函数单调性与奇偶性

合集下载

函数单调性奇偶性周期性

函数单调性奇偶性周期性

函数单调性、奇偶性、周期性◆知识点梳理 一函数的奇偶性:1、定义域关于原点对称 奇函数)(x f 在原点有定义,则0)0(=f ;2、)(x f 是奇函数⇔)()(x f x f -=-⇔)(x f 图像关于原点对称;3、)(x f 是偶函数)()(x f x f =-⇔⇔)(x f 图像关于y 轴对称;4、一些判断奇偶性的规律: ①奇±奇=奇,偶±偶=偶②奇×/÷奇=偶,奇×/÷偶=奇,偶×/÷偶=偶二函数的单调性 方法:①导数法; ②规律判断法;③图像法; 1、单调性的定义:)(x f 在区间M 上是增减函数,,21M x x ∈∀⇔当21x x <时)0(0)()(21><-x f x f2、采用单调性的定义判定法应注意:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断正负; 3、对于已知单调区间求参数范围,一般有以下两种方法: ①转化为恒成立问题,接着用求最值的视角去解决;②先求出该函数的完整单调区间,根据此区间比已知单调区间大去求解; 4、一些判断单调性的规律: ①减 + 减 =减,增 + 增 = 增;②1()()()f x f x f x -与、的单调性相反;三复合函数单调性的判定:定义域优先考虑1、首先将原函数)]([x g f y =分解为基本初等函数: )(x g u =与)(u f y =;2、分别研究两个函数在各自定义域内的单调性;3、根据“同增异减”来判断原函数在其定义域内的单调性; 四函数的周期性1、周期性的定义:若有)()(x f T x f =+,则称函数)(x f 为周期函数,T 为它的一个周期;如没有特别说明,遇到的周期都指最小正周期;2、三角函数的周期①π==T x y :tan ,||:tan ωπω==T x y ②||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y 3、与周期有关的结论:①)()(a x f a x f -=+或(2)()f x a f x += ⇒)(x f 的周期为a 2; ②)()(x f a x f -=+⇒)(x f 的周期为a 2;③1()()f x a f x +=⇒)(x f 的周期为a 2;◆考点剖析一考查一般函数的奇偶性例1、 设函数fx 是定义在R 上的奇函数,若当x ∈0,+∞时,fx =lg x ,则满足fx >0的x 的取值范围是 .变式1、 若函数(1)()y x x a =+-为偶函数,则a = A .2- B .1- C .1 D .2变式2、 函数1()f x x x=-的图像关于A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称二考查函数奇偶性的判别例2、判断下下列函数的奇偶性122(1),0()(1),0x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩ 224()|3|3x f x x -=--变式3、已知函数0()(2≠+=x xax x f ,常数)a ∈R . 1讨论函数)(x f 的奇偶性,并说明理由; 变式4、判断下下列函数的奇偶性121()log 1x f x x -=+ 21,0()1,0x x f x x x ->⎧=⎨--≤⎩三考查抽象函数的奇偶性例3、已知函数fx,当x,y ∈R 时,恒有fx+y=fx+fy.求证:fx 是奇函数;变式5A 、若定义在R 上的函数fx 满足:对任意12,x x ∈R 有1212()()()1f x x f x f x +=++,则下列说法一定正确的是Afx 为奇函数 Bfx 为偶函数 C fx+1为奇函数 Dfx+1为偶函数变式5B 、已知函数()f x ,当,x y R ∈时,恒有()()()f x y xf y yf x +=+,求证()f x 是偶函数;三考查一般函数的单调区间暂不讲例4、 设函数1()(01)ln f x x x x x =>≠且,求函数()f x 的单调区间;变式6、函数x e x x f )3()(-=的单调递增区间是 A. )2,(-∞ B.0,3 C.1,4 D. ),2(+∞四考查复合函数的单调区间 例5、判断函数fx=12-x 在定义域上的单调性.变式7、求函数y=21log 4x-x 2的单调区间.五考查函数单调性的运用例6A 、定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则A (3)(2)(1)f f f <-<B (1)(2)(3)f f f <-<C (2)(1)(3)f f f -<<D (3)(1)(2)f f f <<-变式8、2008全国设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,例6B 、已知函数32()f x x ax ax =+-在区间(1,)+∞上递增,求a 的取值范围;变式9、已知函数0()(2≠+=x xa x x f ,常数)a ∈R . 1略 2若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.六考查函数周期性的应用例7、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________;变式10、已知函数()f x 满足:()114f =,()()()()()4,f x f y f x y f x y x y R =++-∈,则()2010f =_____________.变式11、已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D2◆方法小结1、注意:单调区间一定要在定义域内,且不可以有“”,只能用“和”,“,”.2、含有参量的函数的单调性问题,可分为两类:一类是由参数的范围判定其单调性;一类是给定单调性求参数范围,其解法是由定义或导数法得到恒成立的不等式,结合定义域求出参数的取值范围.3、判断函数的奇偶性应首先检验函数的定义域是否关于原点对称,然后根据奇偶性的定义判断或证明函数是否具有奇偶性. 如果要证明一个函数不具有奇偶性,可以在定义域内找到一对非零实数a 与-a ,验证fa ±f -a ≠0.4、函数的周期性:第一应从定义入手,第二应结合图象理解.◆课后强化1.若函数2()()af x x a x=+∈R ,则下列结论正确的是A .a ∀∈R ,()f x 在(0,)+∞上是增函数B .a ∀∈R ,()f x 在(0,)+∞上是减函数C .a ∃∈R ,()f x 是偶函数D .a ∃∈R ,()f x 是奇函数2. 下列函数()f x 中,满足“对任意1x ,2x ∈0,+∞,当1x <2x 时,都有1()f x >2()f x 的是A .()f x =1xB. ()f x =2(1)x - C .()f x =x e D ()ln(1)f x x =+ 3.已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是A 13,23B 13,23C 12,23D 12,234.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是A. 0B. 21C. 1D. 255.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间0,2上是增函数,则 .A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<<6、已知()f x 在R 上是奇函数,且(4)(),f x f x +=2(0,2)()2,(7)x f x x f ∈==当时,则 A.—2 C.—987、设fx 为定义在R 上的奇函数,当x ≥0时,fx=2x +2x+bb 为常数,则f-1= A 3 B 1 C-1 D-38、给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间0,1上单调递减的函数序号是A ①②B ②③C ③④D ①④9、若函数fx =3x +3-x 与gx =3x -3-x 的定义域均为R,则A .fx 与gx 均为偶函数 B. fx 为偶函数,gx 为奇函数 C .fx 与gx 均为奇函数 D. fx 为奇函数,gx 为偶函数 10、11、设函数fx=xe x +ae -x x ∈R 是偶函数,则实数a =________________12、以下4个函数: ①12+=x )x (f ; ②11+-=x x )x (f ; ③2211x x )x (f -+=; ④xxlg )x (f +-=11. 其中既不是奇函数, 又不是偶函数的是 A.①② B. ②③ C. ③④ D. ①②③13、已知函数), x x ( lg x )x (f 122+++=若f a =M, 则f -a 等于A. M a -22B. 22a M -C. 22a M -D. M a 22-14、设y =f x 是定义在R 上的奇函数, 当x ≥0时, f x =x 2-2 x, 则在R 上f x 的表达式为A. )x (x 2--B. ) |x | (x 2-C. ) x (|x |2-D. ) |x | (|x |2- 15.函数1)(+-=x a x f )1,0≠>a a 是减函数,则a 的取值范围是 A .()1,0∈a B .(]+∞∈,1a C .R a ∈ D .+∈R a 16.函数)(x f 112+-=x x 的单调增区间是 A .(][)∞+--∞-11, B .(][)∞+--∞-1,1, C .(]1,-∞- D .()()+∞--∞-,11,17.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)718.若fx=-x 2+2ax 与1)(+=x ax g 在区间1,2上都是减函数,则a 的值范围是A .)1,0()0,1(⋃-B .]1,0()0,1(⋃-C .0,1D .]1,0(19.若函数)1,0( )(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增,则a 的取值范围是A .)1,41[B . )1,43[C .),49(+∞D .)49,1(20.函数)1lg()(2x x x f ++=是A .奇函数B .偶函数C .是奇函数也是偶函数D .非奇非偶函数 21.函数2222)(x x x f -+-=是A .奇函数B .偶函数C .是奇函数也是偶函数D .非奇非偶函数22.函数⎪⎩⎪⎨⎧>+<-=)0(,)0(,)(22x x x x x x x f 是A .奇函数B .偶函数C .是奇函数也是偶函数D .非奇非偶函数23.定义在R 上的偶函数fx 满足fx =fx +2,当x ∈3,5时,fx =2-|x -4|,则A .f sin 6π<f cos 6πB .f sin1>f cos1C .f cos 32π<f sin 32πD .f cos2>f sin224.定义在R 上的函数)(x f 既是偶函数又是周期函数.若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为A .21-B .21C .23-D .23 25.已知定义在R 上的奇函数fx 满足fx+3=-fx ,则,f 6的值为A -1B 0C 1 D226.)(x f 是定义在R 上的以3为周期的偶函数,且0)2(=f ,则方程)(x f =0在区间0,6内解的个数的最小值是A .5B .4C .3D .227.下列函数既是奇函数,又在区间[]1,1-上单调递减的是 A ()sin f x x =B ()1f x x =-+C ()1()2x x f x a a -=+D 2()ln 2xf x x-=+ 28.若函数fx=121+X , 则该函数在-∞,+∞上是A 单调递减无最小值B 单调递减有最小值C 单调递增无最大值D 单调递增有最大值 29.下列函数中,在其定义域内既是奇函数又是减函数的是A. R x x y ∈-=,3B. R x x y ∈=,sinC. R x x y ∈=,D. R x x y ∈=,)21(30.已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =A0 B1 C -1 D ±131.若函数fx 是定义在R 上的偶函数,在]0,(-∞上是减函数,且f 2=0,则使得fx <0的x 的取值范围是A -∞,2B 2,+∞C -∞,-2⋃2,+∞D -2,232.设()f x 是R 上的任意函数,则下列叙述正确的是 A ()()f x f x -是奇函数 B ()()f x f x -是奇函数 C ()()f x f x --是偶函数 D ()()f x f x +-是偶函数33.函数)2(log )(22--=x x x f 的单调增区间是___________,减区间是______________.34. 函数1231)(+--⎪⎭⎫⎝⎛=x x x f 的单调增区间是___________,减区间是______________.35.设fx 是定义在R 上的奇函数,且y=f x 的图象关于直线21=x 对称,则f 1+ f 2+ f 3+ f 4+ f 5=______________.36.若函数)2(log )(22a x x x f a ++=是奇函数,则a = . 37、函数fx =111122+++-++x x x x 的图象 A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称D.关于直线x =1对称38、函数fx 在R 上为增函数,则y =f |x +1|的一个单调递减区间是_________. 39、若fx 为奇函数,且在0,+∞内是增函数,又f -3=0,则xfx <0的解集为_________.40、如果函数fx 在R 上为奇函数,在-1,0上是增函数,且fx +2=-fx ,试比较f 31,f 32,f 1的大小关系______41、已知函数y =fx =cbx ax ++12 a ,b ,c ∈R ,a >0,b >0是奇函数,当x >0时,fx 有最小值2,其中b ∈N 且f 1<25.1试求函数fx 的解析式;2问函数fx 图象上是否存在关于点1,0对称的两点,若存在,求出点的坐标;若不存在,说明理由.42、已知函数()()1011且x x a f x a a a -=>≠+.1判断()f x 的奇偶性;2当1a >时,判断()f x 的单调性,并证明.43、已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,()30f =,则不等式()0f x ≥的解集是 .44、函数()()212log 23f x x x =-++的单调递减区间是 .45、若函数()11a f x x x a=+-+是奇函数,则实数a 的值为 . 46、若函数()2f x a x b =-+在[)0,+∞上为增函数,则实数a 、b 的取值范围分别是 . 47、已知对于任意实数x ,函数()f x 满足()()f x f x -=,若方程()0f x =有2009个实数解,则这2009个实数解之和为 .◆详细解析 例1、(1,0)(1,)-+∞ 变式1、C 变式2、C例2、解:12222(1),0(1),0()()(1),0(1),0x x x x x x f x f x x x x x x x ⎧⎧---≥-+≤⎪⎪-===⎨⎨--+-<->⎪⎪⎩⎩ 故()f x 为偶函数;2()f x 的定义域由240|3|30x x ⎧-≥⎨--≠⎩确定,解得2206x x x -≤≤⎧⎨≠≠⎩且∴定义域为[2,0)(0,2]-关于原点对称∴()f x x =-∵()()f x f x x-==- 故()f x 为奇函数 变式3、解:1当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,,取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,,(1)(1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数.变式4、解:1由101x x ->+解得1,1x x <->或,则定义域关于原点对称; ∵222111()log log log ()111x x x f x f x x x x --+--===-=--+-+ ∴()f x 为奇函数 21,01,0()()1,01,0x x x x f x f x x x x x --->--<⎧⎧-===⎨⎨--≤-≥⎩⎩,故()f x 为偶函数;例3、证明: ∵函数定义域为R,其定义域关于原点对称.∵fx+y=fx+fy,令y=-x,∴f0=fx+f-x.令x=y=0, ∴f0=f0+f0,得f0=0.∴fx+f-x=0,得f-x=-fx, ∴fx 为奇函数. 变式5A 、C变式5B 、证明:令0x y ==,可得(0)0f =;令y x =-,可得()()()f x x xf x xf x -=--即(0)[()()]0f x f x f x =--= 又x R ∈ ∴()()f x f x -- ∴()f x 是偶函数例4、解:'22ln 1(),ln x f x x x +=-其中01x x >≠且若 '()0,f x < 则 1x e >,此时()f x 单调递减,故减区间为1(,1),(1,)e +∞;若 '()0,f x > 则 1x e <,此时()f x 单调递增,故增区间为1(0,)e;变式6、解析()()(3)(3)(2)x x x f x x e x e x e '''=-+-=-,令()0f x '>,解得2x >,故选D 例5、解: 函数的定义域为{x|x ≤-1或x ≥1},则fx=12-x ,可分解成两个简单函数.fx=)(,)(x u x u =x2-1的形式.当x ≥1时,ux 为增函数,)(x u 为增函数.∴fx=12-x 在1,+∞上为增函数.当x ≤-1时,ux 为减函数,)(x u 为减函数,∴fx=12-x 在-∞,-1上为减函数.变式7、解: 由4x-x 2>0,得函数的定义域是0,4.令t=4x-x 2,则y=21log t.∵t=4x-x 2=-x-22+4,∴t=4x-x 2的单调减区间是2,4,增区间是0,2.又y=21log t 在0,+∞上是减函数,∴函数y=21log 4x-x 2的单调减区间是0,2,单调增区间是2,4.例6、答案:A. 解析:由2121()(()())0x x f x f x -->等价,于2121()()0f x f x x x ->-则()f x 在1212,(,0]()x x x x ∈-∞≠上单调递增, 又()f x 是偶函数,故()f x 在1212,(0,]()x x x x ∈+∞≠单调递减.且满足*n N ∈时, (2)(2)f f -=, 03>21>>,得(3)(2)(1)f f f <-<,故选A. 变式8、D例6B 、解:∵32()f x x ax ax =+-在区间(1,)+∞上递增 ∴2()320f x x ax a '=+-≥在区间(1,)+∞上恒成立 即2(21)3x a x -≥-在区间(1,)+∞上恒成立 ∵210x ->∴2321x a x ≥--在区间(1,)+∞上恒成立 只要满足2max 3()21x a x ≥-- ∵23333334[(21)](2)321422142x x x x -=--++≤-⨯+=--- ∴3a ≥-变式9、2解:∵)(x f 在[2)x ∈+∞,上为增函数 ∴ ()0f x '≥在[2)x ∈+∞,上恒成立即32202a x a x x-≥≤即在[2)x ∈+∞,上恒成立,故只要满足3min (2)a x ≤显然33min (2)2216x =⋅= a ∴的取值范围是(16]-∞,. 例7、解析:由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+;变式10、解析:取x=1 y=0得21)0(=f 法一:通过计算)........4(),3(),2(f f f ,寻得周期为6 法二:取x=n y=1,有fn=fn+1+fn-1,同理fn+1=fn+2+fn 联立得fn+2= —fn-1 所以T=6 故()2010f =f0=21变式11、解析:由()()()()()x f x f x f x f x f =+-=+⇒-=+242由()x f 是定义在R 上的奇函数得()00=f ,∴()()()()002246=-==+=f f f f ,故选择B; 1、答案:C 解析对于0a =时有()2f x x =是一个偶函数2、解析依题意可得函数应在(0,)x ∈+∞上单调递减,故由选项可得A 正确;3、答案A 解析由于fx 是偶函数,故fx =f|x|∴得f|2x -1|<f 13,再根据fx 的单调性 得|2x -1|<13 解得13<x <234、答案A 解析若x ≠0,则有)(1)1(x f xx x f +=+,取21-=x ,则有: )21()21()21(21211)121()21(f f f f f -=--=---=+-= ∵)(x f 是偶函数,则)21()21(f f =- 由此得0)21(=f 于是, 0)21(5)21(]21211[35)121(35)23(35)23(23231)123()25(==+=+==+=+=f f f f f f f 5、解析:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数, 则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间0,2上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D.6、选A7、答案D8、答案:B9、D .()33(),()33()x x x x f x f x g x g x ---=+=-=-=-.10、11、解析 gx=e x +ae -x 为奇函数,由g0=0,得a =-1;12、A 13、A 14、B15、B 16、D 17、C 18、D30、A 33.()+∞,2;()1,-∞- 34.⎪⎭⎫ ⎝⎛+∞-,21;⎪⎭⎫ ⎝⎛-∞-21, 36.22 37、答案:C 解析:f -x =-fx ,fx 是奇函数,图象关于原点对称.38、解析:令t =|x +1|,则t 在-∞,-1]上递减,又y =fx 在R 上单调递增,∴y =f |x +1|在-∞,-1]上递减.答案:-∞,-1]39、答案:-3,0∪0,3 解析:由题意可知:xfx <0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或∴x ∈-3,0∪0,3 40、答案:f 31<f 32<f 1 解析:∵fx 为R 上的奇函数∴f 31=-f -31,f 32=-f -32,f 1=-f -1,又fx 在-1,0上是增函数且-31> -32>-1. ∴f -31>f -32>f -1,∴f 31<f 32<f 1.41、解:1∵fx 是奇函数,∴f -x =-fx ,即c bx c bx cbx ax c bx ax -=+⇒+-+-=++1122 ∴c =0,∵a >0,b >0,x >0,∴fx =bx x b a bx ax 112+=+≥22b a ,当且仅当x =a1时等号成立,于是22ba =2,∴a =b 2,由f 1<25得b a 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴fx =x +x1.2设存在一点x 0,y 0在y =fx 的图象上,并且关于1,0的对称点2-x 0,-y 0也在y =fx 图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1y x x y x x 消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =fx 图象上存在两点1+2,22,1-2,-22关于1,0对称.42、解:1由()f x 的定义域为R ,关于原点对称()()1111x xx xa a f x f x a a -----===-++得()f x 为R 上的奇函数 2证明:12x x ∀<∈R ,则由1a >得12x x a a <()()()()()()()12121212122121101111x x x x x x x x a a a a f x f x f x f x a a a a ----=-=<⇒>++++ ∴当1a >时,()f x 在R 上单调递增 43、(][),33,-∞-+∞ 44、[)1,3 45、1 46、00且a b >≤ 47、0。

