(推荐)高中数学函数总结大全
人教版高中数学-必修1(函数)知识点总结
(4)若 A B 且 B A ,则 A B
A(B)
BA
或
真子集
集合 相等
AB
(或 B A)
A B ,且 B 中至
少有一元素不属于 A
(1) A (A 为非空子集)
(2)若 A B 且 B C ,则 AC
A 中的任一元素都属 于 B,B 中的任一元素 都属于 A
(1)A B (2)B A
如果对于函数 f(x)定义域内 任意一个 x,都有 .f.(-.x..)=.f.(.x.)., 那么函数 f(x)叫做偶.函.数..
(1)利用定义(要先 判断定义域是否关于 原点对称) (2)利用图象(图象 关于原点对称) (1)利用定义(要先 判断定义域是否关于 原点对称) (2)利用图象(图象 关于 y 轴对称)
【
(5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间 的对应关系.图象法:就是用图象表示两个变量之间的对应关系.
(6)映射的概念
①设 A 、 B 是两个集合,如果按照某种对应法则 f ,对于集合 A 中任何一个元素,在集合 B 中都
的定义域应由不等式 a g(x) b 解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是 提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的 值域或最值.
高中三角函数知识点归纳总结(通用10篇)
高中三角函数知识点归纳总结(通用10篇)高中数学三角函数知识点总结:三倍角公式篇一sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)高中数学三角函数知识点总结:三倍角公式推导篇二sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:半角公式篇三tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)高中数学三角函数知识点总结:辅助角公式篇四Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))高中数学三角函数知识点总结:和差化积篇五sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)高中三角函数知识点归纳篇六1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。
高中数学函数知识点总结
高中数学函数知识点总结高中数学函数知识点总结(1)高中函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函数:①若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。
②当=0时,称是的正比例函数。
(3)高中函数的一次函数的图象及性质①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数=的图象是经过原点的一条直线。
③在一次函数中,当0,O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0,0时,则经1、3、4象限;当0,0时,则经1、2、3象限。
④当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。
(4)高中函数的二次函数:①一般式:,对称轴是顶点是②顶点式:③交点式:;,对称轴是,其中(顶点是),(;)是抛物线与轴的交点(5)高中函数的二次函数的性质①函数的图象关于直线对称。
②时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值随值的增大而增大。
当时,取得最小值③时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值随值的增大而减少。
当时,取得最大值9高中函数的图形的对称(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。
(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。
②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
扩展阅读:高中数学三角函数知识点总结实用版高中数学函数知识点总结高中数学第四章-三角函数1.①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):|360,Z▲2in1coco②终边在轴上的角的集合:|180,Z③终边在轴上的角的集合:|18090,Z④终边在坐标轴上的角的集合:|90,Z⑤终边在=轴上的角的集合:|18045,Z⑥终边在轴上的角的集合:|18045,Z3in4coco1in2in34SIN\\COS三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域⑦若角与角的终边关于轴对称,则角与角的关系:360⑧若角与角的终边关于轴对称,则角与角的关系:360180⑨若角与角的终边在一条直线上,则角与角的关系:180⑩角与角的终边互相垂直,则角与角的关系:360902角度与弧度的互换关系:360°=2180°=1°=0017451=5730°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零、弧度与角度互换公式:1rad=180°≈5730°=57°18.1°=≈001745(rad)1803、弧长公式:2||r扇形面积公式:扇形r||r12124、三角函数:设是一个任意角,在的终边上任取(异于原点的)一点A16几个重要结论:16、三角函数线正弦线:M;正切线:AT高三数学总复习三角函数2|in|>|co|in>coO|co|>|in|O|co|>|in|co>in|in|>|co|3若o7三角函数的定义域:三角函数finfcoftanfcotfecfcc定义域|R|R1|R且,Z2|R且,Z1|R且,Z2|R且,Zcococotin8、同角三角函数的基本关系式:intanco1tancot1ccin1ecin2co21ec2tan21cc2cot219、诱导公式:把的三角函数化为的三角函数,概括为:2“奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组一公式组二公式组三inin2inininincc=1tan=in2co2=1coco2cocococo2=coec=11tan=ec2tan2tantantanincot2cotcotcottancot=11c ot2=cc2公式组四公式组五公式组六ininin2ininincococo2cococotantantan2tantantancotcotcot2cotcotcot(二)角与角之间的互换公式组一公式组二22incocococoininin2co2i2n2co2112incococoininco2ininco