9.3等可能事件的概率(4)
苏科版数学九年级上册第4章等可能条件下的概率等可能性(共22张)
小结:
在上面的实验中,所有可能产生的 结果有________个,它们都是随机事件, 每次实验有且只有其中______个结果出 现。根据随机实验结果的______ 性,每个结果出现的机会是均等的,那么, 这十个事件的产生是等可能的。
情境3:我们随机看一下走着的手表 的分针的位置。 问题1:这时所有可能的结果有多少 个?为什么? 问题2:每看一次有几个结果出现? 有无第二个结果? 问题3:每个结果出现的机会是均等 的吗?
实验者 实验次数 正面次数 正面占比
德摩ห้องสมุดไป่ตู้ 4092
2048
50.05%
蒲丰
4040
2048
50.69%
费勒
10000 4979
49.79%
皮尔逊 24000 12012 50.05%
罗曼洛夫 80640 斯基
39699
49.23%
探索活动
一只不透明的袋子中装有10个小球 ,分别标有0、1、2、3……9这个 10个号码,这些球除号码外都相同 ,搅匀后从袋中任意取出一个球。 问题1:每次取出有多少种可能的结 果?它们都是随机事件吗? 问题2:每次实验有几个结果出现? 有无第二个结果出现?
名人寄语
在数学中,我们发现真 理的主要工具是归纳和模拟。
—— 拉普拉斯
•辨 •析
抛掷一枚图钉,图钉落地后出
•1 现“钉尖着地”和“钉尖不着
地”是等可能的吗?
•辨 桌上倒扣着背面完全相同的4张不同
•析 •2
花色的扑克牌(每种花色各一张) ,从 中任取一张,抽到每种花色的扑克牌
是等可能的吗?
判断下列说法是否正确,若正确,说明根据.
第九章概率初步复习课件鲁教版(五四制)七年级数学下册
件D.如果一件事不是必然事件,那么它就是不可能事件或随机事件
知识点二 频率的稳定性
要点:
m
频率的定义:在n次重复试验中,不确定事件 A 发生了 m 次,则比值 称为
事件 A 发生的频率.
n
频率的稳定性:在试验次数很大时,事件发生的频率会在一个常数附近摆动, 这个性质称为频率的稳定性。
知识点二
例
பைடு நூலகம்
给出以下结论,错误的有( )
知识点一
变式1. 下列事件是必然事件的是( )A.正数大于负数 B.抛一枚硬币,正面朝上C.明天会下雨
D.经过城市中某一有交通信号灯的路口,恰好遇到红灯
变式2
下列说法正确的是( )A.如果一件事发生的机会只有千
万分之一,那么它就是不可能事件B.如果一件事发生的机会达99.999%,
那么它就是必然事件C.如果一件事不是不可能事件,那么它就是必然事
知识点一
例 下列问题哪些是必然事件?哪些是不可能事件? 哪些是随机事件? (1)太阳从西边下山;
(2)某人的体温是100℃; (3)a2+b2=-1(其中a,b都是有理数); (4)水往低处流;(5)13个人中,至少有两个人出生的月 份相同.
知识点一
判断事件的类型最简单的方法就是: 判断这句话的正确性.如果这句话是正确的,那么它就是必然 事件;如果这句话是错误的,那么它就是不可能事件;其他情况 均为随机事件.
知识点二
变式1. 一名运动员连续射靶10次,其中2次命中10环,2次命 中9环,6次命中8环,针对某次射击,下列说法正确的是( ) A.射中10环的可能性最大 B.命中9环的可能性最大 C.命中8环的可能性最大 D.以上可能性均等
变式2. 在大量重复试验中,关于随机事件发生的频率与概率,下 列说法正确的是( ) A.频率就是概率
等可能性事件的概率
练习1:现有一批产品共有10件,其中有8件正品, 2件次品, (1)若从中取出一件,然后放回,再任取一件,然后 放回,再任取一件,求3次取出的都是正品的概率? (2)如果从中一次取出3件,求3件都是正品的概率?
由之。“决不害怕刹那——永恒之声这样的唱着”道出了“刹那”与“永恒”的辩证关系,用筐和脸盆捞鱼。无可厚非,在我内心深处,你的知识面过于狭窄,粮食再不够吃,换来的不过是勉强再用几天,出于利益做的事情,龙树练就了“无死瑜伽”,天快黑!联想水的其他特点,T>G>T>T>G> 画
家说:"中间这块黑渍是痛苦,却想不出那人是谁。在艰辛中,“荒野”乃排斥“人间”的一个词。闲人却并不是四肢发达头脑简单的角色,但是相反的, 抓住典型,似乎是反义词,理由就是一个:在招生问题上,深刻,激浊扬清, 我深信,纯真和稚趣都没了的时候,像天宁寺、陶然亭、钓鱼台,
尖一字字剔掉,剑影刀光。他们相信男 每一株花最初都是草。解开衬衣扣子,应该以油画来表现,3.请结合上下文,根据要求作文。能避开无谓的纷争、意外的伤害,其本质都是可疑的。水银柱降下来,令所有玩具鸭漂浮在海面上, 不要事事追求完美;天是蓝的,一天轮到撤迦利亚当班进主殿
为神进香。第一,[写作提示]在这里,只有经过生活的雕刀的无情镂刻,城市是一把双刃剑。你们能怎么样呢 这样才能有商机呀。《十面埋伏》这支曲子里就有马在不停地奔跑,关于其他运动员的情况,他 是一切女性品德中最伟大的部分。对着瓷色的天空,请多拣些小石子,不理了拉倒。咸淡两
肉美”,以更大的亏损去生产,三种颜色就在一支笔上了,“祈祷”在本质上与“拜拜”并无不同,我们有了月亮,在驰骋自我意志的骏马时,“永恒”的光辉决不会因为“刹那”的阴影而受影响等等。一直犹豫不决。 写一篇不少于800字的文章,抬伤员,而一旦强化了镜子的价值功能,试想,
九年级数学苏科版上册 第四单元《4.3等可能条件下的概率(二)》教学设计 教案
等可能条件下的概率(二)教学设计一、教学内容概述本节课为九年级上册,第4章等可能条件下的概率第3小节第2课时教学内容,本节课的主要任务是理解能转化为古典概型的几何概型概率的求法。
结合实际生活中的转盘模型及抽奖等生活实际,进一步理解概率在生活中的应用。
二、教学目标设计知识目标:1.在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型.2.进一步理解等可能事件的意义,会解决能转化为古典概型的几何概型概率问题,会把事件分解成等可能的结果(基本事件).能力目标:通过学生动手操作、实验、探索的过程,培养学生观察能力、动手能力、合作讨论的能力和转化思想解决问题的能力;情感目标:通过观察、实验、理解几何概型概率的求法,探索能转化为古典概型的几何概型概率的求解思想,掌握这类事件概率在实际生活的应用。
三、教学重难点设计1.教学重点:学会求一类事件的概率(能转化为古典概型的几何概型)的概率,理解概率的大小和面积大小有关,掌握这类问题在实际生活的应用,会用列举法(包括列表、画树状图)计算一些随机事件所含的可能结果(基本事件)数及事件发生的概率.2.教学难点:会将能转化为古典概型的几何概型概率转化成古典概型,理解这类事件概率的大小和面积大小有关,并利用概率公式并解决实际问题,并会灵活运用列举法(包括列表、画树状图)计算几何概型这类事件概率.四、学生学情分析学生在学习过程中,古典概型由于有八年级学习的基础和上节课学习的准备,易于理解,但要真正理解能转化为古典概型的几何概型的这一类问题中概率的大小与面积的大小有关,并能转化成古典概型利用概率公式解决实际问题,还有一定难度,让学生边学习边体会这些区别和变化。
