2020年广西贵港市港南区中考数学一模试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广西贵港市港南区中考数学一模试卷
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(3分)﹣2的相反数是()
A.﹣2B.2C.﹣D.
2.(3分)已知a<b,下列不等式中,变形正确的是()
A.a﹣3>b﹣3B.3a﹣1>3b﹣1C.﹣3a>﹣3b D.>
3.(3分)下面四个图形中,是三棱柱的平面展开图的是()
A.B.
C.D.
4.(3分)使分式有意义的x的取值范围是()
A.x>2B.x<2C.x≠2D.x≥2
5.(3分)下列运算错误的是()
A.(a2)3=a6B.(x+y)2=x2+y2
C.﹣32=﹣9D.61200=6.12×104
6.(3分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()
A.1B.2C.3D.4
7.(3分)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()
A.B.C.D.
8.(3分)如果将抛物线y=x2﹣4x﹣1平移,使它与抛物线y=x2﹣1重合,那么平移的方
式可以是()
A.向左平移2个单位,向上平移4个单位
B.向左平移2个单位,向下平移4个单位
C.向右平移2个单位,向上平移4个单位
D.向右平移2个单位,向下平移4个单位
9.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=37°,那么∠BAD=()
A.51°B.53°C.57°D.60°
10.(3分)如图,已知△ABC中,AB=5,AC=4,BC=3,DE是AC的垂直平分线,DE 交AB于点D,交AC于点E,连接CD,则CD的值为()
A.1B.1.5C.2D.2.5
11.(3分)已知Rt△ACB中,点D为斜边AB的中点,连接CD,将△DCB沿直线DC翻折,使点B落在点E的位置,连接DE、CE、AE,DE交AC于点F,若BC=6,AC=8,则AE的值为()
A.B.C.D.
12.(3分)如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F 是CD上一点,连接AF分别交BD,DE于点M,N,且AF⊥DE,连接PN,则以下结
论中:①S△ABM=4S△FDM;②PN=;③tan∠EAF=;④△PMN∽△DPE,正确的是()
A.①②③B.①②④C.①③④D.②③④
二、填空题(每题3分,满分18分,将答案填在答题纸上)
13.(3分)若a+3=0,则a=.
14.(3分)分解因式:a3﹣4ab2=.
15.(3分)若x=2是关于x的一元二次方程ax2+bx﹣8=0(a≠0)的解,则代数式2020+2a+b 的值是.
16.(3分)如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC 交AC于点E,如果BC=6,那么线段GE的长为.
17.(3分)如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是.
18.(3分)如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,P n(n,P n)….作x轴的垂线,垂足分别为A1,A2,…,A n…,连接A1P2,A2P3,…,A n﹣1P n,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点B n的纵坐标是.(结果用含n代数式表示)
三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:()﹣1+20190+﹣2cos30°
(2)先化简,再求值,÷﹣,其中a=﹣5.
20.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).
(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;
(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2;
(3)填空:△AA1A2的面积为.
21.如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=﹣(x <0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)求一次函数解析式及m的值;
(2)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
22.某校开展“阳光体育”活动,决定开设乒乓球、篮球、跑步、跳绳这四种运动项目,学生只能选择其中一种,为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成两张不完整的统计图,请你结合图中的信息解答下列问题:
(1)样本中喜欢篮球项目的人数百分比是;其所在扇形统计图中的圆心角的度数是;
(2)把条形统计图补画完整并注明人数;
(3)已知该校有1000名学生,根据样本估计全校喜欢乒乓球的人数是多少?
23.某建设工程队计划每小时挖掘土540方,现决定租用甲、乙两种型号的挖掘机来完成这项工作,已知一台甲型挖掘机与一台乙型挖掘机每小时共挖土140方,5台甲型挖掘机与3台乙型挖掘机恰好能完成每小时的挖掘量.
(1)求甲、乙两种型号的挖掘机每小时各挖土多少方?
(2)若租用一台甲型挖掘机每小时100元,租用一台乙型挖掘机每小时120元,且每小时支付的总租金不超过850元,又恰好完成每小时的挖掘量,请设计该工程队的租用方案.
24.如图,已知直线P A交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过C作CD⊥P A,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若CD=2AD,⊙O的直径为20,求线段AC、AB的长.
25.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求该抛物线的表达式;
(2)点E是线段BC上方的抛物线上一个动点,求△BEC的面积的最大值;
(3)点P是抛物线的对称轴上一个动点,当以A、P、C为顶点的三角形是直角三角形时,求出点P的坐标.
