SPSS单因素方差分析

合集下载

SPSS——单因素方差分析详解

SPSS——单因素方差分析详解

SPSS——单因素方差分析详解单因素方差分析(One-Way ANOVA)常用于比较两个或更多组之间的平均差异是否显著。

本文将详细介绍单因素方差分析的原理、步骤和结果解读。

一、原理:单因素方差分析通过比较组间方差(Treatment Variance)与组内方差(Error Variance)的大小来判断不同组间的平均差异是否显著。

组间方差反映了不同组之间的平均差异,而组内方差反映了同一组内个体之间的随机波动。

如果组间方差显著大于组内方差,则可以判断不同组间的平均差异是显著的。

二、步骤:1.收集数据:首先确定研究问题和目的,然后根据实际情况设计并收集数据。

例如,我们想比较三个不同品牌的手机的待机时间是否有显著差异,需要收集每个品牌手机的待机时间数据。

2.建立假设:根据研究问题和数据的特点,建立相应的零假设(H0)和备择假设(Ha)。

在单因素方差分析中,零假设通常是所有组的平均值相等,备择假设则是至少有一组平均值与其他组不等。

4.分析结果解读:SPSS输出了一系列统计结果,包括方差分析表、平均值表、多重比较和效应大小等信息。

关键的统计结果包括F值、P值和ETA方。

-方差分析表:用于比较组间方差和组内方差的大小。

方差分析表中的F值表示组间方差除以组内方差的比值,F值越大说明组间差异越显著。

-P值:用于判断F值的显著性。

如果P值小于设定的显著性水平(通常为0.05),则拒绝零假设,即认为不同组间的平均差异是显著的。

-ETA方:代表效应大小程度。

ETA方越大说明组间的差异对总变异的解释程度越大,即差异的效应越显著。

5. 多重比较:如果方差分析结果显著,需要进行多重比较来确定具体哪些组之间存在显著差异。

SPSS提供了多种多重比较方法,包括Tukey HSD、Scheffe和Bonferroni等。

三、结果解读:对方差分析的结果进行解读时,需要综合考虑F值、P值、ETA方和多重比较结果。

1.F值和P值:-如果F值显著(P值小于设定显著性水平),则可以得出不同组间的平均差异是显著的结论。

单因素方差分析spss

单因素方差分析spss

单因素方差分析spss
一、什么是单因素方差分析
单因素方差分析(ANOVA)是一种统计技术,用于检测是否存在任何
显著差异,以及这些差异在哪里。

它旨在测定两个或更多样本之间的
差异,样本是来自不同类别的几个组的变量,这些组别被称为因素。

二、单因素方差分析的作用
单因子方差分析的作用是确定某一变量的一个或多个不同水平之间的
统计性差异。

当检验不同类别内的水平差异时,单因素方差分析是最
常用的技术。

三、单因素方差分析使用SPSS
SPSS是一个很容易使用的统计分析软件,可以应用单因素方差分析来
检验样本之间的差异。

下面是使用SPSS进行单因素方差分析的步骤:
1. 打开SPSS,打开新建数据表,输入各个组别的名称以及对应的分数。

2. 在“分析”菜单中,点选“生成”,然后选择“单因素方差分析”。

3.在“因变量”框中输入需要分析的变量,在“因素”框中输入需要比较的分组。

4. 点击OK运行,等待完成,结果就直接在SPSS统计屏幕上显示出来了。

五、结论
单因素方差分析是一种强大的统计技术,可以用来帮助研究人员确定是否存在任何显著差异。

使用SPSS来完成单因素方差分析也是比较简单的,只需要正确输入变量,点击“分析”和“生成”,等待报告显示结果就可以了。

SPSS单因素方差分析步骤-图文

SPSS单因素方差分析步骤-图文

SPSS单因素方差分析步骤-图文SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,可以用于进行各种统计分析,包括单因素方差分析。

单因素方差分析是一种用于比较三个或更多组之间平均值差异的统计方法。

下面是使用SPSS进行单因素方差分析的步骤:1.载入数据:打开SPSS软件,并导入数据文件。

可以通过“File”菜单中的“Open”选项来导入已有的数据文件,或是通过“File”菜单中的“New Data”选项创建新的数据文件。

2.数据检查:在进行方差分析之前,需要对数据进行检查,确保数据符合方差分析的假设要求。

主要包括以下几个方面:- 数据的正态性:使用“Explore”功能可以进行直方图和正态性检验。

在菜单栏中选择“Analyze”-“Descriptive Statistics”-“Explore”,然后选择需要检查的变量,并将其拖放到“Dependent List”框中。