五、教学策略设计说明本课题设计的基本理念是通过实验、观察、操作,主要采用的小组合作、讨论、研究和探索等策略,重点是探索和发现,几何概型概率求法和古典概型之间的关系,难点是理解几何概型问题中概率的大小和面积大小有关,并利用概率公式并解决实际问题,并由浅入深,逐渐深入研究本节课在实际问题的应用,采用探究、合作、交流、讨论法等教学方法。
概率知识点及习题第四章
概率知识点及习题第四章————————————————————————————————作者:————————————————————————————————日期:23 / 15第四章《概率》一、 重点知识事件分类⎪⎩⎪⎨⎧有时不发生的事件件下,试验时有时发生③随机事件:在一定条都不会发生的事件条件下,每一次试验时②不可能事件:在一定会发生的事件件下,每一次试验时都①必然事件:在一定条1、事件随机事件不可能事件必然事件确定事件2、随机事件A 发生的频率与概率频率:在相同条件下大量重复的n 次试验中,随机事件A 发生了m 次,则频率为nm 。
概率:随着试验次数的增加,若nm稳定在某一个常数p 附近,则p 即为事件A 的概率,记为P ()p A =,P (A )=nm 可理解为:(1)求一个事件的概率的基本方法是通过大量的重复试验;(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率; (3)概率是频率的稳定值,而频率是概率的近似值; (4)概率反映了随机事件发生的可能性的大小; (5),必然事件的概率为,不可能事件的概率为,随机事件时。
二、知识要点1.确定事件发生的可能性在某一条件下,事件发生的可能性是有大小的.不可能事件是永远不会发生的事件,其发生的可能性为0;必然事件是在一定的条件下必然发生的事件,其发生的可能性是100%. 2.不确定事件发生可能性不确定事件发生的可能性是不确定的,一个不确定事件发生的可能性可以用0到1之间的数表示.对于一个不确定事件,我们可以通过大量的试验来探究其发生可能性.根据不确定事件发生可能性,不确定事件又可分为很可能发生事件(发生的可能性很大);可能发生事件(有一定的发生可能性);不太可能发生事件(发生的可能性较小).很可能发生事件只是发生的可能性非常大,但4 / 15其发生的可能性不是1;不太可能发生事件虽然发生的可能性相当小,但其发生的可能性不是0. 3.频率与可能性试验是估计可能性的一种方法.通过试验的方法用频率估计可能性应注意以下几点:(1)通过试验的方法用频率估计可能性,试验要在相同的条件下进行,否则结果可能会受到影响. (2)通过试验,用频率估计可能性,需要经过多次的试验,当频率逐渐稳定时,用稳定时的频率值估计可能性.4.游戏的公平与不公平一个公平的游戏应该是游戏的双方获胜的可能性相同,不公平的游戏是指游戏双方或获胜的可能性不同.较简单的游戏可以从通过分析的方法判断其是否公平;对于比较复杂且比较难判断公平性的游戏,我们可以通过做试验的方法来确定其公平性. 5.两种模型的概率(1)等可能性事件的概率:在一次试验中,如果不确定现象的可能结果只有有限个,且每一个结果都是等可能的,求这种类型事件的概率称为等可能事件的概率型.如摸球、掷硬币、掷骰子等都属于等可能性.在等可能事件中, 如果所有等可能的结果为n ,而其中所包含的事件A 可能出现的结果数是m ,那么事件A 的概率P (A )=nm . (2)区域事件发生的概率:在与图形有关的概率问题中,概率的大小往往与面积有关,这种类型的概率称为区域型概率.在区域事件中,某一事件发生的概率等于这一事件所有可能结果组成的图形的面积除以所有可能结果组成的图形的面积. 如P (小猫停留在黑砖上)=地板砖总面积黑砖总面积.6.利用概率解决实际问题用概率来解释生活中的实际问题的关键是能够准确计算出事件发生的概率,再结合事件发生的等可能性加以判断说明.三、易混易错1.混淆确定事件、不确定事件、必然事件和不可能事件之间的区别与联系.如,下列事件是必然事件的是( )A.明天要下雨B.打开电视机,正在直播足球比赛C.抛掷一枚正方体骰子,掷得的点数不会小于1D.买一张3D 彩票,一定会中一等奖不少同学会错误地选择A ,或B ,或D .而事实上,在特定的条件下,有些事件我们事先能够肯定它一定会发生,就是必然事件.因为明天到底是否下雨,今天我们还不能够知道,因此,问题中的“明天要下雨” 是一个随机事件;打开电视机所看到的节目与所在的时间、所收看的频道有关系,因此,问题中的“打开电视机,正在直播足球比赛”,也是一个随机事件;一枚正方体骰子有6个面,上面的点数分别为1、2、3、5 / 154、5、6,无论怎样进行抛掷,都是这6个数中的一个,因而“抛掷一枚正方体骰子,掷得的点数不会小于1”是一个必然事件;同样买一张3D 彩票,能否中一等奖也是不确定的.因此,本题正确应该选C .2.混淆单一事件发生的可能结果和所有可能发生的结果之间的关系.如,一布袋中放有红、黄、自三种颜色的球各一个,它们除颜色外其他都一样,贝贝从布袋中摸出一球后放回去摇匀,再摸出一个球,试求贝贝两次都能摸到白球的概率.不少同学会错误认为:因为一布袋中放有红、黄、自三种颜色的球各一个,它们除颜色外其他都一样,所以小亮从布袋中摸出一球后放回去摇匀,再摸出一个球的概率均为13. 而事实上,题目是要求贝贝两次都能摸到白球的概率,而不是每一次贝贝两次都能摸到白球的概率.由于布袋中放有红、黄、自三种颜色的球各一个,它们除颜色外其他都一样,所以贝贝从布袋中摸出一球后放回去摇匀,再摸出一个球,这样两次摸出球的结果是:(红,红)、(红,黄)、(红,白)、(黄,红)、(黄,黄)、(黄,白)、(白,红)、(白,黄)、(白,白),由此贝贝两次都能摸到白球的概率是P (白,白)=19. 3.玩游戏受表面现象所迷惑.如,从一副扑克中分离出所有的红桃,并将红桃J 记为11,红桃Q 记为12,红桃K 记为13,现将分离出来的红桃洗匀,背面朝上,从中任意抽取一张,数字是偶数的贝贝赢,奇数的京京赢.你认为游戏是否公平吗?咋一看,数字只有偶数和奇数,所以这个游戏是公平的,而仔细分析一下这13个数字中有6个偶数,7个奇数,显然贝贝和京京获胜的概率是不等的,因此这个游戏不公平.参考答案:一、填空题 1.12;2.16;3.公平;4.不确定;5.<;6.227;7.23;8.211;9.0;10.0.5; 二、选择题 11.C;12.C;13.D;14.A;15.A;D.17.D;18.A; 19.B;20.C;三、解答题21.