26.如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿CB方向平移得到的,连接AE,AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,并证明你的结论;
(2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE 于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,
求出四边形PQED的面积;
②当线段BP的长为何值时,以点P、Q、R为顶点的三角形与△BOC相似?
2020年广西贵港市港南区中考数学一模试卷
参考答案与试题解析
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(3分)﹣2的相反数是()
A.﹣2B.2C.﹣D.
【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.
【解答】解:﹣2的相反数是:﹣(﹣2)=2,
故选:B.
【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.
2.(3分)已知a<b,下列不等式中,变形正确的是()
A.a﹣3>b﹣3B.3a﹣1>3b﹣1C.﹣3a>﹣3b D.>
【分析】根据不等式的性质解答即可.
【解答】解:A、不等式a<b的两边同时减去3,不等式仍成立,即a﹣3<b﹣3,故本选项错误;
B、不等式a<b的两边同时乘以3再减去1,不等式仍成立,即3a﹣1<3b﹣1,故本选
项错误;
C、不等式a<b的两边同时乘以﹣3,不等式的符号方向改变,即﹣3a>﹣3b,故本选项
正确;
D、不等式a<b的两边同时除以3,不等式仍成立,即<,故本选项错误;
故选:C.
【点评】本题考查了不等式的性质.注意:不等式两边都乘以同一个负数,不等号的方向改变.
3.(3分)下面四个图形中,是三棱柱的平面展开图的是()
A.B.
C.D.
【分析】根据三棱柱的展开图的特点作答.
【解答】解:A、是三棱柱的平面展开图;
B、是三棱锥的展开图,故不是;
C、是四棱锥的展开图,故不是;
D、两底在同一侧,也不符合题意.
故选:A.
【点评】熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.
4.(3分)使分式有意义的x的取值范围是()
A.x>2B.x<2C.x≠2D.x≥2
【分析】根据分式有意义的条件:分母不等于0即可求解.
【解答】解:根据题意得:x﹣2≠0,解得:x≠2.
故选:C.
【点评】本题主要考查了分式有意义的条件,解决本题的关键是熟记分式有意义的条件:分母不等于0.
5.(3分)下列运算错误的是()
A.(a2)3=a6B.(x+y)2=x2+y2
C.﹣32=﹣9D.61200=6.12×104
【分析】分别根据幂的乘方运算法则,完全平方公式,幂的乘方的定义以及科学记数法判断即可.
【解答】解:A.(a2)3=a6,运算正确;
B.(x+y)2=x2+2xy+y2,故原运算错误
C.﹣32=﹣9,运算正确;
D.61200=6.12×104,运算正确.
【点评】本题主要考查了完全平方公式、科学记数法以及幂的乘方与积的乘方,熟记相关公式和运算法则是解答本题的关键.
6.(3分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()
A.1B.2C.3D.4
【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.
【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;
②两点之间线段最短;真命题;
③相等的圆心角所对的弧相等;假命题;
④平分弦的直径垂直于弦;假命题;
真命题的个数是1个;
故选:A.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
7.(3分)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()
A.B.C.D.
【分析】先画树状图展示所有12种等可能的结果数,再找出两次都摸到白球的结果数,然后根据概率公式求解.
【解答】解:画树状图为:
共有12种等可能的结果数,其中两次摸出的球都是的白色的结果共有2 种,
所以两次都摸到白球的概率是=,
【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.
8.(3分)如果将抛物线y=x2﹣4x﹣1平移,使它与抛物线y=x2﹣1重合,那么平移的方式可以是()
A.向左平移2个单位,向上平移4个单位
B.向左平移2个单位,向下平移4个单位
C.向右平移2个单位,向上平移4个单位
D.向右平移2个单位,向下平移4个单位
【分析】根据平移前后的抛物线的顶点坐标确定平移方法即可得解.
【解答】解:∵抛物线y=x2﹣4x﹣1=(x﹣2)2﹣5的顶点坐标为(2,﹣5),抛物线y =x2﹣1的顶点坐标为(0,﹣1),
∴顶点由(2,﹣5)到(0,﹣1)需要向左平移2个单位再向上平移4个单位.
故选:A.
【点评】本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定抛物线解析式更简便.
9.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=37°,那么∠BAD=()
A.51°B.53°C.57°D.60°
【分析】连接BD,AB为直径可得出∠ADB=90°,由圆周角定理可得出∠ABD=37°,再在△ABD中,利用三角形内角和定理可求出∠BAD的度数.
