几种常见函数的导数

合集下载

几种常见函数的导数

几种常见函数的导数

§ 3.2 几种常见函数的导数课时安排1课时从容说课本节依次要讲述函数y =C (常量函数),y =x n (n ∈Q ),y =sin x ,y =cos x 的导数公式,这些公式都是由导数的定义导出的,所以要强调导数定义在解题中的作用.(1)关于公式(x n )′=nx n -1(n ∈Q ),这个公式的证明比较复杂,教科书中只给了n ∈N *情况下的证明.实际上,这个公式对于n ∈R 都成立.在n ∈N *的情况下证明公式,一定要让学生自主去探索,特别是xx x x x x f x x f nn ∆-∆+=∆-∆+)()()(要运用二项式定理展开后再证明,化为12211)(---∆++∆⋅+n n n n n n n x C x x C x C ,当Δx →0时,其极限为11-n n x C 即nx n -1.在讲完这个公式后教师可以因势利导,让学生利用定义或这个公式求y =(x -a)n 的导数,学生一定会模仿上述方法用定义求解,这是十分可贵的.也有的学生要利用二项式定理先将(x -a)n 展开,然后求导,即利用(x n )′=nx n -1求导.y =(x -a )n =n n n n n n n n n n a C a x C a x C x C )1(222110-⋅+-+-=-- ,1112110)1()1(------++-⋅-='n n n n n n n n a C a x n C x nC y ,利用11--=k n k n nC kC 将其合并成二项式定理的形式.当然有这种解法的,应该提出表场,激励学生大胆创新,同时也要提出这要运用导数的和差运算法则,并告诉学生这是2003年高考题.(2)运用定义证明公式(sin x )′=cos x ,(cos x )′=-sin x ,要用到极限1sin lim0=→∆xx x ,根据学生的情况可以补充证明.第五课时课 题§ 3.2 几种常见函数的导数教学目标一、教学知识点1.公式1 C ′=0(C 为常数)2.公式2 (x n )′=nx n -1(n ∈Q )3.公式3 (sin x )′=cos x4.公式4 (cos x )′=-sin x5.变化率二、能力训练要求1.掌握四个公式,理解公式的证明过程.2.学会利用公式,求一些函数的导数.3.理解变化率的概念,解决一些物理上的简单问题.三、德育渗透目标1.培养学生的计算能力.2.培养学生的应用能力.3.培养学生自学的能力.教学重点四种常见函数的导数:C ′=0(C 为常数),(x n )′=nx n -1(x ∈Q ),(sin x )′=cos x ,(cos x )′=-sin x .教学难点四种常见函数的导数的内容,以及证明的过程,这些公式是由导数定义导出的.教学方法建构主义式让学生自己根据导数的定义来推导公式1、公式2、公式3、公式4,公式2中先证n ∈N *的情况.教学过程Ⅰ.课题导入[师]我们上一节课学习了导数的概念,导数的几何意义.我们是用极限来定义函数的导数的,我们这节课来求几种常见函数的导数.以后可以把它们当作直接的结论来用.Ⅱ.讲授新课[师]请几位同学上来用导数的定义求函数的导数.1.y =C (C 是常数),求y ′.[学生板演]解:y =f (x )=C ,∴Δy =f (x +Δx )-f (x )=C -C =0,xy ∆∆=0. y ′=C ′=xy x ∆∆→∆0lim =0,∴y ′=0. 2.y =x n (n ∈N *),求y ′.[学生板演]解:y =f (x )=x n ,∴Δy =f (x +Δx )-f (x )=(x +Δx )n -x nn n n n n n n n n x x C x x C x x C x -∆⋅++∆+∆+=--)()(22211n n n n n n n x C x x C x x C )()(22211∆⋅++∆+∆=--12211)(---∆++∆+=∆∆n n n n n n n x C x x C x C xy ∴y ′=(x n )′1111221100)(lim lim -----→∆→∆==∆++∆+=∆∆=n n n n n n n n n n x x nx x C x C x x C x C x y . ∴y ′=nx n -1.3.y =x -n (n ∈N *),求y ′.[学生板演]解:Δy =(x +Δx )-n -x -nnn n n n n n n n n n n n n n n n n nn nn nn x x x x C x x C x C x y x x x x C x x C x C x x x x x x x x x )()()()()()()(1)(11221122211∆+∆++∆+-=∆∆∆+∆++∆+-=∆+∆+-=-∆+=----- ∴xy y x ∆∆='→∆0lim n n n n n n n n n n n n n x x x xC xx x x C x x C x C ⋅-=∆+∆++∆+-=----→∆11122110])()([lim=-nx -n -1.∴y ′=-nx -n -1.※4.y =sin x ,求y ′.(叫两位同学做)[学生板演][生甲]解:Δy =sin(x +Δx )-sin x=sin x cos Δx +cos x sin Δx -sin x ,xx x x x x x y ∆-∆+∆=∆∆sin sin cos cos sin , ∴xy y x ∆∆='→∆0lim x x x x x xx x x x x xx x x x xxx x x x x x x x x cos 4)2(2sin )sin 2(lim sin cos lim )2sin 2(sin lim sin cos )1(cos sin lim sin sin cos cos sin lim22002000+∆⋅∆∆⋅-=∆∆+∆∆-=∆∆+-∆=∆-∆+∆=→∆→∆→∆→∆→∆ =-2sin x ·1·0+cos x =cos x .∴y ′=cos x .[生乙]Δy =sin(x +Δx )-sin x=2cos(x +2x ∆)sin 2x ∆,xx y ∆=∆∆22, ∴xy y x ∆∆='→∆0lim 22sin lim )2cos(lim 22sin )2cos(lim 2sin )2cos(2lim 0000xx x x xx x x xx x x x x x x ∆∆∆+=∆∆∆+=∆∆∆+=→∆→∆→∆→∆ =cos x .∴y ′=cos x .(如果叫两位同学上去做没有得到两种方法,老师可把另一种方法介绍一下)※5.y =cos x ,求y ′.(也叫两位同学一起做)[生甲]解:Δy =cos(x +Δx )-cos x=cos x cos Δx -sin x sin Δx -cos x ,x x x x x x x yy x x ∆-∆-∆=∆∆='→∆→∆cos sin sin cos cos lim lim00 1sin 4)2(2sin )cos 2(lim sin sin lim )2sin 2(cos lim sin sin )1(cos cos lim2200200⋅-∆⋅∆∆-=∆∆-∆∆-=∆∆--∆=→∆→∆→∆→∆x x x x x xx x x x x xxx x x x x x x =-2cos x ·1·0-sin x =-sin x ,∴y ′=-sin x .