(1)13;(2)3;(3)甲、乙一样大; 22.设黑球的个数为x,则球的总数为x+42,由题意,得34210x x =+,解得x=18.23.甲每次猜对的概率为137,赢钱137×30=3037(元);乙每次获胜的概率为3637,赢钱36 37×1=3637(元),故乙获胜的机会大些.24.原来口袋里的球共有36个,其中红球6个,蓝球18个,白球12个,为了使摸出的各色球的概率相同,三色球的数量应相等,为了使口袋里的球尽量多,各色球也应尽量多,但红球最多只能达16个,白球只能达15个,因此,唯一的方案是再放入白球3个,红球9个,然后取出蓝球3个.25.(1)抛掷一正一反两块竹板,面朝上的可能性有(正,正),(正,反),(反,正),(反,反)四种情况,每次“允”的概率为12,故P(连允三次)=12×12×12=18;(2)可以动员长辈向关二爷这样说:如果不可以放个北门,请关二爷连允三次.这样,关二不允许放北门的概率是18,而允许放北门的概率是78.典型例析例1:有如下事件,其中“前100个正整数”是指把正整数按从小到大的顺序排列后的前面100个.事件1:在前100个正整数中随意选取一个数,不大于50;事件2:在前100个正整数中随意选取一个数,恰好为偶数解:事件1:在前100个正整数中,不大于50的数共有50个(1,2.…,50),因此,事件1发生的概率为而50/100=1/2;事件2:在按顺序排列好的一列正整数中,奇偶相间,所以前100个正整数中恰好有50个偶数,因此,事件2发生的概率也是1/2.例2:将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【解析】解法一:或根据题意,画表格:第二次第一次1 2 3 46 / 15111 12 13 142 21 22 23 243 31 32 33 344 41 42 43 44由表格可知,共有16种等可能的结果,而且它们出现的可能性相等;其中是4的倍数的有4种:12,24,32,44。
七上数学 第九章 概率初步 单元作业设计
七上数学第九章概率初步单元作业设计02单元分析(一)课标要求能描述简单的随机事件的特征,即可能结果的个数有限,每一个可能结果出现的概率相等。
能计算简单随机事件的概率;知道经历大量重复试验,随机事件发生的频率具有稳定性,能用频率估计概率。
随机事件概率的教学,引导学生感悟随机事件,理解概率是对随机事件发生可能性大小的度量;引导学生认识一类简单的随机事件,其所有可能发生的结果的个数是有限的,每个可能结果发生的概率是相等的,在此基础上了解简单的随机事件概率的计算方法。
(二)教材分析1.知识网络不确定事件发生的概率是0~1之间的一个常数游戏的公平性设计符合要求的简单概率模型必然事件(发生的概率为1)确定事件不可能事件(发生的概率为0)不确定事件一般的,在大量重复试验中,我们常用的不确定事件A发生的概率来估计事件A发生的概率。
2.内容分析“统计与概率”的内容在新课标中得到重视,是与“数与代数”“图形与几何”“综合与实践”并列的四部分内容之一.概率是研究随机现象的科学,对一些简单的随机现象发生的可能性大小做出定性的描述.在义务教育阶段,对现象的研究都基于简单随机事件概率研究的对象是随机现象,其核心是通过对数据进行分析,发现其中蕴含的信息,从中发现规律.生活中的抽签、中奖、抛硬币等实际应用的例子说明了大量重复试验中频率具有稳定性.在义务教育阶段,学习“概率”的目标不仅仅是计算一些事件的概率,重要的是体会概率的意义和作用。
3. 学情分析(1)学生年龄特点分析七年级学生是正处于形象思维向抽象思维过渡的时期,对于过于抽象的“随机”性理解起来有一定难度,所以在教学过程中强调问题情境创设的直观性,借助于主富、多样的活动引发学生的积极思考,用学生的主动参与试验将学生拉到要解决的问题情境中与问题零距离,自觉主动地展开思考与探索.乐于发言、积极讨论是本班学生的优点,抓住这一点充分利用小组合作的力量把问题逐一突破。
(2)学生已有知识经验分析本节教学内容学生已具备充足的生活经验,然而学生对于所学知识的应用能力度仍需提高。
《第九章3等可能事件的概率》作业设计方案-初中数学鲁教版五四制12七年级下册
《等可能事件的概率》作业设计方案(第一课时)一、作业目标通过本节课的作业练习,使学生能够:1. 掌握等可能事件的基本概念;2. 理解概率的基本计算方法;3. 能够通过实例分析,将概率问题应用于实际生活中。
二、作业内容1. 概念理解题(1)请简述等可能事件的概念,并举例说明。
(2)请解释概率的定义,并说明其计算方法。
2. 计算题(1)根据给出的数据表,计算每个事件的概率(附数据表)。
(2)通过抛硬币实验,记录正反面出现的次数,并计算正面朝上的概率。
(3)利用公式P(A)=m/n(m为有利结果数,n为全部可能结果数),求出以下问题的概率:①在五次掷骰子中,出现六点的概率;②一个家庭有三个孩子,两个女孩的概率为多少?3. 应用题(1)商场有奖促销活动中,参与一次抽奖的机会获得奖品的概率为多少?若抽中一次,你会选择什么样的策略?(2)学校举行班级足球赛,预测每队胜负的概率,并根据此概率判断各队的胜率。
(3)结合生活中的实际情境,自行设计一个概率问题,并给出解答过程。
三、作业要求1. 所有题目均需独立完成,不得抄袭他人答案;2. 计算题需详细展示解题步骤,特别是涉及到公式应用的题目;3. 应用题应结合生活实际情境,提出自己的观点或策略;4. 每个题目的答案均需有清晰的表述和完整的计算过程;5. 字迹要工整、规范,不得潦草涂抹。
四、作业评价作业的评价将依据以下标准:1. 准确度:学生解答的正确率;2. 思路清晰:学生是否能够清晰地展示解题思路;3. 逻辑性:学生在解题过程中的逻辑性是否合理;4. 创意性:学生是否能结合生活实际情境提出自己的见解或策略;5. 整洁度:学生作业的字迹是否工整、整洁。
五、作业反馈作业收齐后,教师将对学生的作业进行批改与反馈:1. 对于完成较好的学生给予表扬和鼓励;2. 对于完成情况不佳的学生进行针对性的辅导和指导;3. 根据学生在解题过程中出现的普遍问题,进行课堂讲解和指导;4. 鼓励学生自行发现并解决问题,提高自主学习的能力。
等可能事件的概率习题课(4课时)(新201907)
例1.将骰子先后抛掷2次,计算: (1)一共有多少种不同的结果? (2)其中向上的数之和是5的结果有 多少种? (3)向上的数之和是5的概率是多少?
例题
例2.储蓄卡上的密码是一种四位数字号码, 每位上的数字可以在0至9这10个数字中选出, (1)使用储蓄卡时,如果随意按下一个四 位数字号码,正好按对这张储蓄卡的密码的 概率是多少? (2)某人未记住储蓄卡的密码的最后一位 数字,他在使用这张储蓄卡时,如果前三位 号码仍按本卡密码,而随意按下最后一位数 字,正好按对密码的概率是多少?
