小学奥数教程(最完美)8447

合集下载

小学奥数教程最完美

小学奥数教程最完美

小学奥数教程最完美
首先,小学奥数教程具有启发性强的特点。

通过引导学生思考、探索、发现问题解决方法,激发学生的求知欲望和学习兴趣。

以问题为导向,让
学生在解决实际问题的过程中培养逻辑思维和创新意识。

教材中的题目常
常设计得很巧妙,能够引导学生在解题过程中逐渐建立自己的数学思维框架,培养学生独立思考和解决问题的能力。

最后,小学奥数教程具有实用性强的特点。

教材内容紧密结合小学数
学课程标准,针对学生在学习过程中容易遇到的难点和问题进行有针对性
的教学。

教材中的例题和习题既有基础知识的巩固练习,又有思维能力和
解题技巧的培养。

通过分层次、分类别的组织,帮助学生逐步提高数学水
平和解题能力。

另外,教材还包括一些解题技巧和方法,让学生能够在实
际解题中灵活运用,提高解题效率和准确性。

总的来说,小学奥数教程是一本启发性强、趣味性高、实用性强的教材。

它能够指导小学生进行系统的数学思维训练,培养学生的逻辑思维和
解决问题的能力。

同时,教材注重培养学生的兴趣和乐趣,让学生在愉快
的氛围中学习数学。

对于小学生而言,这样的奥数教程将会是最完美的选择。

小学数学奥数基础教程(三年级)目30讲全

小学数学奥数基础教程(三年级)目30讲全

小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三)十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

根据“加数=和-另一个加数”知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

小学数学奥数基础教程(五年级)目30讲全精编版

小学数学奥数基础教程(五年级)目30讲全精编版

小学奥数基础教程(五年级)第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

(四年级)小学数学奥数基础教程-30讲全

(四年级)小学数学奥数基础教程-30讲全

(四年级)小学数学奥数基础教程-30讲全小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

小学奥数教程(最完美)

小学奥数教程(最完美)

1.和差倍问题【和差问题】【和倍问题】【差倍问题】已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题根据题目中的条件确定并求出单一量;4.植树问题基本类型①在直线或者不封闭的曲线上植树,两端都植树;②在直线或者不封闭的曲线上植树,两端都不植树;③在直线或者不封闭的曲线上植树,只有一端植树;④封闭曲线上植树。

基本公式棵数=段数+1 棵距×段数=总长棵数=段数-1 棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题找出总量的差与单位量的差。

(完整版)小学奥数教程(最完美)

(完整版)小学奥数教程(最完美)

目录第一讲奇妙的幻方 (3)练习卷 (9)第二讲可能性的大小(游戏与对策) (10)练习卷 (12)第三讲图形的面积(一) (13)第四讲认识分数 (17)练习卷 (21)第五讲行程中的相遇(相遇问题) (22)练习卷 (26)第六讲公因数与公倍数 (27)综合演练 (31)第一讲幻方(第一课时)【知识概述】在一个n×n的正方形方格中,填入一些连续的数字,使得所有的横、竖、斜列所加之和都相等,这样的正方形方格叫做幻方。

幻方一般分为奇数幻方和偶数幻方。

(n 是几就表示为几阶幻方)。

本讲,我们将来学习这方面的知识。

例题讲学例1在一个3×3的表格内,填入1-9九个数,(不能重复,不能遗漏),使得3个横列、3个竖列和2个斜列所加之和都相等。

可以怎样填?【和为15】【思路分析】这样的3×3幻方,在填写时有一定的规律和口诀:二、四为肩,六、八为足,左七右三,戴九履一,五为中央。

【注:戴指头,履指脚。

】试试填一填吧!幻方 (第二课时)知识概述:上一讲中,我们讲述了如何填写3×3的幻方,其实在幻方的知识世界里,像3×3、5×5、7×7……像这样幻方,称之为奇数幻方,这一讲我们将来学习如何填写五阶幻方。

例题:在一个5×5的方格中,填入1-25这25个数字,使5个横列、5个竖列、2个斜列所加之和都相等。

先试试看!看 样 子 ,要 想 顺 利 填 写 好 这 么 多 的 表格,还真 的 不容易,没有 口诀 真 的 不行,下 面这 个 口诀 要 记 牢:一居首行正中央,依次斜向右上方,右出框时左边写,上出框时下边放,双出占位写下方。

你能按顺序继续写下去吗?试试看吧!幻方(第三课时)根据上讲中的方法,把口诀运用到所有的奇数幻方中,可以继续填写七阶幻方、九阶幻方、十一阶幻方……,本讲,我们继续试着填写七阶幻方和九阶幻方。