函数的奇偶性与单调性

函数的奇偶性与单调性

函数的奇偶性与单调性函数的奇偶性与单调性是数学中的重要概念,它们能够帮助我们更好地理解和分析函数的特征和行为。

本文将介绍函数的奇偶性和单调性的基本概念,并探讨二者之间的关系。

一、函数的奇偶性在数学中,函数的奇偶性是指函数在对称轴上的性质。

一个函数可以是奇函数或偶函数,或者既不是奇函数也不是偶函数。

1. 奇函数如果对于函数f(x),对于任意x,有f(-x) = -f(x),则称该函数为奇函数。

简单来说,奇函数的特点是关于原点对称,即函数图像关于原点对称。

奇函数的典型例子是正弦函数sin(x)和正切函数tan(x)等:- sin(-x) = -sin(x)- tan(-x) = -tan(x)2. 偶函数如果对于函数f(x),对于任意x,有f(-x) = f(x),则称该函数为偶函数。

简单来说,偶函数的特点是关于y轴对称,即函数图像关于y轴对称。

偶函数的典型例子是余弦函数cos(x)和双曲余弦函数cosh(x)等:- cos(-x) = cos(x)- cosh(-x) = cosh(x)3. 既不是奇函数也不是偶函数对于一些函数,既不满足奇函数的特性,也不满足偶函数的特性,此时我们称该函数为既不是奇函数也不是偶函数。

