大器电路如图2.6.3所示。
根据电路分析, 该电路的输出电压 与输入电压 的关系式为: 。
该关系式说明了两个输入端的信号具有相减的关系, 所以这种电路又称为减法器。
同时, 电路中同相输入电路参数与反相输入电路参数应保持对称, 即同相输入端的分压电路也应该由电阻 和 来构成, 其中 , 。
oU U图3 差动运算放大电路5 积分器电路由运算放大器构成的基本积分电路如图2.6.4所示, 它的基本运算关系是:o i 11u u dt R C =-⎰当 为恒定直流电压时, 即 , , 这时输出电压是随时间作直线变化的电压, 其上升(或下降)的斜率是 , 改变 、 或 三个量中的任一个量都可以改变输出电压上升(或下降)的斜率。
积分器的反馈元件是电容器。
无信号输入时, 电路处于开环状态。
所以运算放大器微小的失调参数就会使得运算放大器的输出逐渐偏向正(或负)饱和状态, 使得电路无法正常工作。
为了减小这种积分漂移现象, 实际使用时应尽量选择失调参数小的运算放大器, 并在积分电容两端并联一只高阻值电阻 以稳定直流工作点, 构成电压反馈, 限制整个积分器电路放大倍数。
反相比例运算放大电路实验报告
反相比例运算放大电路实验报告实验名称:反相比例运算放大电路实验实验目的:1. 熟悉反相比例运算放大电路的原理与性质;2. 掌握反相比例运算放大电路的电路设计方法;3. 了解反相比例运算放大电路的实际应用。
实验内容:1. 接线连通反相比例运算放大电路;2. 测量电路的增益与输出波形;3. 调节电路参数,观察电路增益与输出波形的变化。
实验仪器:1. 反相比例运算放大器;2. 功能发生器;3. 示波器;4. 万用表。
实验原理:反相比例运算放大电路是运放反相输入端与输出端相连,通过改变反馈电阻的阻值,从而改变电路的放大倍数。
根据电路原理图,可以分别推导出电路的输入电阻、输出电阻以及放大倍数等参数,在实验中可用万用表进行测量实验验证。
实验步骤:1. 按照实验原理将反相比例运算放大电路接线连接好;2. 打开功能发生器,设置所需的频率波形和电压值;3. 打开示波器,将示波器的探头分别接在输出端和输入端;4. 使用万用表分别测量输入电阻、输出电阻和放大倍数等参数,记录测量结果;5. 调节反馈电阻的阻值,观察电路增益与输出波形的变化;6. 根据实验现象总结反相比例运算放大电路的特性。
实验数据记录:输入电压(V)输出电压(V)放大倍数0.2 -1.6 -80.4 -3.2 -80.5 -4.0 -80.6 -4.8 -80.8 -6.4 -81.0 -8.0 -8实验结果分析:实验数据表明反相比例运算放大电路具有较高的放大倍数,且其输入电阻较大,输出电阻较小,这些是反相比例运算放大电路应用广泛的原因之一。
调节反馈电阻的阻值可以改变电路的放大倍数,进而改变输出波形的幅度和形态,这为反相比例运算放大电路的应用提供了更多的灵活性和可行性。
实验结论:通过本次实验,可以总结出反相比例运算放大电路的特性,即具有较高的放大倍数,输入电阻较大,输出电阻较小,能够进行精确的功率放大和信号控制,广泛应用于电子电路中。
反相比例运算放大电路的电路设计方法要掌握好,调节反馈电阻的阻值可以改变电路的放大倍数,进而改变输出波形的幅度和形态,在实际应用中具有较强的适应性。
运算集成放大电路实验报告
运算集成放大电路实验报告运算集成放大电路实验报告引言:运算集成放大电路(Operational Amplifier, 简称Op-Amp)是一种广泛应用于电子电路中的集成电路元件。
它具有高增益、高输入阻抗、低输出阻抗等特点,被广泛应用于信号放大、滤波、比较、积分等电路中。
本实验旨在通过搭建运算放大器电路,验证其基本特性,并探究其在不同应用中的工作原理和性能。
实验一:运算放大器的基本特性验证1. 实验目的本实验旨在验证运算放大器的基本特性,包括增益、输入阻抗和输出阻抗。
2. 实验步骤(1)搭建一个基本的运算放大器电路,包括一个运算放大器芯片、两个电阻和一个电源。
(2)通过输入一个信号,观察输出信号的变化,并记录输入输出电压。
(3)更改输入信号的幅度和频率,观察输出信号的变化。
3. 实验结果与分析在实验中,我们发现输出信号与输入信号之间存在一个固定的放大倍数,即运算放大器的增益。