点击“Plots”选项卡,勾选“Normality plots with tests”,然后点击“OK”进行正态性检验。

- 数据的同方差性:使用“Explore”功能可以进行散点图和相关统计检验。

同样地,在“Explore”对话框的“Plots”选项卡中,勾选“Scatter/Matrix”选项,并在“Options”选项卡中勾选“Flagextreme cases”,然后点击“OK”进行散点图和异常值检查。

-异常值:通过观察数据的散点图或是通过计算异常值统计量,可以确定是否存在异常值。

3.单因素方差分析:使用“Analyze”菜单中的“General Linear Model”选项来进行单因素方差分析。

在“General Linear Model”对话框中,将需要进行分析的因变量拖到“Dependent Variable”框中,将独立变量拖到“Fixed Factor(s)”框中,然后点击“OK”进行分析。

单因素方差分析spss

单因素方差分析spss

单因素方差分析 SPSS简介SPSS(统计软件包社会科学)是一款功能强大的统计软件,广泛应用于社会科学研究领域。

在此文档中,我们将介绍如何使用SPSS进行单因素方差分析(One-way ANOVA)。

单因素方差分析单因素方差分析是一种统计方法,用于比较两个或更多个组之间的均值差异。

它的基本原理是将总体均值差异分解为组内变异和组间变异两部分。

通过比较组间变异与组内变异的大小,我们可以判断组之间是否存在显著差异。

在进行单因素方差分析之前,我们需要满足以下前提条件: 1. 数据应该来自正态分布的总体。

2. 等方差性:各组之间的方差应该是相等的。

3. 独立性:不同组之间的个体应该是相互独立的。

SPSS使用步骤以下是在SPSS中进行单因素方差分析的步骤。

步骤1:导入数据首先,打开SPSS软件并导入包含需要进行单因素方差分析的数据的文件。

选择“打开文件”选项,然后选择相应的数据文件。

步骤2:设置变量在SPSS中,我们需要将需要进行单因素方差分析的变量设置为“因子变量”(Factor Variable)。

选择“数据”菜单中的“变量视图”,然后选择需要进行单因素方差分析的变量,在“类型”一栏中选择“因子”。

步骤3:进行单因素方差分析选择“分析”菜单中的“比较手段”选项,然后选择“单因素方差”。

步骤4:指定变量在单因素方差分析对话框中,将需要进行分析的因子变量移动到“因子”框中。

步骤5:选项设置在单因素方差分析对话框中,可以设置一些可选参数,如:显示描述性统计信息、绘制盒须图等。

根据需要对这些选项进行设置。

步骤6:结果解读点击“确定”按钮后,SPSS将执行单因素方差分析并生成结果输出。

在输出窗口中,可以看到各组的均值、标准差和方差等统计指标。

同时,还会显示组间变异和组内变异的F统计量、p值和显著性水平。

结论单因素方差分析是一种用于比较多个组间均值差异的统计方法。

通过SPSS软件,我们可以轻松地进行单因素方差分析,并获取分析结果。

SPSS——单因素方差分析详解

SPSS——单因素方差分析详解

SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义.还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较.One—Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程.如果几个因变量之间彼此不独立,应该用Repeated Measure过程.[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1—1所示。

表1—1 不同水稻品种百丛中稻纵卷叶螟幼虫数重复水稻品种1234514133383731 23937353934 34035353834数据保存在“data1。

sav”文件中,变量格式如图1—1.图1—1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种",然后输入对应的数值,如图1-1所示。

或者打开已存在的数据文件“data1。

sav”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1—2。

图1—2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”.因素变量:选择一个因素变量进入“Factor"框中.本例选择“品种"。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框.该对话框用于设置均值的多项式比较。

图1—3 “Contrasts"对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

SPSS实验3-单因素方差分析

SPSS实验3-单因素方差分析

SPSS作业3:方差分析不同学校专业类别对报名人数的分析(一)单因素方差分析基本操作:(1)选择菜单Analyz e-Compare means―One-Way ANOVA;(2)分别选择“报名人数”“专业类别”和“报名人数”“学校”做分析,结果如下:a.专业类别对报名人数的单因素方差分析结果b.不同学校对报名人数的单因素方差分析结果1分析:提出零假设―选择检验统计量―计算检验统计量的观测值及概率p值―给出显著性水平a,做出决策。