[生乙]解:x x x x x ∆-∆+→∆cos )cos(lim22sin )2sin(lim 22lim 00xx x x xx x ∆∆∆+-=∆=→∆→∆ =-sin x ,∴y ′=-sin x .[师]由4、5两道题我们可以比较一下,第二种方法比较简便,所以求三角函数的极限时,选择哪一种公式进行三角函数的转化,要根据具体情况而定,选择好的公式,可以简化计算过程.上面的第2题和第3题中,只证明了n ∈N *的情况,实际上它对于全体实数都成立.我们把上面四种函数的导数作为四个公式,以后可以直接用.[板书](一)公式1 C ′=0(C 是常数)公式2 (x n )′=nx n -1(n ∈R)公式3 (sin x )′=cos x公式4 (cos x )′=-sin x(二)课本例题[师]下面我们来看几个函数的导数,运用公式求:(1)(x 3)′;(2)(21x )′;(3)(x )′. [学生板演](1)解:(x 3)′=3x 3-1=3x 2.(2)解:3122222)()1(----=-='='x x x x. (3)解:xx x x x 212121)()(2112121==='='--. (还可以叫两个同学同做一道题,一个用极限即定义来求,一个用公式来求,比较一下)(三)变化率举例[师]我们知道在物理上求瞬时速度时,可以用求导的方法来求.知道运动方程s=s(t ),瞬时速度v =s′(t ).[板书]物体按s=s(t )作直线运动,则物体在时刻t 0的瞬时速度v 0=s′(t 0).v 0=s′(t 0)叫做位移s 在时刻t 0对时间t 的变化率.[师]我们引入了变化率的概念,函数f (x )在点x 0的导数也可以叫做函数f (x )在点x 0对自变量x 的变化率.很多物理量都是用变化率定义的,除了瞬时速度外,还有什么?[板书]函数y =f (x )在点x 0的导数叫做函数f (x )在点x 0对自变量x 的变化率.[生]例如角速度、电流等.[师]它们是分别对哪些量的变化率呢?[生]角速度是角度(作为时间的函数)对时间的变化率;电流是电量(作为时间的函数)对时间的变化率.[师]下面来看两道例题.[例1]已知物质所吸收的热量Q =Q (T )(热量Q 的单位是J ,绝对温度T 的单位是K),求热量对温度的变化率C (即热容量).[学生分析]由变化率的含义,热量是温度的函数,所以热量对温度的变化率就是热量函数Q (T )对T 求导.解:C =Q ′(T ),即热容量为Q ′(T )J/K.[师]单位质量物质的热容量叫做比热容,那么上例中,如果物质的质量是v kg,那么比热容怎么表示?[生]比热容是v1Q ′(T ) J/(kg·K).图3-9[例2]如图3-9,质点P 在半径为10 cm 的圆上逆时针作匀角速运动,角速度为1 rad/s ,设A 为起始点,求时刻t 时,点P 在y 轴上的射影点M 的速度.[学生分析]要求时刻t 时M 点的速度,首先要求出在y 轴的运动方程,是关于t 的函数,再对t 求导,就能得到M 点的速度了.解:时刻t 时,∵角速度为1 rad/s,∴∠POA=1·t =t rad.∴∠MPO =∠POA =t rad.∴OM =OP ·sin ∠MPO =10·sin t .∴点M 的运动方程为y =10sin t .∴v =y ′=(10sin t )′=10cos t ,即时刻t 时,点P 在y 轴上的射影点M 的速度为10cos t cm/s.[师]我们学习了有关导数的知识,对于一些物理问题,就可以利用导数知识轻而易举地解决了.求导时,系数可提出来.Ⅲ.课堂练习1.(口答)求下列函数的导数.(1)y =x 5;(2)y =x 6;(3)x =sin t ;(4)u =cos φ. [生](1)y ′=(x 5)′=5x 4.[生](2)y ′=(x 6)′=6x 5.[生](3)x ′=(sin t )′=cos t .[生](4)u ′=(cos φ)′=-sin φ.2.求下列函数的导数.(1)31xy =;(2)3x y =. (1)解:y ′=(31x )′=(x -3)′=-3x -3-1=-3x -4. (2)解:321313133131)()(--==''='x x x x y . 3.质点的运动方程是s=t 3(s 单位:m ,t 单位:s),求质点在t =3时的速度.解:v =s′=(t 3)′=3t 3-1=3t 2,当t =3时,v =3×32=27(m/s),∴质点在t =3时的速度为27 m/s.4.物体自由落体的运动方程是s =s (t )=221gt (s 单位:m ,t 单位:s,g =9.8 m/s 2),求t =3时的速度.解:gt t g gt t s v =⋅==='=-122221)21()(, 当t =3时,v =g·3=9.8×3=29.4(m/s),∴t =3时的速度为29.4 m/s.[师]该题也用到求导时系数可提出来,根据[Cf (x )]′=Cf ′(x )(C 是常数).这由极限的知识可以证得.xx f x x f C x x Cf x x Cf x Cf x x ∆-∆+=∆-∆+='→∆→∆)()(lim )()(lim ])([00=Cf ′(x ). 5.求曲线y =x 4在点P (2,16)处的切线方程.解:y ′=(x 4)′=4x 4-1=4x 3.∴y ′|x =2=4×23=32.∴点P (2,16)处的切线方程为y -16=32(x -2),即32x -y -48=0.Ⅳ.课时小结[学生总结]这节课主要学习了四个公式(①C ′=0(C 是常数),②(x n )′=nx n -1(n ∈R),③(sin x )′=cos x ,④(cos x )′=-sin x )以及变化率的概念:v 0=s ′(t 0)叫做位移s 在时刻t 0对时间t 的变化率,函数y =f (x )在点x 0的导数f ′(x 0)叫做函数f (x )在点x 0对自变量x 的变化率.Ⅴ.课后作业(一)课本P 116习题3.2 2,4,5.(二)1.预习内容:课本P 118~119和(或差)、积的导数.2.预习提纲:(1)和(或差)的导数公式、证明过程.(2)积的导数 公式、证明过程.(3)预习例1、例2、例3,如何运用法则1、法则2.板书设计§ 3.2 几种常见函数的导数公式1C ′=0(C 为常数)公式2(x n )′=nx n -1(n ∈R)公式3(sin x )′=cos x公式4(cos x )′=-sin xv 0=s ′(t 0)是位移s 在t 0对时间t 的变化率.函数y =f (x )在点x 0的导数叫做函数f (x )在点x 0对自变量x 的变化率.1.y =C (C 是常数),求y ′.2.y =x n (n ∈N *),求y ′.3.y =x -n (n ∈N *),求y ′.4.y =sin x ,求y ′.(两种方法)5.y =cos x ,求y ′.(两种方法) 课本例题(1)(x 3)′;(2)(21x)′;(3)(x )′. 例1.已知物质所吸收的热量Q =Q (T )(Q 单位:J ,T 单位:K),求热量对温度的变化率C (热容量).例2.质点P 在半径为10 cm 的圆上逆时针作匀角速运动,角速度为1 rad/s ,设A 为起始点,求时刻t 时,点P 在y 轴上的射影点M 的速度.课堂练习1.(口答)(1)(x 5)′;(2)(x 6)′;(3)(sin t )′;(4)(cos φ)′.2.(1) )1(3'x;(2)(3x )′. 3.质点运动方程是s=t 3,求t =3时的速度.4.221gt s =,求t =3时的速度. 5.求曲线y =x 4在P (2,16)处的切线方程.课后作业。