cointan22tan1tan2inincocoinin21co2tantantan1coco1tantan22高三数学总复习三角函数tantantantan1coin1co1tantan21co1coin公式组三公式组四公式组五11inincoin2tan222in1coininin11tan2inco2221cocococo122tancot1tan122inincococo211tan2coin2inin2inco2221inin2cointancot2tan2222tancoco2coco11tan222inco22coco2inin2262,,tan15cot7523,tan75cot1523in15co75inco4in75co1562410正弦、余弦、正切、余切函数的图象的性质:定义域值域周期性奇偶性单调性incoR[1,1]tan1|R且,Z2cot|R且,ZRAin(A、>0)RR[1,1]RA,A当0,非奇非偶当0,奇函数222A,12A2奇函数22偶函数[21,2]奇函数,22奇函数[22,;,1上为减函数(Z)22]上为增函数;[2,232]2上为增函数[2,21]上为减函数(Z)上为增函数(Z)上为增函数;2上为减函数(Z)2A,322A上为减函数高三数学总复习三角函数(Z)注意:①in与in的单调性正好相反;co与co的单调性也同样相反一般地,若f在[a,b]上递增(减),则f在[a,b]上递减(增)▲②in与co的周期是或co(0)的周期T③in2Otan的周期为2(TT2,如图,翻折无效)2的对称轴方程是④in2c(Z),对称中心(,0);o的对称轴方程是(Z),对称中心(1,0);ant2(的对称中心,0)2co2原点对称co2co2tan1,⑤当tan2tan1,Z;tan2Z⑥co与in2是同一函数,而是偶函数,则21inco2⑦函数tan在R上为增函数(×)[只能在某个单调区间单调递增若在整个定义域,tan为增函数,同样也是错误的]⑧定义域关于原点对称是f具有奇偶性的必要不充分条件(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:ff,奇函数:ff)1奇偶性的单调性:奇同偶反例如:tan是奇函数,tan是非奇非偶(定3义域不关于原点对称)奇函数特有性质:若0的定义域,则f一定有f00(0的定义域,则无此性质)▲⑨in不是周期函数;in为周期函数(T);▲1/2高三数学总复习三角函数=co||图象=|co21/2|图象;co为周期函数(T);co是周期函数(如图)co21的周期为(如图),并非所有周期函数都有最小正周期,例如:2f5f,R⑩acobina2b2inco11、三角函数图象的作法:1)、几何法:b有a2b2a2)、描点法及其特例五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线)3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数=Ain(ω+φ)的振幅|A|,周期T2,频率f1||,相位;初相||T2(即当=0时的相位).(当A>0,ω>0时以上公式可去绝对值符号),由=in的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到=Ain的图象,叫做振幅变换或叫沿轴的伸缩变换.(用/A替换)由=in的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的|1|倍,得到=inω的图象,叫做周期变换或叫做沿轴的伸缩变换.用ω替换由=in的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到=in(+φ)的图象,叫做相位变换或叫做沿轴方向的平移.用+φ替换由=in的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到=in+b的图象叫做沿轴方向的平移.(用-b替换)由=in的图象利用图象变换作函数=Ain(ω+φ)(A>0,ω>0)(∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延轴量伸缩量的区别。
高中数学知识点大全(一)
高中数学知识点大全(一)一、函数与极限1. 函数概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。
(2)函数的表示法:解析法、表格法、图象法、分离法。
(3)函数的基本性质:单调性、奇偶性、周期性、对称性。
2. 基本初等函数(1)常数函数:y=c(c为常数)(2)幂函数:y=x^α(α为实数)(3)指数函数:y=a^x(a>0,且a≠1)(4)对数函数:y=log_ax(a>0,且a≠1)(5)三角函数:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。
(6)反三角函数:反正弦函数、反余弦函数、反正切函数、反余切函数。
3. 函数的极限(1)数列的极限:设{a_n}是一个数列,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正整数N,使得当n>N时,|a_nA|<ε,那么就称A是数列{a_n}的极限,记作lim(n→∞)a_n=A。
(2)函数的极限:设函数f(x)在点x_0的某一去心邻域内有定义,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正数δ,使得当0<|xx_0|<δ时,|f(x)A|<ε,那么就称A是函数f(x)当x趋向于x_0时的极限,记作lim(x→x_0)f(x)=A。
(3)无穷小量与无穷大量:无穷小量是指极限为0的量,无穷大量是指极限为无穷的量。
(4)极限的运算法则:四则运算法则、复合函数的极限运算法则。
(5)极限存在的条件:夹逼定理、单调有界定理。
二、导数与微分1. 导数的概念(1)导数的定义:设函数y=f(x)在点x_0的某一邻域内有定义,如果极限lim(Δx→0)[f(x_0+Δx)f(x_0)]/Δx存在,那么就称这个极限为函数y=f(x)在点x_0处的导数,记作f'(x_0)。
高中数学函数知识点归纳
高中数学函数知识点归纳高中数学函数知识点归纳函数在高中数学中占据了非常重要的地位。
无论是在初中学习时,还是不同领域的工作和生活中,函数都有着重要的应用。
因此,在高中数学中,系统地学习函数知识点是很有必要的。
下面就对高中数学的函数知识点进行一个简单的归纳。
一、函数基本概念函数是将一个数集和另一个数集之间的对应关系,称作函数。
通常用f(x)表示,其中x称作自变量,f(x)称作函数值或因变量。
其中,自变量的取值有一定的范围,称作函数的定义域;函数的值域则是所有可能的函数值的集合。
二、函数的性质1.函数的单调性:单调递增和单调递减。
2.函数的奇偶性:奇函数和偶函数。
3.函数的周期性:周期函数。
4.函数的反函数。
5.函数的对称性:对称轴和中心对称。
三、函数的图像1.函数图像的表示方法:解析法和图像法。
2.函数的基本图像:常数函数、一次函数、二次函数、反比例函数、指数函数和对数函数。
3.函数的平移和伸缩。
四、函数的应用1.函数模型。
2.函数的变化率。
3.函数的最值。
4.函数的极限。
5.导数。
以上就是高中数学中函数知识点的主要内容。
虽然这个知识点占据了高中数学的很大一部分,但是要想真正掌握函数知识,还需要大量的练习。
因此,在学习函数知识时,我们需要掌握以下几个技巧。
一、常常理解概念,注重基础学习函数知识时,首先需要掌握函数的基本概念,例如定义域、值域、单调性、图像等等。