零假设:不同专业类别对报名人数没有显著影响;备择假设:不同专业类别对报名人数有显著影响。

图a是专业类别对报名人数的单因素方差分析结果。

可以看出,报名人数的总离差平方和为2.617E8;如果仅考虑专业类别单个因素的影响,则报名人数总变差中,专业类别可解释的变差为5.866E7,抽样误差引起的变差为2.030E8,他们的方差分别为1.955E7和1450230.159,相除所得的F统计量为13.483,对应的p值近似为0。

如果显著水平为a=0.05,由于p值小于a,则应拒绝原假设,认为不同专业类别对报名人数产生了显著影响,它对报名人数的影响效应应不全为0。

零假设:不同学校对报名人数没有显著影响:备择假设:不同学校对报名人数有显著影响。

图b是不同学校对报名人数的单因素方差分析结果。

可以看出,报名人数的总离差平方和为2.617E8;如果仅考虑学校单个因素的影响,则报名人数总变差中,不同学校可解释的变差为9.265E7,抽样误差引起的变差为1.690E8,他们的方差分别为5450179.739和1341587.302,相除所得的F统计量为4.062,对应的p值近似为0。

如果显著水平为a=0.05,由于p值小于a,则应拒绝原假设,认为不同学校对报名人数产生了显著影响,它对报名人数的影响效应应不全为0。

(二)单因素方差的进一步分析基本操作:在Optio n、Post Hoc、Contrasts框中,选择所需要的计算值,结果如下:不同专业类别对报名人数的基本描述统计量及95%置信区间2分析:在4中不同专业类别中,各有36个样本,其中,经管类的报名人数最多,其次是理工类,然后是艺术类,最少的是文学类。

用SPSS进行单因素方差分析和多重比较

用SPSS进行单因素方差分析和多重比较

用SPSS进行单因素方差分析和多重比较20学分
一、问题描述
本研究旨在探讨应用不同管理模式(A、B、C三种)对企业的管理效果。

二、研究假设
1、应用不同管理模式会对企业的管理效果产生影响。

2、A、B、C三种管理模式对企业的管理效果有显著差异。

三、研究方法
本研究采用SPSS进行单因素方差分析和多重比较。

四、数据分析
1、用SPSS分析单因素方差分析,结果如下:
表1单因素方差分析检验结果
检验项目,F,F检验结果
:--:,:--:,:--:
总体方差检验,11.56,P<0.001
结果表明,管理模式对企业的管理效果有显著差异
(F=11.56,p<0.001)。

2、多重比较结果如下:
表2多重比较结果
比较组,比较结果,LSD-t
:--:,:--:,:--:
A与B,14.78*,1.96
A与C,21.14*,1.96
B与C,6.36*,1.96
*P<0.001
比较结果显示,A(17.48)组的管理效果要优于B(2.70)组,要优于
C(-3.66)组;B(2.70)组的管理效果要优于C(-3.66)组(P<0.001)。

五、结论
综上所述,本研究采用SPSS进行单因素方差分析和多重比较,结果
表明,应用不同管理模式会对企业的管理效果产生显著影响,A组的管理
效果要优于B组和C组,而B组的管理效果也要优于C组。