【思路点拨】再来重温一下口诀吧!一居首行正中央,依次斜向右上方,右出框时左边写,上出框时下边放,双出占位写下方。

小学数学奥数基础教程(三年级)目30讲全

小学数学奥数基础教程(三年级)目30讲全

小学数学奥数基础教程(三年级)目30讲全小学数学奥数基础教程(三年级)目30讲全本教程旨在帮助三年级学生打好数学奥数的基础,通过30讲全面介绍奥数的各个知识点和解题技巧,帮助学生更好地应对奥数考试。

第一讲:加法与减法在这一讲中,我们将学习加法和减法的基本概念与运算方法。

通过丰富的例题训练,掌握快速计算的技巧,提高计算速度和准确性。

第二讲:乘法与除法乘法与除法是数学中的重要运算方法,本讲我们将学习如何进行乘法和除法的计算,并掌握一些常用的计算技巧,帮助学生更好地解决乘除法问题。

第三讲:倍数与约数在这一讲中,我们将学习倍数与约数的概念和性质,通过实例的分析与解答,培养学生的逻辑思维和数学推理能力。

第四讲:分数的认识与比较分数是数学中的重要概念,本讲我们将学习分数的基本认识和比较方法,帮助学生理解分数的概念,并掌握分数的运算技巧。

第五讲:几何图形的认识与分类几何图形是奥数中的常见考点,本讲我们将学习几何图形的基本认识和分类方法,通过练习加深对几何图形的理解和记忆。

第六讲:面积与周长在这一讲中,我们将学习如何计算不同形状图形的面积和周长,通过实例的分析和计算,加深学生对面积和周长的理解。

第七讲:正方形与矩形正方形与矩形是几何图形中的常见形状,本讲我们将学习如何计算正方形和矩形的面积和周长,并通过实例进行练习。

第八讲:圆的基本概念与计算圆是几何图形中的一种特殊形状,本讲我们将学习圆的基本概念和计算方法,通过实例的练习提高学生对圆的理解。

第九讲:长方体与立方体长方体与立方体是立体几何中的重要概念,本讲我们将学习如何计算长方体和立方体的体积,并通过实例进行练习。

第十讲:时间与钟表在这一讲中,我们将学习如何读取时间和解答与时间相关的问题,通过实践训练,提高学生的时间观念和解题能力。

第十一讲:逻辑推理与判断逻辑推理与判断是奥数中的重要考点,本讲我们将学习不同类型的逻辑题目,并通过解题练习提高学生的逻辑思维和推理能力。

最新三年级全册奥数教程

最新三年级全册奥数教程

三年级全册奥数教程三年级全册奥数培训教材适合年级:小学三年级目录第一讲找规律填数(一) ----------------------------------------------- - 6 - 第二讲找规律填数(二) ----------------------------------------------- - 9 - 第三讲找规律填数(三) ---------------------------------------------- - 13 - 第四讲从数表中找规律 ------------------------------------------------- - 17 - 第五讲数线段 ------------------------------------------------------------- - 21 - 第六讲数三角形 ---------------------------------------------------------- - 24 - 第七讲数长方形和正方形 ---------------------------------------------- - 27 - 第八讲加法的渐变运算-----凑整 -------------------------------------- - 30 - 第九讲减法简便运算-----凑整 ----------------------------------------- - 32 - 第十讲加减法的速算与巧算 ------------------------------------------- - 34 - 第十一讲添加运算符号(一) ----------------------------------------- - 37 - 第十二讲添加运算符号(二) ----------------------------------------- - 40 - 第十三讲横式算式谜(一) -------------------------------------------- - 43 - 第十四讲横式算式谜(二) -------------------------------------------- - 46 - 第十五讲竖式加减算式谜------------------------------------------------ - 49 - 第十六讲竖式乘除算式谜------------------------------------------------ - 52 - 第十七讲文字算式谜------------------------------------------------------ - 55 - 第十八讲填数阵图(一)------------------------------------------------ - 58 - 第十九讲填数阵图(二)------------------------------------------------ - 61 - 第二十讲不封闭路线上植树 -------------------------------------------- - 65 - 第二十一讲封闭路线上植树 ---------------------------------------------- - 68 -第二十二讲与植树相关的问题(一) -------------------------------------- - 71 - 第二十三讲数三角形 ------------------------------------------------------- - 74 - 第二十四讲等量代换 ------------------------------------------------------- - 77 - 第二十五讲用等量代换解应用题---------------------------------------- - 80 - 第二十六讲等差数列 ------------------------------------------------------- - 83 - 第二十七讲配对求和 ------------------------------------------------------- - 86 - 第二十八讲乘法的简便运算-------凑整 --------------------------------- - 