二、函数的单调性函数的单调性是指函数在定义域上的取值变化趋势。

一个函数可以是单调递增的、单调递减的,或者既不是单调递增也不是单调递减。

1. 单调递增如果对于函数f(x),对于任意x1和x2,当x1 < x2时,有f(x1) ≤ f(x2),则称该函数在定义域上是单调递增的。

单调递增函数的典型例子是线性函数y = kx (k > 0)和指数函数y = a^x (a > 1)等。

2. 单调递减如果对于函数f(x),对于任意x1和x2,当x1 < x2时,有f(x1) ≥ f(x2),则称该函数在定义域上是单调递减的。

单调递减函数的典型例子是线性函数y = kx (k < 0)和指数函数y = a^x (0 < a < 1)等。

高中数学专题学习:函数的单调性与奇偶性

高中数学专题学习:函数的单调性与奇偶性

第3讲 函数的单调性与奇偶性一、知识梳理1.奇偶性(1)定义:设函数y =)(x f 的定义域为D ,如果对于D 内任意一个x ,都有D x ∈-,且)(x f -=-)(x f ,那么这个函数叫做奇函数.设函数y =)(x g 的定义域为D ,如果对于D 内任意一个x ,都有D x ∈-,且)(x g -=)(x g ,那么这个函数叫做偶函数.(2)如果函数)(x f 不具有上述性质,则)(x f 不具有奇偶性.如果函数同时具有上述两条性质,则)(x f 既是奇函数,又是偶函数.函数是奇函数或是偶函数的性质称为函数的奇偶性,函数的奇偶性是函数的整体性质.(3)由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x -也一定在定义域内.即定义域是关于原点的对称点集.(4)图象的对称性质:一个函数是奇函数当且仅当它的图象关于原点对称;一个函数是偶函数的当且仅当它的图象关于y 轴对称.(5)奇偶函数的运算性质:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇. (6)奇(偶)函数图象对称性的推广:若函数)(x f 的图象关于直线a x =对称,则)2()(a x f x f +=-; 若函数)(x f 的图象关于点)0,(a 对称,则)2()(a x f x f +-=-. 2.单调性(1)定义:设函数y =)(x f 的定义域为A ,区间A M ⊆. 如果取区间M 上的任意两个值x 1 , x 2,改变量12x x x -=∆>0,则 当)()(12x f x f y -=∆>0时,就称函数)(x f 在区间M 上是增函数; 当)()(12x f x f y -=∆<0时,就称函数)(x f 在区间M 上是增函数.如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间).(2)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质.(3)设复合函数))((x g f y =,其中)(x g u =,A 是))((x g f y =定义域的某个区间,B 是映射g :x →)(x g u = 的象集.①若)(x g u =在 A 上是增(或减)函数,)(u f y =在B 上也是增(或减)函数,则函数))((x g f y =在A 上是增函数;②若)(x g u =在A 上是增(或减)函数,而)(u f y =在B 上是减(或增)函数,则函数))((x g f y =在A 上是减函数.(4)奇偶函数的单调性①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反. ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数.3.最值(1)定义:设函数y =)(x f 的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有)(x f ≤M ;②存在0x ∈I ,使得)(0x f =M ,那么,称M 是函数y =)(x f 的最大值.设函数y =)(x f 的定义域为I ,如果存在实数m 满足:①对于任意的x ∈I ,都有)(x f ≥m ;②存在0x ∈I ,使得)(0x f =m ,那么,称m 是函数y =)(x f 的最小值.(2)函数最大(小)值首先应该是某一个函数值,即存在0x ∈I ,使得)(0x f =M (m );函数最大(小)值应该是所有函数值中的最大(小)者,即对于任意的x ∈I ,都有)(x f ≤M ()(x f ≥m ).二、方法归纳1.利用定义判断函数奇偶性的方法(1)首先确定函数的定义域,并判断其定义域是否关于原点对称; (2)确定)(x f -与)(x f 的关系; (3)作出相应结论:若)(x f -=)(x f 或)(x f --)(x f = 0,则)(x f 是偶函数; 若)(x f -=-)(x f 或)(x f -+)(x f = 0,则)(x f 是奇函数.2.利用定义证明或判断函数单调性的步骤(1)任取1x ,2x ∈D ,且1x <2x ; (2)作差)()(21x f x f y -=∆; (3)变形(通常是因式分解和配方);(4)定号(即判断差)()(21x f x f y -=∆的正负);(5)下结论(即指出函数)(x f 在给定的区间D 上的单调性). 3.求函数最大(小)值的 一般方法(1)求值域进而得到最大(小)值.求函数的值域的常见方法:直接法、配方法、换元法、判别式法、数形结合法、反函数法、单调性法等等.(2)利用函数单调性的判断函数的最大(小)值. (3)利用函数的图象求函数的最大(小)值;三、典型例题精讲【例1】判断下列函数的奇偶性.(1)x x x x f -+-=11)1()(; (2)22)1lg()(2---=x x x f .【错解分析】(1)∵x x x x f -+-=11)1()(xxx -+⋅-=11)1(2 1)1)(1(2-=+-=x x x .显然有)(x f -=)(x f∴)(x f 为偶函数.(2)∵22)1lg(22)1lg()(22-+-=----=-x x x x x f , 于是)(x f -≠)(x f 且)(x f -≠-)(x f . ∴)(x f 为非奇非偶函数. 解析:(1)∵)(x f 的定义域为xx-+11≥0,即-1≤x <1. 定义域不是关于原点对称的数集,∴)(x f 为非奇非偶函数. (2)∵)(x f 的定义域为012>-x 且22--x ≠0,即-1<x <1且x ≠0,此时02<-x .∴xx x x x f --=---=)1lg(22)1lg()(22 ∴)(x f 为奇函数.【技巧提示】正确判定函数的奇偶性,必须先考虑函数的定义域. 又例:判断下列函数的奇偶性.(1)551)(2-+-=x x x f ; (2)⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f ; (3)33)(22-+-=x x x f .解析:(1)∵ 21x -≥0,即-1≤x ≤1.此时x x =-+55,∴xx x f 21)(-=,为奇函数.(2)当x >0,-x <0时,)(x f =x x +-2,)(x f -=x x x x -=-+-22)()()(x f =-)(x f -;当x <0,-x >0时,)(x f =x x +2,)(x f -=x x x x --=-+--22)()()(x f =-)(x f -; ∴ )(x f 为奇函数. (3)∵33)(22-+-=x x x f的定义域为{|x x =.此时函数化为)(x f =0,{|x x =. ∴ )(x f 既是奇函数又是偶函数.【例2】讨论函数xxx x f 22116)(++=的奇偶性. 解析:函数定义域为R ,且11161222116)(++=++=----xxx x x x f =)(22116141612x f xxx x x x=++=++⋅. ∴)(x f 为偶函数.【技巧提示】判断函数的奇偶性是比较基本的问题,难度不大,解决问题时应先考察函数的定义域,若函数的解析式能化简,一般应考虑先化简,但化简必须是等价变换过程(要保证定义域不变).如本题亦可先化简:14412116)(++=++=-xx xx x f ,显然)(x f 为偶函数.从这可以 看出,化简后再解决要容易得多.又例:证明函数)1(1)(22x x og x f ++=为奇函数. 解析:∵)(x f +)(x f -=)1(122x x og +++)1(122x x og -+=)]1)(1[(1222x x x x og -+++ =112og =0∴)(x f 为奇函数.再例:讨论函数aa x x a x f -+-=||)(22 (a ≠0)的奇偶性.解析: ∵ 2x ≤2a ,∴ 要分a >0与a <0两类讨论. (i )当a >0时,由⎩⎨⎧≠+≤≤-aa x ax a ||,函数的定义域为 ],0()0,[a a -,∵a x +≥0, ∴xx a x f 22)(-=,)(x f 为奇函数;(ii )当a <0时,由⎩⎨⎧≠+-≤≤aa x ax a ||,函数的定义域为[][],00,a a -,∵a x +≤0, ∴ax x a x f 2)(22---=,)(x f 既不是奇函数,也不是偶函数.【例3】求函数20.7log (32)y x x =-+的单调区间.【错解分析】设41)23(23)(22--=+-=x x x x t ,∴)23,(-∞为函数)(x t 的单调递减区间;),23(+∞为函数)(x t 的单调递增区间. 又t x x y 7.027.0log )23(log =+-=为t 的减函数,∴)23,(-∞为函数20.7log (32)y x x =-+的单调递增区间;),23(+∞为函数20.7log (32)y x x =-+的单调递减区间.解析:设23)(2+-=x x x t , 由0232>+-x x 得函数的定义域为),2()1,(+∞-∞ ,区间)1,(-∞和),2(+∞分别为函数23)(2+-=x x x t 的单调递减区间和单调递增区间. 又t y 7.0log =,根据复合函数的单调性的规则,得区间)1,(-∞和),2(+∞分别为函数t y 7.0log =的单调递增区间和单调递减区间.【技巧提示】函数的单调区间是包含在定义域内的某个区间,因此,求函数的单调区间必须考虑函数的定义域.运用复合函数的单调性规则求函数的单调区间时,要考虑各个基本函数都要有意义.又例:设函数)(x f =bx ax ++(a >b >0),求)(x f 的单调区间,并证明)(x f 在其单调区间上的单调性.解析:在定义域内任取1x <2x , ∴)()(21x f x f -=1212x a x ax b x b++-++ ))(())(())((212121b x b x a x b x b x a x ++++-++=))(())((2121b x b x x x a b ++--=, ∵a >b >0,∴b -a <0,1x -2x <0,只有当1x <2x <-b 或-b <1x <2x 时函数才单调. 当1x <2x <-b 或-b <1x <2x 时)()(21x f x f ->0.∴(-b ,+∞)和(-∞,-b )都是函数)(x f 的单调减函数区间.【例4】设0a >,()x xe af x a e =+是R 上的偶函数. (1) 求a 的值;(2)证明()f x 在(0,)+∞上为增函数. 解析:(1)依题意,对一切x R ∈,有()()f x f x -=,即1x xx x e a ae ae a e+=+. ∴11()()xx a e ae--0= 对一切x R ∈成立,则10a a-=,即1a =±. ∵0a >,∴1a =.(2)设120x x <<,则12121211()()x xx x f x f x e e e e -=-+- 2121121122111()(1)(1)x x x x x x x x x x x e e e e ee e+-++-=--=-,由12210,0,0x x x x >>->,得21120,10x x x x e -+>->,2110x x e +-<,∴12()()0f x f x -<,即12()()f x f x <,∴)(x f 在(0,)+∞上为增函数.【技巧提示】两小题都只要抓住偶函数、增函数的定义解决问题就不难.两小题中变形的都是因式分解,第(2)小题的变形以容易判别符号为目标.又例:已知)(x f 是定义在R 上的偶函数,且在),0[+∞上为减函数,若)12()2(2->--a f a a f ,求实数a 的取值范围.解析:)(x f 是R 上的偶函数且在),0[+∞上为减函数.∴由)12()2(2->--a f a a f ,有|12||2|2-<--a a a ,⎩⎨⎧-<--≥--222)12(202a a a a a ,解得a ≤-1或a ≥2.再例:二次函数)(x f 的二次项系数为正,且对任意实数x ,恒有)2(x f +=)2(x f -,若)21(2x f -<)21(2x x f -+,则x 的取值范围是_________.解析:由二次函数)(x f 的二次项系数为正,知函数的图象为开口向上的抛物线, 由)2(x f +=)2(x f -,知x =2为对称轴,于是有结论:距对称轴较近的点的纵坐标较小. ∴22122122--+<--x x x 即22)1(12-<+x x ,22)1(12-<+x x ∴-2<x <0. 答案:-2<x <0.【例5】已知)(x f 是定义在R 上的增函数,对x ∈R 有)(x f >0,且)5(f =1,设)(x F =)(x f +)(1x f ,讨论)(x F 的单调性,并证明你的结论.解析:在R 上任取1x 、2x ,设1x <2x ,∴)(1x f <)(2x f ,],)()(11)][()([])(1)([])(1)([)()(2112112212x f x f x f x f x f x f x f x f x F x F --=+-+=-∵)(x f 是R 上的增函数,且)5(f =1,∴当x <5时0<)(x f <1,而当x >5时)(x f >1; ① 若1x <2x <5,则0<)(1x f <)(2x f <1, ∴0<)(1x f )(2x f <1, ∴)()(1121x f x f -<0,∴)(2x F <)(1x F ;②若2x >1x >5,则)(2x f >)(1x f >1 , ∴)(1x f )(2x f >1, ∴)()(1121x f x f ->0,∴)(2x F >)(1x F .综上,)(x F 在(-∞,5)为减函数,在(5,+∞)为增函数.【技巧提示】该题属于判断抽象函数的单调性问题.抽象函数问题是函数学习中一类比较特殊的问题,其基本能力是变量代换、换元等,应熟练掌握它们的这些特点.又例:已知函数)(x f 的定义域关于原点对称,且满足:(1))()(1)()()(122121x f x f x f x f x x f -+⋅=-;(2)存在正常数a ,使)(a f =1.求证:(Ⅰ))(x f 是奇函数;(Ⅱ))(x f 是周期函数,并且有一个周期为4a .解析:(Ⅰ)设21x x t -=,则)()()()(1)()()()(1)()()()(211221211212t f x x f x f x f x f x f x f x f x f x f x x f t f -=--=-+⋅-=-+⋅=-=-所以函数)(x f 是奇函数.(Ⅱ)令a x a x ==212,,则)2()(1)()2()(a f a f a f a f a f -+⋅=即)2(11)2(1a f a f -+=,解得:)2(a f =0.于是有 )()2(1)2()()2(x f a f a f x f a x f --+-⋅=+)(1)()2(1)]2([)(x f x f a f a f x f -=--+-⋅=.所以)()(11)2(1)4(x f x f a x f a x f =--=+-=+. 因此,函数)(x f 是周期函数,并且有一个周期为4a .【例6】设函数)(x f =xx 1-.对任意),1[+∞∈x ,有0)()(<+x mf mx f 恒成立, 则实数m 的取值范围是 .解析:方法一 显然m ≠0,由于函数)(x f =xx 1-在),1[+∞∈x 上是增函数, 则当m >0时,0)()(<+x mf mx f 不恒成立,因此m <0.当m <0时,函数)()()(x mf mx f x h +=在),1[+∞∈x 上是减函数, 因此,当1=x 时,)(x h 取得最大值mm h 1)1(-=, 于是,0)()()(<+=x mf mx f x h 恒成立等价于)(x h 在),1[+∞∈x 上的最大值小于零,即01)1(<-=m m h ,解⎪⎩⎪⎨⎧<<-01m m m ,得m <-1. 于是实数m 的取值范围是)1,(--∞. 方法二 显然m ≠0,由于函数)(x f =xx 1-在),1[+∞∈x 上是增函数,则当m >0时,0)()(<+x mf mx f 不恒成立, 因此m <0.若xm mx mx mx x mf mx f -+-=+1)()( =mx m mx 212+-=mxm x m 22212--<0恒成立,因为),1[+∞∈x ,m <0,则需22212m x m -->0恒成立, 设函数22212)(m x m x g --=,则)(x g 在),1[+∞∈x 时为增函数, 于是1=x 时,)(x g 取得最小值1)1(2-=m g .解 ⎩⎨⎧<>-012m m ,得m <-1.于是实数m 的取值范围是)1,(--∞.方法三 显然m ≠0,由于函数)(x f =xx 1-在),1[+∞∈x 上是增函数, 则当m >0时,0)()(<+x mf mx f 不恒成立,因此m <0. 因为对任意),1[+∞∈x ,0)()(<+x mf mx f 恒成立, 所以对1=x ,不等式0)()(<+x mf mx f 也成立,于是0)1()(<+mf m f ,即01<-mm , 解 ⎪⎩⎪⎨⎧<<-001m m m ,得m <-1. 于是实数m 的取值范围是)1,(--∞. 【技巧提示】函数)(x f =xx 1-在)0,(-∞和),0(+∞上都是增函数.在)1,(-∞和)1,0(上小于零;在)0,1(-和),1(+∞上大于零. 又例:已知函数)(x f =xax +2),0(R a x ∈≠, (1)判断函数)(x f 的奇偶性;(2)若)(x f 在区间),2[+∞是增函数,求实数a 的取值范围。