求导数的方法

求导数的方法

求导数的方法(1)求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0)②求平均变化率③取极限,得导数。

(2)几种常见函数的导数公式:①C'=0(C为常数);②(x^n)'=nx^(n-1) (n∈Q);③(sinx)'=cosx;④(cosx)'=-sinx;⑤(e^x)'=e^x;⑥(a^x)'=a^xIna (ln为自然对数)⑦(Inx)'=1/x(ln为自然对数)(3)导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(u/v)'=(u'v-uv')/ v^2(4)复合函数的导数复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。

导数是微积分的一个重要的支柱!导数公式及证明[编辑本段] 这里将列举几个基本的函数的导数以及它们的推导过程:1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)y=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
如果上式中f(x)=c,则公式变为:
[cg ( x)] cg ( x)
法则3:两个函数的商的导数,等于第一个函数的导数乘第二个 函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即:
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
3
y 3x cos x sin x
2
x x 2 (1) (2) y 2 sin cos 2 x 1 2 2
y cos x 4 x
(3) y ( x 1)(x 2)
y 2 x 3
例3:求下列函数的导数:
1 2 (1) y 2 ; x x x (2) y ; 2 1 x (3) y tan x;
例2 根据基本初等函数的导数公式和导数
运算法则,求函数y=x3-2x+3的导数。

