导数大题题型总结

合集下载

导数题型总结(12种题型)

导数题型总结(12种题型)

导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。

二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。

2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。

导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。

掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。

下面将对导数的20种主要题型进行总结并给出解题方法。

1.求函数在某点的导数。

对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。

导数的定义是取极限,计算函数在这一点的变化率。

基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。

2.求函数的导数表达式。

已知函数表达式,要求其导数表达式。

可以使用基本求导法则,并注意链式法则和乘积法则的应用。

3.求高阶导数。

如果已知函数的导数表达式,要求其高阶导数表达式。

可以反复应用求导法则,每次对函数求导一次得到导数表达式。

4.求导数的导函数。

导数的导函数是指对导数再进行求导的过程。

要求导函数时,可以反复应用求导法则,迭代求取导数的导数。

5.利用导数计算函数极值。

当函数的导数为0或不存在时,可能是函数的极值点。

可以利用导数求函数的极值。

6.利用导数判定函数的增减性。

根据函数的导数正负性可以判定函数的增减性。

如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。

7.利用导数求函数的最大最小值。

当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。

要求函数全局最大最小值时,可以使用导数判定。

当导数从正数变为负数时,可能是函数取得最大值的点。

8.利用导数求函数的拐点。

如果函数的导数在某一点发生变号,该点可能是函数的拐点。

可以使用导数的二阶导数判定。

9.利用导数求函数的弧长。

曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。

通过导数求取弧长元素,并积累求和得到曲线的弧长。

10.利用导数求函数的曲率。

曲率表示曲线弯曲程度的大小,可以通过导数求取。

曲率的求取公式是曲线的二阶导数与一阶导数的比值。

11.利用导数求函数的速度和加速度。

导数大题题型归纳解题方法

导数大题题型归纳解题方法

导数大题题型归纳解题方法
导数大题题型主要包括求函数的导数、求函数的极值、求曲线的切线方程和法线方程等。

下面给出这些题型的解题方法:
1. 求函数的导数:
- 根据导数的定义,逐项求导;
- 利用乘法法则、复合函数法则、除法法则等求导法则简化计算;
- 对于含有多项式函数、指数函数、对数函数、三角函数等函数的复合函数,可以根据相应的求导法则和运算规律进行求导。

2. 求函数的极值:
- 首先求函数的导数,得到导函数;
- 解导函数的方程,求得导函数的零点,即函数的驻点;
- 利用二阶导数判别法来判断驻点的类型(极大值点、极小值点或拐点);
- 如果导函数的零点为函数的一个极值点,则该极值点对应的函数值为极值。

3. 求曲线的切线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 然后利用一般点斜式的切线方程公式,以该点和斜率为参数,得到切线方程。

4. 求曲线的法线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 利用切线斜率与法线斜率的关系(切线斜率与法线斜率的乘积等于-1),由此得到法线的斜率;
- 然后以该点和法线斜率为参数,利用一般点斜式的法线方程公式得到法线方程。

以上是导数大题题型的一般解题方法,根据具体题目特点和要求,可能需要结合其他数学知识和技巧进行推导和计算。

高中数学导数大题八类题型总结

高中数学导数大题八类题型总结

导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。

(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。

导数大题20种主要题型讲解

导数大题20种主要题型讲解

导数大题20种主要题型讲解答案详解:本题主要考查导数在研究函数中的应用。

(1)求出比较其与的大小,得到的单调性表,于是得到的极值。

(2)将代入到中,并求得当时,此时恒成立,即在单调递增,同理可以得到在上为增函数,则原不等式可化为在上恒成立,令,对其求导得知若为减函数时其导数恒小于,便可得到的取值范围。