这些基本概念很重要,是后续学习和应用的关键。
因此,我们需要常常理解这些概念,注重基础。
二、多观察函数图像,探讨函数性质函数的图像是我们理解函数性质的重要途径。
因此,在学习函数知识时,需要多观察函数图像,探讨函数的性质,例如函数的单调性、奇偶性、周期性、对称性等等。
通过对函数图像的观察和分析,我们可以更好地理解函数性质。
三、勤于练习,熟练掌握应用函数知识不仅仅是理论性的知识,还有很多实际应用。
因此,在学习函数知识时,我们需要勤于练习,熟练掌握函数的应用,例如函数模型、函数的变化率、函数的最值、函数的极限和导数等等。
高中数学奇函数、偶函数、函数奇偶性知识点总结大全
高中数学:奇函数、偶函数和函数奇偶性知识点总结大全一、奇函数、偶函数的概念1、奇函数:假如一个函数()f x 的定义域关于原点对称,并且对于定义域中的任意x 都有()()f x f x -=-,则称函数()f x 为奇函数。
2、偶函数:假如一个函数()g x 的定义域关于原点对称,并且对于定义域中的任意x 都有()()g x g x -=,则称函数()g x 为偶函数。
【注意】定义域关于原点对称是函数具有奇偶性的前提。
如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。
二、奇函数、偶函数的图像特点1、奇函数图象关于原点对称。
奇函数的图象,是个以原点为对称中心的中心对称图象。
2、偶函数图象关于y 轴对称。
偶函数的图象,是个以y 轴为对称轴的轴对称图象。
3、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
4、如果奇函数()f x 的定义域中有“0”,则一定有()00f =。
因此,如果一个奇函数的定义域中有“0”,则这个奇函数的函数图象一定过原点。
5、如果偶函数()g x 的定义域中有“0”,则()0g 不一定为0。
因此,如果一个偶函数的定义域中有“0”,则这个偶函数的函数图象不一定过原点。
6、偶函数在对称区间上的值域相同,奇函数在对称区间上的值域关于原点对称。
三、判定奇函数、偶函数的几个充要条件假设函数()f x 、()g x 的定义域都关于原点对称。
则1、()f x 是奇函数的几个充要条件为:(1)对定义域中的任意x 都有:()()f x f x -=-;(2)对定义域中的任意x 都有:()()0f x f x +-=;(3)对定义域中的任意x 都有:()()/1f x f x -=-;【注】分母不为0.(4)对定义域中的任意x 都有:()()/1f x f x -=-;【注】分母不为0.(5)()f x 的函数图象关于原点对称。
2、()g x 是偶函数的几个充要条件为:(1)对定义域中的任意x 都有:()()g x g x -=;(2)对定义域中的任意x 都有:()()0g x g x --=;(3)对定义域中的任意x 都有:()()/1g x g x -=;【注】分母不为0.(4)对定义域中的任意x 都有:()()/1g x g x -=;【注】分母不为0.(5)()g x 的函数图象关于y 轴对称。
高中数学函数知识点总结(精华版)知识分享
高中数学函数知识点总结(精华版)知识分
享
高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。
- 函数的性质:单调性、奇偶性、周期性等。
2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。
- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。
- 指数函数:y = a^x,a为正常数,图像单调递增或递减。
- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。
3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。
- 复合运算:由两个或多个函数构成一个新的函数。
- 反函数:原函数与定义域互为值域的函数。
- 平移、压缩、翻折等函数的变换。
4. 函数的图像与性质
- 函数图像的绘制和分析方法。
- 函数的最值、零点、极值等特性。
5. 函数的应用
- 函数在物理、经济等领域的应用。
- 函数在数学建模中的应用。
6. 解函数方程
- 求函数方程的解法与步骤。
以上是高中数学函数知识点的精华总结和知识分享。
掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。
注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。
高中数学函数知识点总结
高中数学函数知识点总结高中数学函数知识点总结篇一一、增函数和减函数一般地,设函数f(x)的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么就是f(x)在这个区间上是减函数。
二、单调区间单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。
如果函数y=f(x)在某个区间是增函数或减函数。
那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。
一、指数函数的定义指数函数的一般形式为y=a^x(a0且≠1) (x∈R)。
二、指数函数的性质1、曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)2、曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)一、对数与对数函数定义1、对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
2、对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。
二、方法点拨在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果,这也是分类与整合思想的一个重要方面。
一、幂函数定义形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
二、性质幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y0,图像在第一;二象限。
这时(-1)^p的指数p的奇偶性无关。
高中数学知识点函数(最全)
高中数学第二章-函数考试内容:映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.§02. 函数 知识要点一、本章知识网络结构:F:A B对数函数指数函数二、知识回顾: (一) 映射与函数 1. 映射与一一映射 2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数反函数的定义 设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=(二)函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2,⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2.函数的奇偶性正确理解奇、偶函数的定义。