几种常见函数的导数

几种常见函数的导数

§ 3.2 几种常见函数的导数课时安排1课时从容说课本节依次要讲述函数y =C (常量函数),y =x n (n ∈Q ),y =sin x ,y =cos x 的导数公式,这些公式都是由导数的定义导出的,所以要强调导数定义在解题中的作用.(1)关于公式(x n )′=nx n -1(n ∈Q ),这个公式的证明比较复杂,教科书中只给了n ∈N *情况下的证明.实际上,这个公式对于n ∈R 都成立.在n ∈N *的情况下证明公式,一定要让学生自主去探索,特别是xx x x x x f x x f nn ∆-∆+=∆-∆+)()()(要运用二项式定理展开后再证明,化为12211)(---∆++∆⋅+n n n n n n n x C x x C x C ,当Δx →0时,其极限为11-n n x C 即nx n -1.在讲完这个公式后教师可以因势利导,让学生利用定义或这个公式求y =(x -a)n 的导数,学生一定会模仿上述方法用定义求解,这是十分可贵的.也有的学生要利用二项式定理先将(x -a)n 展开,然后求导,即利用(x n )′=nx n -1求导.y =(x -a )n =n n n n n n n n n n a C a x C a x C x C )1(222110-⋅+-+-=-- ,1112110)1()1(------++-⋅-='n n n n n n n n a C a x n C x nC y ,利用11--=k n k n nC kC 将其合并成二项式定理的形式.当然有这种解法的,应该提出表场,激励学生大胆创新,同时也要提出这要运用导数的和差运算法则,并告诉学生这是2003年高考题.(2)运用定义证明公式(sin x )′=cos x ,(cos x )′=-sin x ,要用到极限1sin lim0=→∆xx x ,根据学生的情况可以补充证明.第五课时课 题 § 3.2 几种常见函数的导数教学目标一、教学知识点1.公式1 C ′=0(C 为常数)2.公式2 (x n )′=nx n -1(n ∈Q )3.公式3 (sin x )′=cos x4.公式4 (cos x )′=-sin x5.变化率二、能力训练要求1.掌握四个公式,理解公式的证明过程.2.学会利用公式,求一些函数的导数.3.理解变化率的概念,解决一些物理上的简单问题.三、德育渗透目标1.培养学生的计算能力.2.培养学生的应用能力.3.培养学生自学的能力.教学重点四种常见函数的导数:C ′=0(C 为常数),(x n )′=nx n -1(x ∈Q ),(sin x )′=cos x ,(cos x )′=-sin x .教学难点四种常见函数的导数的内容,以及证明的过程,这些公式是由导数定义导出的.教学方法建构主义式让学生自己根据导数的定义来推导公式1、公式2、公式3、公式4,公式2中先证n ∈N *的情况.教学过程Ⅰ.课题导入[师]我们上一节课学习了导数的概念,导数的几何意义.我们是用极限来定义函数的导数的,我们这节课来求几种常见函数的导数.以后可以把它们当作直接的结论来用.Ⅱ.讲授新课[师]请几位同学上来用导数的定义求函数的导数.1.y =C (C 是常数),求y ′.[学生板演]解:y =f (x )=C ,Δy =f (x +Δx )-f (x )=C -C =0,xy ∆∆=0. y ′=C ′=xy x ∆∆→∆0lim =0,∴y ′=0. 2.y =x n (n ∈N *),求y ′.[学生板演]解:y =f (x )=x n ,∴Δy =f (x +Δx )-f (x )=(x +Δx )n -x nn n n n n n n n n x x C x x C x x C x -∆⋅++∆+∆+=--)()(22211n n n n n n n x C x x C x x C )()(22211∆⋅++∆+∆=--12211)(---∆++∆+=∆∆n n n n n n n x C x x C x C xy ∴y ′=(x n )′1111221100)(lim lim -----→∆→∆==∆++∆+=∆∆=n n n n n n n n n n x x nx x C x C x x C x C x y . ∴y ′=nx n -1.3.y =x -n (n ∈N *),求y ′.[学生板演]解:Δy =(x +Δx )-n -x -nn n n n n n n n n nn nn n n n n n nn nn nn x x x x C x x C x C x y x x x x C x x C x C x x x x x x x x x )()()()()()()(1)(11221122211∆+∆++∆+-=∆∆∆+∆++∆+-=∆+∆+-=-∆+=----- ∴xy y x ∆∆='→∆0lim n n n n n n n n n n n n n x x x xC xx x x C x x C x C ⋅-=∆+∆++∆+-=----→∆11122110])()([lim=-nx -n -1.∴y ′=-nx -n -1.※4.y =sin x ,求y ′.(叫两位同学做)[学生板演][生甲]解:Δy =sin(x +Δx )-sin x=sin x cos Δx +cos x sin Δx -sin x ,xx x x x x x y ∆-∆+∆=∆∆sin sin cos cos sin , ∴xy y x ∆∆='→∆0lim x x x x x xx x x x x xx x x x xxx x x x x x x x x cos 4)2(2sin )sin 2(lim sin cos lim )2sin 2(sin lim sin cos )1(cos sin lim sin sin cos cos sin lim22002000+∆⋅∆∆⋅-=∆∆+∆∆-=∆∆+-∆=∆-∆+∆=→∆→∆→∆→∆→∆ =-2sin x ·1·0+cos x =cos x .∴y ′=cos x .[生乙]Δy =sin(x +Δx )-sin x=2cos(x +2x ∆)sin 2x ∆,xx y ∆=∆∆22, ∴xy y x ∆∆='→∆0lim 22sin lim )2cos(lim 22sin )2cos(lim 2sin )2cos(2lim 0000xx x x xx x x xx x x x x x x ∆∆∆+=∆∆∆+=∆∆∆+=→∆→∆→∆→∆ =cos x .∴y ′=cos x .(如果叫两位同学上去做没有得到两种方法,老师可把另一种方法介绍一下)※5.y =cos x ,求y ′.(也叫两位同学一起做)[生甲]解:Δy =cos(x +Δx )-cos x=cos x cos Δx -sin x sin Δx -cos x ,x x x x x x x yy x x ∆-∆-∆=∆∆='→∆→∆cos sin sin cos cos lim lim00 1sin 4)2(2sin )cos 2(lim sin sin lim )2sin 2(cos lim sin sin )1(cos cos lim2200200⋅-∆⋅∆∆-=∆∆-∆∆-=∆∆--∆=→∆→∆→∆→∆x x x x x xx x x x x xxx x x x x x x =-2cos x ·1·0-sin x =-sin x ,∴y ′=-sin x . [生乙]解:x x x x x ∆-∆+→∆cos )cos(lim22sin )2sin(lim 22lim 00xx x x xx x ∆∆∆+-=∆=→∆→∆ =-sin x ,∴y ′=-sin x .[师]由4、5两道题我们可以比较一下,第二种方法比较简便,所以求三角函数的极限时,选择哪一种公式进行三角函数的转化,要根据具体情况而定,选择好的公式,可以简化计算过程.上面的第2题和第3题中,只证明了n ∈N *的情况,实际上它对于全体实数都成立.我们把上面四种函数的导数作为四个公式,以后可以直接用.[板书](一)公式1 C ′=0(C 是常数)公式2 (x n )′=nx n -1(n ∈R)公式3 (sin x )′=cos x公式4 (cos x )′=-sin x(二)课本例题[师]下面我们来看几个函数的导数,运用公式求:(1)(x 3)′;(2)(21x )′;(3)(x )′. [学生板演](1)解:(x 3)′=3x 3-1=3x 2.(2)解:3122222)()1(----=-='='x x x x. (3)解:xx x x x 212121)()(2112121==='='--. (还可以叫两个同学同做一道题,一个用极限即定义来求,一个用公式来求,比较一下)(三)变化率举例[师]我们知道在物理上求瞬时速度时,可以用求导的方法来求.知道运动方程s=s(t ),瞬时速度v =s′(t ).[板书]物体按s=s(t )作直线运动,则物体在时刻t 0的瞬时速度v 0=s′(t 0).v 0=s′(t 0)叫做位移s 在时刻t 0对时间t 的变化率.[师]我们引入了变化率的概念,函数f (x )在点x 0的导数也可以叫做函数f (x )在点x 0对自变量x 的变化率.很多物理量都是用变化率定义的,除了瞬时速度外,还有什么?[板书]函数y =f (x )在点x 0的导数叫做函数f (x )在点x 0对自变量x 的变化率.[生]例如角速度、电流等.[师]它们是分别对哪些量的变化率呢?[生]角速度是角度(作为时间的函数)对时间的变化率;电流是电量(作为时间的函数)对时间的变化率.[师]下面来看两道例题.[例1]已知物质所吸收的热量Q =Q (T )(热量Q 的单位是J ,绝对温度T 的单位是K),求热量对温度的变化率C (即热容量).[学生分析]由变化率的含义,热量是温度的函数,所以热量对温度的变化率就是热量函数Q (T )对T 求导.解:C =Q ′(T ),即热容量为Q ′(T )J/K.[师]单位质量物质的热容量叫做比热容,那么上例中,如果物质的质量是v kg,那么比热容怎么表示? [生]比热容是v1Q ′(T ) J/(kg·K).图3-9[例2]如图3-9,质点P 在半径为10 cm 的圆上逆时针作匀角速运动,角速度为1 rad/s ,设A 为起始点,求时刻t 时,点P 在y 轴上的射影点M 的速度.[学生分析]要求时刻t 时M 点的速度,首先要求出在y 轴的运动方程,是关于t 的函数,再对t 求导,就能得到M 点的速度了.解:时刻t 时,∵角速度为1 rad/s,∴∠POA=1·t =t rad.∴∠MPO =∠POA =t rad.∴OM =OP ·sin ∠MPO =10·sin t .∴点M 的运动方程为y =10sin t .∴v =y ′=(10sin t )′=10cos t ,即时刻t 时,点P 在y 轴上的射影点M 的速度为10cos t cm/s.[师]我们学习了有关导数的知识,对于一些物理问题,就可以利用导数知识轻而易举地解决了.求导时,系数可提出来.Ⅲ.课堂练习1.(口答)求下列函数的导数.(1)y =x 5;(2)y =x 6;(3)x =sin t ;(4)u =cos φ.[生](1)y ′=(x 5)′=5x 4.[生](2)y ′=(x 6)′=6x 5.[生](3)x ′=(sin t )′=cos t .[生](4)u ′=(cos φ)′=-sin φ.2.求下列函数的导数. (1)31xy =;(2)3x y =. (1)解:y ′=(31x )′=(x -3)′=-3x -3-1=-3x -4. (2)解:321313133131)()(--==''='x x x x y . 3.质点的运动方程是s=t 3(s 单位:m ,t 单位:s),求质点在t =3时的速度.解:v =s′=(t 3)′=3t 3-1=3t 2,当t =3时,v =3×32=27(m/s),∴质点在t =3时的速度为27 m/s.4.物体自由落体的运动方程是s =s (t )=221gt (s 单位:m ,t 单位:s,g =9.8 m/s 2),求t =3时的速度. 解:gt t g gt t s v =⋅==='=-122221)21()(, 当t =3时,v =g·3=9.8×3=29.4(m/s),∴t =3时的速度为29.4 m/s.[师]该题也用到求导时系数可提出来,根据[Cf (x )]′=Cf ′(x )(C 是常数).这由极限的知识可以证得.xx f x x f C x x Cf x x Cf x Cf x x ∆-∆+=∆-∆+='→∆→∆)()(lim )()(lim ])([00=Cf ′(x ). 5.求曲线y =x 4在点P (2,16)处的切线方程.解:y ′=(x 4)′=4x 4-1=4x 3.∴y ′|x =2=4×23=32.∴点P (2,16)处的切线方程为y -16=32(x -2),即32x -y -48=0.Ⅳ.课时小结[学生总结]这节课主要学习了四个公式(①C ′=0(C 是常数),②(x n )′=nx n -1(n ∈R),③(sin x )′=cos x ,④(cos x )′=-sin x )以及变化率的概念:v 0=s ′(t 0)叫做位移s 在时刻t 0对时间t 的变化率,函数y =f (x )在点x 0的导数f ′(x 0)叫做函数f (x )在点x 0对自变量x 的变化率.Ⅴ.课后作业(一)课本P 116习题3.2 2,4,5.(二)1.预习内容:课本P 118~119和(或差)、积的导数.2.预习提纲:(1)和(或差)的导数公式、证明过程.(2)积的导数 公式、证明过程.(3)预习例1、例2、例3,如何运用法则1、法则2.板书设计 § 3.2 几种常见函数的导数公式1C ′=0(C 为常数)公式2(x n )′=nx n -1(n ∈R)公式3(sin x )′=cos x公式4(cos x )′=-sin xv 0=s ′(t 0)是位移s 在t 0对时间t 的变化率.函数y =f (x )在点x 0的导数叫做函数f (x )在点x 0对自变量x 的变化率.1.y =C (C 是常数),求y ′.2.y =x n (n ∈N *),求y ′.3.y =x -n (n ∈N *),求y ′.4.y =sin x ,求y ′.(两种方法)5.y =cos x ,求y ′.(两种方法)课本例题(1)(x 3)′;(2)(21x )′;(3)(x )′. 例1.已知物质所吸收的热量Q =Q (T )(Q 单位:J ,T 单位:K),求热量对温度的变化率C (热容量).例2.质点P 在半径为10 cm 的圆上逆时针作匀角速运动,角速度为1 rad/s ,设A 为起始点,求时刻t 时,点P 在y 轴上的射影点M 的速度.课堂练习1.(口答)(1)(x 5)′;(2)(x 6)′;(3)(sin t )′;(4)(cos φ)′.2.(1) )1(3'x ;(2)(3x )′.3.质点运动方程是s=t 3,求t =3时的速度.4.221gt s =,求t =3时的速度. 5.求曲线y =x 4在P (2,16)处的切线方程.课后作业。