通过调节输入信号的幅度,我们可以观察到输出信号的变化,并根据实际测量结果计算出增益值。
此外,我们还发现运算放大器具有很高的输入阻抗和低的输出阻抗,使其能够有效地接收和驱动外部电路。
实验二:运算放大器的应用1. 实验目的本实验旨在通过实际应用电路,进一步探究运算放大器的工作原理和性能。
2. 实验步骤(1)搭建一个非反相放大电路,观察输入输出信号之间的关系。
(2)搭建一个反相放大电路,观察输入输出信号之间的关系。
(3)搭建一个积分电路,观察输入方波信号在电容上的积分效果。
3. 实验结果与分析在实验中,我们观察到非反相放大电路能够将输入信号放大,并保持与输入信号相同的相位。
而反相放大电路则将输入信号进行反相放大,输出信号与输入信号之间存在180度的相位差。
积分电路则将输入方波信号在电容上进行积分,输出信号为三角波信号。
结论:通过本次实验,我们验证了运算放大器的基本特性,并进一步了解了其在不同应用电路中的工作原理和性能。
运算放大器作为一种重要的电子元件,广泛应用于各种电子电路中,为信号处理提供了便利和灵活性。
双向输入求和运算放大电路的实验报告
双向输入求和运算放大电路的实验报告一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2、了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益A u d=co输入阻抗 r i=co输出阻抗 r o=0带宽f B W=co失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:输出电压U0与输入电压之间满足关系式U0=Aud(U叶-U-)由于A u d=co,而0为有限值,因此,0+-U-~0。
即U+U一,称为“虚短”。
(2)由于r i=co,故流进运放两个输入端的电流可视为零,即IIB=0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
实验总结1、将理论计算结果和实测数据相比较,分析产生误差的原因。
从计算结果可知,实验测得结果与理论值相比都偏大一点,原因是在分析模拟运算电路的输出与输入之间的关系时,为简单计算,一般都将运放视为理想运放,但是,实际运放与理想运放的性能参数是有差异的,实际运放并不是理想的,存在是调温度飘移误差,以及闭环增益误差在分析因此产生的运算误差时,一般只考虑主要影响因素,则运算参数的非理想性引起运算误差.再者就是测量时在操作过程中也会出现人为的测量不精确以及系统误差,这些都会造成是测量值与理论之间的误差的结果.2、分析讨论实验中出现的现象和问题。
在实验中进行调零时电压太大很难调,操作过程中会出现失调的现象。
实际运放并不是理想的,存在失调、温度漂移误差,以及闭环增益误差。
集成运算放大器的应用实验报告
集成运算放大器的应用实验报告实验目的,通过本次实验,我们将学习集成运算放大器的基本原理和应用,掌握运算放大器的基本参数测量方法,了解运算放大器在电路中的应用。
实验仪器,集成运算放大器、示波器、信号发生器、直流稳压电源、电阻、电容、万用表等。
实验原理,运算放大器是一种高增益、差分输入、单端输出的电子放大器。
在实验中,我们将通过测量运算放大器的输入偏置电压、输入失调电压、输入失调电流、增益带宽积等参数,来了解运算放大器的基本性能。
实验步骤:1. 连接电路,按照实验指导书上的电路图,连接好运算放大器的电路。
2. 测量输入偏置电压,将输入端接地,测量输出端的电压,计算出输入偏置电压。
3. 测量输入失调电压和输入失调电流,将输入端接地,测量输出端的电压,再将输出端接地,测量输入端的电压和电流,计算出输入失调电压和输入失调电流。
4. 测量增益带宽积,通过改变输入信号的频率,测量输出信号的幅度,计算出增益带宽积。
5. 测量共模抑制比,通过改变输入信号的幅度,测量输出信号的幅度,计算出共模抑制比。
实验结果与分析:通过实验测量,我们得到了运算放大器的各项参数,分析结果如下:1. 输入偏置电压为0.5mV,说明运算放大器的输入端存在微小的偏置电压。
2. 输入失调电压为1mV,输入失调电流为10nA,说明运算放大器的输入端存在微小的失调电压和失调电流。
3. 增益带宽积为1MHz,说明运算放大器在1MHz以下的频率范围内具有较高的增益。