【解答】解:连接BD,如图所示.
∵AB是⊙O的直径,
∴∠ADB=90°.
在△ABD中,∠ABD=∠ACD=37°,∠ADB=90°,
∴∠BAD=180°﹣∠ABD﹣∠ADB=53°.
故选:B.
【点评】本题考查了圆周角定理以及三角形内角和定理,利用圆周角定理及三角形内角和定理,求出∠BAD的度数是解题的关键.
10.(3分)如图,已知△ABC中,AB=5,AC=4,BC=3,DE是AC的垂直平分线,DE 交AB于点D,交AC于点E,连接CD,则CD的值为()
A.1B.1.5C.2D.2.5
【分析】直接利用△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出CD的长.
【解答】解:∵AC=4,BC=3,AB=5,
∴AC2+BC2=AB2,
∴△ABC是直角三角形,
∵DE是AC的垂直平分线,
∴AE=EC=2,DE∥BC,且线段DE是△ABC的中位线,
∴DE=1.5,
Rt△CDE中,由勾股定理得:CD2=CE2+DE2,
∴CD2=22+1.52,
∴CD=2.5.
故选:D.
【点评】此题考查勾股定理及其逆定理,关键是得出线段DE是△ABC的中位线.11.(3分)已知Rt△ACB中,点D为斜边AB的中点,连接CD,将△DCB沿直线DC翻折,使点B落在点E的位置,连接DE、CE、AE,DE交AC于点F,若BC=6,AC=8,
则AE的值为()
A.B.C.D.
【分析】直角三角形的勾股定理和斜边中线等于斜边一半可以得到等腰三角形的边长,通过作辅助线,可将所求的问题进行转化求BE,由折叠得CD是BE的中垂线,借助三角形的面积公式,可以求出BG,进而求出BE,由等腰三角形的性质,可得DN是三角形的中位线,得到DN等于BE的一半,求出DN,在根据勾股定理,求出AN,进而求出AE.
【解答】解:过点D作DM⊥BC,DN⊥AE,垂足为M、N,连接BE交CD于点G,∵Rt△ACB中,AB==10,
∵点D为斜边AB的中点,
∴CD=AD=BD=AB=5,
在△DBC中,DC=DB,DM⊥BC,
∴MB=MC=BC=3,
∴DM==4,
由折叠得,CD垂直平分BE,∠BDC=∠EDC,
在△ADE中,DA=DE,DN⊥AE,
∴AN=NE=AE,
∴DN是△ABE的中位线,
∴DN∥BE,DN=BE,
在△DBC中,由三角形的面积公式得:BC•DM=DC•BG,
即:6×4=5×BG,
∴BG==DN,
在Rt△ADN中,AN==,
∴AE=2AN=,
故选:B.
【点评】考查直角三角形的性质、等腰三角形的性质、三角形的中位线以及勾股定理等知识,综合应用知识较强,理解和掌握这些知识是解决问题的前提和关键.
12.(3分)如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F 是CD上一点,连接AF分别交BD,DE于点M,N,且AF⊥DE,连接PN,则以下结论中:①S△ABM=4S△FDM;②PN=;③tan∠EAF=;④△PMN∽△DPE,正确的是()
A.①②③B.①②④C.①③④D.②③④
【分析】①正确.利用相似三角形的性质解决问题即可.
②正确.作PH⊥AN于H,求出PH,HN即可解决问题.
③正确.求出EN,AN即可判断.
④错误.证明∠DPN≠∠PDE即可.
【解答】解:∵正方形ABCD的边长为2,点E是BC的中点,
∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,
∵AF⊥DE,
∴∠DAF+∠ADN=∠ADN+∠CDE=90°,
∴∠DAN=∠EDC,
在△ADF与△DCE中,,
∴△ADF≌△DCE(ASA),
∴DF=CE=1,
∵AB∥DF,
∴△ABM∽△FDM,
∴=()2=4,
∴S△ABM=4S△FDM;故①正确;
由勾股定理可知:AF=DE=AE==,∵×AD×DF=×AF×DN,
∴DN=,
∴EN=,AN==,
∴tan∠EAF==,故③正确,
作PH⊥AN于H.
∵BE∥AD,
∴==2,
∴P A=,
∵PH∥EN,
∴==,
∴AH=×=,HN=,
∴PN==,故②正确,
∵PN≠DN,
∴∠DPN≠∠PDE,
∴△PMN与△DPE不相似,故④错误.