基本导数公式 → 基本微分公式

基本导数公式 → 基本微分公式

基本导数公式→ 基本微分公式本文档旨在介绍基本导数公式和基本微分公式的概念和应用。

这些公式是微积分中的基本概念,对于理解和解决各种数学和科学问题具有重要意义。

基本导数公式导数是函数概念的一部分,它描述了函数在某一点的变化率。

基本导数公式是常见函数的导数表达式,包括以下几个常见函数类型:1.常数导数公式:如果函数 f(x) 等于常数 c,则其导数 f'(x) 等于零。

f(x) = c,则 f'(x) = 0.2.幂函数导数公式:对于幂函数 f(x) = x^n,其中 n 是任意实数,其导数 f'(x) 等于 n * x^(n-1)。

f(x) = x^n,则 f'(x) = n * x^(n-1).3.指数函数导数公式:指数函数 f(x) = e^x 的导数 f'(x) 等于 e^x。

f(x) = e^x,则 f'(x) = e^x.4.对数函数导数公式:对数函数 f(x) = log(a。

x) 的导数 f'(x) 等于 1 / (x * ln(a)),其中 a 是对数的底数。

f(x) = log(a。

x),则 f'(x) = 1 / (x * ln(a)).5.三角函数导数公式:三角函数包括正弦函数、余弦函数和正切函数。

它们的导数公式如下:正弦函数:f(x) = sin(x) 的导数 f'(x) = cos(x).余弦函数:f(x) = cos(x) 的导数 f'(x) = -sin(x).正切函数:f(x) = tan(x) 的导数 f'(x) = sec^2(x)。

以上是常见函数的基本导数公式,它们可以帮助我们计算各种函数的导数。

基本微分公式微分是导数概念的一部分,它描述了函数在某一点的局部线性逼近。

基本微分公式是微分运算中常用的表达式,对于求解微分方程和优化问题非常重要。

常见的基本微分公式包括以下几个:1.常数微分公式:如果函数 f(x) 等于常数 c,则其微分 df(x) 等于零。

几种常见函数的导数

几种常见函数的导数

∴∠MPO = ∠POA = t rad;
∴ OM = OP sin ∠MPO = 10 sin t ;
故点M的运动方程为 故点 的运动方程为:y=10sint. 的运动方程为
O
A x
∴ v = y′ = (10 sin t )′ = 10 cos t .
故时刻t时 点 在 轴上的射影点 的速度为10cost 轴上的射影点M的速度为 故时刻 时,点P在 y轴上的射影点 的速度为 cm/s.
如图,质点 在半径为10cm的圆上逆时针做匀角速 例2:如图 质点 在半径为 如图 质点P在半径为 的圆上逆时针做匀角速 运动,角速度 角速度1rad/s,设A为起始点 求时刻 时,点P在 为起始点,求时刻 运动 角速度 设 为起始点 求时刻t时 点 在 y y轴上的射影点 的速度 轴上的射影点M的速度 轴上的射影点 的速度. 时刻t时 因为角速度 因为角速度1rad/s, 解:时刻 时,因为角速度 时刻 M P 所以 ∠POA = 1 t = t rad .
2 arctan 2 ___________.
π
2 , )处的切线的倾斜角为 处的切线的倾斜角为 4 2
1 在点P(1,1)处的切线与直线 平行且 处的切线与直线m平行且 例4:已知曲线 y = x 3 在点 已知曲线 处的切线与直线
求直线m的方程 距离等于 10 ,求直线 的方程 求直线 的方程.
求过点P(3,5)且与曲线 且与曲线y=x2相切的直线方程 相切的直线方程. 例6:求过点 求过点 且与曲线 说明:曲线上求在点 处的切线与求过点 的切线有区别. 说明 曲线上求在点P处的切线与求过点 的切线有区别 曲线上求在点 处的切线与求过点P的切线有区别 在点P处的切线 处的切线,点 必为切点 求过点P的切线 必为切点,求过点 的切线,点 在点 处的切线 点P必为切点 求过点 的切线 点P 未必是切点.应注意概念的区别 其求法也有所不同. 应注意概念的区别,其求法也有所不同 未必是切点 应注意概念的区别 其求法也有所不同 设所求切线的切点在A(x0,y0). 解:设所求切线的切点在 设所求切线的切点在 又因为函数y=x2的导数为 y′ = 2x,所以过点 所以过点A(x0,y0)的 又因为函数 的 切线的斜率为 y′ | x = x = 2 x | x = x = 2 x0 .

3.2 几种常见函数的导数

3.2 几种常见函数的导数

2 -1 解析: 解析:∵对于 y=x3,y′=(x3)′= x 3, = ′ ′ 3 直线 x+y+1=0 的斜率为-1, + + = 的斜率为- , 2 2 -1 8 4 ∴令 x 3=1,得 x= ,代入 y=x3得 y= , , = = = 3 27 9 8 4 即切线的切点坐标为( 即切线的切点坐标为 , ), , 27 9 切线方程为: - + = ∴切线方程为:27x-27y+4=0.
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
基础达标
1.下列各式中正确的是( C ) .下列各式中正确的是 (A)(sin a)′=cos a(a 为常数 为常数) ′ (B)(cos x)′=sin x ′ (C)(sin x)′=cos x ′ 1 - - (D)(x 5)′=- x 6 ′ 5
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
3.2 .
几种常见函数的导数
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
首页
上一页
下一页
末页
瞻前顾后
要点突破
典想:
由导数的定义可得下列四种函数的导数公式: 由导数的定义可得下列四种函数的导数公式: 为常数); 1.C′=0(C 为常数 ; . ′ - n 2.(x )′=nxn 1(其中 n∈Q); . ′ 其中 ∈ ; 3.(sin x)′=cos_x; . ′ ; 4.(cos x)′=-sin_x. . ′

几种常见函数导数

几种常见函数导数


(1 ) ]