函数单调性、奇偶性总结

函数单调性、奇偶性总结

〔一〕函数单调性 1.增函数、减函数如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; 如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. 注意:求函数的单调区间,必须先求函数的定义域. 2、增、减函数的性质:增函数: 12x x <⇔12()()f x f x < 减函数: 12x x <⇔12()()f x f x < 式子的变形:设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]ba x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x xf x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. 3、判断函数单调性的方法步骤:利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤:1)、取值: 设任意两个实数12,x x 有, 12,x x ∈D ,且12x x <;2)、作差:)()(21x f x f -;3)、变形:通常方法:因式分解;配方; 分母有理化; 4)、定号:即判断差)()(21x f x f -的正负;5)、下结论:即指出函数f(x)在给定的区间D 上的单调性. 取值→作差→变形→定号→下结论例:证明函数 在R 上是增函数.xx x f +=3)(一些重要函数的单调性:1、一次函数的图象y=kx+b 的单调性:(1)当k>0时,函数在R 上是增函数 〔2〕当k<0时,函数在R 上是减函数 2、反比例函数的图象)0(≠=k xky 的单调性: 〔1〕当k>0时,函数在()()+∞∞-,0,0,上是减函数 〔2〕当k<0时,函数在()()+∞∞-,0,0,上是增函数 3、二次函数的图象)0(2≠++=a c bx ax y 的单调性〔1〕当a>0时,函数在⎪⎭⎫ ⎝⎛-∞-a b 2,上是减函数, 在⎪⎭⎫⎝⎛+∞-,2a b 上是增函数 〔2〕当a<0时,函数在⎪⎭⎫ ⎝⎛-∞-a b 2,上是增函数,在⎪⎭⎫⎝⎛+∞-,2a b 上是减函数 例题:偶函数()f x 在区间[0,)+∞单调增加,那么满足(21)f x -<1()3f 的x 取值X 围是: ()变式:二次函数的根本性质例1、函数2()2f x x t x =-+在[1,2]上是单调递增函数,那么实数t的取值X 围是_________二、两个函数和差乘除单调性和复合函数的单调性1、如果函数f(x)在区间D 上是增〔减〕函数,函数g(x)在区间D 上是增(减)函数;函数F(x)=f(x)+g(x)在D 上为增(减)函数。

第3讲函数的奇偶性与单调性

第3讲函数的奇偶性与单调性

第3讲函数的奇偶性与单调性考点梳理一.奇、偶函数的概念一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.如果对于任意的x∈A都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.二.函数奇偶性的性质(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.(3)若f(x)为偶函数,则f(-x)=f(x)=f(|x|).(4)若奇函数f(x)定义域中含有0,则必有f(0)=0.但f(0)=0不能说f(x)为奇函数。

(5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”.考点自测1.(2012·海安中学)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x +b(b为常数),则f(-1)的值是________.解析由f(0)=0,得b=-1,所以f(-1)=-f(1)=-(2+2-1)=-3.答案-32.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是________.解析由f(x)是偶函数知,f(x)=f(-x),即ax2+bx=a(-x)2-bx,∴2bx=0,∴b=0.又f(x)的定义域应关于原点对称,即(a-1)+2a=0,∴a=13,故a+b=1 3.答案1 33.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是________.解析 f (x )是偶函数,其图象关于y 轴对称,又f (x )在[0,+∞)上递增, ∴f (2x -1)<f ⎝ ⎛⎭⎪⎫13⇔|2x -1|<13⇔13<x <23.答案 ⎝ ⎛⎭⎪⎫13,23三.函数的单调性 (1)单调函数的定义设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,①若f (x 1)<f (x 2),则f (x )在区间D 上是增函数; ②若f (x 1)>f (x 2),则f (x )在区间D 上是减函数. (2)单调性、单调区间的定义若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.四. 函数单调性的四种判断方法(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:(复合函数中)同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数.(3)导数法:利用导数研究函数的单调性.(高二内容) (4)图象法:利用图象研究函数的单调性.考点自测1.(2013·南京鼓楼模拟)函数f (x )=1+x -1-x 的最大值为M ,最小值为m ,则Mm =________.解析 由⎩⎨⎧1+x ≥0,1-x ≥0得-1≤x ≤1.因为f (x )在[-1,1]上是单调增函数,所以M=f (1)=2,m =f (-1)=-2,所以Mm =-1. 答案 -12.(2012·连云港模拟)已知函数f (x )=x -kx (k >0,x >0),则f (x 2+1)与f (x )的大小关系是________.解析 因为f (x )在(0,+∞)上单调递增,且x 2+1≥2x >x (x >0),所以f (x 2+1)>f (x ). 答案 f (x 2+1)>f (x )3.(2013·济南外国语学校检测)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.解析 f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1. 答案 (0,1]考向一 函数单调性的判断【例1】 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 审题视点 可利用定义或导数法讨论函数的单调性. 解 设-1<x 1<x 2<1, f (x )=a x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a x 2-x 1(x 1-1)(x 2-1)当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上递增.[方法总结] 证明函数的单调性用定义法的步骤:取值—作差—变形—确定符号—下结论.【训练1】 已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. (1)证明 任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ), ∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.考向二 函数单调性的应用【例2】 (2013·鞍山模拟)已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b >0成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f ⎝ ⎛⎭⎪⎫x +12<f ⎝ ⎛⎭⎪⎫1x -1;(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2) =f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2),由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1.∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增. ∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立. 下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1)≥0, ∴m ≤-2,或m ≥2.∴m 的取值范围是m =0或m ≥2或m ≤-2.[方法总结] 函数单调性的应用,主要有两个方面,即应用单调性求字母取值范围,二是应用单调性比较数值大小或解函数不等式.【训练2】 (1)已知函数f (x )=⎩⎨⎧x 2+4x ,x ≥0,2x -x 2,x <0,若f (1-a 2)>f (a ),则实数a 的取值范围是________.(2)已知函数f (x )=2-axa -1(a ≠1)是区间(0,1]上的减函数,则实数a 的取值范围为________.解析 (1)画图象或求导,可知函数f (x )是R 上的增函数,于是由f (1-a 2)>f (a ),得1-a 2>a ,即a 2+a -1<0,解得-1-52<a <-1+52. (2)由题意,当x =1时,2-ax =2-a ≥0,所以a ≤2且a ≠1,a ≠0. 若a <0,则2-ax 是增函数,要使f (x )是区间(0,1]上的减函数,必有a -1<0,即a <1.所以a <0.若a >0,则2-ax 是减函数,要使f (x )是区间(0,1]上的减函数,必有a -1>0,即a >1.所以1<a ≤2.综上,得a 的取值范围是(-∞,0)∪(1,2]. 答案 (1)⎝ ⎛⎭⎪⎫-1-52,-1+52 (2)(-∞,0)∪(1,2]高考经典题组训练1.(2012·陕西卷改编)下列函数:①y =x +1;②y =-x 3;③y =1x ;④y =x |x |,其中既是奇函数又是增函数的序号是________.解析 y =-x 3;y =1x ,y =x |x |是奇函数,仅y =x |x |是增函数. 答案 ④3.(2012·上海卷)已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.解析 因为y =e x 是增函数,所以由题意,y =|x -a |在区间[1,+∞)上是增函数,所以a ≤1. 答案 (-∞,1]4.(2010·天津卷改编)设f (x )=x 2-1,对任意x ∈⎣⎢⎡⎭⎪⎫32,+∞,f ⎝ ⎛⎭⎪⎫x m -4m 2f (x )≤f (x-1)+4f (m )恒成立,求实数m 的取值范围.解 由题意,得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,即1m 2-4m 2≤-3x 2-2x +1在⎣⎢⎡⎭⎪⎫32,+∞上恒成立.因为y =-3x 2-2x +1在⎣⎢⎡⎭⎪⎫32,+∞上单调递增,所以当x =32时,y min =-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m ≤-32或m ≥32.层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.(2013·南京金陵中学检测)下列函数中:①f (x )=1x ;②f (x )=(x -1)2;③f (x )=e x ;满足“对任意x 1x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的函数序号是________.解析 由题意,即判断哪些函数是(0,+∞)内的减函数.仅f (x )=1x 符合题意. 答案 ①2.下列函数中:①y =-x +1;②y =x ;③y =x 2-4x +5;④y =2x ,在区间(0,2)上为增函数的是________(填所有正确的编号).解析 y =-x +1在R 上递减;y =x 在R +上递增;y =x 2-4x +5在(-∞,2]上递减,在[2,+∞)上递增,y =2x 在R +上递减. 答案 ②3.(2012·镇江调研)若函数f (x )=x 2+(a 2-4a +1)x +2在区间(-∞,1]上是减函数,则a 的取值范围是________. 解析 因为f (x )是二次函数且开口向上, 所以要使f (x )在(-∞,1]上是单调递减函数,则必有-a 2-4a +12≥1,即a 2-4a +3≤0,解得1≤a ≤3.答案 [1,3]4.(2011·新课标全国卷)下列函数:①y =x 3;②y =|x |+1;③y =-x 2+1;④y = 2-|x |.既是偶函数又在(0,+∞)单调递增的函数序号是________.解析 y =x 3是奇函数,y =-x 2+1与y =2-|x |在(0,+∞)上是减函数. 答案 ②5.已知f (x )是定义在(-1,1)上的奇函数,且f (x )在(-1,1)上是减函数,则不等式f (1-x )+f (1-x 2)<0的解集为________. 解析 由f (x )是定义在(-1,1)上的奇函数, 及f (1-x )+f (1-x 2)<0, 得f (1-x )<-f (1-x 2), 所以f (1-x )<f (x 2-1).又因为f (x )在(-1,1)上是减函数, 所以⎩⎨⎧-1<1-x <1,-1<1-x 2<1,解得0<x <1.1-x >x 2-1.故原不等式的解集为(0,1). 答案 (0,1)6.(2012·南师附中检测)已知函数y =f (x )是定义在R 上的偶函数,当x ≤0时,y =f (x )是减函数,若|x 1|<|x 2|,则结论:①f (x 1)-f (x 2)<0;②f (x 1)-f (x 2)>0;③f (x 1)+f (x 2)<0;④f (x 1)+f (x 2)>0中成立的是________(填所有正确的编号). 解析 由题意,得f (x )在[0,+∞)上是增函数,且f (x 1)=f (|x 1|),f (x 2)=f (|x 2|),从而由0≤|x 1|<|x 2|,得f (|x 1|)<f (|x 2|),即f (x 1)<f (x 2),f (x 1)-f (x 2)<0,只能①是正确的. 答案 ①二、解答题(每小题15分,共30分) 7.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数.(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.(1)证明 法一 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0.因为f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,所以f (x 2)>f (x 1),因此f (x )在(0,+∞)上是增函数. 法二 因为f (x )=1a -1x , 所以f ′(x )=⎝ ⎛⎭⎪⎫1a -1x ′=1x 2>0,所以f (x )在(0,+∞)上为增函数.(2)解 因为f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又f (x )在⎣⎢⎡⎦⎥⎤12,2上单调递增,所以f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,故a =25.8.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数.(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明法一因为函数f(x)对于任意x,y∈R总有f(x)+f(y)=f(x+y),所以令x=y=0,得f(0)=0.再令y=-x,得f(-x)=-f(x).在R上任取x1>x2,则x1-x2>0,f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2).又由x>0时,f(x)<0,而x1-x2>0,所以f(x1-x2)<0,即f(x1)<f(x2).因此f(x)在R上是减函数.法二设x1>x2,则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-f(x2)=f(x1-x2).又由x>0时,f(x)<0,而x1-x2>0,所以f(x1-x2)<0,即f(x1)<f(x2),所以f(x)在R上为减函数.(2)解因为f(x)在R上是减函数,所以f(x)在[-3,3]上也是减函数,所以f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).而f(3)=3f(1)=-2,f(-3)=-f(3)=2.所以f(x)在[-3,3]上的最大值为2,最小值为-2.。