(3)若存在,使得假设成立,也即在上不是单调增或单调减,故,对求导得到其极小值点为,由于解得此时,此时需证明当,使得即可,此时可取,发现成立,故的取值范围为。

答案详解(Ⅰ),由是的极值点得,所以。

于是,定义域为,,函数在上单调递增,且。

因此,当时,;当时,。

所以,在上单调递减,在上单调递增。

(Ⅱ)当,时,,故只需要证明当时,。

当时,函数在单调递增,又,,故在有唯一实根,且。

当时,;当时,;从而当时,取得最小值。

由得:,,故。

综上:当时,。

解析:本题主要考查函数的求导和函数的单调性的判断。

(Ⅰ)先对函数求导,得导函数,由题,则可得的值,当时,单调递增,求得的的取值范围即为单调增区间;当时,单调递减,求得的的取值范围即为单调减区间。

(Ⅱ)由分析知,只需证明当时,,此时通过分析函数单调性,求得即可得证。

例题5:函数。

(Ⅰ)讨论的导函数零点的个数;(Ⅱ)证明:当时,。

答案详解(Ⅰ)的定义域为,()。

当时,,没有零点;当时,因为单调递增,单调递增,所以在单调递增。

又,当满足且时,,故当时,存在唯一零点。

(Ⅱ)由(Ⅰ),可设在的唯一零点为,当时,;当时,。

故在单调递减,在单调递增,所以当时,取得最小值,最小值为。

由于,所以。

故当时,。

解析:本题主要考查导数的概念及其几何意义以及导数在函数研究中的应用。

(Ⅰ)求导得出的表达式,根据其表达式,对进行分类讨论。

当时,可知没有零点;当时,可知单调递增,且存在使得而,因此存在唯一零点。

(Ⅱ)由(Ⅰ),可设的最小值在时取到,最小值为。

写出的表达式,再运用均值不等式即可得出。

导数各种题型及解法的总结

导数各种题型及解法的总结

《导数各种题型及解法总结》基础知识梳理1.常见题型2.在解题中常用的有关结论(需要熟记):3.解题方法规律总结虑判别式、对称轴、区间端点函数值的符号等因素。

2. 已知函数(含参数)在某区间上单调,求参数的取值范围,有三种方法:①子区间法;②分离参数法;③构造函数法。

3. 注意分离参数法的运用:含参数的不等式恒成立问题,含参数的不等式在某区间上有解, 含参数的方程在某区间上有实根(包括根的个数)等问题,都可以考虑用分离参数法,前 者是求函数的最值,后者是求函数的值域。

4. 关于不等式的证明:通常是构造函数,考察函数的单调性和最值。

有时要借助上一问的有关单调性或所求的最值的结论,对其中的参数或变量适当赋值就可得到所要证的不等式。

对于含有正整数n 的带省略号的不定式的证明,先观察通项,联想基本不定式(上述结论 中的13),确定要证明的函数不定式(往往与所给的函数及上一问所得到的结论有关) , 再对自变量x 赋值,令x 分别等于1、2、…….、n,把这些不定式累加,可得要证的不定式。

)5. 关于方程的根的个数问题:一般是构造函数,有两种形式,一是参数含在函数式中,二是参数被分离,无论哪种形式,都需要研究函数在所给区间上的单调性、极值、最值以及区 间端点的函数值,结合函数图象, 确立所满足的条件,再求参数或其取值范围。

一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令f (x) =0得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:第一种:分离变量求最值 -----用分离变量时要特别注意是否需分类讨论( >0,=0,<0 )第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数y 二f(x)在区间D 上的导数为f(x), f (x)在区间D 上的导数为g(x),若在区间 D 上,(2)若对满足 m 兰2的任何一个实数 m ,函数f (x)在区间(a,b )上都为“凸函数”,求b-a 的最大值.g(x) -.0恒成立,则称函数y = f(x)在区间D 上为“凸函数”,已知实数m 是常数,(1 )若y = f (x)在区间0,3 1上为“凸函数”,求m 的取值范围; 4f(x 7 6 3 mx 3x1例2:设函数f (x) x3 2ax2 -3a2x b(0 ::: a ::: 1, b R)3(I)求函数f (x)的单调区间和极值;(n)若对任意的x引a+1,a+2],不等式flx/a恒成立,求a的取值范围. (二次函数区间最值的例子)点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:f(x) g(x)恒成立h(x)二f (x)-g(x) • 0恒成立;从而转化为第一、二种题型3 2 3 t — 6 2例3 ;已知函数f(x^x3 ax2图象上一点P(1,b)处的切线斜率为-3 ,g(x)=x3—x-(t 1)x 3 (t 0) (I)求a,b的值;(n)当x・[-1,4]时,求f (x)的值域;(川)当[1,4]时,不等式f(x) _g(x)恒成立,求实数t的取值范围。

导数考试题型及答案详解

导数考试题型及答案详解

导数考试题型及答案详解一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 2C. 2x + 6D. 3x + 2答案:A2. 若f(x) = sin(x),则f'(π/4)的值是:A. 1B. √2/2C. -1D. -√2/2答案:B二、填空题1. 求函数g(x) = x^3 - 2x^2 + x的导数,g'(x) = __________。

答案:3x^2 - 4x + 12. 若h(x) = cos(x),求h'(x) = __________。

答案:-sin(x)三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x + 2的导数,并求f'(2)的值。