(6 x

2 )( x 3
1) (3 x 2 ( x 3 1) 2

2 x)3x 2
3x4 4x3 6x 2 ( x 3 1) 2
学而不思则罔●▂●思而不学则殆
专业分享,敬请收藏
10
y x 1 sin x
解: y


x
1

sin x
学而不思则罔●▂●思而不学则殆
专业分享,敬请收藏
8
y2xtanx
解: y (2 x tan x )
2( x tan x )
2[( x ) tan x x (tan x )]
2(tan x x sec 2 x )
2 tan x 2 x sec 2 x
(tan
学而不思则罔●▂●思而不学则殆
专业分享,敬请收藏
6
y x 1 x
解: y ( x 1 )
x
( x ) ( 1 ) x
1
1
( x 2 ) ( x 2 )

1
1 1
x 2 (
1
)x
1 1 2
2
2

1
1
x 2
1
3
x2
2
2
学而不思则罔●▂●思而不学则殆
(1)yx33x1 (3)y(2x21)(x23x4)
3x22x (5)y x31
(2y) x 1 x
(4y) 2xtanx (6y) x1
sinx
学而不思则罔●▂●思而不学则殆
专业分享,敬请收藏
3
切线方程
学而不思则罔●▂●思而不学则殆

3几种常见函数的导数

3几种常见函数的导数

1 例5:求双曲线 y 与抛物线 y x 交点处切线的夹角. x 1 x 1 y 解:联立方程组 , 故交点为( 1, 1 ) . x , 解得 y 1 y x 1 1 1 双曲线 y , y 2 , k1 y | x 1 1, 故 双 曲 线 y x x x 在交点 (1,1)处 的 切 线 斜 率 为 k1 1;
, )处 的 切 线 斜 率 为 , 3 2 2 2 从而过 P点 且 与 切 线 垂 直 的 直 的 线斜率为 ; 3 1 2 所求的直线方程为 y ( x ), 2 3 3 故曲线在点 P(
2 3 即2 x 3 y 0. 3 2
三、例题选讲
注:满足条件的直线称为曲线在P点的法线.
f ( x) nx .
n1
例如: ( x ) 3 x
3
31
1 2 2 2 1 3 3 x ; ( x 2 ) ( x ) 2 x 2 x x 3 ;
2
1 1 1 1 1 1 2 2 ( x ) ( x ) x x ; 2 2 2 x
故切点分别为(1,1)或(5,25). 当切点为(1,1)时,切线的斜率为k1=2x0=2; 当切点为(5,25)时,切线的斜率为k2=2x0=10; 所以所求的切线有两条,方程分别为:y-1=2(x-1)或y25=10(x-5),即y=2x-1或y=10x-25. 练习2:若直线y=3x+1是曲线y=ax3的切线,试求a的值. 解:设直线y=3x+1与曲线y=ax3相切于点P(x0,y0),则有: y0=3x0+1①,y0=ax03②,3ax02=3.③ 由①,②得3x0+1=ax03,由③得ax02=1,代入上式可得: 3x0+1=x0,x0=-1/2. 所以a•(-1/2)3=1,a=4.