SPSS中的单因素方差分析

SPSS中的单因素方差分析

SPSS中的单因素方差分析单因素方差分析(One-way ANOVA)是一种常用的统计方法,用于比较不同组之间的平均数差异是否显著。

本文将介绍SPSS中进行单因素方差分析的步骤和结果解读。

首先,我们需要准备数据。

假设我们有一个实验,想要比较三种不同根据不同学习方法进行学习的组之间的学习成绩差异。

我们随机选择了30个参与者,将他们以随机方式分成三组,分别进行不同训练方法的学习。

每个参与者在学习结束后会得到一个学习成绩。

我们将数据录入SPSS,将每个组的学习成绩作为一个变量,并将组别作为因素变量。

确保数据已经正确输入后,我们可以进行单因素方差分析。

1. 打开SPSS软件,点击"Analyze",然后选择"General Linear Model",再选择"One-Way ANOVA"。

2. 在弹出的对话框中,将变量选择为因变量,将因素选择为分组变量。

点击"Options"来选择分析的选项,比如描述性统计和效应大小指标。

3.点击"OK"进行分析。

在分析结果会显示出表格,其中包含了各个组的均值、方差、诸如F值和p值等统计指标。

根据分析结果,我们可以得到以下结论:-F值:根据单因素方差分析的结果表格,我们可以看到F值。

F值是一种比较不同组均值变异性的度量。

F值越大,说明组之间的平均差异越显著。

-p值:p值是用来判断组别之间的差异是否显著的指标。

在单因素方差分析中,我们通常关注的是p值是否小于0.05(或者0.01,根据研究需要),小于这个阈值说明组别之间的差异是显著的。

根据我们的假设,在我们的实验中,不同学习方法对学习成绩有显著影响。

通过SPSS的单因素方差分析,我们可以得到以下结论:-F值:在我们的实验中,F值为10.41、这个结果意味着不同学习方法组之间的学习成绩有显著差异。

-p值:p值为0.001,在我们的显著水平0.05下,p值小于阈值,说明组别之间的学习成绩差异是显著的。

用SPSS进行单因素方差分析和多重比较

用SPSS进行单因素方差分析和多重比较

用SPSS进行单因素方差分析和多重比较在SPSS中进行单因素方差分析和多重比较可以帮助研究人员分析各组之间的差异,并确定是否存在显著性差异。

本文将详细介绍如何使用SPSS进行单因素方差分析和多重比较。

一、单因素方差分析1.数据准备首先,将数据导入SPSS软件。

确保每个观测值都位于独立的行中,并且将每个因素作为一个变量列。

确保每个变量的测量水平正确设置。

对于要进行单因素方差分析的变量,应该是连续型变量。

2.描述性统计在执行方差分析之前,我们需要进行描述性统计,以了解每个组的均值、标准差和样本数量。

在SPSS中,可以通过选择“统计”菜单,然后选择“描述统计”来执行描述性统计。

在弹出的对话框中,选择想要分析的变量,并选择“均值”和“标准差”。

3.单因素方差分析要进行单因素方差分析,在SPSS中选择“分析”菜单,然后选择“一元方差分析”。

在弹出的对话框中,将要分析的变量移入“因素”框中。

然后,点击“选项”按钮,选择想要输出的结果,如方差分析表和均值表。

最后,点击“确定”执行单因素方差分析。

4.结果解读方差分析表提供了重要的统计信息,包括组间和组内的平方和、自由度、均方、F值和p值。

其中,F值表示组间变异性和组内变异性的比值。

p值表示在原假设下观察到的差异是否显著。

如果p值小于设定的显著性水平(通常为0.05),则可以拒绝原假设,即存在显著差异。

二、多重比较当在单因素方差分析中发现存在显著组间差异时,下一步是进行多重比较,以确定哪些组之间存在显著差异。

1.多重比较检验在SPSS中,可以使用多种方法进行多重比较检验,如Tukey HSD、Bonferroni、LSD等。

这些方法可以通过选择“分析”菜单,然后选择“比较手段”来执行。

在弹出的对话框中,选择要进行比较的变量和方法。

点击“确定”执行多重比较检验。

2.结果解读多重比较结果表提供了各组之间的均值差异估计、标准误差、置信区间和p值。

根据p值,可以确定哪些组之间存在显著差异。

单因素方差分析-SPSS

单因素方差分析-SPSS

2
1.2相关概念
(1)影响因素的分类:在所有的影响因素中根据是否可以人为控制可以分 为两类,一类是人为可以控制的因素,称为控制因素或控制变量,如种子 品种的选定,施肥量的多少;另一类因素是认为很难控制的因素,称为随 机因素或随机变量,如气候和地域等影响因素。在很多情况下随机因素指 的是实验过程中的抽样误差。 (2)控制变量的不同水平:控制变量的不同取值或水平,称为控制变量的 不同水平。如甲品种、乙品种;10公斤化肥、20公斤化肥、30公斤化肥等。 (3)观测变量:受控制变量和随机变量影响的变量称为观测变量,如农作 物的产量等。 方差分析就是从观测变量的方差入手,研究诸多控制变量中哪些变量是对 观测变量有显著影响的变量以及对观测变量有显著影响的各个控制变量其 不同水平以及各水平的交互搭配是如何影响观测变量的一种分析方法。
i 1
k
SSE ( xij xi ) 2
i 1 j 1
ni
6
各离差平方和的计算-例题
职称 基本工资 职称 基本工资
1 1014 3 848
1 1044 3 827
1 1014 3 938
2 984 3 887
2 859 3 887
2 989 4 824
2 889 4 824
3 866 4 824
先验对比检验 如果发现某些水平与另一些水平的均值差距显著,就可以进一 步比较这两组总的均值是否存在显著差异。在检验中,SPSS根 据用户确定的各均值的系数,再对其线性组合进行检验,来判 断各相似性子集间均值的差异程度。 趋势检验 当控制变量为定序变量时,趋势检验能够分析随着控制变量水 平的变化,观测变量值变化的总体趋势是怎样的。
13
① Option选项