函数的奇偶性与单调性

函数的奇偶性与单调性

函数的奇偶性与单调性一、基本概念(1)函数的奇偶性:前提:函数的定义域原点对称..........。

()()()(),x D f x f x f x f x ∈-=-=-任意则为偶函数;若,则为奇函数。

变式:()()()()()()0;10f x f x f x f x f x --±==±=的情况单独验证(整体性质)(2)函数的单调性:(局部性质)()()()()()12121212,,,x x D x x f x fx f x D f x fx D ∈<<>任意若能得到,则在上为增函数;得到,则在上为减函数。

()()()()1212121200f x f x fx f x D D x x x x --><--变式:,函数在上为增函数,,则函数在上为减函数。

y f x ±±⨯⨯⨯±=注:1.关于奇偶性,两函数的公共定义域存在且关于原点对称的前提下奇奇=奇函数,偶偶=偶函数,奇奇=偶函数,偶偶=偶函数,奇偶=奇函数奇偶=非奇非偶函数2.关于单调性:增+增=增函数,减+减=减函数,增-减=增函数,减-增=减函数;在的函数值全为正数(全为负数)的前提下,=减函数,=增函数增减()113.复合函数奇偶性与单调性的结论:()()()()()()(),,y fx y g x y g x y f x yf g x y fx y g x =====⎡⎤⎣⎦==的值域与的定义域有公共部分,则函数存在,其中是外层函数,是内层函数。

内偶外偶、内偶外奇、内奇外偶均为偶函数,只有内奇外奇才为奇函数。

内增外增、内减外减均为增函数,内增外减、内减外增均为减函数。

(3)函数的凹凸性(局部性质):()[]()()()[]()[]()121212,,,,,,22,f x f x x x y f x x a b x x f y f x a b a b ++⎛⎫=∈≠<= ⎪⎝⎭若任意都有则称在上为凹函数如图1,2;反之则称它在上为凸函数如图3,4。

函数的单调性和奇偶性

函数的单调性和奇偶性

函数的单调性知识要点1、函数单调性定义:如果对于任意的 x 1、x 2∈(a,b),当x 1<x 2时,都有f (x 1)<f (x 2)〔或f (x 1)>f (x 2)〕,那么就说f (x )在这个区间(a,b)上是增函数(或减函数),(a,b)叫这个函数的单调递增(或递减)区间,说f (x )在这一区间上具有(严格的)单调性。

2、函数单调性指的是某个区间上的性质,是定义域中的一部分;要说函数是增函数则必须在整个定义域内递增;函数在每个区间上递增也未必是增函数,如正切函数,y = -1/x 等;3、复合函数单调性:同增异减4、判断函数单调性的方法:①定义法,即比较法;②图象法;③复合函数单调性判断法则;6、一些常用的结论:①在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数②函数(0)k y x k x=+>是奇函数,在(,-∞和)+∞上递增;在)⎡⎣和(0上是递减,进而可确定k y ax x =+型函数的的单调区间。

题型归类题型一:判断或证明函数的单调性例1 利用单调性的定义证明函数3()1f x x =-+在(-∞,+∞)上是减函数。

变式训练:讨论函数y =x +a x,(a >0)的单调性。

题型二:利用单调性求参数的值或取值范围例2(2004湖南)若f (x )= -x 2+2ax 与1)(+=x a x g 在区间[1,2]上都是减函数,则a 的值范围是题型三:函数单调性的应用例3 已知函数)(x f 的定义域是),0(+∞。

当1>x 时,,0)(>x f 且).()()(y f x f xy f +=(1) 求)1(f ;(2)证明)(x f 在定义域上是增函数;(3)如果1)31(-=f ,求满足不等式2)21()(≥--x f x f 的x 的取值范围。

函数单调性、奇偶性、周期性知识点

函数单调性、奇偶性、周期性知识点

一轮复习知识点一、函数(二)函数性质——单调性、奇偶性、周期性一、函数的单调性1.定义:一般地,设函数()y f x =的定义域为A ,区间M A ⊆,如果取区间M 中任意两个值12,x x ,改变210x x x =->,则当21()()0y f x f x =->时,就称()y f x =在区间M 上是增函数,当21()()0y f x f x =-<时,就称函数()y f x =在区间M 上是减函数。

2.单调性:如果某个函数在某个区间上是增函数或是减函数,就说这个函数在这个区间上具有单调性。

3.判断函数单调性的方法(1)定义法121212121.,,2.()()3..()()5.x x x x y f x f x y y f x f x <⎧⎪=-⎪⎪⎨⎪=-⎪⎪⎩在区间上任取且计算将变成因式乘除形式,便于判断符号4判断的正负下结论(2)元素分析法(3)求导(4)图像法(5)复合函数[][]1.()()()2.()()()f x g x f g x f x g x f g x ⎧⎪⎨⎪⎩与单调性相同,单调增与单调性相反,单调减 (6)函数加减:公共定义域内,()()f x g x 与的单调性+=+=-=-=⎧⎨⎩增函数增函数增函数减函数减函数减函数增函数减函数增函数减函数增函数减函数二、奇偶性1.定义:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有x D -∈,且()()f x f x -=-,则这个函数叫做奇函数;设函数()y g x =的定义域为D ,如果对D 内的任意一个x ,都有x D -∈,且()()g x gx -=,则这个函数叫做偶函数。

2.奇偶性图像性质汇总 奇偶性共同点 定义式 图像 0x = 单调性 奇函数定义域关于原点对称 ()()f x f x -=- 关于原点对称 (0)0f = 对应区间单调性一致 偶函数 ()()g x g x -=关于y 轴对称 对应 区间单调性相反3.判断函数奇偶性的方法(1)定义法:奇函数:()()f x f x -=- ()()0f x f x -+= ()1()f x f x -=-偶函数:()()g x g x -= ()()0g x g x --=()1()f x f x -=(2)图象法(3)性质法①偶+偶=偶 偶-偶=偶偶*偶=偶 偶/偶=偶②奇+奇=奇 奇-奇=奇奇*奇=偶 奇/奇=偶③奇*偶=奇 奇/偶=奇④()[()]F x f g x = ()()()()()()f x g x x f x g x x f x g x x ⎧⎪⎨⎪⎩为偶,为偶,F()为偶为奇,为奇,F()为奇为偶,为奇,F()为偶三、周期性1.定义:对于函数()y f x =,如果存在一个非零常数T ,使得x 取定义域内每一个值,都有()()f x T f x +=,那么,()f x 叫做周期函数,T 叫做()f x 的周期。

高一寒假 第2,3讲 函数单调性与奇偶性

高一寒假 第2,3讲 函数单调性与奇偶性

函数单调性与奇偶性要点一、函数的单调性1.增函数、减函数的概念一般地,设函数f(x)的定义域为A,区间如果对于内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间上是增函数;如果对于内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在区间上是减函数.要点诠释:[1]属于定义域A内某个区间上;[2]任意两个自变量且;[3]都有;[4]图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.2.单调性与单调区间(1)单调区间的定义如果函数f(x)在区间D上是增函数或减函数,那么就说函数f(x)在区间D上具有单调性,D称为函数f(x)的单区间. 函数的单调性是函数在某个区间上的性质.要点诠释:[1]单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集;[2]单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;[3]不能随意合并两个单调区间;[4]有的函数不具有单调性.(2)已知解析式,如何判断一个函数在所给区间上的单调性?基本方法:观察图形或依据定义.3.函数的最大(小)值一般地,设函数的定义域为,如果存在实数满足:①对于任意的,都有(或);②存在,使得,那么,我们称是函数的最大值(或最小值).要点诠释:[1]最值首先是一个函数值,即存在一个自变量,使等于最值;[2]对于定义域内的任意元素,都有(或),“任意”两字不可省;[3]使函数取得最值的自变量的值有时可能不止一个;[4]函数在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标.4.证明函数单调性的步骤(1)取值.设是定义域内一个区间上的任意两个量,且;(2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形;(3)定号.判断差的正负或商与1的大小关系;(4)得出结论.5.函数单调性的判断方法(1)定义法;(2)图象法;(3)对于复合函数,若在区间上是单调函数,则在区间或者上是单调函数;若与单调性相同(同时为增或同时为减),则为增函数;若与单调性相反,则为减函数。

函数单调性、奇偶性、对称性、周期性解析

函数单调性、奇偶性、对称性、周期性解析

函数单调性、奇偶性、对称性、周期性解析一、函数的单调性1.单调函数与严格单调函数设为定义在上的函数,若对任何,当时,总有()f x I 12,x x I ∈12x x <(ⅰ) ,则称为上的增函数,特别当且仅当严格不等式)()(21x x f f ≤()f x I 成立时称为上的严格单调递增函数。

12()()f x f x <()f x I (ⅱ) ,则称为上的减函数,特别当且仅当严格不等式)()(21x x f f ≥()f x I 成立时称为上的严格单调递减函数。

12()()f x f x >()f x I 2.函数单调的充要条件★若为区间上的单调递增函数,、为区间内两任意值,那么有:()f x I 1x 2x 或1212()()0f f x x x x ->-1212)[()()]0f f x x x x -->(★若为区间上的单调递减函数,、为区间内两任意值,那么有:()f x I 1x 2x 或1212()()0f f x x x x -<-1212)[()()]0f f x x x x --<(3.函数单调性的判断(证明)(1)作差法(定义法)(2)作商法4复合函数的单调性的判定对于函数和,如果函数在区间上具有单调性,当()y f u =()u g x =()u g x =(,)a b 时,且函数在区间上也具有单调性,则复合函数(),x a b ∈(),u m n ∈()y f u =(,)m n 在区间具有单调性。

(())y f g x =(),a b 5.由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数和,若它们的定义域分别为和,且:()f x ()g x I J I J ⋂≠∅(1)当和具有相同的增减性时,函数、()f x ()g x 1()()()F x f x g x =+的增减性与 (或)相同,、2()()()F x f x g x =⋅()f x ()g x 3()()()F x f x g x =-的增减性不能确定;4()()(()0)()f x F xg x g x =≠(2)当和具有相异的增减性时,我们假设为增函数,为减函数,那么:()f x ()g x ()f x ()g x ①、的增减性不能确定;1()()()F x f x g x =+2()()()F x f x g x =⋅② 、为增函数,3()()()F x f x g x =-4()()(()0)()f x F x g x g x =≠为减函数。