高中数学函数知识点总结大全
高中数学函数知识点总结大全函数知识点大全一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
(完整)高中数学函数知识点总结(经典收藏),推荐文档
高中数学函数知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”女口:集合A x|y lg x, B y | y Ig x,C (x, y) | y Ig x,A、B、C 中元素各表示什么?A 表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹2进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
女口:集合A x|x2 2x 3 0 ,B x|ax 1若B A,则实数a的值构成的集合为____________(答:1, 0,-)3显然,这里很容易解出A={-1,3}.而B最多只有一个元素。
故B只能是-1 或者3。
根据条件,可以得到a=-1,a=1/3.但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。
3.注意下列性质:(1)集合a1,a2,,a n的所有子集的个数是2n;要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。
同样,对于元素a2, a3,……a n,都有2种选择,所以,总共有2n种选择,即集合A有2n 个子集。
当然,我们也要注意到,这2n种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为2n1,非空真子集个数为2n2(2)若A B ABA,A B B;(3)德摩根定律:C u A B C U A C u B ,C U A B C U A C u B有些版本可能是这种写法,遇到后要能够看懂4•你会用补集思想解决问题吗?(排除法、间接法)的取值范围注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告 诉你函数f (x )=ax 2+bx+c (a>0)在(,1)上单调递减,在(1,)上单调递增, 就应该马上知道函数对称轴是 x=1.或者,我说在上,也应该马上可以想 到m n 实际上就是方程 的2个根5、 熟悉命题的几种形式、可以判断真假的语句叫做命题,逻辑连接词有 “或”(),“且”()和“非”).若p q 为真,当且仅当p 、q 均为真若p q 为真,当且仅当p 、q 至少有一个为真 若p 为真,当且仅当p 为假命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
高中数学函数知识点归纳
高中数学函数知识点归纳高中数学函数知识点归纳(上)函数是高中数学中一个非常重要的知识点,是数学中的基础概念之一。
函数的研究和应用贯穿于高中数学的整个教学过程。
下面将对高中数学中函数的知识点进行系统的归纳总结。
一、函数的定义及其表达方式1. 函数的定义函数是指在两个集合之间有规律地对应元素的关系。
一般地,设A、B是两个非空集合,则f是从A到B的函数,如果对于任意的a∈A,有且只有一个b∈B与之对应,即f(a)=b,称b是a的像,a是b的原像,记作f:A→B。
2. 函数的表达方式(1)显式表达式:y=f(x),y是关于x的函数,f(x)是y的表达式。
(2)参数方程:x=f(t),y=g(t),t是参数,x和y均为t的函数。
(3)极坐标方程:r=f(θ),θ是极角,r是极径。
二、函数的性质及其应用1. 奇偶性设f(x)是定义在R上的函数,如果对于任意x有f(-x)=-f(x),则称f(x)是奇函数。
如果对于任意x有f(-x)=f(x),则称f(x)是偶函数。
如果函数既不是奇函数也不是偶函数,则称其为一般函数。
奇偶性可以通过图像的对称性来判断。
2. 周期性设f(x)是定义在R上的函数,如果存在一个正数T,使得对于任意x有f(x+T)=f(x),则称f(x)是周期函数,T称为函数的周期。
周期性可以通过函数的图像来判断。
3. 单调性设f(x)是定义在[a,b]上的函数,如果对于任意的x1<x2有f(x1)≤f(x2),则称f(x)在[a,b]上是单调不降的;如果对于任意的x1<x2有f(x1)≥f(x2),则称f(x)在[a,b]上是单调不增的;如果存在x1<x2,使得f(x1)<f(x2),则称f(x)在[a,b]上是单调递增的;如果存在x1<x2,使得f(x1)>f(x2),则称f(x)在[a,b]上是单调递减的。
4. 函数的极限当自变量趋近于某一值的时候,函数值也会趋近于某一值,这种趋近可以用极限来描述。
高一数学函数知识点总结(五篇)
高一数学函数知识点总结函数的图象函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(四)函数的单调性1、单调函数对于函数f(____)定义在某区间[a,b]上任意两点____1,____2,当____1>____2时,都有不等式f(____1)>(或<)f(____2)成立,称f(____)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的____1,____具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设____1、____2∈[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(____1,f(____1))、(____2,f(____2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(____)是增(减)函数,且(或____1>____2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.5、复合函数y=f[g(____)]的单调性若u=g(____)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(____)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。
(完整版)高中数学函数知识点总结
函数一、函数的定义:1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。
4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。
(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x) 关于X轴对称得函数y=-f(x)4)函数y=f(x) 关于Y轴对称得函数y=f(-x)5)函数y=f(x) 关于原点对称得函数y=-f(-x)6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=| f(x)|7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)二、函数的基本性质1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