4. 共模抑制比为80dB,说明运算放大器具有较好的共模抑制能力。
结论:通过本次实验,我们对集成运算放大器的基本原理和应用有了更深入的了解,掌握了运算放大器的基本参数测量方法,并了解了运算放大器在电路中的应用。
同时,我们也了解到了运算放大器的一些性能指标,为今后的实际应用提供了参考依据。
总结:集成运算放大器是电子电路中常用的重要器件,具有高增益、差分输入、单端输出等特点,广泛应用于放大、滤波、积分、微分等电路中。
模拟运算放大电路实验报告
模拟运算放大电路实验报告模拟运算放大电路实验报告引言模拟运算放大电路是电子工程领域中常见的重要电路之一。
它能够将微小的输入信号放大到较大的幅度,广泛应用于信号处理、传感器接口等领域。
本实验旨在通过搭建模拟运算放大电路并进行实际测量,探索其工作原理和性能。
一、实验装置和方法1. 实验装置本实验使用了一台函数发生器、一台示波器、一块模拟运算放大电路实验板以及一些连接线等设备。
2. 实验方法(1)首先,将函数发生器的正负极分别与实验板上的电源端子连接,以提供所需的电源电压。
(2)然后,将函数发生器的输出端与实验板上的输入端相连,作为输入信号。
(3)接下来,将示波器的探头一个端口连接到实验板的输出端,用于测量输出信号。
(4)最后,调节函数发生器的频率和幅度,观察并记录输出信号的变化。
二、实验结果与分析在进行实验过程中,我们分别改变了输入信号的频率和幅度,观察并记录了输出信号的变化。
下面是我们的实验结果与分析。
1. 频率对输出信号的影响我们首先将输入信号的频率从低到高逐渐增加,并观察输出信号的变化。
实验结果显示,当输入信号的频率较低时,输出信号的幅度较大,且与输入信号具有相同的波形。
然而,当频率超过一定阈值后,输出信号的幅度开始减小,且波形发生了明显的畸变。
这是因为模拟运算放大电路存在带宽限制,无法有效放大高频信号。
因此,合理选择输入信号的频率范围是非常重要的。
2. 幅度对输出信号的影响接着,我们固定输入信号的频率,逐渐增加其幅度,并记录输出信号的变化。
实验结果显示,当输入信号的幅度较小时,输出信号的幅度与输入信号基本一致。
然而,当幅度超过一定阈值后,输出信号的幅度开始饱和,无法继续放大。
这是因为模拟运算放大电路存在供电电压限制,无法提供足够的电压来放大过大的输入信号。
因此,合理选择输入信号的幅度范围也是非常重要的。
三、实验总结与思考通过本次实验,我们对模拟运算放大电路的工作原理和性能有了更深入的了解。
在实际应用中,我们应该根据具体需求合理选择输入信号的频率和幅度,以确保输出信号能够得到有效放大。
集成运算放大电路集成运算放大器应用实验报告范文23721
集成运算放大电路集成运算放大器应用实验报告范文23721一、实验目的1.了解运算放大器的特性和基本运算电路的组成;2.掌握运算电路的参数计算和性能测试方法。
二、实验仪器及器件1.数字示波器;2.直流稳压电源;3.函数信号发生器;4.数字电路实验箱或实验电路板;5.数字万用表;6.集成电路芯片uA7412块、电容0.01uF2个,各个阻值的电阻若干个。
三、实验内容1、在面包板上搭接μA741的电路。
首先将+12V和-12V直流电压正确接入μA741的Vcc+(7脚)和Vcc-(4脚)。
2、用μA741组成反比例放大电路,放大倍数自定,用示波器观察输入和输出波形,测量放大器的电压放大倍数。
3、用μA741组成积分电路,用示波器观察输入和输出波形,并做好记录。
四、实验原理(1)集成运放简介123412345678调零V-V+-VEE调零+VccNCVOuA741电路符号及引脚图任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。
(a)电源端:通常由正、负双电源供电,典型电源电压为±15V、±12V等。
如:uA741的7脚和4脚。
(b)输出端:只有一个输出端。
在输出端和地(正、负电源公共端)之间获得输出电压。
如:uA741的6脚。
最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1~2V;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。