函数的奇偶性与单调性

函数的奇偶性与单调性

函数的奇偶性与单调性————————————————————————————————作者:————————————————————————————————日期:函数的奇偶性与单调性一.知识总结1.函数的奇偶性(首先定义域必须关于原点对称)(1)为奇函数;为偶函数;(2)奇函数在原点有定义(3)任一个定义域关于原点对称的函数一定可以表示成一个奇函数和一个偶函数之和即(奇)(偶).2.函数的单调性(注:①先确定定义域;②单调性证明一定要用定义)(1)定义:区间上任意两个值,若时有,称为上增函数,若时有,称为上减函数.(2)奇函数在关于原点对称的区间上单调性相同;偶函数在关于原点对称的区间上单调性相反.判断函数单调性的方法:①定义法,即比差法;②图象法;③单调性的运算性质(实质上是不等式性质);④复合函数单调性判断法则.3.周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段.求周期的重要方法:①定义法;②公式法;③图象法;④利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),a≠b,则T=2|a-b|.二.例题精讲【例1】已知定义域为的函数是奇函数.(Ⅰ)求的值; (Ⅱ)若对任意的,不等式恒成立,求的取值范围.解析:(Ⅰ)因为是奇函数,所以=0,即又由f(1)= -f(-1)知(Ⅱ)由(Ⅰ)知.又由题设条件得:,即:,整理得上式对一切均成立,从而判别式【例2】设函数在处取得极值-2,试用表示和,并求的单调区间.解:依题意有而故解得从而。

令,得或。

由于在处取得极值,故,即。

(1)若,即,则当时,;(2)当时,;当时,;从而的单调增区间为;单调减区间为若,即,同上可得,的单调增区间为;单调减区间为【例3】(理)设函数,若对所有的,都有成立,求实数的取值范围(文)讨论函数的单调性(理)解法一:令g(x)=(x+1)ln(x+1)-ax,对函数g(x)求导数:g′(x)=ln(x+1)+1-a,令g′(x)=0,解得x=e a-1-1,(i)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数,又g(0)=0,所以对x≥0,都有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax.(ii)当a>1时,对于0<x<e a-1-1,g′(x)<0,所以g(x)在(0,e a-1-1)是减函数,又g(0)=0,所以对0<x<e a-1-1,都有g(x)<g(0),即当a>1时,不是对所有的x ≥0,都有f(x)≥ax成立.综上,a的取值范围是(-∞,1].解法二:令g(x)=(x+1)ln(x+1)-ax,于是不等式f(x)≥ax成立即为g(x)≥g(0)成立.对g(x)求导数g′(x)=ln(x+1)+1-a令g′(x)=0解得x=e a-1-1,当x>e a-1-1时,g′(x)>0,g(x)为增函数,当-1<x<e a-1-1,g′(x)<0,g(x)为减函数,所以要对所有x≥0都有g(x)≥g(0)充要条件为e a-1-1≤0.由此得a≤1,即a的取值范围是(-∞,1].(文)解:设,则∵∴,,,当时,,则为增函数当时,,则为减函数当时,为常量,无单调性【例4】(理)已知函数,其中为常数.(Ⅰ)若,讨论函数的单调性;(Ⅱ)若,且=4,试证:.(文)已知为定义在上的奇函数,当时,,求的表达式.(理)(文)解:∵为奇函数,∴当时,∵为奇函数∴∴∴三.巩固练习1.已知是上的减函数,那么的取值范围是( )A. B. C. D.2.已知是周期为2的奇函数,当时,,设则( )A. B. C. D.3.下列函数中,在其定义域内既是奇函数又是减函数的是( )A. B. C. D.4.若不等式对于一切 (0,)成立,则的取值范围是( )A.0B. –2C.-D.-35.设是上的任意函数,则下列叙述正确的是( )A.是奇函数B.是奇函数C.是偶函数D.是偶函数6.已知定义在上的奇函数满足,则的值为( )A.-1B.0C.1D.27.已知函数的图象与函数(且)的图象关于直线对称,记.若在区间上是增函数,则实数的取值范围是( ) A. B. C. D.8.(理)如果函数在区间上是增函数,那么实数的取值范围是( )A.B.C.D.9.对于上可导的任意函数,若满足,则必有( )A. B.C. D.10.已知,则( )A. B. C. D.11.已知函数,若为奇函数,则 .12.已知函数是定义在上的偶函数. 当时,,则当时, .13.是定义在上的以3为周期的偶函数,且,则方程=0在区间(0,6)内解的个数的最小值是( )A.5B.4C.3D.214.下列函数既是奇函数,又在区间上单调递减的是( )A. B. C. D.15.若函数, 则该函数在上是( )A.单调递减无最小值B.单调递减有最小值C.单调递增无最大值D.单调递增有最大值16.若函数在区间内单调递增,则的取值范围是( )A. B. C. D.17.设是定义在上的奇函数,且的图象关于直线对称,则______.18.设函数在上满足,,且在闭区间[0,7]上,只有.(Ⅰ)试判断函数的奇偶性;(Ⅱ)试求方程=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.19. (理)已知,函数(1)当为何值时,取得最小值?证明你的结论;(2)设在[ -1,1]上是单调函数,求的取值范围.(文)已知为偶函数且定义域为,的图象与的图象关于直线对称,当时,,为实常数,且.(1)求的解析式;(2)求的单调区间;(3)若的最大值为12,求.20.已知函数的图象过点(0,2),且在点处的切线方程为.(1) 求函数的解析式;(2)求函数的单调区间.21.已知向量若函数在区间(-1,1)上是增函数求的取值范围.22. (理)已知函数,,.若,且存在单调递减区间,求的取值范围.(文)已知函数在区间上是减函数,且在区间上是增函数,求实数的值.巩固练习参考答案1. C2. D3. A4. C5. D6. B7. D8. B9. C 10.A11. a=12. -x-x4 13. B 14. D 15. A 16. B 17. 018 .解:由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数的对称轴为,从而知函数不是奇函数, 由,从而知函数的周期为又,故函数是非奇非偶函数;(II)由(II) 又故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数在[0,2005]上有402个解,在[-2005.0]上有400个解,所以函数在[-2005,2005]上有802个解.19. (理) 解:(I)对函数求导数得令得[+2(1-)-2]=0从而+2(1-)-2=0解得当变化时,、的变化如下表+ 0 - 0 + 递增极大值递减极小值递增∴在=处取得极大值,在=处取得极小值。

函数的单调性与奇偶性

函数的单调性与奇偶性

函数的单调性与奇偶性一、函数的单调性初中时我们学过,对于一次函数y=x+1,y随着x的增大而增大,我们称之为增函数;y=-x+l,y随着x的增大而减小,我们称之为减函数。

那么如何定义呢?用数学符号语言如何叙述呢?1.定义:一般地,设函数f(x)的定义域为D:在定义域内的某个区间上任取x1,x2,且x1<x2,若都有f(x1)<f(x2),则称f(x)是单调增函数;在定义域内的某个区间上任取x1,x2,且x1<x2,若都有f(x1)>f(x2),则称f(x)是单调减函数;若函数y=f(x)在某个区间上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有单调性,这一区间叫做y=f(x)的单调区间。

理解:初中的说法是描述性的语言,通俗易懂;而高中的定义体现了自变量的变化关系决定因变量的变化关系。

分为两个层次,一是在哪个范围上研究,二是符号语言是怎么样的。

今后学习奇偶性,周期性都是这样定义的。

注:(1)单调函数是对整个定义域而言的,单调性是一个局部概念,是针对定义域内某个区间而言的,通常谈到单调性都会注明单调区间。

(2)单调区间能写闭区间的最好写闭区间,若在区间的端点处没有定义,则写成开区间。

比如,反比例函数不是单调函数,但是它在(-∞,0)上是减函数,在(0,+∞)上也是减函数。

我们把(-∞,0)和(0,+∞)叫的单调减区间。

若表示为(-∞,0)∪(0,+∞)是不对的。

如右图所示的函数,单调区间是R,它是单调函数。

若去掉点(0,1),则单调区间是(-∞,0)∪(0,+∞)。

例1.证明函数在[0,+∞)上是增函数。

分析:判断函数在某一区间上的单调性,从图象上观察是一种常用而又较为粗略的方法,严格证明,需要从单调函数的定义入手。

证明:设x1≥0,x2>0,且x1<x2,则,∵0≤x1<x2, ∴x1-x2<0,∴f(x1)-f(x2)<0 即f(x1)<f(x2)由定义知,在[0,+∞)上是增函数。

函数奇偶性和单调性

函数奇偶性和单调性

一、函数的奇偶性奇偶性定义:设函数()()y f x x D =∈,任取x D ∈,有()()f x f x =-,则称函数()y f x =为偶函数;()()f x f x =--,则称函数()y x =为奇函数.性质:(1)函数的奇偶性是函数的整体性质,是对函数的整个定义域而言;(2)由()()()()()f x f x f x f x =-=--知,若,x D ∈则x D -∈,因此,函数()f x 的定义域D 关于原点对称是函数()f x 为偶(奇)函数的必要条件(非充分)(3)若0D ∈,则()00f =是()f x 为奇函数的必要条件(非充分)(4)常数函数()()f x c x R =∈一定()0f x =是偶函数;若0c =则()f x 既是偶函数又是奇函数;函数()f x 既是偶函数又是奇函数⇔()0f x =(x D ∈,其中D 是关于原点对称的任何一个非空数集) (5)奇偶函数的图像特征:函数()f x 是奇函数⇔函数()f x 图像关于原点对称; 函数()f x 是偶函数⇔函数()f x 图像关于y 轴对称.(6)奇偶函数的运算性质:设()()1f x x D ∈为奇函数,()()2g x x D ∈为偶函数,12,D D D = 则在D 上有:(7)多项式函数()230123n n f x a a x a x a x a x =++++ 为奇函数⇔偶次项系数全为0; 多项式函数()230123n n f x a a x a x a x a x =++++ 为偶函数⇔奇次项系数全为0. 二、函数的单调性单调性定义(唯一证明方法):对于区间D 上的函数()f x ,在D 上任取两个1212,,,x x x x < 若()()120,f x f x -<称()f x 在区间D 上是增函数,区间D 成为函数()f x 的单调增区间; 若()()120,f x f x ->称()f x 在区间D 上是减函数,区间D 成为函数()f x 的单调减区间.性质:(1)函数单调性是函数的局部性质,研究函数的单调性可以在定义域的某个区间(定义域的子集)上进行(而不需要在整个定义域上);函数的定义域可以有若干个增减性不同的单调区间;若函数()f x 在整个定义域上单调,则称()f x 为单调函数. (2)函数单调性二个等价形式:①()()()121200f x f x x x -><⇔-在D 上单调递增(递减);②()()()()121200x x f x f x --><⇔⎡⎤⎣⎦()f x 在D 上单调递增(递减).(3)若()f x 在R 上单调递增,则()()f a f b a b >⇔>;若()f x 在R 上单调递减,则________. (4)设12,,x x D ∈则()()()()1212(0)x x f x f x f x --><⇔⎡⎤⎣⎦在D 上是增(减)函数.(5)单调性与奇偶性:若奇函数()f x 在区间[],a b 上单调递增(减),则()f x 在区间[],b a --上单调递增(减);若偶函数()f x 在区间[],a b 上单调递增(减),则()f x 在区间[],b a --上单调递减(增);(6)复合函数单调性:两个单调函数()f x 与()g x 复合,不论复合结果是()f g x ⎡⎤⎣⎦还是()g f x ⎡⎤⎣⎦,有如下性质:若()f x 与()g x 单调性相同,同增或同减,则复合结果为增;若()f x 与()g x 单调性相反,一个增一个减,则复合结果为减;以上性质可记为一句口诀:“同增异减”.单调区间的书写要求:若函数在区间的端点有定义,常常写成闭区间,当然写成开区间也是可以的.但是若函数在区间的端点处没有定义,则必须写成开区间.另外,若函数()f x 在其定义内的两个区间A 、B 上都是单调增(减)函数,一般不能认简单地认为()f x 在区间A B 上是增(减)函数.例如1()f x x=在区间(,0)-∞上是减函数,在区间(0,)+∞上也是减函数,但不能说它在定义域(,0)(0,)-∞+∞ 上是减函数.事实上,若取1211x x =-<=,有(1)11(1)f f -=-<<.一、函数的奇偶性题型一 判断并证明函数的奇偶性 方法:(1)定义法:首先判断其定义域是否关于原点中心对称.若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; (2)图象法:观察图像是否符合奇、偶函数的对称性. 说明:(1)分段函数的奇偶性的判定和分类讨论思想密切相关,要注意自变量在不同情况下表达式的不同形式以及它们之间的相互利用;(2)判断函数的奇偶性,首先要考查定义域是否对称; (3)若判断函数不具备奇偶性,只需举出一个反例即可;(4)函数就奇、偶性来划分可以分成奇函数、偶函数、非奇非偶函数、既是奇函数也是偶函数. 例1.判断下列函数的奇偶性:(1)x xx x f ++=1)(2; (2)()(1f x x =-(2)()0f x = (4) ()⎩⎨⎧≤+>+-=)0()0(22x x x x x x x f(5)()2212-+-=x x x f(6)已知函数)(x f 满足:),)(()(2)()(R y x y f x f y x f y x f ∈=-++,且0)0(≠f ,则函数)(x f 的奇偶性为________.题型二 利用奇偶性求函数式或函数值 例2.完成下列各题:1.设函数)(x f 为定义域为R 上奇函数,又当0>x 时2()23f x x x =--,试求)(x f 的解析式.3.设函数()f x 是定义域R 上的奇函数,(2)()f x f x +=-,当01x <≤时,()f x x =,求(7.5)f 的值.4.设()f x 在R 上是偶函数,在区间(,0)-∞上递增,且有22(21)(321)f a a f a a ++<-+,求a 的取值范围.5.已知函数53()4f x ax bx =++,若(2)0f -=,求(2)f 的值.6.若函数()f x 是偶函数,则=--+)211()21(f f ________. 7.已知()f x 是偶函数,()g x 是奇函数,且()()11f xg x x +=-,试求()()f x g x 与的表达式.题型三 逆用函数奇偶性求参数的值例3.1.若函数43()(2)(22)f x x m n x m n x mn =+-++-+为偶函数,求实数,m n 的值。