高中数学函数知识归纳总结最全
高中数学函数知识归纳总结最全高中数学中最基础也最重要的概念之一就是函数。
函数是一种对应关系,它把一个自变量的取值映射到一个因变量的取值上。
学好函数这一章节,对其他数学知识的学习有直接的帮助。
本文将对高中数学中常见的函数知识进行归纳总结,以帮助广大学生更好地理解和掌握函数知识。
一、基本概念与符号1. 自变量与因变量:自变量是函数的输入值,通常用字母x表示;因变量是函数的输出值,通常用字母y表示。
2. 定义域和值域:函数的定义域是自变量可能的取值范围,通常用符号“∈”表示;函数的值域是函数在定义域内所有可能取到的值的集合。
例如,函数y = x²的定义域是所有实数,值域是大于等于0的正实数。
3. 函数表示法:(1)函数表达式:y = f(x),其中f(x)是对函数的一种直接表示方法。
(2)映射符号表示法:写成y = x²,y = logx等形式。
(3)函数图像表示法。
二、基本类型1. 常函数:y = b(b为常数),函数图像为一条水平直线。
该函数的定义域为所有实数,值域为{b}。
2. 线性函数:y = kx + b(k、b为常数,k ≠ 0),函数图像为一条斜率为k的直线,b为截距。
该函数的定义域为所有实数,值域为所有实数。
3. 幂函数:y = x^k(k为常数),函数图像为一条经过原点的,k取不同值时形状各异的曲线。
该函数的定义域为{x | x ≠ 0},值域为{y | y > 0}(k > 0)或{y | y < 0}(k < 0)。
4. 指数函数:y = a^x(a > 0 且a ≠ 1),函数图像为一条经过原点的,连续递增的曲线。
该函数的定义域为所有实数,值域为{y | y > 0}。
5. 对数函数:y = loga(x)(a > 0 且a ≠ 1),函数图像为一条经过点(1,0)的,连续递减的曲线。
该函数的定义域为{x | x > 0},值域为所有实数。
最全函数知识点总结高中
最全函数知识点总结高中一、函数的基本概念1.1 函数的定义函数是一个非常基本的数学概念。
在数学上,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
用数学符号表示就是:对于两个集合A和B,如果存在一个规则f,它使得对于A中的每个元素x,都有一个唯一的y属于B与之对应,那么我们说f是从A到B的一个函数,记作f:A→B。
其中A称为定义域,B称为值域。
1.2 函数的概念在我们的日常生活中,我们可以看到很多函数的例子。
比如,将一个数字加上3,或者乘以2,这就是两个函数的例子。
我们可以看到,函数本质上就是一种输入与输出的关系。
1.3 函数的符号表示函数一般用字母f,g,h等表示,其定义为:y=f(x),表示x是自变量,y是因变量。
1.4 函数的自变量和因变量在函数中,自变量是输入的值,它在定义域中取值;而因变量是输出的值,它在值域中取值。
1.5 函数的图象函数的图象是函数在一个坐标系中的表示,它可以帮助我们更直观地了解函数的性质和规律。
1.6 函数的性质函数有很多的性质,比如奇偶性、单调性、周期性等等。
1.7 函数的分类函数可以分为初等函数和非初等函数。
初等函数包括多项式函数、有理函数、指数函数、对数函数、三角函数和反三角函数。
非初等函数包括无穷级数、常微分方程等。
1.8 逆函数如果函数f有定义域A和值域B,对于B中的每一个y,存在一个唯一的x属于A与之对应,那么我们称这个函数有逆函数,记作f^(-1)。
1.9 复合函数如果有两个函数f和g,使得f的值域是g的定义域,那么我们可以定义一个新的函数h(x)=f(g(x)),这就是复合函数。
1.10 函数的性质与变化函数有很多的性质和变化规律,比如极值、单调性、周期性、奇偶性等等。
对于这些性质和变化,我们可以通过函数的图象和导数来进行分析。
1.11 函数的运算函数之间可以进行加减乘除的运算,还可以进行求泛函、求复合函数、求逆函数等。
二、函数的表示与运用2.1 函数的表示方法函数可以用方程的形式、图象的形式、表格的形式、文字的形式等来表示。
(完整版)高中数学三角函数公式大全全解
三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。
注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
高中数学三角函数知识点总结(珍藏版)
高中数学三角函数知识点总结1. 特殊角的三角函数值:sin300=1sin45 0 = 2sin00=0 22 sin600= 3 sin900=1cos300= 3 2 cos0 0 =1 2 1 cos 02cos45 0 = 0 90=02 cos60 = 2 tan00=0tan900无意义0 3tan30= 3tan450=1tan60 = 32.角度制与弧度制的互化:36000 ,2,1801rad =180°≈57.30°=57°18ˊ1°= ≈0.01745(rad )1800030045060090012001350150018002700360023 5 3 2 64 32 346 23.弧长及扇形面积公式(1) 弧长公式:l.r----是圆心角且为弧度制(2) 扇形面积公式:S=1l.rr----- 是扇形半径 24.任意角的三角函数设 是一个任意角,它的终边上一点 p (x,y ),r=x 2y 2(1)正弦sin=y余弦cos=x正切tan=yr r x(2)各象限的符号:记忆口诀:一全正,二正弦,三两切,四余弦yy y+ + — ++O—x+ x2co ss in O — — + O— —+ sin cos tan5.同角三角函数的基本关系: (1)平方关系:sin 2+cos 2=1(2)商数关系:6.诱导公式:sin=tan (k,kz )cos2记忆口诀:把k的三角函数化为的三角函数,概括为:奇变偶不变,符2号看象限。
1sin2k sin ,cos2k cos ,tan2k tan k .2sin sin ,cos cos ,tantan .3sin sin ,cos cos ,tantan .4sinsin ,coscos ,tantan .口诀:函数名称不变,符号看象限. 5sincos ,cossin .226sincos ,cossin .22口诀:正弦与余弦互换,符号看象限.7正弦函数、余弦函数和正切函数的图象与性质8、三角函数公式:(1)两角和与差的三角函数关系sin( )=sin ·cos cos ·sincos( )=cos ·cos sin ·sintan( )tan tan1 tan tan(2)倍角公式s in2 =2sin ·cos22cos2 =cos -sin=1-2sin22tan tan21tan2(3)降幂公式:升幂公式:1+cos =2cos2cos2 1 cos22 21-cos =2sin2sin2 1 cos22 29、正弦定理:a b csinA sinB2R. sinC余弦定理:a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC.三角形面积定理:S 1absinC 1bcsinA1casinB.2 2 2。
高中数学第三章函数的概念与性质知识汇总大全(带答案)