《几种常见函数的导数》教案完美版

《几种常见函数的导数》教案完美版

《几种常见函数的导数》教案完美版第一章:导数的基本概念1.1 引入导数的定义解释导数的概念,强调导数表示函数在某点的瞬时变化率。

通过图形和实际例子演示导数的意义。

1.2 导数的几何意义解释导数表示切线的斜率,通过图形展示导数与切线的关系。

强调导数与函数图像的切线有关,而不仅仅是函数值的变化。

1.3 导数的计算法则介绍导数的四则运算法则,包括加减乘除和复合函数的导数。

强调导数的计算法则在求导过程中的应用。

第二章:常数函数和幂函数的导数2.1 常数函数的导数证明常数函数的导数为0,强调常数函数的瞬时变化率为0。

2.2 幂函数的导数引入幂函数的导数公式,解释指数对导数的影响。

通过例子展示不同指数幂函数的导数计算方法。

2.3 指数函数和对数函数的导数引入指数函数的导数公式,解释指数函数的瞬时变化率。

引入对数函数的导数公式,解释对数函数的瞬时变化率。

第三章:三角函数的导数3.1 正弦函数的导数引入正弦函数的导数公式,解释正弦函数的瞬时变化率。

3.2 余弦函数的导数引入余弦函数的导数公式,解释余弦函数的瞬时变化率。

3.3 正切函数的导数引入正切函数的导数公式,解释正切函数的瞬时变化率。

第四章:反三角函数的导数4.1 反正弦函数的导数引入反正弦函数的导数公式,解释反正弦函数的瞬时变化率。

4.2 反余弦函数的导数引入反余弦函数的导数公式,解释反余弦函数的瞬时变化率。

4.3 反正切函数的导数引入反正切函数的导数公式,解释反正切函数的瞬时变化率。

第五章:复合函数的导数5.1 链式法则介绍链式法则,解释复合函数的导数计算方法。

5.2 反函数的导数引入反函数的导数概念,解释反函数的导数与原函数的关系。

5.3 复合函数的导数应用通过例子展示复合函数的导数在实际问题中的应用。

第六章:高阶导数6.1 导数的重复求导解释高阶导数的概念,即函数导数的导数。

演示如何求二阶、三阶等高阶导数。

6.2 求导法则在高阶导数中的应用强调高阶导数求导法则,如链式法则、乘积法则在高阶导数计算中的应用。

高三数学几种常见函数的导数

高三数学几种常见函数的导数

1 4 t 4
练 习
求曲线y=x2在点(1,1)处的切线与x 轴、直线x=2所围城的三角形的面 积。
; 营销手机 ;
接着,他挥出一股申历,要将纪沄国尪转移到手中の绿色珠子之内.鞠言看了看方烙老祖,自是不会阻止.纪沄国尪の情况已是如此,申魂体正在溃散,能够说是必死无疑の境地.现在方烙老祖说有办法延缓纪沄国尪の寿命,鞠言当然想要试一试.当纪沄国尪被转移到绿色珠子之内,方烙老 祖似是轻呼出一口气.“鞠言战申,此物叫做离魂珠,是一件申魂至宝,也算是天然の混元异宝.此物,能帮助修行者提升申魂强度.”方烙老祖对鞠言介绍离魂珠呐件宝物.方烙老祖说得轻松,但当鞠言听其介绍后,便是知道,呐离魂珠の价值,绝对难以想象.“离魂珠内,自有一个空间.纪 沄国尪在离魂珠空间,申魂体应是能暂事稳定.即便仍然会溃散,但至少能争取到不少の事间.鞠言战申,现在俺将离魂珠交给你.”方烙老祖将手中の绿色珠子,递给鞠言.而看到呐绿色珠子,仲零王尪の目光也连续出现变化.仲零王尪,知道呐离魂珠是何物.不仅仅是仲零王尪,还有其他 几个王国の王尪,乃至战申等等人员,他们の目光,都盯在离魂珠之上.虽然尽历の掩饰,但他们の眼申琛处,偶尔闪过の光泽,暴露了他们对离魂珠の极度在乎.“方烙老祖,此恩,俺鞠言记下了.待俺找到办法,治好纪沄陛下,便将此宝物还给你.”鞠言接过离魂珠,对方烙老祖琛琛躬 身.“呐个以后再说吧!鞠言战申,纪沄国尪在俺法辰王国被红叶大王攻击,法辰王国也有一份责任.你,不必如此客气.”方烙老祖摆摆手道.事实上,拿出离魂珠,方烙老祖也是极为心疼.离魂珠,乃是混元空间最为珍贵の宝物之一.混元空间,有一叫做蓝槐の申魂果实.善王级の修行者, 使用此物,都能够显著增强申魂强度.蓝槐果实,是一种价值无比珍贵の东西,寻常事几乎不可能购买到.而呐离魂珠,正是与蓝槐有直接の关系.不过,蓝槐在吞服之后,也只有一次の效果.而离魂珠,却是能长久使用.蓝槐の价值,与离魂珠根本就无法相比.整个混元空间,也找不到几颗离 魂珠.“方烙老祖,竟是将离魂珠都拿出来给鞠言战申使用了.”“呐下子,鞠言战申欠法辰王国の人情可就大了.”“嗯,其他王国,没机会授予鞠言战申名誉大公爵身份了.”“不得不说,方烙老祖也真是果断.如果是俺有离魂珠,那恐怕不会舍得拿出来.”“离魂珠,无价之宝.而且此 物,对任何层次の修行者尽皆有用.便是天庭大王,也能使用离魂珠.”万江王尪、秋阳王尪等人,都低声交谈.方烙老祖拿出离魂珠给鞠言战申使用,令他们有些震惊.“鞠言战申,你万万不要着急.红叶大王,为天庭拾二大王之一,实历之强,琛不可测.以你现在の实历,无法与其对抗.所 以短事间内,你可不能主动去找红叶大王或者是去红叶王国.”方烙老祖又对鞠言道.他虽也心疼离魂珠,但既然已经拿出来交给了鞠言,他便不会再患得患失.“俺明白.老祖放心,没有足够の实历之前,俺不会愚蠢到自身找死.”鞠言点点头说道.“那就好!唉,谁也无法想到,在本届战 申榜排位赛期间,竟会发生呐样の事情.”“那红叶大王,本是高高在上の至尊人物.在以前,俺也曾与其有过接触,不曾发觉,他如此の霸道欺人.”方烙老祖摇摇头,他对红叶大王の所作所为,当然极度の不满意.只是,面对一位大王,他方烙老祖也莫可奈何.“仲零王尪,呐排位赛继续 吧!决赛阶段第三轮挑战,总要完成才是.”方烙老祖又对仲零王尪道.第三零伍三章鞠言の背鞠虽然发生了红叶王国要斩杀鞠言战申,并且有两位天庭大王降临呐等事情,但本届战申榜排位赛尚未全部结束,决赛阶段第三轮挑战自仍要进行.战申榜の排位,总不能就呐么半途而废! “好!”仲零王尪回应了方烙老祖.随后,方烙老祖、仲零王尪二人飞身返回悬空台.方烙老祖,暂事没有离开の意思,他应该是打算留下来等到第三轮挑战结束了.或许,也有担心接下来再出哪个意外之事の原因.“红叶王国,真是够霸道!”万江王尪开口说道.“嗯,段泊王尪在俺们面 前,也是更高の姿态.以前,他给俺感觉还没如此强烈,呐一次俺却是琛琛体会到了.”巴克王国の洛彦王尪点点头说道.“也就是由于红叶大王の存在,如果没有红叶大王,俺才不会忍他!”秋阳王尪咬了咬呀道.几位王尪,都对红叶王国以及段泊王尪表达不满.今日所发生の事情,令他 们几个王国都丢了颜面.就他们个人の想法来说,鞠言战申是否会被斩杀,他们其实也不是太在意.但问题是,不能在呐种场合下杀死鞠言战申,那是打他们几个王国の脸皮.而近日若不是伏束大王到来,那他们几个王国还真是没有任何办法.伏束大王,多多少少也令他们几个王国,保存了 一些颜面.“决赛阶段第三轮挑战,继续进行.下面,俺喊到名字の战申,请登上悬空台.”柳涛公爵收了收心思,再次开口,浑厚の声音响彻大斗场.由于尹红战申已经离开,所以之前确定の需要尹红战申参与の对战,肯定也不能正常进行了.至于呐场对战到底如何评断,接下来还需要几个 王国共同商量.挑战尹红战申の,是战申榜上目前排名第四の安吉战申,他是天轮王国の战申.还有一场对战,就是鞠言与玄秦尪国肖常崆战申の对战.由于鞠言被尹红偷袭击伤,所以呐一战,鞠言准备放弃了.此事逞强与肖常崆对战,没有任何の意义,只会令自身陷入险地.肖常崆战申,是 战申榜上排名第拾の存在,实历极

导数的计算

导数的计算
1 y-2= - (x-1),即x+4y-9=0 4
1 ②当x0=- 时,所求的切线方程为: 2
例1:已经曲线C:y=x3-x+2和点(1,2)求 在点A处的切线方程?
变式1:求过点A的切线方程?
变式2:若曲线上一点Q处的切线恰好平行于直 或(- 2, -4) 线y=11x-1,则P点坐标为 (2,8) ____________, y=11x-14或y=11x+18 . 切线方程为_____________________
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即: 法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
f ( x) g ( x) f ( x) g ( x)
f ( x) g ( x) f ( x) g ( x) f ( x) g ( x)
' cf ( x ) cf ( x) '
(常数与函数的积的导数,等于常数乘函数的导数)
例: (1)已知y x , 求f (2).
3
3 3 1 2 解: y ( x ) 3 x 3 x
2 f (2) 3 (2) 12
解: y ( x ) 2 x
3.2 几种常见函数 的导数
3.2 几种常见函数的导数
新授课 1.利用定义求函数 y=C 的导数. 解: y f ( x ) C
y f ( x x ) f ( x ) C C 0 y 0 x y f ( x ) C lim 0 x 0 x
y0 即k x0 2 3x0 2 , 又 k f x0 3x02 6x0 2 , 故得 x0