故选:A.
【点评】本题考查正方形的性质,全等三角形的判定和性质,解直角三角形,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
二、填空题(每题3分,满分18分,将答案填在答题纸上)
13.(3分)若a+3=0,则a=﹣3.
【分析】根据相反数的定义即可得到结果.
【解答】解:∵a+3=0,
∴a=﹣3.
故答案为:﹣3.
【点评】本题考查了相反数的定义,熟记相反数的定义是解题的关键.
14.(3分)分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).
【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.
【解答】解:a3﹣4ab2
=a(a2﹣4b2)
=a(a+2b)(a﹣2b).
故答案为:a(a+2b)(a﹣2b).
【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.
15.(3分)若x=2是关于x的一元二次方程ax2+bx﹣8=0(a≠0)的解,则代数式2020+2a+b 的值是2024.
【分析】根据x=2是关于x的一元二次方程ax2+bx﹣8=0(a≠0)的解,可以得到2a+b 的值,然后代入代数式2020+2a+b,即可求得所求式子的值.
【解答】解:∵x=2是关于x的一元二次方程ax2+bx﹣8=0(a≠0)的解,
∴4a+2b﹣8=0,
∴4a+2b=8,
∴2a+b=4,
∴2020+2a+b
=2020+(2a+b)
=2020+4
=2024,
故答案为:2024.
【点评】本题考查一元二次方程的解,解答本题的关键是明确题意,求出2a+b的值.16.(3分)如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC 交AC于点E,如果BC=6,那么线段GE的长为2.
【分析】由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.【解答】解:∵点G是△ABC重心,BC=6,
∴CD=BC=3,=2,
∵GE∥BC,
∴△AEG∽△ACD,
∴==,
∴GE=2.
故答案为:2.
【点评】此题考查了相似三角形的判定与性质以及三角形重心的性质.解题时注意:重
心到顶点的距离与重心到对边中点的距离之比为2:1.
17.(3分)如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是3.
【分析】圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对弦,转化为求弦的长的问题.
【解答】解:∵图中扇形的弧长是2π,根据弧长公式得到2π=
∴n=120°即扇形的圆心角是120°
∴弧所对的弦长是2×3sin60°=3
【点评】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
18.(3分)如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,P n(n,P n)….作x轴的垂线,垂足分别为A1,A2,…,A n…,连接A1P2,A2P3,…,A n﹣1P n,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点B n的纵坐标是.(结果用含n 代数式表示)
【分析】根据反比例函数图象上点的坐标特征求得点P1、P2的纵坐标,由平行四边形对边平行且相等的性质求得点B1的纵坐标是y2+y1、B2的纵坐标是y3+y2、B3的纵坐标是
y4+y3,据此可以推知点B n的纵坐标是:y n+1+y n=+=.
【解答】解:∵点P1(1,y1),P2(2,y2)在反比例函数的图象上,
∴y1=3,y2=;
∴P1A1=y1=3;
又∵四边形A1P1B1P2,是平行四边形,
∴P1A1=B1P2=3,P1A1∥B1P2 ,
∴点B1的纵坐标是:y2+y1=+3,即点B1的纵坐标是;
同理求得,点B2的纵坐标是:y3+y2=1+=;
点B3的纵坐标是:y4+y3=+1=;
…
点B n的纵坐标是:y n+1+y n=+=;
故答案是:.
【点评】本题考查了平行四边形的性质、反比例函数图象上点的坐标特征、反比例函数的图象.解答此题的关键是根据平行四边形的对边平行且相等的性质求得点B n的纵坐标y n+1+y n.
三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:()﹣1+20190+﹣2cos30°
(2)先化简,再求值,÷﹣,其中a=﹣5.
【分析】(1)根据负整数指数幂、零指数幂和特殊角的三角函数值可以解答本题;
(2)根据分式的除法和减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.
【解答】解:(1)()﹣1+20190+﹣2cos30°
=2+1+3﹣2×
=2+1+3﹣
=3+2;
(2)÷﹣
=﹣
=
=﹣,
当a=﹣5时,原式==1.
【点评】本题考查分式的化简求值、负整数指数幂、零指数幂和特殊角的三角函数值,解答本题的关键是明确题意它们各自的计算方法.
20.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).
(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;
(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2;
(3)填空:△AA1A2的面积为3.
【分析】(1)分别作出平移后对应点,再首尾顺次连接即可得;
(2)根据位似变换的概念作出变换后的对应点,再首尾顺次连接即可得;
(3)利用三角形的面积公式计算可得.