解:首先求导数f'(x) = 3x^2 - 12x + 9。

然后将x = 2代入得到f'(2) = 3 * 2^2 - 12 * 2 + 9 = 12 - 24 + 9 = -3。

2. 已知函数y = ln(x),求y'。

解:根据对数函数的导数公式,y' = 1/x。

四、证明题1. 证明:若函数f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。

证明:根据幂函数的导数公式,对于任意实数n,有f'(x) = n * x^(n-1)。

五、应用题1. 某物体的位移函数为s(t) = t^3 - 6t^2 + 9t + 5,求该物体在t = 3时的瞬时速度。

解:首先求位移函数的导数s'(t) = 3t^2 - 12t + 9。

然后将t = 3代入得到s'(3) = 3 * 3^2 - 12 * 3 + 9 = 27 - 36 + 9 = 0。

因此,该物体在t = 3时的瞬时速度为0。

六、综合题1. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5,求f'(x),并求曲线y = f(x)在点(1, f(1))处的切线斜率。

导数大题方法总结

导数大题方法总结

导数大题方法总结导数大题方法总结总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以促使我们思考,让我们一起认真地写一份总结吧。

那么总结要注意有什么内容呢?以下是小编整理的导数大题方法总结,欢迎大家分享。

一、总论一般来说,导数的大题有两到三问。

每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。

二、主流题型及其方法(1)求函数中某参数的值或给定参数的值求导数或切线一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。

虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。

这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。

保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。

②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。

所以做两个字来概括这一类型题的方法就是:淡定。

别人送分,就不要客气。

③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。

切线要写成一般式。

(2)求函数的单调性或单调区间以及极值点和最值一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。

这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。

高考数学导数压轴大题7大题型梳理归纳

高考数学导数压轴大题7大题型梳理归纳

导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。

高考压轴题:导数题型及解题方法总结很全

高考压轴题:导数题型及解题方法总结很全

高考压轴题:导数题型及解题方法(自己总结供参考)一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。

方法:)(0x f '为在0x x =处的切线的斜率。

题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。

方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、(提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。

将问题转化为关于m x ,0的方程有三个不同实数根问题。

(答案:m 的范围是()2,3--)题型3 求两个曲线)(x f y =、)(x g y =的公切线。

方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。

()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例 求曲线2x y =与曲线x e y ln 2=的公切线方程。