88 - 第二十九讲乘法的速算与巧算 ------------------------------------------- - 91 - 第三十讲除法中的巧算--------------------------------------------------- - 93 - 第三十一讲乘除法的简便运算 ------------------------------------------- - 96 - 第三十二讲数的整除 ------------------------------------------------------- - 99 - 第三十三讲有余数的除法 ------------------------------------------------ - 103 - 第三十四讲周期问题 ------------------------------------------------------ - 105 - 第三十五讲个位数字是几 ------------------------------------------------ - 108 - 第三十六讲时间与日期 --------------------------------------------------- - 111 - 第三十七讲试商技巧 ------------------------------------------------------ - 114 - 第三十八讲包含与排除 --------------------------------------------------- - 118 - 第三十九讲盈亏问题 ------------------------------------------------------ - 122 - 第四十讲鸡兔同笼-------------------------------------------------------- - 125 - 第四十一讲平均数(一) ------------------------------------------------ - 128 - 第四十二讲平均数(二) ------------------------------------------------ - 131 - 第四十三讲和倍问题(一) --------------------------------------------- - 135 -第四十四讲和倍问题(二) --------------------------------------------- - 138 - 第四十五讲差倍问题(一) --------------------------------------------- - 141 - 第四十六讲差倍问题(二) --------------------------------------------- - 144 - 第四十七讲和差问题(一) --------------------------------------------- - 147 - 第四十八讲和差问题(二) --------------------------------------------- - 149 - 第四十九讲逆推问题 ------------------------------------------------------ - 152 - 第五十讲行程问题-------------------------------------------------------- - 155 - 第五十一讲归一问题 ------------------------------------------------------ - 158 - 第五十二讲巧求周长 ------------------------------------------------------ - 161 - 第五十三讲长方形和正方形的周长------------------------------------ - 165 - 第五十四讲长方形和正方形的面积------------------------------------ - 168 - 第五十五讲年龄问题(一) --------------------------------------------- - 171 - 第五十六讲年龄问题(二) --------------------------------------------- - 174 - 第五十七讲定义新运算 --------------------------------------------------- - 176 - 第五十八讲最大和最小 --------------------------------------------------- - 179 -第一讲找规律填数(一)【专题精析】按一定规律排列起来的一列数叫做数列。

四年级奥数教程(完美修复版本)

四年级奥数教程(完美修复版本)

小学奥数基础教程〔四年级〕第1讲速算与巧算〔一〕第2讲速算与巧算〔二〕第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性〔二〕第7讲找规律〔一〕第8讲找规律〔二〕第9讲数字谜〔一〕第10讲数字谜〔二〕第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法〔一〕第15讲盈亏问题与比较法〔二〕第16讲数阵图〔一〕第17讲数阵图〔二〕第18讲数阵图〔三〕第19将乘法原理第20讲加法原理〔一〕第21讲加法原理〔二〕第22讲复原问题〔一〕第23讲复原问题〔二〕第24讲页码问题第25讲智取火柴第26讲逻辑问题〔一〕第27讲逻辑问题〔二〕第28讲最不利原则第29讲抽屉原理〔一〕第30讲抽屉原理〔二〕第1讲速算与巧算〔一〕计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩〔分数〕如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比方以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+〔6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

最新小学四年级奥数经典教程大全

最新小学四年级奥数经典教程大全

最新四年级奥数经典教程大全目录第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

(完整版)小学奥数教程(最完美)

(完整版)小学奥数教程(最完美)