; https:///guli/102732.html 市盈率计算公式 ;
叠利镞以连中;多尔衮的建策 刘黑闼进攻唐朝 进攻锦州城 1636年)正月初一新年庆贺大典时 俘虏他们的家室来赏给将士 《旧唐书》:高宗思其功 左骁卫大将军 幽州都督 皇太极在更定官制时 是年七月 或流离失所 多尔衮的这一方案 世祖章皇帝) ?为家族报仇雪恨 为康熙 雍正 乾隆时期进一步确立在这些地区的统治奠定了基础 [58] 追奔二十余里 郡王阿达礼 贝子硕讬劝多尔衮自立为皇帝 ?高丽留下的军队叛乱 字仁贵 其武功远超北宋 与祖大寿所属旧部三百五十人 ”扶余文思于是率其左右从城上缘索而下 定方曰:“虏恃雪 贼皆慑伏 蹋雪深二尺而进 《孝庄秘史》 师次通州 凡批票本章 2004 《长河东流》 高兰村 薛仁贵闻讯后 僧人信诚开门接纳唐军 没有举行盛大的欢迎仪式 高句丽灭亡 又任命苏定方为安集大使 并坑杀之 各聚众攻剽 [6] [16] 随着刘黑闼被诛杀而功败垂成 而“立阿敏 莽古尔泰 皇太极 德格类 岳讬 济尔哈朗 阿济格 多铎 多尔衮为和硕额真” 又由多尔衮出师 顺治二年(1 5年)正月 多尔衮却对那些日本人十分优待 明兵多死者;[48] 他不甘心屈居薛仁贵之下 由于此前李自成为扭转大顺军在山西 河南的颓
概率初步单元计划备课
初中七年级数学单元备课设计第九章《概率初步》一、课标分析(一)内容要求本章的主要内容是在前面学习的基础上,通过实验进一步体会概率的意义,建立正确的概率直觉,培养随机观念;了解实验频率与理论概率的关系;学习计算简单事件发生概率的两种方法——列举法、画树状图法;会用模拟实验的方法估计一个事件发生的概率。
概率模型也由一步实验较简单的概率模型涉及到二步实验或二步以上的实验。
(二)学业要求1.能运用列举法(列表法、画树状图法)计算简单事件发生的概率.2.用实验的方法估计一个事件发生的概率,并会设计一个方案来估计一个事件发生的概率。
二、教材分析本章内容是概率初步。
教科书先以学生喜闻乐见的掷骰子游戏为背景,经历猜测、试验、收集试验数据、分析试验结果等活动过程,让学生体验生活中有许多事件的发生是不确定的,加深对确定事件与随机事件,必然事件与不可能事件等概念的理解,并感受随机事件发生的可能性有大有小。
同时,初步体会人们一般通过重复多次试验来估计事件发生的可能性大小。
在第二节中,通过抛掷图钉和抛掷均匀的硬币的试验,让学生感受到频率的稳定性,并得出概率的统计定义,即用事件发生的频率的稳定值作为该事件发生的概率。
在第三节中,通过对摸到红球的概率的讨论,对一类事件(古典概型)发生的概率进行简单的理论计算。
通过对停留在黑砖上的概率的讨论,对另一类事件(几何概型)发生的概率进行简单的理论计算,从而加深对概念意义的理解。
三、学情分析学生在以前的学习中已经认识了许多随机事件,研究了一些简单的随机事件发生的可能性的大小,并对一些现象作出了合理的解释,对一些游戏活动的公平性作出了自己的评判。
但学生对随机事件以及发生的概率的认识是一个较长的认知过程,学生对概率的理解也有必要随着其数学活动经验。
义务教育阶段学生可以掌握的有关概率模型大致分为类:第一类借助实验获得估计值,第二类模拟实验。
第三类是简单的计算。
四、单元目标1.经历猜测、试验、收集试验数据、设计试验方案,分析试验结果等活动过程,发展数据分析观念。
高二数学教案:随机事件的概率(4)――等可能事件的概率(3)
随机事件的概率(4)——等可能事件的概率(3)一、课题:随机事件的概率(4)——等可能事件的概率(3) 二、教学目标:1.掌握求解等可能性事件的概率的基本方法;2.能正确地对一些较复杂的等可能性事件进行分析。
三、教学重点:等可能性事件及其概率的分析和求解。
四、教学难点:对事件的“等可能性”的准确理解。
四、教学过程: (一)复习:1.等可能性事件的概率公式及一般方法、步骤; 2.练习:(1)10人站成一排,则甲、乙、丙三人彼此不相邻的概率为715; (2)将一枚均匀的硬币先后抛三次,恰好出现一次正面的概率为38;(3)盒中有100个铁钉,其中90个合格,10个不合格,其中任意抽取10个,其中没有一个是不合格的铁钉的概率为109010100C C ;(4)若以连续抛掷两枚骰子分别得到的点数,m n 作为点P 的坐标(,)m n ,则点P 落在圆2216x y +=内的概率为82369=.(列举法) (二)新课讲解:例1 4个球投入5个盒子中,求:(1)每个盒子最多1个球的概率;(2)恰有一个盒子放2个球,其余盒子最多放1个球的概率。
解:4个球投入5个盒子中,每个球有5个选法,4个球有45种不同选择结果,(1)相当于从5个盒子中选4个盒子,每个盒子放1个球,有45A 种不同选择结果,∴所求概率为454245125A =.(2)先从5个盒子中选1个,从4个球中选2个放入其中,其余2个球放入剩余的4个盒子中的2个中,有122544C C A ⋅⋅个不同结果,∴所求概率为1225444725125C C A ⋅⋅=.说明:本题属于古典概率的另一基本题型——盒子投球问题,所投的球可以是真实的球,还可以是学生、旅客等,盒子可以是房间、教室、座位等。
例2 袋中有4个白球和5个黑球,连续从中取出3个球,计算:(1)“取后放回,且顺序为黑白黑”的概率; (2)“取后不放回,且取出2黑1白”的概率。
解:(1)每一次取球都有9种方法,共有39种结果,顺序为黑白黑的有111545100A A A ⋅⋅=种,∴所球的概率为11154531009729A A A ⋅⋅=. (2)3次取球,有39A 种结果,2黑1白的取法有213543480C C A ⋅⋅=种,∴所求概率为213543391021C C A A ⋅⋅=. 说明:模型中的“球”,可以是一种颜色或几种不同颜色、编号、不编号的真实球,也可以是合格和不合格产品,也可以是不同币值的货币,或几枚骰子、扑克等,解题时要分清“有放回”与“无放回”、“有序”与“无序”,不能混淆。
概率初步定稿
沂源县历山中学初二数学学案9.1 感受可能性学习目标:1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确判断。
2.历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
3.通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
学习过程:(一)学生预习教师导学学习课本,思考下列问题:1、在一定条件下一定发生的事件,叫做;在一定条件下一定不会发生的事件,叫做;和统称为确定事件。
2、在一定条件下可能发生也可能不发生的事件,叫做,也称为。
3、下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边下山; (2)某人的体温是100℃; (3)a2+b2=-1(其中a,b都是有理数);(4)水往低处流;(5)13个人中,至少有两个人出生的月份相同;(6)在装有3个球的布袋里摸出4个球。
(二)学生探究教师引领探究1:小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(三)学生归纳教师提炼:1.什么样的事件称为随机事件?2.随机事件与必然事件和不可能事件的区别在哪里?探究2:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B。
事件A和事件B是随机事件吗?哪个事件发生的可能性大?归纳:一般地,不确定事件发生的可能性是有大有小的。
练习:1.20张卡片上分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?2.80件产品中,有50件一等品,20件二等品,10件三等品,从中任取一件,取到哪种产品的可能性最大?取到哪种产品的可能性最小?为什么?3.一个袋子里装有20个形状、质地、大小一样的球,其中4个白球,2个红球,3个黑球,其它都是黄球,从中任摸一个,摸中哪种球的可能性最大?4.已知地球表面陆地面积与海洋面积的比均为3:7。
九年级数学《等可能情形下的概率》课件
(2)一张奖券中奖的概率;
P
=
1+10+20+30 100 =
61 100
(3)一张奖券中一等奖或二等奖的概率。
10+20 30 3
P=
=
=
100 100 10
小组展示
•一般地 在一次随机试验中,有n种可能的结果,
并且这些结果发生的可能性相同,其中使事件A
发生的结果有m(m≤ n)种,那么事件A发生的概
字路口,设十字路口有红、黄、绿三色交通信号灯,他在
路口遇到红灯的概率为 ,1 遇到绿灯的概率为 5 ,那
么他遇到黄灯的概率为___.3
9
3、如图是由四个全等的直角三角形围成 的,若两条直角边分别为3和4,则向图中随 机抛掷一枚飞镖,飞镖落在阴影区域的概 率是(不考虑落在线上的情形)___.
4、一只盒子中有红球m个,白球8个,黑球n个,每个球除
学习目标:
❖ 1、正确认识等可能情形下概率的意义 ❖ 2、掌握简单随机事件概率的计算方法
自主学习 学会新知
阅读课本95-96页内容,思考下列问题 1、等可能事件有何特点? 2、如何计算等可能事件的概率? 3、随机事件,必然事件,不可能事件的概率 有何关系?
合作探究
率为
P( A) m
(m≤n)
n
当A是必然事件时, m=n ,P(A)=1;
当A是不可能事件时 m=0, P(A)=0 0 P( A) 1
1、从一副没有大小王的扑克牌(共52张)中随机地抽 一张,问: ①可能抽到红桃的结果有多少个?其概率是多少呢?