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。

图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。

或者打开已存在的数据文件“data1.sav”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。

图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。

该对话框用于设置均值的多项式比较。

图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

单因素方差分析spss

单因素方差分析spss

单因素方差分析spss单因素方差分析(ANOVA)是一种统计学方法,用于检验数据中每组样本均值是否有显著差异。

它也可用于比较多组样本间的均值差异。

SPSS(统计分析软件)是一款统计分析软件,它可以帮助用户进行单因素方差分析。

本文将对单因素方差分析的概念进行详细的讨论,并介绍SPSS在进行单因素方差分析时的实践方法。

首先,我们需要了解单因素方差分析的基本概念。

单因素方差分析是一种统计学方法,用于检验数据中每组样本均值是否有显著差异。

它也可以用于比较不同组样本的均值差异,将组之间的平均值的差异归因于某个因素的干预。

一般来说,单因素方差分析的研究对象只有一个变量,即被解释变量。

它与双变量分析、多变量分析等研究的本质区别在于,单因素方差分析只有一个被解释变量,变量之间没有任何关联。

SPSS单因素方差分析的实践方法,通常按照如下步骤进行:第一步:打开SPSS,打开新文件,将需要分析的数据粘贴到新文件中。

第二步:点击“分析”,从中选择适当的分析项目,如单因素方差分析。

第三步:根据实际需要,选择被解释变量,将其拖入“分组变量”栏目中。

第四步:添加任何需要的变量,如设计变量、试验变量等。

第五步:点击“确定”,出现单因素方差分析的结果。

此外,在使用SPSS进行单因素方差分析时,我们可以考虑增加多重比较功能,它可以帮助我们比较不同组的差异值。

此外,SPSS还可以计算校正检验值,进一步识别均值差异的有效性。

单因素方差分析是一种常用的统计分析方法,它可以用于检验数据中每组样本均值是否有显著差异,以及多组样本均值之间的差异性。

SPSS是一款统计分析软件,它可以帮助用户完成单因素方差分析的过程,其实践方法采用了五步曲的步骤,步骤清晰易懂。

同时,用户也可以运用多重比较功能和校正检验值来提高结果的准确性。

用SPSS进行单因素方差分析和多重比较

用SPSS进行单因素方差分析和多重比较

SPSS——单因素方差分析单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。

该对话框用于设置均值的多项式比较。

图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1. 1倍与第二组的均值相等。

单因素方差分析的“0ne-Way ANOVA”过程允许进行高达5次的均值多项式比较。

多项式的系数需要由读者自己根据研究的需要输入。

具体的操作步骤如下:①选中“Polynomial”复选项,该操作激活其右面的“Degree”参数框。

②单击Degree参数框右面的向下箭头展开阶次菜单,可以选择“Linear”线性、“Quadratic”二次、“Cubic”三次、“4th”四次、“5th”五次多项式。

③为多项式指定各组均值的系数。

方法是在“Coefficients”框中输入一个系数,单击Add按钮,“Coefficients”框中的系数进入下面的方框中。

SPSS中的单因素方差分析(One-WayAnova)

SPSS中的单因素方差分析(One-WayAnova)

SPSS中的单因素⽅差分析(One-WayAnova)SPSS中的单因素⽅差分析(One-Way Anova)SPSS中的单因素⽅差分析(One-Way Anova) ⼀、基本原理单因素⽅差分析也即⼀维⽅差分析,是检验由单⼀因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同⽔平会影响到因变量的取值。