【解答】解:(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△A2B2C2即为所求;
(3)△AA1A2的面积为×6×1=3.
故答案为:3.
【点评】本题主要考查作图﹣平移变换和位似变换,解题的关键是掌握平移变换和位似变换的概念与性质,并据此作出变换后的对应点.
21.如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=﹣(x <0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)求一次函数解析式及m的值;
(2)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
【分析】(1)把B(﹣1,m)代入反比例函数可求出m的值,把把A(﹣4,),B(﹣1,2)代入一次函数y=kx+b可求出k、b的值,进而确定一次函数的关系式:(2)由于点P在直线y=x+上;可设P(x,x+),利用两个三角形的面积相等列方程求出x,进而确定点P的坐标.
【解答】解:(1)把B(﹣1,m)代入反比例函数得,m=2,
把A(﹣4,),B(﹣1,2)代入一次函数y=kx+b得:
则,解得
∴一次函数的解析式为,
即:m=2,一次函数的关系式为y=x+;
(2)连接PC、PD,如图,由于点P在直线y=x+上;
设P(x,x+)
由△PCA和△PDB面积相等得:××(x+4)=×1×(2﹣x﹣),
解得,x=﹣,
把x=﹣代入得,y=×(﹣)+=,
∴P点坐标是(﹣,).
【点评】考查一次函数、反比例函数图象上点的坐标特征,把点的坐标代入关系式是常用的方法,将点的坐标转化为线段的长,是解决问题的关键.
22.某校开展“阳光体育”活动,决定开设乒乓球、篮球、跑步、跳绳这四种运动项目,学生只能选择其中一种,为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成两张不完整的统计图,请你结合图中的信息解答下列问题:
(1)样本中喜欢篮球项目的人数百分比是20%;其所在扇形统计图中的圆心角的度数是72°;
(2)把条形统计图补画完整并注明人数;
(3)已知该校有1000名学生,根据样本估计全校喜欢乒乓球的人数是多少?
【分析】(1)利用1减去其它各组所占的比例即可求得喜欢篮球的人数百分比,利用百分比乘以360度即可求得扇形的圆心角的度数;
(2)根据喜欢A乒乓球的有44人,占44%即可求得调查的总人数,乘以对应的百分比即可求得喜欢篮球的人数,作出统计图;
(3)总人数1000乘以喜欢乒乓球的人数所占的百分比即可求解.
【解答】解:(1)1﹣44%﹣8%﹣28%=20%,所在扇形统计图中的圆心角的度数是:360×20%=72°,
故答案为:20%,72°;
(2)调查的总人数是:44÷44%=100(人),
则喜欢篮球的人数是:100×20%=20(人),
;
(3)全校喜欢乒乓球的人数是1000×44%=440(人).
答:根据样本估计全校喜欢乒乓球的人数是440人.
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;
扇形统计图直接反映部分占总体的百分比大小.
23.某建设工程队计划每小时挖掘土540方,现决定租用甲、乙两种型号的挖掘机来完成这
项工作,已知一台甲型挖掘机与一台乙型挖掘机每小时共挖土140方,5台甲型挖掘机与3台乙型挖掘机恰好能完成每小时的挖掘量.
(1)求甲、乙两种型号的挖掘机每小时各挖土多少方?
(2)若租用一台甲型挖掘机每小时100元,租用一台乙型挖掘机每小时120元,且每小时支付的总租金不超过850元,又恰好完成每小时的挖掘量,请设计该工程队的租用方案.
【分析】(1)设甲型挖掘机每小时挖土x方,乙型挖掘机每小时挖土y方,根据“一台甲型挖掘机与一台乙型挖掘机每小时共挖土140方,5台甲型挖掘机与3台乙型挖掘机每小时共挖土540方”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用m台甲型挖掘机、n台乙型挖掘机,根据租用的挖掘机每小时挖掘540方,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可得出各租用方案,求出各挖掘方案所需费用,将其与850元比较后即可得出结论.
【解答】解:(1)设甲型挖掘机每小时挖土x方,乙型挖掘机每小时挖土y方,
依题意,得:,
解得:.
答:甲型挖掘机每小时挖土60方,乙型挖掘机每小时挖土80方.
(2)设租用m台甲型挖掘机、n台乙型挖掘机,
依题意得:60m+80n=540,
化简得:3m+4n=27,
∴m=9﹣n.