这表明集成运放的输出电阻很小,带负载能力较强。
(c)输入端:分别为同相输入端和反相输入端。
如:uA741的3脚和2脚。
输入端有两个参数需要注意:最大差模输入电压Vidma某和最大共模输入电压Vicma某两输入端电位差称为“差模输入电压”Vid:两输入端电位的平均值,称为“共模输入电压”Vic:任何一个集成运放,允许承受的Vidma某和Vicma某都有一定限制。
两输入端的输入电流i+和i-很小,通常小于1m(2)集成运放的主要参数集成运放的主要参数有:输入失调电压、输入失调电流、开环差模电压放大倍数、共模抑制比、输入电阻、输出电阻、增益-带宽积、转换速率和最大共模输入电压。
集成运放的基本运算电路实验报告
集成运放的基本运算电路实验报告实验报告:集成运放的基本运算电路实验目的:1. 了解集成运放的基本原理和性质;2. 学习基本运算电路的设计和实现方法;3. 实验验证运算放大器的基本运算电路,包括反相放大器、非反相放大器、求和放大器和差分放大器。
实验器材:1. 集成运放(可以使用LM741等常见型号);2. 电阻(包括不同阻值的固定电阻和可变电阻);3. 电源(正负双电源,供应电压根据集成运放的需求确定);4. 示波器;5. 信号源。
实验步骤:1. 反相放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
2. 非反相放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
3. 求和放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到不同信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
4. 差分放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口分别连接到两个信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
实验结果:1. 反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
2. 非反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
3. 求和放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
4. 差分放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
实验分析:1. 通过对实验结果的观察和分析,可以验证集成运放的基本运算电路的原理和性质。
2. 在实验中可以调整电阻的数值来改变放大倍数或增益,验证运算放大器的增益特性。
运算放大器的实验报告
运算放大器的实验报告运算放大器的实验报告引言:运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子器件,广泛应用于电路设计和信号处理中。
本实验旨在通过实际搭建电路和测量数据,深入了解运算放大器的原理和特性,并验证其在电路设计中的应用。
一、实验目的本实验的主要目的有以下几个方面:1. 理解运算放大器的基本工作原理;2. 掌握运算放大器的输入输出特性;3. 熟悉常见的运算放大器电路应用。
二、实验仪器和材料1. 运算放大器芯片;2. 电阻、电容等基本电子元件;3. 示波器、函数信号发生器等实验设备。
三、实验步骤1. 搭建基本的运算放大器电路,包括反馈电阻、输入电阻等;2. 连接示波器和函数信号发生器,调节函数信号发生器的频率和振幅;3. 测量运算放大器的输入电压和输出电压,并记录数据;4. 分析实验数据,绘制输入输出特性曲线和增益曲线。
四、实验结果与分析通过实验测量得到的数据,我们可以得出以下结论:1. 运算放大器具有很高的输入阻抗和很低的输出阻抗,能够有效放大输入信号;2. 在线性范围内,运算放大器输出电压与输入电压成正比,增益稳定;3. 当输入信号超出运算放大器的工作范围时,输出电压将出现失真。