(答案02=--e y x e )二.单调性问题题型1 求函数的单调区间。

求含参函数的单调区间的关键是确定分类标准。

分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。

导数的大题题型及解题技巧

导数的大题题型及解题技巧

导数的大题题型及解题技巧
导数的大题题型包括函数的基本求导、复合函数的求导、参数方程的求导、隐函数的求导等。

下面介绍一些解题技巧。

1. 函数的基本求导:首先找到函数的导数定义,然后应用求导公式,根据函数的具体形式进行求导。

常见的函数有多项式函数、指数函数、对数函数、三角函数等。

2. 复合函数的求导:根据链式法则,将复合函数分解成内函数和外函数,然后分别求导并乘起来。

注意求导的顺序和方法。

3. 参数方程的求导:对于参数方程,将每个变量用一个参数表示,然后对参数求导得到相应的导数。

常见的参数方程有直角坐标系和极坐标系。

4. 隐函数的求导:对于隐函数,首先根据给定的条件,利用导数的定义将自变量和因变量相互关联表示。

然后利用求导公式进行计算,最后求得导数。

5. 利用性质简化计算:对于一些特殊函数或特殊的情况,可以利用导数的性质来简化计算。

例如,奇偶性、周期性、对称性等。

6. 运用变速度思想:对于一些几何意义明确的问题,可以将导数理解为运动的速度,利用变速度思想进行求导。

例如,物体的位移、速度和加速度。

以上是导数的一些大题题型及解题技巧,希望对你有所帮助!。

导数常见题型方法总结

导数常见题型方法总结

导数题型总结例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,假设在区间D上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数〞,实数m 是常数,4323()1262x mx x f x =-- 〔1〕假设()y f x =在区间[]0,3上为“凸函数〞,求m 的取值围;〔2〕假设对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数〞,求b a -的最大值.解:由函数4323()1262x mx x f x =-- 得32()332x mx f x x '=--2()3g x x mx ∴=-- 〔1〕()y f x =在区间[]0,3上为“凸函数〞,则 2()30g x x mx ∴=--<在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:别离变量法:∵当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立等价于233x m x x x ->=-的最大值〔03x <≤〕恒成立, 而3()h x x x=-〔03x <≤〕是增函数,则max ()(3)2h x h ==2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数〞则等价于当2m ≤时2()30g x x mx =--< 恒成立变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立〔视为关于m 的一次函数最值问题〕30110x >⇒-<<> 例2),10(32R b a b x a ∈<<+-],2+a 不等式()f x a '≤恒成立,求a 的取值围. 解:〔Ⅰ〕()()22()433f x x ax a x a x a '=-+-=---令,0)(>'x f 得)(x f 的单调递增区间为〔a ,3a 〕令,0)(<'x f 得)(x f 的单调递减区间为〔-∞,a 〕和〔3a ,+∞〕∴当*=a 时,)(x f 极小值=;433b a +- 当*=3a 时,)(x f 极大值=b.〔Ⅱ〕由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立① 则等价于()g x 这个二次函数max min ()()g x ag x a≤⎧⎨≥-⎩22()43g x x ax a =-+的对称轴2x a=01,a <<12a a a a +>+=〔放缩法〕即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

导数大题20种题型讲解

导数大题20种题型讲解

导数大题20种题型讲解1.多项式函数求导:题目描述:求函数f(x)=ax^n的导数。

解答步骤:使用幂函数的导数公式,对函数f(x)进行求导,得到f'(x)=nax^(n-1)。

2.常数函数求导:题目描述:求函数f(x)=c的导数。

解答步骤:常数函数的导数始终为零,即f'(x)=0。

3.指数函数求导:题目描述:求函数f(x)=e^x的导数。

解答步骤:指数函数e^x的导数仍然是e^x,即f'(x)=e^x。

4.对数函数求导:题目描述:求函数f(x)=ln(x)的导数。

解答步骤:对数函数ln(x)的导数为1/x,即f'(x)=1/x。

5.三角函数求导:题目描述:求函数f(x)=sin(x)的导数。

解答步骤:三角函数sin(x)的导数为cos(x),即f'(x)=cos(x)。

6.反三角函数求导:题目描述:求函数f(x)=arcsin(x)的导数。

解答步骤:反三角函数的导数可以通过导数公式计算,即f'(x)=1/sqrt(1-x^2)。

7.复合函数求导:题目描述:求函数f(x)=(2x+1)^3的导数。

解答步骤:使用链式法则,将复合函数拆解成内外两个函数,并分别求导。

对于本题,先对内函数u=2x+1求导,然后乘以外函数v=u^3的导数。

8.分段函数求导:题目描述:求函数f(x)={x^2,x<0;x,x≥0}的导数。

解答步骤:由于该函数在x=0处存在不连续点,需要分别对x<0和x≥0的部分进行求导。

对于x<0的部分,求导结果为2x;对于x≥0的部分,求导结果为1。

9.隐函数求导:题目描述:求函数方程x^2+y^2=25的导数dy/dx。

解答步骤:对方程两边同时求导,并利用隐函数求导法则,最后解出dy/dx的表达式。

10.参数方程求导:题目描述:已知参数方程x=t^2,y=2t+1,求曲线的切线斜率。

解答步骤:对参数方程中的x和y分别求导,然后计算dy/dx的值,即可得到切线斜率。

导数专题的题型总结

导数专题的题型总结

导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。

- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。

- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。

- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。

2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。

- 解析:- 设u = 2x+1,则y = u^5。

- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。

- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。

- 所以y^′ = 5u^4·2=10(2x + 1)^4。

二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。

- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。

- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。

2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。

- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。

- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。

导数题型总结(12种题型)

导数题型总结(12种题型)

导数题型总结(12种题型)导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。

二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。

2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证:对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二利用导数四则运算构造新函数一.知识点睛导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。

导数大题20种主要题型

导数大题20种主要题型

导数大题20种主要题型一、求函数的单调性1. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间。

2. 给出函数解析式和区间,求函数在区间内的单调性。

二、求函数的极值3. 给出函数解析式,求导数,并根据导数正负确定函数的极值点,求出极值。

4. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值。

三、求函数的最大值或最小值5. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间,从而确定函数的最大值或最小值。

6. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值,再与区间端点的函数值比较,得到函数的最大值或最小值。