高中数学第三章函数的概念与性质知识汇总大全单选题1、设f (x )为定义在R 上的函数,函数f (x +1)是奇函数.对于下列四个结论:①f (1)=0;②f (1−x )=−f (1+x );③函数f (x )的图象关于原点对称;④函数f (x )的图象关于点(1,0)对称;其中,正确结论的个数为( )A .1B .2C .3D .4答案:C解析:令g (x )=f (x +1),①:根据求解出f (1)的值并判断;②:根据g (x )为奇函数可知g (−x )=−g (x ),化简此式并进行判断;根据y =f (x +1)与y =f (x )的图象关系确定出f (x )关于点对称的情况,由此判断出③④是否正确.令g (x )=f (x +1),①因为g (x )为R 上的奇函数,所以g (0)=f (0+1)=0,所以f (1)=0,故正确;②因为g (x )为R 上的奇函数,所以g (−x )=−g (x ),所以f (−x +1)=−f (x +1),即f (1−x )=−f (1+x ),故正确;因为y =f (x +1)的图象由y =f (x )的图象向左平移一个单位得到的,又y =f (x +1)的图象关于原点对称,所以y =f (x )的图象关于点(1,0)对称,故③错误④正确, 所以正确的有:①②④,故选:C.小提示:名师点评通过奇偶性判断函数对称性的常见情况:(1)若f (x +a )为偶函数,则函数y =f (x )的图象关于直线x =a 对称;(2)若f (x +a )为奇函数,则函数y =f (x )的图象关于点(a,0)成中心对称.2、已知函数f (x )=2x 2−6x +3,x ∈[−1,2],则函数的值域是( )()00g =A . [−32,11)B . [ 32,11)C . [ −1,11]D .[−32,11]答案:D分析:根据二次函数的对称轴和端点处的值即可求解值域.∵f(x)=2x 2−6x +3=2(x −32)2−32,对称轴x =32,当x ∈[−1,2],f (x )min =f (32)=−32,又因为f (−1)=11,f (2)=1,∴f (x )max =f (−1)=11,所以函数的值域为[−32,11]. 故选:D3、若函数f (x )=2x+m x+1在区间上的最大值为52,则实数m =( ) A .3B .52C .2D .52或3答案:B分析:函数f (x )化为f (x )=2+m−2x+1,讨论m =2,m >2和m <2时函数的单调性,运用单调性可得最小值,解方程即可得到所求值.函数f (x )=2x+m x+1,即f (x )=2+m−2x+1,x ∈[0,1],当m =2时,f (x )=2不成立;当m −2>0,即m >2时,f (x )在递减,可得f (0)为最大值, 即f (0)=0+m 1=52,解得m =52成立;当m −2<0,即m <2时,f (x )在递增,可得f (1)为最大值, 即f (1)=2+m 2=52,解得m =3不成立;综上可得m =52.故选:B .4、若函数y =f (x )在R 上单调递增,且f (2m −3)>f (−m ),则实数m 的取值范围是( )A .(−∞,−1)B .(−1,+∞)C .(1,+∞)D .(−∞,1)答案:C[]0,1[]0,1[]0,1分析:由单调性可直接得到2m −3>−m ,解不等式即可求得结果.∵f (x )在R 上单调递增,f (2m −3)>f (−m ),∴2m −3>−m ,解得:m >1,∴实数m 的取值范围为(1,+∞).故选:C.5、函数f (x )=x 2−1的单调递增区间是( )A .(−∞,−3)B .[0,+∞)C .(−3,3)D .(−3,+∞)答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞).故选:B.6、下列四个函数在(−∞,0)是增函数的为( )A .f (x )=x 2+4B .f (x )=1−2xC .f (x )=−x 2−x +1D .f (x )=2−3x答案:D分析:根据各个函数的性质逐个判断即可对A ,f (x )=x 2+4二次函数开口向上,对称轴为y 轴,在(−∞,0)是减函数,故A 不对.对B ,f (x )=1−2x 为一次函数,k <0,在(−∞,0)是减函数,故B 不对.对C ,f (x )=−x 2−x +1,二次函数,开口向下,对称轴为x =−12,在(−∞,−12)是增函数,故C 不对. 对D ,f (x )=2−3x 为反比例类型,k <0,在(−∞,0)是增函数,故D 对. 故选:D7、已知函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f 22k=1(k)=( )A .−3B .−2C .0D .1答案:A分析:法一:根据题意赋值即可知函数f (x )的一个周期为6,求出函数一个周期中的f (1),f (2),⋯,f (6)的值,即可解出.[方法一]:赋值加性质因为f (x +y )+f (x −y )=f (x )f (y ),令x =1,y =0可得,2f (1)=f (1)f (0),所以f (0)=2,令x =0可得,f (y )+f (−y )=2f (y ),即f (y )=f (−y ),所以函数f (x )为偶函数,令y =1得,f (x +1)+f (x −1)=f (x )f (1)=f (x ),即有f (x +2)+f (x )=f (x +1),从而可知f (x +2)=−f (x −1),f (x −1)=−f (x −4),故f (x +2)=f (x −4),即f (x )=f (x +6),所以函数f (x )的一个周期为6.因为f (2)=f (1)−f (0)=1−2=−1,f (3)=f (2)−f (1)=−1−1=−2,f (4)=f (−2)=f (2)=−1,f (5)=f (−1)=f (1)=1,f (6)=f (0)=2,所以一个周期内的f (1)+f (2)+⋯+f (6)=0.由于22除以6余4,所以∑f (k )22k=1=f (1)+f (2)+f (3)+f (4)=1−1−2−1=−3.故选:A .[方法二]:【最优解】构造特殊函数由f (x +y )+f (x −y )=f (x )f (y ),联想到余弦函数和差化积公式cos (x +y )+cos (x −y )=2cosxcosy ,可设f (x )=acosωx ,则由方法一中f (0)=2,f (1)=1知a =2,acosω=1,解得cosω=12,取ω=π3,所以f (x )=2cos π3x ,则 f (x +y )+f (x −y )=2cos (π3x +π3y)+2cos (π3x −π3y)=4cos π3xcos π3y =f (x )f (y ),所以f (x )=2cos π3x 符合条件,因此f(x)的周期T =2ππ3=6,f (0)=2,f (1)=1,且f (2)=−1,f (3)=−2,f (4)=−1,f (5)=1,f (6)=2,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,由于22除以6余4,所以∑f (k )22k=1=f (1)+f (2)+f (3)+f (4)=1−1−2−1=−3.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.8、函数f(x)=−x 2+2(1−m)x +3在区间(−∞,4]上单调递增,则m 的取值范围是( )A .[−3,+∞)B .[3,+∞)C.(−∞,5]D.