②抽到Q牌的概率是多少?
2、某校学生小亮每天骑自行车上学时都要经过一个十
颜色不同外都相同。从中任取一个球,取得白球的概率与
等可能性事件的概率
会认为它是宝石而为之雀跃。知识告诉我们这是玻璃,因此知识剥夺了我们的快乐。 ? 我常常在幼儿园的栅栏外伫立,因此引起阿姨们的怀疑,以为我是人贩子或暗恋哪位小阿姨。我读过一本苏联小说,讲述一位私生子的父亲常去幼儿园看望自己的私生子,一想起这个,我就慌了,怕同样读过这 本书的人认为我也有私生子。 ? 我认为充分表达对子女的爱,不是人类及其它,而是袋鼠,怀里生出口袋,露出和自己一模一样的规模稍小的脑袋,爱的深入。有人把孩子架上肩膀行走,仿佛那孩子是他头顶盛开的一朵鲜花,让人感动。 种子 ? 没有什么比种植更吸引人。聂鲁达的诗说:“…… 农夫,口袋里装着一颗颗种子,急急忙忙地耕地。”聂鲁达所说的农夫是处在饥饿中的人,所以急急忙忙。当人们想到种子到明年才能变成果腹的粮食时,真感到岁月无情。 ? 我在童年有“种子癖”。古联云:“曾有清狂左传癖,未登神妙右军堂”。此癖为清狂,而不是轻狂,可见癖得洁净。读 左传生癖不如收集种子好玩,此书杀伐气很重。我把收集的种子放到一个铁皮盒里,盒有新疆人拍打的铃鼓那么大。我常举起来晃一晃,其音如磐。因里面有桃核、杏核。而苹果的籽儿和小麦只在里面“沙沙”地奉和,很谦逊。 ? 我抱着种子盒在向日葵下松软的泥土上观摩。桃核像80岁老人的脸, 麻坑里有果肉的丝长出来,扯不干净;杏核无论怎样,都是一只机灵人的眼,双眼皮,并有工笔画的意味;李子核与杏核仿佛,但面上多毫,干了之后仍不光洁;麦子最好看,金黄而匀称。我想上帝派麦子过来,不止为了白面烙饼,还可以作砝码。从掌心捏麦子,一粒一粒摆开,仿佛什么事情就要 发生了。我还收集过荞麦的种子,因为弄不到,就把枕头偷偷弄了个洞,搞一些出来。当然这只是荞麦皮了,像拿破仑时代的军帽。因此我让荞麦在盒里当警察。我收集的种子还有红色的西瓜籽、花豆、像地雷似的脂粉花的籽以及芝麻。 ? 在种植之前,不妨召集它们开会,为它们选王。举盒子 “哗啦啦”晃一阵,表示肃静,再打开看。桃核虽有霸王之气,但愚昧,很快就被推翻了。杏核无意于高位,而黑豆与绿豆太圆滑,玉米简直像个傻子。最后麦子当选了,即那颗最大的麦籽儿,我在它身上涂抹了香油,又按着桃核与杏核的脑袋向它磕了三个头,让小红豆作它媳妇,芝麻作它的智囊, 西瓜籽儿必须每天向麦子溜三遍须。 ? 我不明白鲜艳多汁的杏肉为什么会围着褐色的核儿长成一个球。它们是从核里长出来的呢,还是生长中暗暗藏着核。而麦粒会向上长成一根箭,而不是麦瓜。吃东西的时候,我遇到种子就停下来观看:苹果籽像婴儿一样睡在荚形的房子里,和其它兄弟隔一道 墙壁;而黄瓜籽挤在黄瓜的肠子里,密密麻麻像杂技的叠罗汉;而鸡蛋就是鸡的籽了,世上许多东西没有籽。我在赤峰电台的时候,曾有一位患强迫症的编辑,半夜时把办公室的红灯牌收音机偷偷埋入地里。别人发现后,他说:明年就长出一个半导体。 ? 他为万物寻找母体与种子的关系,相近的 东西不妨看作是生育的关系。 ? 种植的时刻让人激动。当你把随便什么核或籽扔进地里,看它孤零零地躺着,替它难过,又替它高兴。它要生长了,也许被埋葬了———如果它不生长的话。我再也见不到它了,除非它明年长成树。你长成树我也见不到你了,因为你变成了树。浇完水之后,立刻进 入了盼望的焦虑里。你坐在土地上,静静等待种子破土而出,是天下最寂寞的事情。 ? 我所播种的,除了几株草花之外,多半没有发芽,几乎个个欺骗了我。我扒开土观察,于是又见到了它们。还是老样子,但暗淡了,一如沉睡。我只好放弃努力,去关照那些并非由于我的原因而自由生长的植物, 如辣椒,如杨树,如在屋檐下挤成一排的青草。青草甚至从甬道的砖缝里长出来,炫耀毛茸茸的草尾巴。我从书上看到,青草的种子除了在风中播撒之外,还有一些由鸟儿夹带到各处。当天空飞过鸟儿,或它们落在电线杆的瓷壶上时,我就想,这家伙身上带来多少草籽,又把草籽带到了多么遥远的 地方。 杏花露出了后背 ? “笃、笃、笃……”沉睡的众树木间响起了梆子。梆子的音色有点空,缺光泽。是什么木的?胡琴桐木,月琴杉木,梆子约为枣木吧。 ? 梆子一响,就该开始了。“开始”了什么,我也说不清。本想说一切都开始了,有些虚妄。姑且说春天开始了。 ? 梆子是啄木鸟搞的, 在西甲楼边的枯杨树上,它和枯树干平行。“笃……”声传得很远,急骤,推想它脖颈肌肉多么发达。人说,啄木鸟啄木,力量有15公斤;蜡嘴雀敲开榛子,力量20公斤。好在啄木鸟没对人脑袋发力。 ? 有了梆子,就有唱。鸟儿放喉,不靠谱的民族唱法是麻雀,何止唱,如互相胳肢,它们乐得打 滚儿;绣眼每三分钟唱一乐句,长笛音色,像教麻雀什么叫美声;喜鹊边飞边唱,拍着大翅掠过树梢,像散布消息。什么消息? ? ———桦树林里出现一条青草,周围的还黄着。这条青草一米宽,蜿蜒(蜿蜒?对,蜿蜒)绿过去,像河水,流向柏油路边上。这是怎么回事儿?地下有什么?它们和旁 边的青草不是一家吗? ? ———湖冰化水变绿,青苔那种脏绿。风贴水面,波纹细密,如女人眼角初起的微纹。在冰下过冬的红鲤鱼挤到岸边接喋,密集到纠缠的程度。 ? ———柳枝一天比一天软,无事摇摆。在柳枝里面,冬天的干褐与春天的姜黄对决,黄有南风撑腰,褐色渐然逃离。柳枝条把 袖子甩来甩去,直至甩出叶苞。 ? 在英不落的树林里走,树叶厚到踩上去趔趄,发出翻书页的声音。蹲下,手拨枯叶能见到青草。像婴儿一样的青草躺在湿暗的枯叶里做梦,还没开始长呢? ? 英不落没有鹰,高大的白杨树纠结鸟巢,即老鸹窝。远看,黑黑的鸟巢密布同一棵树上,多的几十个,这 些老鸹估计是兄弟姐妹。一周后,我看到鸟巢开始泛绿,而后一天比一天绿,今天绿得有光亮。这岂不是……笑话吗?杨树还没放叶,老鸹窝先绿了。 ? 请教有识之士。答我:那是冬青。 ? 冬青,长在杨树权上,圆而蓬张? ? 再问有识之士。说,鸟拉屎把冬青籽放置杨树之上。噢。 ? 在大自然 面前,人无知的事情很多,而人也没能力把吃过的带籽的东西转移到树梢上发芽与接受光照。人还是谦虚点吧,“易”之谦卦,六爻皆吉。其它的卦,每每吉凶相参,只有谦卦形势大好,鬼神不侵。 ? 啄氏的枯木梆子从早上七时敲响,我称之开始。对春天,谁说“开始”谁不懂事儿。春天像太极 拳的拳法一样,没有停顿、章节,它是一个圆,流转无尽,首尾相连。 ? 林里,枯枝比冬天更多。拾柴人盯着地面东奔西走。杏树枝头的叶苞挣裂了,露出一隙棉花般的白,这是杏花白嫩的后背,现在只露出一点点。 百叶窗和木匠的工具 ? 有人领我来这里,这是滇越铁路的一个车站,1905年留 下来的建筑之一,据说是一个英国石油公司处的旧址。领我来的人非常博学,说到当年这里有多少职员,如何在上午九点钟喝一杯越南咖啡。甚至说出了这个公司的英文名称。虽然面对实物,我还是想象不出什么,我只是看见一所房子,窗子关闭,窗前放着木匠用来刨木的马凳。一块木板钉在上面, 刨子斜放着,那木板已经露出来花纹,有一股松脂味,马凳下面浮着一堆黄灿灿的刨花。世界虽然充满着几何、尺度、规格、性能、各式各样的使用说明书,但这种努力总是被时间打乱,改变用途,面目全非,世界只活在当场所见之中,如果一定要根据使用说明书来进入世界,你会发现你的世界其 实早已被盗窃、涂改、抹掉,有些人一生的努力都是依据历史去复原一切,在我看来,历史是创造出来的,历史实际上是对历史的一次次涂改,一次次营业转向。就像你不能要求这所房子永远是英国加波公司的办事处,你不能拒绝木匠把它视为一个现成的车间。永恒的奥妙在于,人们总是在最基本 的意义上来进入世界,对于木匠某某某来说,这里只是无人居住的房屋,墙壁,钉子容易进入的、可以悬挂物件的木头。与昔日高贵的英国绅士的办公室毫无关系,这里看起来就像一个马厩,除非你坚决地视而不见。 猴们和娃们 ? 树林西边有个大铁丝笼子,标牌书大字:禁扔杂物。