五、实验应用运算放大器在电路设计中有广泛的应用,以下是几个常见的例子:1. 比较器:利用运算放大器的输入特性,可以将其作为比较器使用,用于判断两个电压的大小关系;2. 滤波器:通过调整运算放大器的反馈电阻和电容,可以搭建低通、高通、带通等滤波器电路;3. 信号放大器:将运算放大器作为信号放大器使用,可以放大微弱信号,提高信号质量。
六、实验总结通过本次实验,我们深入了解了运算放大器的原理和特性,掌握了运算放大器的基本应用。
实验结果表明,在电路设计中,运算放大器是一种非常重要且常用的器件,能够实现信号放大、滤波、比较等功能。
然而,我们也要注意运算放大器的工作范围和输入输出特性,避免出现失真和不稳定的情况。
运放的应用实验报告
运放的应用实验报告一、实验目的通过本次实验,我们的目的是掌握运放的基本工作原理,了解运放的应用领域,进一步了解运放的特性及其电路应用。
二、实验原理1. 运放的基本工作原理运放是一种高增益放大器,它可以将微小的输入信号放大为较大的输出信号,同时还具有高输入阻抗和低输出阻抗等特点。
运放的基本工作原理是将输入信号分别放在反相输入端和同相输入端,通过反馈电路将输出信号反馈到反相输入端,以达到放大和稳定的效果。
2. 运放的应用领域运放广泛应用于模拟电路、数字电路、自动控制系统、精密测量仪器等领域。
其中,运放在模拟电路中的应用最为广泛,主要包括放大、滤波、比较、积分、微分、波形整形等。
3. 运放的特性及其电路应用运放的主要特性包括增益、输入阻抗、输出阻抗、带宽、失调电压、温漂等。
在电路应用方面,我们可以通过运放实现多种电路功能,如非反相比例放大电路、反相放大电路、微分电路、积分电路、有源滤波器电路等。
三、实验器材1. 运放集成电路2. 电阻、电容等被动元件3. 示波器、万用表等测试设备四、实验内容1. 非反相比例放大电路我们将一个电压信号输入到运放的同相输入端,通过反馈电阻将输出信号反馈到反相输入端。
当输入信号为正电压时,反馈电路将输出信号反相,从而实现了非反相比例放大的功能。
2. 反相放大电路我们将一个电压信号输入到运放的反相输入端,通过反馈电路将输出信号反馈到反相输入端。
当输入信号为正电压时,反馈电路将输出信号反相,从而实现了反相放大的功能。
3. 微分电路微分电路是通过运放实现对输入信号的微分运算。
我们将一个电压信号通过一个电容输入到运放的同相输入端,同时将该信号通过一个电阻接地。
输出信号则是通过反馈电阻将输出信号反馈到反相输入端。
4. 积分电路积分电路是通过运放实现对输入信号的积分运算。
我们将一个电压信号通过一个电阻输入到运放的同相输入端,同时将该信号通过一个电容接地。
输出信号则是通过反馈电容将输出信号反馈到反相输入端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京邮电大学
实验报告
课程名称:电子电路基础
实验名称:集成运算放大器的运用
通信工程系23班姓名:郭奥
教师:魏学军成绩:
2011年11月28日
一:实验目的
1.研究有集成运算放大器组成的比例,加法,减法,和积分等基本运算电路功能
2.了解运算放大器在实际应用时应考虑的一些问题
3.提高独立设计和独立完成实验的能力
二:实验器材
三:预习思考题
1. 本实验哪些电路需要调零?若需要如何操作?
所有需要放大含有直流分量的应用场合,都必须进行调零,即对运放本身(主要是差动输入级)的失调进行补偿,以保证运放闭环工作时,输入为零时输出也为零。
操作时分两种情况:
① 有的运放已有引出的补偿端,只需按照器件手册的规定接入调零电路即可。
② 对于没有设调零端的运放,可将电路的输入端接地,用万用表直流电压档或示波器的DC 耦合档接在电路的输出端,调节电位器,使输出为零。
2. 在反相加法器中,如ui1和ui2均采用直流信号,并选定ui2=-1V ,当考虑到运算放大器的最大输出幅度(V 12±)时,|ui1|的大小不应超过多少伏?
答:2/)2(1uo ui ui --=故|ui1|max=6.5V
3. 在积分电路中,如F C k R μ7.4,1001=Ω=,求时间常数。
假设ui=0.5V,问要使输出电压uo 达到5V ,需要多长时间?
答:47.0*1==C R τ)0(1)(0uc uidt RC t uo t
+-=⎰t=4.7s 4. 为了不损坏集成芯片,试验中要注意什么问题?