函数的单调性、奇偶性与最值

函数的单调性、奇偶性与最值

函数的单调性、奇偶性与最大(小)值1.函数的单调性(1)单调函数的定义如果y=f(x)在区间A上是增加的或是减少的,那么称A为单调区间.2.奇函数、偶函数图像关于原点对称的函数叫作奇函数.图像关于y轴对称的函数叫作偶函数.3.奇(偶)函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(填“相同”、“相反”).(2)在公共定义域内①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数.②两个偶函数的和函数、积函数是偶函数.③一个奇函数,一个偶函数的积函数是奇函数.(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0.4.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作f(x)的最小正周期.5.函数的最值1.函数单调性定义的理解(1)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( )(2)函数f (x )=2x +1在(-∞,+∞)上是增函数.( ) (3)(教材改编)函数f (x )=1x 在其定义域上是减函数.( )(4)已知f (x )=x ,g (x )=-2x ,则y =f (x )-g (x )在定义域上是增函数.( ) 2.函数的单调区间与最值(5)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1, +∞).( ) (6)(教材改编)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( ) (7)(2013·北京卷改编)函数y =lg|x |的单调递减区间为(0,+∞).( ) (8)函数f (x )=log 2(3x +1)的最小值为0.( ) 3.对奇偶函数的认识及应用(1)函数y =x 2,x ∈(0,+∞)是偶函数.( )(2)偶函数图像不一定过原点,奇函数的图像一定过原点.( )(3)(教材习题改编)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.( )(4)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( )(5)(2013·山东卷改编)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=-2.( )(6)(2014·鹰潭模拟改编)已知函数y =f (x )是定义在R 上的偶函数,且在(-∞,0)上是减函数,若f (a )≥f (2),则实数a 的取值范围是[-2,2].( )4.对函数周期性的理解(7)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( )(8)(2013·湖北卷改编)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R 上是周期函数.()考点一确定函数的单调性或单调区间【例1】(1)判断函数f(x)=x+ax(a>0)在(0,+∞)上的单调性.(2)(2013·高安中学模拟)求函数y=log 13(x2-4x+3)的单调区间.【训练1】试讨论函数f(x)=axx-1(a≠0)在(-1,1)上的单调性.考点二利用单调性求参数【例2】若函数f(x)=ax-1x+1在(-∞,-1)上是减函数,则a的取值范围是________.【训练2】(1)函数y=x-5x-a-2在(-1,+∞)上单调递增,则a的取值范围是().A.{-3}B.(-∞,3)C.(-∞,-3]D.[-3,+∞)(2)(2014·贵溪模拟)若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是().A.(-1,0)∪(0,1)B.(-1,0)∪(0,1] C.(0,1)D.(0,1]考点三利用函数的单调性求最值【例3】已知f(x)=x2+2x+ax,x∈[1,+∞).(1)当a=12时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.【训练3】已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-2 3.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.考点四函数奇偶性的判断及应用【例1】 (1)判断下列函数的奇偶性: ①f (x )=x 2-1+1-x 2;②f (x )=ln 1-x1+x.(2)(2013·辽宁卷)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+f (lg 12)=( ). A .-1 B .0 C .1D .2【训练1】 (1)(2013·湖南卷)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2, f (1)+g (-1)=4,则g (1)等于( ). A .4 B .3 C .2D .1(2)设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( ). A .-3 B .-1 C .1 D .3考点五 函数的单调性与奇偶性【例2】 (1)(2014·山东实验中学诊断)下列函数中,在其定义域中,既是奇函数又是减函数的是( ).A .f (x )=1x B .f (x )=-x C .f (x )=2-x -2xD .f (x )=-tan x(2)(2013·江西九校联考)已知f (x )是定义在R 上的偶函数,在区间[0,+∞)上为增函数,且f ⎝ ⎛⎭⎪⎫13=0,则不等式f (log 18x )>0的解集为( ).A .⎝ ⎛⎭⎪⎫12,2B .(2,+∞)C .⎝ ⎛⎭⎪⎫0,12∪(2,+∞)D .⎝ ⎛⎭⎪⎫12,1∪(2,+∞)【训练2】 (2013·天津卷)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( ).A .[1,2]B .⎝ ⎛⎦⎥⎤0,12C .⎣⎢⎡⎦⎥⎤12,2D .(0,2]考点六 函数的单调性、奇偶性、周期性【例3】 (经典题)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ).A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)【训练3】 设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2 014).基础巩固题组 (建议用时:40分钟)一、选择题1.函数f (x )=1-1x 在[3,4)上( ). A .有最小值无最大值 B .有最大值无最小值 C .既有最大值又有最小值D .最大值和最小值皆不存在2.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( ). A .⎝ ⎛⎭⎪⎫0,34 B .⎝ ⎛⎦⎥⎤0,34 C .⎣⎢⎡⎭⎪⎫0,34 D .⎣⎢⎡⎦⎥⎤0,343.(2013·玉山一中模拟)已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ).A .(-1,1) B .(0,1) C .(-1,0)∪(0,1) D .(-∞,-1)∪(1,+∞)4.(2014·南昌模拟)已知函数y =f (x )的图像关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ).A .c <b <aB .b <a <cC .b <c <aD .a <b <c5.(2013·渭南模拟)下列函数中既是偶函数,又在区间(0,+∞)上单调递增的函数是( ). A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =2x6. (2013·咸阳二模)若函数f (x )=sin x(x +a )2是奇函数,则a 的值为( ). A .0 B .1 C .2D .47. 函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( ).A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)二、填空题8.函数f (x )=log 5(2x +1)的单调增区间是________.9.(2012·安徽卷)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.10.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________. 11. (2014·临川二中)f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=________. 12. 设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),则实数m 的取值范围是________.三、解答题13.已知函数f (x )=1a -1x (a >0,x >0). (1)判断函数f (x )在(0,+∞)上的单调性; (2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.14. f (x )为R 上的奇函数,当x >0时,f (x )=-2x 2+3x +1,求f (x )的解析式.能力提升题组1.(2014·宜春模拟)下列函数中,在[-1,0]上单调递减的是( ). A .y =cos x B .y =-|x -1| C .y =ln2+x2-xD .y =e x +e -x 2.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在 区间(1,+∞)上一定( ).A .有最小值B .有最大值C .是减函数D .是增函数3. (2013·吉安模拟)已知偶函数f (x )对任意x ∈R 都有f (x -2)=-f (x ),且当x ∈[-1,0]时f (x )=2x ,则f (2 013)=( ).A .1B .-1C .12D .-123.已知函数f (x )=x 2+ax (a >0)在(2,+∞)上递增,则实数a 的取值范围是________.。

函数的奇偶性与单调性

函数的奇偶性与单调性

减↓ 增↑ 减↓ 减↓ 增↑
对于复合函数f[g(x)]:“同号得增,异号得减”
三、函数的奇偶性
1、如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x), 那么f(x)叫做奇函数.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),
那么f(x)叫做偶函数.
2、奇函数的图像关于原点对称;偶函数的图像关于y 轴对称.
函数图像能直观地显示函数的单调性.在单调区间上的增函 数,它的图像是沿x轴正方向逐渐上升的;在单调区间上的减 函数,它的图像是沿x轴正方向逐渐下降的.
单调性性质规律: 若函数f(x),g(x)在给定的区间上具有单调性,利用增(减)函数的定 义容易证得,在这个区间上:
(1)函数f(x)与f(x)+C(C为常数)具有相同的单调性.
1 ],单增区间是[2,+∞) 2
单减区间是(-∞,-
例5: 求函数y=f(x)在R上是减函数, 求y=f(|1 - x|)的单调递增区间。
单调递增区间是( -∞,1] 例6: 求函数y=18+2(2-x2)-(2-x2)2的单调区间 单增区间是(-∞,- 1],[ 0,1) 单减区间是(-1,0), [ 1,+∞)
(3)f(x)= (x-1) .
1 x 1 x
评析 用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)
之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查其
3、奇函数
4、奇函数
5、定义在实数集上的函数f(x),对任意x,y∈R,有 f(x+y)+f(x-y)=2f(x)f(y),且f(x)不等于0 求证:f(0)=1;f(x)为偶函数

函数的奇偶性与单调性

函数的奇偶性与单调性

函数的奇偶性与单调性1.函数的奇偶性的定义: 如果对于函数f(x)的定义域内任意一个x, (1)都有f(-x)= ,那么称函数f(x)为奇函数;{或f(-x)+f(x)=0} (2)都有f(-x)= ,那么称函数f(x)为偶函数.{或f(-x)-f(x)=0}2.函数的奇偶性的性质:(1)奇、偶函数的定义域关于 对称; (2)若奇函数的定义域包含数0,则f(0)= (3)奇函数的图象关于 对称; (4)偶函数的图象关于 对称. 3.函数单调性的定义:如果函数f(x)对区间D 内的任意,,当<时, (1)都有f()<f(),则称f(x)是区间D 上的 函数; (2)都有f()>f(),则称f(x)是区间D 上的 函数.1、下列函数中,在其定义域上既是奇函数又是增函数的为( )A. B. C. D.2、下列函数既不是奇函数,也不是偶函数,且在上单调递增的是( )A. B. C. D.3、下列函数中,既是偶函数又在上单调递增的是( )A .B .C .D .1x 2x 1x 2x 1x 2x 1x 2x (0,)+∞1y x =+21y x =-+||1y x =+12xy =-4、 函数的递减区间是__________.5、 函数,设,则有( ) A. B. C.D. 6、已知偶函数在上单调递增,且,则满足的的取值范围是( ) A.B. C. D.7、已知f (x )是定义在R 上的奇函数,当x≥0时,f (x )=+2x ,若f ()>f (a ),则实数a 的取值范围是( )A. (﹣∞,﹣1)∪(2,+∞)B. (﹣2,1)C. (﹣1,2)D. (﹣∞,﹣2)∪(1,+∞)8当 时,,则的取值范围是( )9且满足对任意的实数成立,则实数的取值范围是( ) A. B. C. D.10、 函数 在上是增函数,则的范围是_____.2x 22a -12x x ≠a 12x x ≠a ()48,[)48,()1+∞,()18,。