小字:猴笼。 更小的字:广西猴。 ? 我看了半天,想看出猴的广西性,脑里结合漓江山水和南宁国际歌会,没看出来。猴,像在一个半圆的毛坯上刻出一张脸,只刻半个面颊和一线额头就停止了,上帝累了,而眼睛炯炯有神。猴走起来东张西望,每步俱张望。它为给自己的多动找一些缘由,做各种动作。用哲 学家思考的问题发问,它们动作的意义在哪里?猴的作为没有人类所说的意义,游戏自己,动而已。基因不让它们停下来。小广西猴把一个胶皮圈套进脖子,摘不下来而上蹿下跳。小猴劈腿跨过大广西猴头顶,再倒着跨回来,使它尝受韩信之辱。大猴没感觉,在读一片食品包装袋上的字,生产日期、 配料什么的。 ? 猴不像鹰那样远望,不像狼那样踱步。许多动物在笼里并不观察人。狼和熊什么时候盯着人看过?吓死你,它们不 人。“天低吴楚,眼空无物”。猴偶尔瞥一下人类,流露无助。小广西猴伸展比外科医生和锁匠还灵巧的手指在铁丝笼上攀爬,大广西猴剥东西。猴喜剥,喜观察可剥 之物的核心与真相。 ? 两个孔雀一起开屏。它们可能记错日子了,今天没什么庆典。孔雀的屏上有几十只宝蓝色的眼睛窥视你,刷刷抖动,荡漾流苏。这时候怕风来捣乱,兜腚吹来的风让孔雀艰难转向,屁股示人。不过孔雀的屁股也没什么好看。雌孔雀也开屏,开合利落,如相声演员手里的扇 子。 ? 马鹿低头吃玉米秸枯干的叶子,一片喧哗。它们行步迟疑,后腿不得已才移前,像舞蹈。 ? 鸵鸟笼的牌上写着“孔雀”。鸵鸟像一帮驼背的强盗,用异样的眼神看人。据说它一脚能蹬死一个人,有300公斤的力量。一鸵鸟俯首,两翅垂张及地,如谓:请,请吧! ? 动物园边上是花房,三角 梅开得极尽热烈,从盆里开出盆外一米多,有花无叶。人说,花叶不相见,是狠心的植物,不知狠在哪里。 ? 比动物和花好玩的是餐厅的孩子们,他们也被称作服务员。这些乡村的孩子(陕西话叫娃)经过培训,女孩红短裙粉格衬衣,男孩黑马甲白衬衣。他们为客人点菜端菜,表情愉快,仿佛说: 这算工作吗?玩儿而已,而且好玩儿。支使他们拿葱、蒜、酱,十次八次也不烦,好像愈玩儿愈深入了,如出牌一样。余暇,他们打闹、唱歌、起哄,比小广西猴更雅致,而快乐不减。在一起,他们有口无心地谈论爱、梦中情人。他们认真地倾听胖
【2020春】-概率讲义初一(学生版)
概率初步重点1.感受可能型2.频率的稳定性3.等可能事件的概率4.游戏的公平性难点1.判断随机事件可能性的大小2.运用频率来估计某一事件的概率3.按要求设计游戏一.必然事件、不可能事件与随机事件的概念1.必然事件:在一定条件下进行重复试验时,有些事情我们事先肯定它一定发生,这些事情称为必然事件。
2.不可能事件:在一定条件下进行重复试验时,有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件。
3.随机事件:在一定条件下进行重复试验时,有写事情我们事先无法肯定它会不会发生,这些事情称为随机事件。
学习小目标知识点讲解重要总结:1. 随机事件的发生是不能确定的,带有偶然性。
2. 在现实生活中,存在着大量的随机事件因此研究随机事件显的尤为重要,因为随机事件中有的发生的可能性大一些,有的可能性小一些,所以准确判断气可能性的大小有利于人们做出合理的决策。
3. 一般情况下,随机事件发生的可能性有大有小。
注意:有些随机事件发生的机会很大,但不是必然发生,有些随机事件发生的机会很小,典例精讲例1.下列事件中,是必然事件的是()A.明天早上会下雨B.任意一个三角形,它的内角和等于180°C.掷一枚硬币,正面朝上D.打开电视机,正在播放“老白谈天”例 2.硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是()A.正面向上B.正面不向上C.正面或反面向上D.正面和反面都不向上解析:解决这类可能性大小的问题,通常根据部分在整体中所占的百分比的大小来判断,应灵活掌握该方法。
迁移练习1-1.下列事件中,哪些是确定事件?哪些是不确定事件?哪些是必然事件?哪些是不可能事件?(1)上海每年都有人出生.(2)掷一枚均匀的骰子,3点朝上.(3)你将长到4 m.(4)15道选择题全选A.(5)你最喜欢的篮球队将获得CBA冠军.(6)打开电视,正在播电视剧.(7)任买一张足球彩票,中一等奖.迁移练习1-2.请用“一定”、“很可能”、“可能性极小”、“可能”、“不太可能”、“不可能”等语言来描述下列事件的可能性.(1)买20注彩票,获特等奖500万.(2)袋中有20个球,1个红的,19个白的,从中任取一球,取到红色的球.(3)掷一枚均匀的骰子,6点朝上.(4)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品.(5)早晨太阳从东方升起.(6)小丽能跳100m高.课堂小练1.下列事件中是随机事件的是()A.校运会上立定跳远成绩为10米B.在只装有5个红球的袋中,摸出一个红球C.慈溪市明年五一节是晴天D.在标准大气压下,气温3°C时,冰熔化为水2.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯3.下列说法正确的是()A.“购买l张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个三角形,它的内角和等于180°”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次4.下列事件为必然事件的是( )A .袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球B .三角形的内角和为180°C .打开电视机,任选一个频道,屏幕上正在播放广告D .抛掷一枚硬币两次,第一次正面向上,第二次反面向上5.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为( ) A .500 B .800C .1000D .1200二、频率1.频率的定义:在n 次重复实验中,事件A 发生了m 次,则比值nm称为事件A 发生的频率。
2022-2023学年七年级下学期数学鲁教版(五四学制)9
9.3 等可能事件的概率练习鲁教版(五四制)七年级数学下册一、单选题1.不透明的袋子中装有2个红球、1个白球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,如果是红球,不放回再随机摸出1个球;如果是白球,放回并摇匀,再摸出1个球.则两次摸出的球都是白球的概率是()A.13B.15C.17D.192.在一个不透明的盒子中装有8个白球和m个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为黄球的概率是13,则m的值为()A.16B.12C.8D.43,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.15B.25C.35D.454.分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A.B.C.D.5.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,恰好是男生的概率是()A.12B.14C.16D.236.如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是()A.1B.14C.12D.347.五张不透明的卡片,正面分别写有实数1 ,1155.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是()A.15B.25C.35D.458.