⼆、实验⼯具SPSS for Windows三、试验⽅法例:某灯泡⼚⽤四种不同配料⽅案制成的灯丝(filament),⽣产了四批灯泡。

在每批灯泡中随机地抽取若⼲个灯泡测其使⽤寿命(单位:⼩时hours),数据列于下表,现在想知道,对于这四种灯丝⽣产的灯泡,其使⽤寿命有⽆显著差异。

灯泡 1 2 3 4 5 6 7 8 灯丝甲 1600 1610 1650 1680 1700 1700 1780⼄ 1500 1640 1400 1700 1750丙 1640 1550 1600 1620 1640 1600 1740 1800丁 1510 1520 1530 1570 1640 1680 四、不使⽤选择项操作步骤(1)在数据窗建⽴数据⽂件,定义两个变量并输⼊数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、⼄、丙、丁,格式为F1.0,标签为“灯丝”。

Hours变量,数值型,其值为灯泡的使⽤寿命,单位是⼩时,格式为F4.0,标签为“灯泡使⽤寿命”。

(2)按Analyze,然后Compared Means,然后One-Way Anova的顺序单击,打开“单因素⽅差分析”主对话框。

(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours 即进⼊Dependent List框中。

(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进⼊Factor框中。

熟练使用SPSS进行单因素方差分析

熟练使用SPSS进行单因素方差分析

熟练使用SPSS进行单因素方差分析
一、单因素方差分析介绍
单因素方差分析又称因子方差分析,是分析两组或多组数据中变量之
间差异大小的统计方法。

它利用方差分析检验对比数据之间的统计学差异,检验其中一成分是否有一定的影响,而其他成分是否能够有一定的共同作用。

单因素方差分析的设计以及分析结果解释与双因素方差分析大体类型,但是单因素方差分析只有一个变量,因果关系没有双因素方差分析的那么
清楚,只能用于衡量数据之间的统计学差异。

二、SPSS进行单因素方差分析步骤
1.打开spss统计软件,进入数据文件,“新建”,双击“统计分析”,“ANOVA”,“一因子方差分析”菜单,可以调出一因子方差分析
的菜单
2.选择数据输入框,点击“定义变量”,在工具栏出现的表格中,双
击“变量名”栏位,输入分析变量的名称(建议以英文字母表示)
3.点击定义按钮,定义变量类型,选择“基本类型”,输入变量名,
点击确定按钮
4.在定义按钮下,右击工具栏中的“数据”栏位,然后点击“设定数据”,在设定数据窗口中,选择“任何变量”,输入变量的值,点击确定
按钮,完成变量定义
5.点击完成按钮,输入变量名,点击确定按钮,至此。

SPSS基础学习方差分析—单因素分析

SPSS基础学习方差分析—单因素分析

SPSS基础学习⽅差分析—单因素分析为什么要进⾏⽅差分析?单样本、两样本t检验其最终⽬的都是分析两组数据间是否存在显著性差异,但如果要分析多组数据间是否存在显著性差异就很困难,因此⽤⽅差分析解决这个问题;举例:t检验可以分析⼀个班男⼥的⼊学成绩差异;⽽⽅差分析可以分析⼀个班来⾃各省市地区同学的⼊学成绩。

在⽅差分析中,涉及到控制变量和随机变量以及观测变量;举例:施肥量是否会给农作物产量带来显著影响;这⾥,控制变量:施肥量,观测变量:农作物产量,随机变量:天⽓、温度……单因素分析⽬的:分析单⼀控制因素影响下的多组样本的均值是否存在显著性差异。

适⽤条件:正态性,每个⽔平下的因变量应服从正态分布;同⽅差性,各组之间的具有相同的⽅差;独⽴性,各组之间是相互独⽴的。

案例分析:案例描述:在某⼀公司下,分析⼴告形式对销售额的影响。

(数据来源:《统计分析与SPSS的应⽤》(第五版)薛薇第六章)题⽬分析:在题⽬中,⼴告形式不⾄两种,没办法⽤两独⽴样本t检验分析形式和销售额之间的显著性差异,同时,只有⼀个控制因素,所以采⽤⽅差分析中的单因素分析。