(−∞,−3]答案:D分析:先求出抛物线的对称轴x=−2(1−m)−2=1−m,而抛物线的开口向下,且在区间(−∞,4]上单调递增,所以1−m≥4,从而可求出m的取值范围解:函数f(x)=−x2+2(1−m)x+3的图像的对称轴为x=−2(1−m)−2=1−m,因为函数f(x)=−x2+2(1−m)x+3在区间(−∞,4]上单调递增,所以1−m≥4,解得m≤−3,所以m的取值范围为(−∞,−3],故选:D多选题9、关于函数f(x)=xx−1,下列结论正确的是()A.f(x)的图象过原点B.f(x)是奇函数C.f(x)在区间(1,+∞)上单调递减D.f(x)是定义域上的增函数答案:AC分析:作出f(x)=xx−1的图像,根据图像逐一判断即可.解:f(x)=xx−1=x−1+1x−1=1+1x−1,将f(x)=1x 的图像向右平移一个单位,然后向上平移1个单位即可得到f(x)=xx−1,图像如下:观察图像可得A,C正确,故选:AC.小提示:思路点睛:本题考查函数的性质的判断,如果能画出函数图像,根据图像观察则快速而准确. 10、下列函数中,既是奇函数又在区间(0,+∞)上单调递增的是()A.f(x)=x3B.f(x)=x C.f(x)=x12D.f(x)=x−1答案:AB分析:根据函数奇偶性的定义,结合幂函数的图象与性质,逐项判定,即可求解.解:对于A,函数f(x)=x3的定义域为R,且f(−x)=(−x)3=−x3=−f(x),所以函数f(x)为奇函数,根据幂函数的性质,可得函数f(x)=x3在区间(0,+∞)上单调递增,故A正确;对于B,函数f(x)=x的定义域为R,且f(−x)=−x=−f(x),所以函数f(x)为奇函数,易知f(x)=x在(0,+∞)上单调递增,故B正确;对于C,函数f(x)=x 12的定义域为[0,+∞),不关于原点对称,所以函数f(x)为非奇非偶函数,故C错误;对于D,函数f(x)=x−1在区间(0,+∞)上单调递减,故D错误. 故选:AB.11、已知函数f(x)=2x−12x+1,下面说法正确的有()A.f(x)的图象关于y轴对称B.f(x)的图象关于原点对称C.f(x)的值域为(−1,1)D.∀x1,x2∈R,且x1≠x2,f(x1)−f(x2)x1−x2<0恒成立答案:BC解析:判断f(x)的奇偶性即可判断选项AB,求f(x)的值域可判断C,证明f(x)的单调性可判断选项D,即可得正确选项.f(x)=2x−12x+1的定义域为R关于原点对称,f(−x)=2−x−12−x+1=(2−x−1)2x(2−x+1)2x=1−2x1+2x=−f(x),所以f(x)是奇函数,图象关于原点对称,故选项A不正确,选项B正确;f(x)=2x−12x+1=2x+1−22x+1=1−22x+1,因为2x>0,所以2x+1>1,所以0<12x+1<1,−2<−22x+1<0,所以−1<1−22x+1<1,可得f(x)的值域为(−1,1),故选项C正确;设任意的x1<x2,则f(x1)−f(x2)=1−22x1+1−(1−22x2+1)=22x2+1−22x1+1=2(2x1−2x2)(2x1+1)(2x2+1),因为2x1+1>0,2x2+1>0,2x1−2x2<0,所以2(2x1−2x2)(2x1+1)(2x2+1)<0,即f(x1)−f(x2)<0,所以f(x1)−f(x2)x1−x2>0,故选项D不正确;故选:BC小提示:方法点睛:利用定义证明函数单调性的方法(1)取值:设x1,x2是该区间内的任意两个值,且x1<x2;(2)作差变形:即作差,即作差f(x1)−f(x2),并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差f(x1)−f(x2)的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.12、我们把定义域为[0,+∞)且同时满足以下两个条件的函数f(x)称为“Ω函数”:(1)对任意的x∈[0,+∞),总有f(x)≥0;(2)若x≥0,y≥0,则有f(x+y)≥f(x)+f(y)成立.下列判断正确的是()A.若f(x)为“Ω函数”,则f(0)=0B.函数g(x)={0,x∈Q1,x∉Q在[0,+∞)上是“Ω函数”C.函数g(x)=x2+x在[0,+∞)上是“Ω函数”D.若f(x)为“Ω函数”,x1>x2≥0,则f(x1)≥f(x2)答案:ACD分析:根据“Ω函数”的定义,使用赋值法可判断AB;按照“Ω函数”的定义直接判断可知C;利用定义作差f(x1)−f(x2)=f((x1−x2)+x2)−f(x2),可判断D.A选项,由(1)知f(0)≥0,由(2)得x=y=0时,f(0)≥f(0)+f(0),即f(0)≤0,∴f(0)=0,故A 正确;B选项,显然g(x)满足(1),若x,y∈Q,则g(x+y)=0,g(x)+g(y)=0+0=0,若x,y∉Q,设x=√2,y=√3,则g(x+y)=1,g(x)+g(y)=1+1=2,与(2)不符,故B不正确;C选项,g(x)=x2+x=x(x+1),∵x∈[0,+∞),∴g(x)≥0,满足(1),g(x+y)−g(x)−g(y)=(x+y)2+x+y−x2−x−y2−y=2xy≥0,满足(2),故C正确;D选项,∵x1>x2≥0,∴f(x1)−f(x2)=f((x1−x2)+x2)−f(x2)≥f(x1−x2)+f(x2)−f(x2)=f(x1−x2),∵x1−x2>0,∴f(x1−x2)≥0,∴f(x1)≥f(x2),故D正确.故选:ACD.13、已知函数f(x)=x|x|,若对任意的x∈[t,t+1],不等式f(x+t)≥3f(x)恒成立,则整数t的取值可以是()A.−1B.1C.3D.5答案:CD分析:首先判断f(x)在R上为增函数,将不等式转化为x+t≥√3x,即t≥(√3−1)x对任意的x∈[t,t+1]恒成立,利用一次函数的单调性,解不等式可得所求范围.f(x)=x|x|,当x≥0时,f(x)=x2,在[0,+∞)递增,当x≤0时,f(x)=−x2,在(−∞,0]上递增,且f(0)=0,f(x)为连续函数,所以f(x)在R上为增函数,且3f(x)=f(√3x),由对任意的x∈[t,t+1],不等式f(x+t)≥3f(x)恒成立,即f(x+t)≥f(√3x),即x+t≥√3x,所以t≥(√3−1)x对任意的x∈[t,t+1]恒成立,由y=(√3−1)x在[t,t+1]上递增,可得y=(√3−1)x的最大值为(√3−1)(t+1),即t≥(√3−1)(t+1),解得t≥√3+1.故选:CD小提示:关键点点睛:本题考查了函数的单调性的判断以及应用,解不等式以及不等式恒成立问题的解法,解题的关键是将不等式转化为t≥(√3−1)x对任意的x∈[t,t+1]恒成立,考查了转化思想和运算求解能力. 填空题14、若幂函数y=(m2−m−1)x m为偶函数,则m= ________ .答案:2分析:利用幂函数和偶函数的定义即可求解.∵函数y=(m2−m−1)x m为幂函数,∴m2−m−1=1,解得m=2或m=−1,又∵y=x m为偶函数,∴m=2,所以答案是:2.15、写出一个同时具有下列性质的函数f(x)=___________.①f(x)是奇函数;②f(x)在(0,+∞)上为单调递减函数;③f(x1x2)=f(x1)f(x2).答案:x−1(答案不唯一,符合条件即可)分析:根据三个性质结合图象可写出一个符合条件的函数解析式.f(x)是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又f(x)在(0,+∞)上为单调递减函数,同时f(x1x2)=f(x1)f(x2),故可选,f(x)=xα,α<0,且α为奇数,所以答案是:x−116、函数y=√3−x−√2x+4的值域为_______________.