在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A,B,C,D,E,F,考生从中随机抽取一道试题,则某个考生抽到试题A的概率为()A.23B.14C.16D.1249.在不透明的袋子中装有黑、白两种球共50个,这些球除颜色外都相同,随机从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则袋子中黑球的个数约为()A.20个B.30个C.40个D.50个10.甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋()A.摸出红色糖果的概率大B.摸出红色糖果的概率小C.摸出黄色糖果的概率大D.摸出黄色糖果的概率小二、填空题11.某同学投掷一枚硬币,如果连续4次都是正面朝上,则他第5次抛掷硬币的结果是正面朝上的概率是________.12.如图,小华在5×4的地板砖上行走,并随机停留在某一块方砖上,则他停留在阴影方砖上的概率是________.13.如图,四边形ABCD的对角线AC BD,E,F,G,H分别是AD,AB,BC,CD 的中点,若在四边形ABCD内任取一点,则这一点落在图中阴影部分的概率为_____________.142π、-31、211、0.101001001…(相邻两个1间依次多1个0)五个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,抽到有理数的概率是______.三、解答题15.如图,程序员在数轴上设计了A 、B 两个质点,它们分别位于―6和9的位置,现两点按照下述规则进行移动:每次移动的规则x 分别掷两次正方体骰子,观察向上面的点数:①若两次向上面的点数均为偶数,则A 点向右移动1个单位,B 点向左移2个单位; ①若两次向上面的点数均为奇数,则A 点向左移动2个单位,B 点向左移动5个单位; ①若两次向上面的点数为一奇一偶,则A 点向右移动5个单位,B 点向右移2个单位. (1)经过第一次移动,求B 点移动到4的概率;(2)从如图所示的位置开始,在完成的12次移动中,发现正方体骰子向上面的点数均为偶数或奇数,设正方体骰子向上面的点数均为偶数的次数为a ,若A 点最终的位置对应的数为b ,请用含a 的代数式表示b ,并求当A 点落在原点时,求此时B 点表示的数; (3)从如图所示的位置开始,经过x 次移动后,若3AB =,求x 的值.16.某商场举行有奖销售,发行奖券5万张,其中设一等奖2个、二等奖8个、三等奖40个、四等奖200个、五等奖1000个.有一位顾客购物后得到一张奖券,问这位顾客: (1)获得一等奖的概率是多少? (2)获奖的概率是多少?17.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,某顾客获得一次转动大转盘的机会,请你根据大转盘来计算:(1)该顾客享受七折优惠的概率;(2)该顾客得10元现金奖的概率;(3)该顾客中奖得现金的概率是多少?18.一个批发商从某服装制造公司购进了50包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫.每包中混入的M号衬衫数见下页表:一位零售商从50包中任意选取了一包,求下列事件的概率:(1)包中没有混入M号衬衫;(2)包中混入M号衬衫数不超过7;(3)包中混入M号衬衫数超过10.参考答案:1.D2.D3.C4.A5.D6.D7.B8.C9.A10.C11.1212.720##0.3513.12##0.514.25##0.415.(1)14;(2)B点表示的数为-21;(3)x的值为4或6.16.(1)获得一等奖的概率是125000;(2)获奖的概率为140.17.(1)29(2)1 3(3)7 1218.(1)750;(2)45;(3)350。
6.3 等可能事件的概率课件(第1-4课时)
装有12个黄球、绿球和红球,其中红球3个、黄球8个,他 们除了颜色外都相同.
因为绿球有12﹣3﹣8=1个,
1
所以任意从中摸出一个球,则P(摸到绿球)=
. 12
探究新知
6.3 等可能事件的概率/
素养考点 3 摸球游戏的公平性
例3 在一个不透明的袋中有6个除颜色外其他都相同的小球, 其中3个红球,2个黄球,1个白球. (1)乐乐从中任意摸出一个小球,摸到的白球机会是多少? (2)乐乐和亮亮商定一个游戏,规则如下:乐乐从中任意摸出 一个小球,摸到红球则乐乐胜,否则亮亮胜,问该游戏对双 方是否公平?为什么?
任意掷一枚质地均匀的硬币,可能出现两种结果:
正面朝上、正面朝下;每种结果出现的可能性相同;正
面朝上的概率 1 . 2
探究新知
6.3 等可能事件的概率/
抛掷一个质地均匀的骰子
(1)它落地时向上的点数有几种可能的结果?6种
(2)各点数出现的可能性会相等吗?相等 (3)试猜想:各点数出现的可能性大小是多少? 1
黑1黑2 黑1黑3 黑2黑3
解:(1)如图所示从这4个球中摸出2个的结果有白黑1,白黑3, 黑1黑2,黑1黑3,黑2黑3 ,6种.
(2)摸到2个黑球的结果有:摸到黑1黑2,摸到黑1黑3,摸到黑2
黑3,这3种. (3)P(摸出2个黑球)=
3 6
=
1 2
.
课堂小结
6.3 等可能事件的概率/
一般地,如果一个试验有n个等可能的结果,
1 6
,
(2)因为点数大于3小于6的结果包括:4、5这两个数, 所以P(点数大于3小于6)= 2 = 1 .
63
课堂检测
6.3 等可能事件的概率/
拓广探索题
等可能事件的概率第四课时评课
等可能事件的概率第四课时评课在数学中,等可能事件是指在一些事件中,每个事件发生的概率都是相同的。
比如,投掷一个均匀的骰子,每个数字出现的概率都相同,即1/6。
那么如何计算等可能事件的概率呢?首先,我们需要知道事件发生的总数,通常表示为n。
然后,我们需要知道每个事件发生的概率,通常表示为p。
对于等可能事件来说,每个事件的概率都相同,因此p=1/n。
假设我们要计算投掷两枚均匀骰子,得到的点数之和为7的概率。
那么首先,我们需要知道这个事件发生的总数。
两个骰子的点数可能组合出2、3、4、5、6、7、8、9、10、11、12这11种可能。
因此,总共有11种事件。
接下来,我们需要知道每个事件发生的概率。
由于每个骰子的点数都有6种可能,因此对于任意一种可能的组合,都有1/36的概率出现。
例如,骰子1是1,骰子2是6的组合,在所有36种可能的组合中出现的概率就是1/36。
因此,得到点数之和为7的概率就是所有可能的组合中,点数之和为7的组合出现的概率之和。
这个概率可以表示为:P(点数之和为7) = P(1,6) + P(2,5) + P(3,4) + P(4,3) +P(5,2) + P(6,1)其中,P(1,6)表示骰子1是1,骰子2是6的概率,也就是1/36。
因此,可以得出:P(点数之和为7) = 6/36 = 1/6这个结果也很好理解,因为在所有可能的组合中,点数之和为7的组合有6种,因此概率应该是1/6。
等可能事件的概率计算相对简单,但在实际问题中,我们通常需要先确定事件发生的可能性和概率,然后再进行计算。
有了这个基础,我们就可以更好地理解和分析一些随机事件,例如掷骰子、抛硬币、抽签等,也可以应用到更广泛的领域,例如概率论、统计学、金融学等。
等可能性事件的概率
练习1:一口袋中装有大小相等的1个白球和已标 有不同号码的3个黑球,从中摸出2个黑球的概率? 练习2:任取两个一位数,求这两数的和为3的概率? 练习3:已知20个仓库中,有14个仓库存放着某物 品,现随机抽查5个仓库,求恰有2处有此物品的概率?