答:切记正、负电源极性接反和输出端短路。
四:实验电路图:反相比例运算电路反相加法运算电路积分运算电路五:实验步骤:
1.反相比例运算电路
(1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。
(2)输入f=1kHz、ui=100mV的正弦交流信号,测量相应的uo,并用示波器观察uo和ui的波形和相位关系,记录输入输出波形。
测量放大器实际放大倍数。
(3)保持ui=30mV不变,测量放大的上截止频率,并在上截止频率,并在上截止频率点时在同一坐标系中记录输入输出信号的波形。
2.反相加法运算电路
设计一个反相加法器,实现uo=-(2ui1+ui2)的运算,给定条件为Rf=20KΩ,供电电压为±12V,ui1为1V的直流电压(由电源经电阻分压而得,分压电路电流为1mA左右),ui2是频率1kHz、峰峰值为1V的正弦波信号。
记录输入输出波形。
3.积分运算电路
设计反相积分器,其输入信号为f=1kHz,平均值为零、uipp=6V 的方波,要求积分器的输出信号幅度uopp≥(2/3)Uipp,供电电压为±12V,积分电容为0.1Fμ.在同一坐标系中记录输入输出波形。
六:注意事项:
1.在测量前,应先将示波器的输入耦合开关置GND档,将光
点移到荧光屏上的坐标原点,以便于读数
2.测量时,示波器的两个输入耦合开关必须置DC档
3.测试过程中注意观察输入、输出波形正常后,再用X-Y方式观测传输特性
4.如果示波器两个通道的电压偏转灵敏度不一致,在进行读数时注意区分。
七:实验数据分析:
1.在反相比例运算电路中当输入f=1kHz、ui=100mV的正弦交
流信号时测得输入与输出反相,且放大倍数Au=-4.87,而理论值为-5,产生了误差应该主要是因为电路板上的电阻的标称值并不准确。
2.当ui等于30mV时测出上截止频率为219kHz,然而此时输
入和输出的相位差已经不是180,原因应该是芯片中的电容元件在高频的情况下使得输出电压的相位产生了异于原来的改变。
3.在反相加法器电路的实验中,产生的输出波形基本上符合
理论的预测,但是uo的直流分量稍小于ui1的两倍,这应该也是因为电阻的标称值不准,而且主要还是因为分压电路分出的电压并没有1V因为在分压电路上与1k 并联的
实验电路实际上让ui1小于1V
4.在积分电路试验中,一开始输出波形有着很大的直流分量,
到后来将Rf改为由1MΩ改到20kΩ解决了这个问题。
分析
后发现应该是由于Rf的支路上存在一个很小的电压,但是
一旦Rf很大其两端就会产生一个很大的电位差,这就是
uc(0),也就是波形中的直流分量,因此减小Rf即可解决
问题
八:操作时遇到的问题:
记错了方波的峰峰值的定义,记成了幅值,于是将峰峰值定在了12V,后来才发现。
九:课后思考题:
1、在积分器的实验中,若信号源提供不出平均值为零的方波,
能否通过耦合电容各支流?若能,电容值如何取?
能,但是电容的值应该尽量取大一点。
2、若设计一个Au=-20的放大器,用来放大f=150kHz的正弦
信号,运放应用LM741的还是LM318?为什么?
应该选用LM318,LM74的放大到了10KHZ就开始跌落的很严重,通频带为10K左右。
而LM318的通频带15M。
放大20倍,需要的通频带为:20*150K=3M。
也就是需要的是通频带要在3M以上,LM318完全满足需求了。
至于Au,由反馈电阻决定。
十:心得体会:
这次实验锻炼了动手能力,增加了我对运算放大电路的理解,提高了发现分析误差的能力。
以前遇到问题大多还是只能和同学讨论或者求助老师才能解决问题,现在可以更多地自己分析并解决问题了。
比如在遇到积分电路中出现了直流分量后对比公式,发现电容两端零时刻的电压对应直流部分,所以对与电容并联的电阻进行调解后去掉了直流分量。
以后应该更加努力地提高动手实践能力,并在实验后多多总结交流,实验中尽量自己考虑问题所在,这样才能最大程度获得提升。