答案:[−√10,√5]分析:根据函数的单调性确定最值即可.解:因为{3−x≥02x+4≥0所以−2≤x≤3,所以此函数的定义域为[−2,3],又因为y=√3−x−√2x+4是减函数,当x=−2时y=√3−x−√2x+4取得最大值√5,当x=3时y=√3−x−√2x+4取得最小值−√10,所以值域为[−√10,√5]所以答案是:[−√10,√5].解答题17、已知函数f(x)=x+mx,且f(1)=5.(1)求m;(2)判断并证明f(x)的奇偶性;(3)判断函数f(x)在(2,+∞),上是单调递增还是单调递减?并证明.答案:(1)m=4;(2)奇函数,证明见解析;(3)单调递增函数,证明见解析.分析:(1)根据题意,将x=1代入函数解析式,求解即可;(2)利用奇函数的定义判断并证明即可;(3)利用函数单调性的定义判断并证明即可.(1)根据题意,函数f(x)=x+mx,且f(1)=5,则f(1)=1+m=5,解得m=4;(2)由(1)可知f(x)=x+4x,其定义域为{x|x≠0},关于原点对称,又由f(−x)=−x−4x =−(x+4x)=−f(x),所以f(x)是奇函数;(3)f(x)在(2,+∞)上是单调递增函数.证明如下:设2<x1<x2,则f(x1)−f(x2)=(x1+4x1)−(x2+4x2)=(x1−x2)⋅x1x2−4x1x2,因为2<x1<x2,所以x1x2>4,x1−x2<0,则f(x1)−f(x2)<0,即f(x1)<f(x2),所以f(x)在(2,+∞)上是单调递增函数.18、2022年第24届北京冬季奥林匹克运动会,于2022年2月4日星期五开幕,将于2月20日星期日闭幕.该奥运会激发了大家对冰雪运动的热情,与冰雪运动有关的商品销量持续增长.对某店铺某款冰雪运动装备在过去的一个月内(以30天计)的销售情况进行调查发现:该款冰雪运动装备的日销售单价P(x)(元/套)与时间x(被调查的一个月内的第x天)的函数关系近似满足P(x)=1+kx(k为正常数).该商品的日销售量Q(x)(个)与时间x(天)部分数据如下表所示:(1)求k的值;(2)给出两种函数模型:①Q(x)=ax+b,②Q(x)=a|x−25|+b,请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量Q(x)与时间x的关系,并求出该函数的解析式;(3)求该商品的日销售收入f(x)(1≤x≤30,x∈N∗)(元)的最小值.答案:(1)k =1(2)选择②,Q(x)=125−|x −25|,(1≤x ≤30,x ∈N ∗)(3)121元分析:(1)根据第10天该商品的日销售收入为121元,列式求得答案;(2)由表中数据的变化可确定Q(x)=a|x −25|+b 描述该商品的日销售量Q(x)与时间x 的关系,代入表述数据可求得其解析式;(3)讨论去掉绝对值符号,分段求出函数的最小值,比较可得答案.(1)因为第10天该商品的日销售收入为121元,所以P(10)⋅Q(10)=(1+k 10)⋅110=121,解得k =1;(2)由表中数据可得,当时间变化时,该商品的日销售量有增有减,并不单调,故只能选②:Q(x)=a|x −25|+b代入数据可得:{110=a |10−25|+b 120=a |20−25|+b,解得a =−1,b =125, 所以Q(x)=125−|x −25|,(1≤x ≤30,x ∈N ∗)(3)由(2)可得,Q (x )=125−|x −25|={100+x,1≤x <25,x ∈N ∗150−x,25≤x ≤30,x ∈N ∗, 所以,f (x )=P (x )⋅Q (x )={101+x +100x ,1≤x <25,x ∈N ∗149+150x−x,25≤x ≤30,x ∈N ∗, 所以当1≤x <25,x ∈N ∗时,f(x)=101+x +100x 在区间[1,10]上单调递减,在区间[10,25)上单调递增, 所以当x =10时,f(x)有最小值,且为121;当25≤x ≤30,x ∈N ∗时,f(x)=149+150x −x 为单调递减函数,所以当x =30时,f(x)有最小值,且为124,综上,当x =10时,f(x)有最小值,且为121元,所以该商品的日销售收入最小值为121元.。
高中数学函数知识点总结(学霸笔记)
高中数学 函数总结一、本章知识网络结构:F:A →B对数函数指数函数二次函数二、知识回顾: (一) 映射与函数 1. 映射与一一映射2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数反函数的定义设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=(二)函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性正确理解奇、偶函数的定义。
必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数)(x f 为奇函数或偶函数的必要不充分条件;(2))()(x f x f =-或)()(x f x f -=-是定义域上的恒等式。
2.奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形。
反之亦真,因此,也可以利用函数图象的对称性去判断函数的奇偶性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中原有水量S。
g=S-ft。
六、常用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁,0)和 B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k 的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便. 2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a 时,y随x的增大而减小.4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x₂-x₁|当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x ₂)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.反比例函数形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。
2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。
可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)③判断或证明函数是否具有奇偶性的根据是定义2.奇偶函数图像的特征:定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称点(x,y)→(-x,-y)奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。