函数的单调性和奇偶性

函数的单调性和奇偶性

函数的单调性和奇偶性一、单调性一般地,设函数y=f(x)的定义域为A ,区间I ⊆A 如果对于区间I 内的任意两个值x1,x2,当x1<x2时,都有f(x1 )<f(x2 ),那么就说y=f(x)在区间I 上是增函数。

I 称为y=f(x)的单调增区间。

如果对于区间I 内的任意两个值x1,x2,当x1<x2时,都有f(x1 )>f(x2 ),那么就说在这个区间I 上是减函数。

I 称为y=f(x)的单调减区间。

●作差法证明单调性(作差法的基本步骤:设元→作差→化简→判断符号→下结论)例 证明函数x x x f 2)(+=在),2(+∞上是增函数.●(重点)二次函数单调性判断(关键是看准对称轴) ① 定区间,定对称轴例 说明函数242-+-=x x y 在区间]3,0[的单调性及最值.② 定区间,动对称轴例 已知函数3)24(2-++=x a x y 在区间]3,1[单调递增,求a 的取值范围.③ 定对称轴,动区间 例 已知22)(2++=x x x f ,当],2[a a x -∈时,讨论该函数的单调性.④ 动区间,动对称轴例 已知函数4)13(2+--=x a x y ,讨论函数在区间]1,[+a a 的单调性.(难点)复合函数的单调性判断复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”① 外层函数单调性确定例 求下列函数的单调性y=log4(x 2-4x+3)② 外层函数调性不确定例 已知函数g(x)=(log a x)2+(log a 2-1)log a x 在[1/2,2]上为增函数,求a 的取值范围?课后练习1.下述函数中,在)0,(-∞上为增函数的是( )A .y=x2-2B .y=x 3C .y=x --21D .2)2(+-=x y2.下述函数中,单调递增区间是]0,(-∞的是( )A .y=-x 1B .y=-(x -1)C .y=x 2-2D .y=-|x|3.函数)(2∞+-∞-=,在x y 上是( ) A .增函数 B .既不是增函数也不是减函数 C .减函数 D .既是减函数也是增函数4.若函数f(x)是区间[a,b )上的增函数,也是区间(b,c]上的增函数,则函数f(x)在区间[a,c]上是( )A .增函数B .是增函数或减函数C .是减函数D .未必是增函数或减函数5.已知函数f(x)=8+2x-x 2,如果g(x)=f(2-x 2),那么g(x) ( ) A.在区间(-1,0)上单调递减 B.在区间(0,1)上单调递减C.在区间(-2,0)上单调递减 D 在区间(0,2)上单调递减6.函数),2[,32)(2+∞-∈+-=x mx x x f 当时是增函数,则m 的取值范围是( ) A . [-8,+∞) B .[8,+∞) C .(-∞,- 8] D .(-∞,8] 7.如果函数f(x)=x 2+bx+c 对任意实数t 都有f(4-t)=f(t),那么( )A .f(2)<f(1)<f(4)B .f(1)<f(2)<f(4)C .f(2)<f(4)<f(1)D .f(4)<f(2)<f(1) 8.(11年真题)已知二次函数2()1f x ax bx =++ 是偶函数,且(1)0f =.(1)求a ,b 的值;(2)设()(2)g x f x =+.若()g x 在区间[2,]m - 上的最小值为3-,求实数m 的值. .二、奇偶性一般地,如果对于函数的定义域内任意一个x ,都有,)()(x f x f =-,那么函数)(x f 就称偶函数;偶函数的图像关于Y 轴对称,且对称轴左右两边的单调性相反(常数函数除外)。

函数的单调性、最值、奇偶性

函数的单调性、最值、奇偶性

1 函数的单调性、最值、奇偶性
要点梳理
1.函数的单调性
上是增函数或减函数,则称函数一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.
2.函数的最值(利用求解函数值域的方法)
确定函数的单调性或单调区间(观察法、定义法、导数法、图像法)
例1、求下列函数的递增区间
(1)1y x x =-
, (2)1y x x =+ (3) y =-x 2+2|x |+1
例2、已知函数f (x )=x 2+a x
(a >0)在(2,+∞)上递增,求实数a 的取值范围.
例3、若f (x )=⎩
⎪⎨⎪⎧ a x (x >1)(4-a 2)x +2(x ≤1)是R 上的单调递增函数,则实数a 的取值范围为( ) A .(1,+∞) B .[4,8) C .(4,8) D .(1,8)
判定函数的奇偶性(图像观察法、定义法)
例4、(1)f (x )=x 3-1x ; (2)f (x )=⎩⎪⎨⎪⎧
x 2+x ,x >0,x 2-x ,x <0;
函数奇偶性的应用(可用于求函数值、求解析式、画函数图象、求x 范围)
例5、(1)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f (-52
)=________. (2) 定义在R 上奇函数f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.
(3)已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]上递减,求满足f (1-m )+f (1-m 2)<0的实数m 的取值范围.。

函数的单调性和奇偶性精品讲义

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性一、知识点归纳函数的单调性〔1〕定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)〔f (x 1)>f (x 2)〕,那么就说f (x )在区间D 上是增函数〔减函数〕,区间D 为函数y =f (x )的增区间〔减区间〕概括起来,即1212121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ⎧⎧<>⎧⎪⎪⎨⎨<>⎪⎩⎪⎩⎨⎧<>⎧⎪⎪⎨⎨⎪><⎪⎩⎩⎩增函数或“同增异减”减函数或 〔2〕函数单调性的证明的一般步骤:①设1x ,2x 是区间D 上的任意两个实数,且12x x < ②作差12()()f x f x -,并通过因式分解、配方、通分、有力化等方法使其转化为易于判断正负的式子;③确定12()()f x f x -的符号;④给出结论证明函数单调性时要注意三点:①1x 和2x 的任意性,即从区间D 中任取1x 和2x ,证明单调性时不可随意用量额特殊值代替;②有序性,即通常规定12x x <;③同区间性,即1x 和2x 必须属于同一个区间。

〔3〕设复合函数()[]x g f y =是定义区间M 上的函数,假设外函数f(x)与内函数g(x)的单调性相反,那么()[]x g f y =在区间M 上是减函数;假设外函数f(x)与内函数g(x)的单调性相同,那么()[]x g f y =在区间M 上是增函数。

概括起来,即“同增异减II 号〞 〔4〕简单性质: ①()f x()f x 与()f x -及1()f x 单调性相反 ②在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
问题探究 1:奇函数、偶函数的定义域具有什么特点?它 是函数具有奇偶性的什么条件?
提示:定义域关于原点对称,必要不充分条件.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
4.对称性 若函数 f(x)满足 f(a-x)=f(a+x)或 f(x)=f(2a-x),则函数 f(x)关于直线 x=a 对称. 若函数 f(x)满足 f(a+x)=-f(a-x)或 f(x)=-f(2a-x),则 函数 f(x)关于点(a,0)成中心对称.
答案:D
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
2.(2012 年广东)下列函数为偶函数的是
A.y=sin x
B.y=x3
C.y=ex
D.y=ln x2+1
()
解析:选项 A、B 为奇函数,选项 C 为非奇非偶函数,选 项 D 中函数定义域为 R,设 f(x)=ln x2+1,则 f(-x)= ln -xห้องสมุดไป่ตู้+1=f(x),所以 f(x)为偶函数,故选 D.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
(对应学生用书 P35)
1.奇函数、偶函数的概念 一般地,如果对于函数 f(x)的定义域内任意一个 x,都有 f(-x)= f(x) ,那么函数 f(x)就叫做偶函数. 一般地,如果对于函数 f(x)的定义域内任意一个 x,都有 f(-x)=- f(x) ,那么函数 f(x)就叫做奇函数.
1.(2012 年陕西)下列函数中,既是奇函数又是增函数的

()
A.y=x+1
B.y=-x3
C.y=1x
D.y=x|x|
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
解析:y=x+1 是非奇非偶函数,A 错;y=-x3 是减函数, B 错;y=1x在(0,+∞)上为减函数,C 错;y=x|x|为奇函数, 当 x≥0 时 y=x2 为增函数,由奇函数性质得 y=x|x|在 R 上为 增函数,故选 D.
答案:D
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
3.(2012 年上海)已知 y=f(x)是奇函数.若 g(x)=f(x)+2 且 g(1)=1,则 g(-1)=__________.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
奇函数的图象关于 原点 对称;偶函数的图象关于 y轴 对 称.
2.判断函数的奇偶性 判断函数的奇偶性,一般都按照定义严格进行,一般步骤 是: (1)考查定义域是否关于 原点 对称;
课前自主回顾 课堂互动探究
课时作业
与名师对话
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
问题探究 2:如果 T 是函数 y=f(x)的周期,那么 kT(k∈ Z)是否一定也是该函数的周期?
提示:当 k=0 时,不是;k≠0 时,是.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
与名师对话
高考总复习 ·课标版 ·A 数学(文)
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
考纲要求
考情分析
结合具体 函数,了 解函数奇 偶性及周 期性的含 义.
从近三年的高考试题分析 1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,如2012 年陕西卷2.利用奇偶函数图象的特点解决相关问题,利用函数 奇偶性求函数值,如2012年上海卷9;根据函数奇偶性求参数值 ,如2011年浙江高考卷11等.解答此类问题时,要先判断函数 的定义域是否关于原点对称,再研究f(x)与f(-x)的关系. 2.对函数周期性的考查,主要涉及判断函数的周期、利用周期 性求函数值,以及解决与周期有关的函数综合问题.充分利用 题目提供的信息,迁移到有定义的范围上进行求值是解答此类 问题的关键. 3.高考中考查函数的性质往往不是单纯考查一个性质,而是综 合考查,如2012年福建卷7,所以需要对函数的各个性质非常熟 悉并能结合函数图象的特点,对各个性质综合运用. 预测:2013年仍将以函数的性质及应用为主,考查延续选择填 空题形式,分值5分.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
(3)在公共定义域内, ①两个奇函数的和是 奇函数 ,两个奇函数的积是偶函数; ②两个偶函数的和、积是 偶函数 ; ③一个奇函数,一个偶函数的积是 奇函数 . (4)既奇又偶的函数有无穷多个(如 f(x)=0,定义域是关于 原点对称的任意一个数集).
高考总复习 ·课标版 ·A 数学(文)
(2)考查表达式 f(-x)是否等于 f(x)或-f(x): 若 f(-x)= -f(x) ,则 f(x)为奇函数; 若 f(-x)= f(x) ,则 f(x)为偶函数; 若 f(-x)= -f(x) 且 f(-x)= f(x) ,则 f(x)既是奇函数 又是偶函数; 若 f(-x)≠-f(x)且 f(-x)≠f(x),则 f(x)既不是奇函数又不 是偶函数,即非奇非偶函数.
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
3.奇、偶函数的性质 (1)奇函数在关于原点对称的区间上的单调性 相同 ,偶函 数在关于原点对称的区间上的单调性 相反 (填“相同”、 “相反”). (2)若 f(x)为偶函数,则 f(-x)=f(x)=f(|x|).
课前自主回顾 课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A 数学(文)
5.周期性 (1)周期函数:对于函数 y=f(x),如果存在一个非零常数 T,使得当 x 取定义域内的任何值时,都有 f(x+T)= f(x) , 那么就称函数 y=f(x)为周期函数,称 T 为这个函数的周期. (2)最小正周期;如果在周期函数 f(x)的所有周期中 存 在一个最小 的正数,那么这个最小正数就叫做 f(x)的最小 正周期.
相关文档
最新文档