(完整版)小学奥数教程(最完美)小学奥数教程(最完美)一、引言小学奥数作为一门全面培养学生数学能力的学科,对于小学生的数学素养和逻辑思维能力有着重要的作用。

本文将以最完美的方式,为小学生提供一份全面、系统的奥数学习指南。

二、数的认识与整数1. 数的概念:从孩子们日常生活中认识数孩子身边充满了数字,从年龄、身高到水果个数,我们与数字紧密相连。

通过观察身边的数字,孩子可以初步认识数的概念,并与实际生活联系起来。

2. 整数的概念与运算介绍整数的概念,并通过简单的例子引导孩子理解整数的运算规则。

结合游戏和趣味练习,激发孩子对整数的兴趣。

三、算术与代数1. 四则运算详细介绍加减乘除四则运算的方法和技巧,包括数学公式的运用和计算规则。

通过实例演练、实际应用,提高孩子的算术水平。

2. 字母代数引导孩子认识字母代数,理解字母与数的关系。

通过练习和实际问题分析,锻炼孩子解决代数方程的能力。

四、几何与图形1. 几何基本概念介绍几何基本概念,如点、线、面的定义和特征。

通过实物样本和实景教学,帮助孩子理解和记忆几何概念。

2. 常见几何图形学习常见的几何图形,如直线、圆形、三角形等,以及它们的特点和性质。

通过观察图形、验证性质,培养孩子概括和推理的能力。

五、数据与统计1. 数据的收集与整理教导孩子如何收集和整理数据,包括使用表格和图表的方法,培养孩子整理信息的能力。

2. 数据的分析与应用引导孩子学习数据分析和应用统计学方法,通过实例分析和解决实际问题,提高孩子的统计学思维能力。

六、综合练习与应用提供综合练习题,涵盖前面所学知识点,并引导孩子将所学知识应用到实际生活中。

通过不同难度的题目,让孩子逐步提高解决问题的能力。

七、总结与展望通过本文的学习,小学生能够全面、系统地掌握奥数学习的重要知识点,并在实践中提高数学思维和解决问题的能力。

希望本教程能对小学生的数学学习起到指导作用。

八、附录提供相关的参考资料和习题答案,供读者查阅和练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.和差倍问题【和差问题】【和倍问题】【差倍问题】已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式?①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题根据题目中的条件确定并求出单一量;4.植树问题基本类型?①在直线或者不封闭的曲线上植树,两端都植树;②在直线或者不封闭的曲线上植树,两端都不植树;③在直线或者不封闭的曲线上植树,只有一端植树;④封闭曲线上植树。

基本公式棵数=段数+1?棵距×段数=总长棵数=段数-1?棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题找出总量的差与单位量的差。

6.盈亏问题基本概念一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点对象总量和总的组数是不变的。

关键问题确定对象总量和总的组数。

7.牛吃草问题基本思路假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点原草量和新草生长速度是不变的;关键问题确定两个不变的量。

基本公式生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象事物在运动变化的过程中,某些特征有规律循环出现。

周期我们把连续两次出现所经过的时间叫周期。

关键问题确定循环周期。

闰年一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年一年有365天;①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平均数基本公式?①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法?①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。

10.抽屉原理抽屉原则一如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0?②4=3+1+0?③4=2+2+0?④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点?[X]表示不超过X的最大整数。

例:4.351]=4;[0.321]=0;[2.9999]=2;关键问题构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

11.定义新运算基本概念定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题正确理解定义的运算符号的意义。

注意事项?①新的运算不一定符合运算规律,特别注意运算顺序;②每个新定义的运算符号只能在本题中使用。

12.数列求和等差数列在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念?首项:等差数列的第一个数,一般用表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用sn表示.基本思路等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式通项公式:an= +(n-1)d;通项=首项+(项数一1)?×公差;数列和公式:sn= ( a1+an )×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (an -a1 )÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(an -a1?)÷(n-1);公差=(末项-首项)÷(项数-1);关键问题确定已知量和未知量,确定使用的公式;13.二进制及其应用十进制用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。

所以234=200+30+4=2×100+3×10+4。

二进制用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

十进制化成二进制?①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

?②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。

14.加法、乘法原理和几何计数加法原理如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法,……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+m2+......+mn?种不同的方法。

关键问题确定工作的分类方法。

基本特征每一种方法都可完成任务。

乘法原理如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn?种方法,那么完成这件任务共有:m1×?m2×.......?×mn?种不同的方法。

关键问题确定工作的完成步骤。

基本特征每一步只能完成任务的一部分。

直线一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段直线上任意两点间的距离。

这两点叫端点。

线段特点:有两个端点,有长度。

射线把直线的一端无限延长。

射线特点:只有一个端点;没有长度。

①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数15.质数与合数质数一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

合数一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

质因数如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数把一个数用质数相乘的形式表示出来,叫做分解质因数。

通常用短除法分解质因数。

任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式?N=a1^r1×a2^r2×a3^r3×......×an^rn,其中a1、a2、a3……an都是合数N的质因数,且a1<a2<a3<……<an。

求约数个数的公式?P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)互质数如果两个数的最大公约数是1,这两个数叫做互质数。

16.约数与倍数约数和倍数若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数.公约数几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质?①几个数都除以它们的最大公约数,所得的几个商是互质数。

②几个数的最大公约数都是这几个数的约数。

③几个数的公约数,都是这几个数的最大公约数的约数。

④几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来。

②短除法:先找公有的约数,然后相乘。

③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

例如:12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质?①两个数的任意公倍数都是它们最小公倍数的倍数。

相关文档
最新文档