四、确定函数图像的单调区间7. 给出函数解析式,求导数,并根据导数正负确定函数图像的单调区间。

8. 给出函数图像的大致形状,根据图像的变化趋势,确定函数解析式,并求导数,确定函数图像的单调区间。

五、判断函数的零点9. 给出函数解析式和区间,判断函数在区间内的零点个数。

10. 给出函数解析式和大致的图像,根据图像的变化趋势,判断函数在某一点的零点是否存在。

六、判断函数的最值点11. 给出函数解析式和区间,判断函数在区间内的最值点。

12. 给出函数图像的大致形状,根据图像的变化趋势,确定函数在某一点的最值点。

七、判断函数的极值点13. 给出函数解析式,求导数,并根据导数正负确定函数的极值点。

14. 给出函数图像的大致形状,根据图像的变化趋势,判断函数在某一点的极值点。

八、求解不等式九、求解方程的根十、利用导数证明不等式十一、利用导数求最值十二、利用导数求多变量函数的平衡点十三、利用导数研究函数的图像性质十四、利用导数研究函数的极值和最值十五、利用导数求解高阶导数十六、利用导数求实际问题的最优解十七、利用导数求解曲线的切线方程十八、利用导数研究函数的凹凸性十九、利用导数求解函数的零点个数二十、物理问题的应用。

导数大题20种题型

导数大题20种题型

导数大题20种题型导数是微积分中非常重要的概念,它用于描述函数在某一点处的变化率。

在求解导数的过程中,我们会遇到各种不同的题型。

下面是导数大题的20种题型。

1. 基本函数的导数:求解常见函数(如多项式函数、指数函数、对数函数、三角函数等)在给定点处的导数。

2. 复合函数的导数:根据链式法则,求解复合函数在给定点处的导数。

3. 反函数的导数:利用反函数的性质,求解反函数在给定点处的导数。

4. 参数方程的导数:对参数方程中的x和y分别求导,得到x和y 关于另一个参数的导数。

5. 隐函数的导数:根据隐函数的定义,利用全微分的性质,求解隐函数在给定点处的导数。

6. 对数导数:利用对数函数的导数性质,求解函数的对数导数。

7. 高阶导数:求解函数的二阶、三阶或更高阶导数。

8. 反复函数的导数:对反复函数进行多次求导,得到各阶导数。

9. 参数曲线的切线与法线:利用导数的定义,求解参数曲线在给定点处的切线和法线方程。

10. 极限定义的导数:利用导数的极限定义,求解函数在给定点处的导数。

11. 极值问题:利用导数的性质,求解函数的极大值和极小值点。

12. 函数的单调性:根据导数的正负性,判断函数在给定区间上的单调性。

13. 曲线的凹凸性:根据导数的增减性,判断函数在给定区间上的凹凸性。

14. 弧长问题:利用导数的定义,求解曲线弧长。

15. 曲率问题:利用导数的定义,求解曲线在给定点处的曲率。

16. 泰勒展开:利用导数的性质,对函数进行泰勒展开。

17. 函数的积分:利用导数和积分的关系,求解函数的积分。

18. 参数方程的弧长:利用导数的定义,求解参数方程表示的曲线的弧长。

19. 高阶导数的应用:利用高阶导数的性质,求解函数的拐点、极值点等特殊点。

20. 物理问题的应用:利用导数的物理意义,求解物理问题中的速度、加速度等相关概念。

这些题型覆盖了导数的基本概念及其在不同问题中的应用。

通过解答这些题型,我们可以更好地理解导数的性质及其在数学和物理中的重要作用。

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。

命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。

这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。

题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。

1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。

如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。

2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。

3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。

在极值和区间端点函数值中最大的为最大值,最小的为最小值。

例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。

x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。

审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。

规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。

则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。

导数大题20种主要题型讲解,建议收藏打印

导数大题20种主要题型讲解,建议收藏打印

导数大题20种主要题型讲解,建议收藏打印
目前虽然全国高考使用试卷有所差异,但高考压轴题目题型基本都是一致的,几乎没有差异,如果有差异只能是难度上的差异,高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。

导数解答题是高考数学必考题目,然而学生由于缺乏方法,同时认识上的错误,绝大多数同学会选择完全放弃,我们不可否认导数解答题的难度,但也不能过分的夸大。

掌握导数的解体方法和套路,对于基础差的同学不说得满分,但也不至于一分不得。

为了帮助大家复习,今天就总结导数大题20种主要题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题。

建议同学家长下载出来,方便学习!熟练掌握,需要下载word版,直接点击小编上方头像,
私信小编私信发送:“206”
即可免费领取,记得不要回复错了哦!还有更多学习方法技巧,套路模板等着同学们!。