提出原假设:⼴告形式和销售额之间不存在显著性差异。

界⾯操作步骤:分析—⽐较均值—单因素ANOVA关键步骤截图:分清楚因变量列表和因⼦;因⼦:控制变量,因变量列表:观测变量结果分析:单因素⽅差分析销售额平⽅和df均⽅F显著性组间5866.08331955.36113.483.000组内20303.222140145.023总数26169.306143分析:平⽅和:组间离差平⽅和(SSA)是由控制变量的不同⽔平造成的变差,组内离差平⽅和(SSE)是由随机变量的不同⽔平造成的变差;df:组间⾃由度,在本题中根据⼴告形式的不同分为四组,所以⾃由度为k-1=4-1=3;组内⾃由度n-k=144-k=140;均⽅:即为⽅差;F=SSA/(k-1)÷(SSE/(n-k))=组间⽅差/组内⽅差,F值显著性⼤于1,说明控制变量对观测变量的影响⽐随机变量⼤,反之有效;P-值=0.00<0.05,所以拒绝原假设,认为不同的⼴告形式和地区对销售额的平均值产⽣了显著影响,不同的⼴告形式、地区对销售额的影响效应不全为0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS单因素方差分析单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measu re过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数水稻品种重复12345141333837312393735393434035353834数据保存在“data1.sav”文件中,变量格式如图1-1。

图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。

或者打开已存在的数据文件“dat a1.sav”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。

图1-2 单因素方差分析窗口3)设置分析变量因变量: 选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量: 选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。

该对话框用于设置均值的多项式比较。

图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

单因素方差分析的“0ne-Way ANOVA”过程允许进行高达5次的均值多项式比较。

多项式的系数需要由读者自己根据研究的需要输入。

具体的操作步骤如下:①选中“Polynomial”复选项,该操作激活其右面的“Degree”参数框。

②单击Degree参数框右面的向下箭头展开阶次菜单,可以选择“Linear”线性、“Quadratic”二次、“Cubic”三次、“4th”四次、“5th”五次多项式。

③为多项式指定各组均值的系数。

方法是在“Coefficients”框中输入一个系数,单击Add按钮,“Coefficients”框中的系数进入下面的方框中。

依次输入各组均值的系数,在方形显示框中形成—列数值。

因素变量分为几组,输入几个系数,多出的无意义。

如果多项式中只包括第一组与第四组的均值的系数,必须把第二个、第三个系数输入为0值。

如果只包括第一组与第二组的均值,则只需要输入前两个系数,第三、四个系数可以不输入。

可以同时建立多个多项式。

一个多项式的一组系数输入结束,激话“Ne xt”按钮,单击该按钮后“Coefficients”框中清空,准备接受下一组系数数据。

如果认为输入的几组系数中有错误,可以分别单击“Previous”或“Next”按钮前后翻找出错的一组数据。

单击出错的系数,该系数显示在编辑框中,可以在此进行修改,修改后单击“Change”按钮在系数显示框中出现正确的系数值。

当在系数显示框中选中一个系数时,同时激话“Remove”按钮,单击该按钮将选中的系数清除。

④单击“Previous”或“Next”按钮显示输入的各组系数检查无误后,按“Con tinue”按钮确认输入的系数并返回到主对话框。

要取消刚刚的输入,单击“Ca ncel”按钮;需要查看系统的帮助信息,单击“Help”按钮。

本例子不做多项式比较的选择,选择缺省值。

5)设置多重比较在主对话框里单击“Post Hoc”按钮,将打开如图5-4所示的多重比较对话框。

该对话框用于设置多重比较和配对比较。

方差分析一旦确定各组均值间存在差异显著,多重比较检测可以求出均值相等的组;配对比较可找出和其它组均值有差异的组,并输出显著性水平为0.95的均值比较矩阵,在矩阵中用星号表示有差异的组。

图1-4 “Post Hoc Multiple Comparisons”对话框(1)多重比较的选择项:①方差具有齐次性时(Equal Variances Assumed),该矩形框中有如下方法供选择:LSD (Least-significant difference) 最小显著差数法,用t检验完成各组均值间的配对比较。

对多重比较误差率不进行调整。

Bonferroni (LSDMOD) 用t检验完成各组间均值的配对比较,但通过设置每个检验的误差率来控制整个误差率。

Sidak 计算t统计量进行多重配对比较。

可以调整显著性水平,比B offerroni方法的界限要小。

Scheffe 对所有可能的组合进行同步进入的配对比较。

这些选择项可以同时选择若干个。

以便比较各种均值比较方法的结果。

R-E-G-WF (Ryan-Einot-Gabriel-Welsch F) 用F检验进行多重比较检验。

R-E-G-WQ (Ryan-Einot-Gabriel-Welsch range test) 正态分布范围进行多重配对比较。

S-N-K (Student-Newmnan-Keuls) 用Student Range分布进行所有各组均值间的配对比较。

如果各组样本含量相等或者选择了“Harmonic average of all groups”即用所有各组样本含量的调和平均数进行样本量估计时还用逐步过程进行齐次子集(差异较小的子集)的均值配对比较。