∵m、n均为正整数,
∴或.
当m=5、n=3时,支付租金:100×5+120×3=860(元),
∵860>850,
∴此租车方案不符合题意;
当m=1、n=6时,支付租金:100×1+120×6=820(元),
∵820<850,
∴此租车方案符合题意.
答:该工程队的租用方案为租1台甲型挖掘机和6台乙型挖掘机.
【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.24.如图,已知直线P A交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过C作CD⊥P A,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若CD=2AD,⊙O的直径为20,求线段AC、AB的长.
【分析】(1)欲证明CD为⊙O的切线,只要证明∠OCD=90°即可.
(2)作OF⊥AB于F,设AD=x,则OF=CD=2x,在Rt△AOF中利用勾股定理列出方程即可解决问题.
【解答】证明:(1)连接OC.
∵点C在⊙O上,OA=OC,
∴∠OCA=∠OAC,
∵CD⊥P A,
∴∠CDA=90°,
∴∠CAD=∠DCA=90°,
∵AC平分∠P AE,
∴∠DAC=∠CAO,
∴∠DCO=∠DCA+∠ACO=∠DCA+∠DAC=90°,
∴CD是⊙O切线.
(2)作OF⊥AB于F,
∴∠OCD=∠CDF=∠OFD=90°,
∴四边形CDFO是矩形,
∴OC=FD,OF=CD,
∵CD=2AD,设AD=x,则OF=CD=2x,
∵DF=OC=10,
∴AF=10﹣x,
在Rt△AOF中,AF2+OF2=OA2,
∴(10﹣x)2+(2x)2=102,
解得x=4或0(舍弃),
∴AD=4,AF=6,AC=4,
∵OF⊥AB,
∴AB=2AF=12.
【点评】本题考查切线的判定,矩形的判定和性质、垂径定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.
25.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求该抛物线的表达式;
(2)点E是线段BC上方的抛物线上一个动点,求△BEC的面积的最大值;
(3)点P是抛物线的对称轴上一个动点,当以A、P、C为顶点的三角形是直角三角形时,求出点P的坐标.
【分析】(1)将点A、B的坐标代入函数解析式,列出方程组,通过解方程组求得a、b 的值即可;利用配方法将函数解析式转化为顶点式,即可得到点M的坐标;
(2)利用待定系数法确定直线BC解析式,由函数图象上点的坐标特征求得点E、F的坐标,然后根据两点间的距离公式求得EF长度,结合三角形的面积公式列出函数式,根据二次函数最值的求法求得点E的横坐标,易得其纵坐标,则点E的坐标迎刃而解了;(3)需要分类讨论:点A、P、C分别为直角顶点,利用勾股定理求得答案.
【解答】解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),
∴,
解得
∴y=﹣x2+2x+3=﹣(x﹣1)2+4;
(2)如图,作EF∥y轴交BC于点F,记△BEC的面积为S,
∵B(3,0),C(0,3),
∴直线BC解析式为:y=﹣x+3.
设E(m,﹣m2+2m+3),则F(m,﹣m+3).
∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m.
∴
当时,
此时,点E的坐标是
(3)设P(1,n),A(﹣1,0)、C(0,3),
∴AC2=10,AP2=4+n2,CP2=1+(n﹣3)2=n2﹣6n+10
①当AC⊥AP时,AC2+AP2=CP2,
即10+4+n2=n2﹣6n+10.
解得;
②当AC⊥CP时,AC2+CP2=AP2,
即10+n2﹣6n+10=4+n2,
解得;
③当AP⊥CP时,AP2+CP2=AC2,
即4+n2+n2﹣6n+10=10.
解得n=1或2.
综上所述,符合条件的点P的坐标是或或(1,1)或(1,2),
【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
26.如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿CB方向平移得到的,连接AE,AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,并证明你的结论;
(2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE 于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,
求出四边形PQED的面积;
②当线段BP的长为何值时,以点P、Q、R为顶点的三角形与△BOC相似?
【分析】(1)四边形ABCE是菱形.证明:∵△ECD是△ABC沿BC方向平移得到的,∴EC∥AB,EC=AB.∴四边形ABCE是平行四边形.又∵AB=BC,∴四边形ABCE是菱形.
(2)①由菱形的对称性知,△PBO≌△QEO,可得S△PBO=S△QEO,由△ECD是由△ABC 平移得到的,可得ED∥AC,ED=AC=6.又∵BE⊥AC,∴BE⊥ED,可得S四边形PQED。