导数题型总结

导数题型总结

导数题型总结题型一:利用导函数解析式求原函数解析式例1:已知多项式函数()f x 的导数/2()34f x x x =-,且(1)4f =,求()f x例2:已知多项式函数()f x 为奇函数,/2()31()f x x ax a R =++∈,求()f x例3:已知函数432()f x ax bx cx dx e =++++为偶函数,它的图象过点(0,1)A -,且在1x =处的切线方程为210x y +-=,求()f x题型二:求切线问题例1:已知曲线方程为2122x -y=,则在点3(1,)2P -处切线的斜率为 ,切线的倾斜角为例2:求曲线13y x=在原点处的切线方程切线斜率不存在所以切线方程为0x =例3:求曲线3y x =在点(1,1)出的切线与X 轴,直线2x =所围成的三角形的面积切线方程为320x y --= 三角形面积83S =例4:求曲线2y x =分别满足下列条件的切线方程(1)平行于直线45y x =- (2)垂直于直线2650x y -+= (3)与X 轴成0135的倾斜角 (4)过点(1,3)P -,且与曲线相切的直线 例5:已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是例6:已知函数()f x 在R 上满足3()3()8f x f x x =--+,则曲线()y f x =在点(2,(2))f 处的切线方程是题型三:求倾斜角例1:P 在曲线323+-=x x y 上移动,在点P 处的切线的倾斜角为α,则α的取值范围是______例2:.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________;题型四:导数与函数图像问题例1:若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在[,]a b 上的图象可能是( )A .B .C .D ..例2函数y=ax 2+ bx 与y= ||log b ax (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是( )ab a例3函数22x y x =-的图像大致是( )例4设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )例5设()f x '是函数()f x 的导函数,()y f x '=的图象如下图(1)所示,则()y f x =的图象最有可能的是例6.设函数f(x)y=f '(x)可能为 ( )A .B .C .D .AB C D题型五:结合单调性求参数的取值范围例1:若函数32()f x x ax bx c =+++为R 上的增函数,则实数,,a b c 满足的条件是 例2:已知函数32()1f x x ax x =-+--在R 是单调函数,则实数a 的取值范围是例3:已知函数32()321f x x x =+-在区间(,)m o 上是减函数,则m 的取值范围是例4:已知向量2(1)a x x =+ ,,(1,)b x t =- ,若函数()f x a b = 在区间(1,1)-上是增函数,求t 的取值范围例5:已知函数32()33(2)1f x x ax a x =++++既有极大值又有极小值,则实数a 的取值范围是例6:若函数34()3f x x bx =-+有三个单调区间,则b 的取值范围是 0b >例7:设函数3()65f x x x =-+ (1)求()f x 的单调区间和极值(2)若关于x 的方程()f x a =有三个不同实根,求a 的取值范围 (3)已知当(1,)x ∈+∞时,()(1)f x k x ≥-恒成立,求实数k 的取值范围例8:已知32()f x x ax bx c =+++在213x x =-=与时取得极值(1)求,a b 的值(2)若对[1,2]x ∈-,2()f x c <恒成立,求c 的取值范围 例9:已知函数()f x 的图象与函数1()2g x x x=++的图象关于点(0,1)A 对称 (1)求函数()f x 的解析式 (2)若()()ah x f x x=+,且()h x 在区间(0,2]上是减函数求实数a 的取值范围 题型六:求单调区间例1:(1) 432()3861f x x x x =-++ (2)3()f x x ax =- (3) 2()x f x x e -= 例2:已知函数32()f x ax bx cx d =+++的两个极值点是1-和3 ,且(0)7f =-,/(0)18f =-,求函数()f x 的解析式例3:已知()f x 是三次函数,()g x 是一次函数,321()()2372f xg x x x x -=-+++,()f x 在1x =处有极值2 ,求()f x 的解析式和单调区间题型七:求极值问题例1.(本小题满分12分)设函数32()63(2)2f x x a x ax =+++.(1)若()f x 的两个极值点为12,x x ,且121x x =,求实数a 的值;(2)是否存在实数a ,使得()f x 是(,)-∞+∞上的单调函数?若存在,求出a 的值;若不存在,说明理由. 例2设函数()sin cos 1 , 02f x x x x x π=-++<<,求()f x 的单调区间与极值. 例3已知函数42()32(31)4f x ax a x x =-++ (I )当16a =时,求()f x 的极值; (II )若()f x 在()1,1-上是增函数,求a 的取值范围 例4设定函数32()(0)3a f x x bx cx d a =+++>,且方程'()90f x x -=的两个根分别为1,4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档