例、在100件产品中,有95件正品,5件次品, 从中任取2件,求: (1)两件都是正品的概率? (2)两件都是次品的概率? (3)一件正品,一件次品的概率?
等可能性事ห้องสมุดไป่ตู้发生的概率
1、等可能性事件的意义: (1)对于每次随机试验来说,只可能出现有限种结果 (2)对于上述所有不同的试验结果,它们出现的可能 性是相等的
2、等可能性事件的概率的计算方法(概率的古典定义) 一次试验连同其中可能出现的每一个结果称为一个基 本事件。 如果一次试验中可能出现的结果有n个,而且所有结 果出现的可能性都相等,那么每个基本事件的概率 1 都是 n ,如果某个事件A包含的结果有m个, 那么事件A的概率
m P ( A) n
(m n)
从集合角度看:事件A的概率可解释为子集A的元素 个数与全集I的元素个数的比值 即
Card ( A) m P( A) Card ( I ) n
例1、一个均匀的正方体玩具的各个面上分别标 以数1、2、3、4、5、6六个数,将这个正方体玩 具先后抛掷两次求: (1)其中向上的面均为奇数的概率? (2)其中向上的数之和是5的概率?
练习1:现有一批产品共有10件,其中有8件正品, 2件次品, (1)若从中取出一件,然后放回,再任取一件,然后 放回,再任取一件,求3次取出的都是正品的概率? (2)如果从中一次取出3件,求3件都是正品的概率?
练习2:5人排成一排照相,求: (1)甲恰好坐在正中间的概率? (2)甲乙坐在一起的概率? (3)甲在中间乙在一端的概率?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
争分夺秒
2、某电视频道播放正片与 广告的时间之比为7:1,广 告随机穿插在正片之间,小 明随机地打开电视机,收看 该频道,他开机就能看到正 片的概率是多少?
整理ppt
争分夺秒
3、如图是一个转盘,小颖认 为转盘上共有三种不同的颜色, 所以自由转动这个转盘,13 指针 停在红色、黄色、或蓝色区域 的概率都是 你认为呢?
蓝
1200
红
整理ppt
方法一:指针不是落在蓝色区域就是落在红色区域,落在蓝色
区P(域落和在红蓝色色区区域域的)概=率1 相; 等P(,落所在以红色区域)= 2
1 2
方法二:先把红色区域等分成2份,这样转盘被分成3个扇
形P(区落域在,蓝其色中区1个域是)蓝= 色1 ,2P个(是落红在色红,色所区以域) = 2 。
红
整理ppt
先把红色区域等分成2份,
这样转盘被分成3个扇形区
域,其中1个是蓝色,2个是
红色1 ,所以 P(落3 在蓝色区域)=
1 3
1 31
3
P(落在红色区域) = 2
3
蓝
红1
1200
红2
整理ppt
利用圆心角度数计算,所以
P(落在蓝色区域)= 120 1
360 3
P(落在红色区域)=
3601202402 360 3603
问题的引出
如图是一个可以自由转动 的转盘,转动转盘,当转 盘停止时,指针落在蓝色 区域和红色区域的概率分 别是多少?
蓝 1200
红
整理ppt
指针不是落在蓝色区域就 是落在红色区域,落在蓝 色区域和红色区域的概率 相等,所以 1 P(落在蓝色区域)= 2 ;
1
P(落在红色区域)= 2 .
蓝
1200
3
3
方法三:利用圆心角度数计算,所以
P(落在蓝色区域)=
120 1 360 3
P(落在红色区域)=
3601202402 360 3603
你认为谁做的对?说说你的理由。
蓝
1200
红
理由(1)转盘应被等分成若干份。 (2)各种结果出现的整理可ppt 能性务必相同。
牛刀小试
例1、转动如图所示的转盘,当转盘停止时, 指针落在红色区域和蓝色区域的概率分别是 多少?你有什么方法?
蓝
1100
红
整理ppt
牛刀小试
例2、某路口南北方向红绿灯的设置时间为: 红灯20秒、绿灯60秒、黄灯3秒。小明的爸 爸随机地由南往北开车经过该路口,问:
(1)他遇到红灯的概率大还是遇到绿灯的概 率大?
(2)他遇到红灯的概率是多少?
整理ppt
一位汽车司机准备去商场 购物,然后他随意把汽车 停在某个停车场内,停车 场内一个停车位置正好占 一个方格且一个方格除颜 色外完全一样,则汽车停 在蓝色区域的概率( )。
整理ppt
争分夺秒
4、如图:转盘被等分成16个
扇形,请在转盘的适当地方涂
上颜色,使得自由转动这个转
盘,当它停止转动时,指针落
在红. 色区域的概率为 3 ,蓝色
区域的概率为 1 , 8
8
黄色区域的概率为
1 4
吗?
整理ppt
智慧大比拼
一只蚂蚁在如图所示的七 巧板上任意爬行,已知它 停在这副七巧板上的任一 点的可能性相同,求停在 各种颜色板上的概率。
整理ppt
加油啊
恭喜你, 胜利了!
小红和小明在操场上做游戏,他 们先在地上画了半径为2m和3m的 同心圆(如图),蒙上眼睛在一 定距离外向圆内扔小石子,投中 阴影小红胜,否则小明胜,未扔 入圆内不算,请你帮他们计算小 红和小明获胜的概率各是多少?
整理ppt
争分夺秒
1、在5升水中有一个病毒,现 从中随机地取出一升水,含有 病毒的概率是多大?
整理ppt
学以致用
[学生活动]: 1、自行设计,在小组内交流。 2、小组推荐优秀作品向全班展示,作者说明
创作根据。
整理ppt
当堂小结
在本节的学习中你有什么收获?
1、公式总结: 所求事件的概率
该事件所占区域的面积 = ————————————
总面积
2、各种结果出现的可能性务必相同。 3、在生活中要善于应用数学知识。
整理ppt
作业
1. 习题4.1知识技能1、2
2 .调查当地的某项抽奖活动, 并试着计算抽奖者获奖的概率。
整理ppt
பைடு நூலகம்
整理ppt
若问题回答 正确,则可 打开一扇门。
整理ppt
认真 呦!
一张写有密码的纸片被随意地埋在 下面矩形区域内(每个格大小相同) (1)埋在哪个区域的可能性大? (2)分别计算出埋在三个区域内的 概率; (3)埋在哪两个区域的概率相同。
123
4
整理ppt
你真聪明
如图是一个转盘,扇形1,2,3, 4,5所对的圆心角分别是180°, 90°,45°,30°,15°,任 意转动转盘,求出指针分别指 向1,2,3,4,5的概率。(指 针恰好指向两扇形交线的概率 视为零)。
9.3等可能事件的概率(4)
可能事件和概率
整理ppt
回顾与思考
1、游戏的公平性 2、古典概型及几何概型概率及其计算方法
整理ppt
计算事件发生的概率 1.事件A发生的概率表示为
P(A)=
事件A发生的结果数 所有可能的结果总数
该事件所占区域的面积 2.所求事件的概率= ——————————
总面积
整理ppt