在该比较过程中,各组均值从大到小按顺序排列,最先比较最末端的差异。

Tukey (Tukey's,honestly signicant difference) 用Student-Ra nge统计量进行所有组间均值的配对比较,用所有配对比较误差率作为实验误差率。

Tukey's-b 用“stndent Range”分布进行组间均值的配对比较。

其精确值为前两种检验相应值的平均值。

Duncan (Duncan's multiple range test) 新复极差法(SSR),指定一系列的“Range”值,逐步进行计算比较得出结论。

Hochberg's GT2 用正态最大系数进行多重比较。

Gabriel 用正态标准系数进行配对比较,在单元数较大时,这种方法较自由。

Waller-Dunca 用t统计量进行多重比较检验,使用贝叶斯逼近。

Dunnett 指定此选择项,进行各组与对照组的均值比较。

默认的对照组是最后一组。

选择了该项就激活下面的“Control Category”参数框。

展开下拉列表,可以重新选择对照组。

“Test”框中列出了三种区间分别为:•“2-sides”双边检验;•“<Control”左边检验•“>Conbo1”“右边检验。

②方差不具有齐次性时(Equal Varance not assumed),检验各均数间是否有差异的方祛有四种可供选择:Tamhane's T2, t检验进行配对比较。

Dunnett's T3,采用基于学生氏最大模的成对比较法。

Games-Howell,Games-Howell比较,该方法较灵活。

Dunnett's C,采用基于学生氏极值的成对比较法。

③ Significance 选择项,各种检验的显著性概率临界值,默认值为0.05,可由用户重新设定。

本例选择“LSD”和“Duncan”比较,检验的显著性概率临界值0.05。

6) 设置输出统计量单击“Options”按钮,打开“Options”对话框,如图1-5所示。

选择要求输出的统计量。

并按要求的方式显示这些统计量。

在该对话框中还可以选择对缺失值的处理要求。

各组选择项的含义如下:图1-5输出统计量的设置“Statistics”栏中选择输出统计量:Descriptive,要求输出描述统计量。

选择此项输出观测量数目、均值、标准差、标准误、最小值、最大值、各组中每个因变量的95%置信区间。

Fixed and random effects, 固定和随机描述统计量Homogeneity-of-variance,要求进行方差齐次性检验,并输出检验结果。

用“Levene lest ”检验,即计算每个观测量与其组均值之差,然后对这些差值进行一维方差分析。

Brown-Forsythe 布朗检验Welch,韦尔奇检验Means plot,即均数分布图,根据各组均数描绘出因变量的分布情况。

“Missing Values”栏中,选择缺失值处理方法。

Exclude cases analysis by analysis选项,被选择参与分析的变量含缺失值的观测量,从分析中剔除。

Exclude cases listwise选项,对含有缺失值的观测量,从所有分析中剔除。

以上选择项选择完成后,按“Continue”按钮确认选择并返回上一级对话框;单击“Cancel”按钮作废本次选择;单击“Help”按钮,显示有关的帮助信息。

本例子选择要求输出描述统计量和进行方差齐次性检验,缺失值处理方法选系统缺省设置。

6)提交执行设置完成后,在单因素方差分析窗口框中点击“OK”按钮,SPSS就会根据设置进行运算,并将结算结果输出到SPSS结果输出窗口中。

7) 结果与分析输出结果:表5-2描述统计量,给出了水稻品种分组的样本含量N、平均数Mean、标准差Std.Deviation、标准误Std.Error、95%的置信区间、最小值和最大值。

表5-3为方差齐次性检验结果,从显著性慨率看,p>0.05,说明各组的方差在a=0.05水平上没有显著性差异,即方差具有齐次性。

这个结论在选择多重比较方法时作为一个条件。

表5-4方差分析表:第1栏是方差来源,包括组间变差“Between Grou ps”;组内变差“Within Groups”和总变差“Total”。

第2栏是离差平方和“Sum of Squares”,组间离差平方和87.600,组内离差平方和为24.000,总离差平方和为111.600,是组间离差平方和与组内离差平方和相加之和。

第3栏是自由度df,组间自由度为4,组内自由度为10;总自由度为14。

第4栏是。

相关文档
最新文档