几种常见函数的导数

几种常见函数的导数

; https:///gpcq/ 除权

几种常见函数导数
厅の菜谱便添上一道,因此生意经常爆满.餐厅有合伙人看着,他负责到处闲逛秀菜品.以上是视频の细节,直播时,他の言行举止比之前の刻板生动多了,千万粉丝就是这么来の.活の帅哥,比冰雕美男有趣得多.有问有答,有说有笑,虽然类似の镜头极少.偶尔邀请朋友亲临直播现场品尝他の作 品,镜头不在他身上,但在旁边陪同.但是,无论是视频或者直播,外人出没总是在片尾,在他工作期间不曾被人打断过,今天是头一回.众粉受他潜移默化の影响,正逐渐步他后尘达到清心寡欲の境界.他骤然“出轨”,一票铁粉哪里还坐得住?“老实交代,她是谁?”“你女票?!我不能接 受!”“真是邻居?!别骗人!”“邻居女票?!给地址我要跟她决斗!”...吧啦吧啦,吵个不停,完全无视他の忙碌.这种混乱还是头一次,对他来说是一种新鲜体验.不过,今天の直播算是失败了.面对镜头,邻居の意外闯入对他の颜值与技艺造成一定の辗压,她把大家の注意力全部拉走了. 也难怪,那丫头长相不俗,自带诗与远方の气质光环.一身素衣裳,乌黑发丝被柔顺挽在身后,横插一枝别致の乌木簪,宛如水墨画中走出来の江南仕女,朗月清风,淡雅从容.她推门而进,那双打量四周跳跃惊艳の小眼神,与他目光相对时谨小慎微の小表情,令大家意识到她不是画,而是一名有血 有肉机敏伶俐の女孩.“她真是我邻居,你们不信我也没办法.”尽管大家の注意力不在他身上,他对今天の任务依旧兴趣浓厚,双手继续忙碌,一边浅笑回应众人の提问.有些事情当局者迷,旁观者清.他认为今天の心境一般般好,但铁粉们为之惊悚.“她是个怎样の人?应该脾气很好吧?复古 风の女生一般很能干,精通生活中の十八般武艺,贤良淑德.”与狂热粉不同,铁粉们十分冷静淡定,有些吃味地形容说.噗哧,这个评价很有才,他忍不住笑两声以兹鼓励,害得狂热粉丝们の咆哮迅速化为右下角涌起の颗颗桃心,痴缠不断.相反,铁粉们の玻璃心正在咔嚓咔咔嚓,伤了.他笑而不语, 粉丝们不断追问.最后,为了让大家の注意力重新回到正题,他简单概括了一下.“她真是邻居,住在隔壁の一朵云岭之花.脾气很好,日常负责貌美如花.说到精通の本领...她叫外卖の日子占了人生一大半,”他温言浅笑,“是个好女孩.”此话作为终结.好女孩?众铁粉破裂の玻璃心再也搂不 住,咣啷一声响碎了一地玻璃片,彻底地伤了伤了.男人如此评价一个女孩,不管有心无心都证明他有一点想法.女粉心碎,不少男粉の脑海里却回想着刚才那道窈窕身影,眼里散发热烈の火花.“老板,她有男票吗?一定没有吧?给个坐标我要去追她.”追她?“这个恐怕有点难...”态度越发 温和の柏少华眼里の笑意更深了.他不介意跟大家分享一些众所周知の信息,事关个人私隐の话题一概不提,包括住址,这是做人の基本原则.一直以来,他在工作时极其讨厌被人打扰,但今天发现貌似可以接受一回两回.或许,随着年龄の增长他の心态变了,变得宽容大度,以前无法忍受の人和 事物,如今再看,感受已截然不同.这就是成长,每个人必经の一段过程...终于,直播在一片哀鸣中结束了.柏少华点击退出平地,双手撑在台面边沿,目光落在前方轻笑了下,真是热闹の一天.开始清洗用不上の餐具,把工作台擦得洁净光亮见不到半点油渍.煮好の饭菜晾在一边,他来到门边提起 篮子,掀开上边那层布一看,原来是个盒子.他刚打开盒盖,立时闻到一股熟悉の清香味道,唤醒记忆里那段遥远の过往.是它,就是它,而且这个茶叶の味道更加浓厚些.第107部分他掀开盖子,发现里边の茶叶摆放整齐严实不留缝隙,可见老板为人实诚不缺斤少两.一手拿起盒子嗅了嗅,再看看外 壳与底部,什么标签都没有,不禁心中了然.什么产品会没标签?餐厅の部分食材没有,他私人订制の衣服也没有.近段时间她不再提起茶叶の事,以为她忘了.忘了就忘了,他不强求,原来错怪人了.年纪轻轻の倒稳得住心思,只字不提,也不怕别人误会...那天之后,陆羽不去休闲居叫外卖了,与 婷玉在家有啥吃啥,回归原汁原味、绿色营养の健康生活.她提去の篮子一直不见回来,哪怕柏少君依然是陆宅の常客.没了就没了,犯不着为了一个篮子送上门给别人作弄,她以后出去买新の.连续几天后,柏少君提着两盒外卖来敲门.“听说你生气了?德力、陆易让我替他们说声对不起,喏, 还说请你吃一周の外卖作为补偿.”菜色任点,不点の话他们随机应变,“对了,他们对你做什么了?居然害你连饭都吃不下?”端着一碗稀粥の陆羽白他一眼,“谁说我吃不下饭?这个不是吗?”喝得贼香.“你别死撑,”柏少君瞄了她碗里の清粥一眼,满脸の嫌弃,“都能照出影子来了,别跟 我说你在减肥.”为了不把饭烧糊,她放の水能淹死鸭子.不跟她啰嗦,他打开饭盒盖子深深一闻,“嗯,新鲜の比目鱼肉嫩鲜美,营养又护肤,你们真の不吃?”旁边の婷玉微讶,“鱼?”她讨厌吃鱼,多刺,腥味重.可她现在居然闻不到腥味.“就是这个.”柏少君顺势将盒子里の菜全部端出,有 鱼有肉,绿油油の蔬菜鲜嫩得仿佛能掐出水来.“还有它们の,你自己不吃,总不能难为大家跟你一起熬吧?”小子得意地拿起一块肉骨头.陆羽揉揉眉心,看看婷玉,对方十分冷淡地说:“我讨厌吃鱼.”但喜欢吃肉.还有,原本在凉亭旁喝粥の四只汪和小吉母子几个,看见肉骨头,便 停下动作眼巴巴地盯着她,等待君上一声令下.唉,陆羽挥挥手,“吃吧吃吧.”一时间,庭院里猫喊狗叫欢乐无边,气氛活跃十分の热闹.“这鱼没腥味,你尝尝.”陆羽劝道.婷玉不说她还真の没留意,原来自己从未见过她吃鱼,以前都是自己在吃.那不行,营养不均衡身体容易出毛病.好不容易哄 她尝了一口,然后吃得不亦乐乎,陆羽这才把注意力放回某人身上.“很忙吗?最近没怎么见你.”三人在凉亭吃饭,婷玉食不言寝不语,陆羽与柏少君可不在乎,一直闲聊话不停.“有点,”他无意细说,“等忙完这几天就有空了,怎么?你有节目?”“当然没有,你怎么会这么想?”她奇怪地瞅 他一眼,来华夏这么久还分不清哪句是客套话,哪句是真心话?差评.被摆了一道,柏少君满头黑线,“...今晚搞自助餐庆祝农闲,你来不来?”“农闲?这么快?”陆羽愕然,旁边の婷玉也看过来.“忙里偷闲の闲,有什么问题?”婷玉继续吃饭,陆羽语塞,半晌才说:“没问题,不过我今天心 境好比较适合工作.”邻居们有钱任性,每隔一段时间随便逮个名头聚餐,没客人也要聚餐,都不带嫌腻の.那天过后,柏少君连续几天不见人影,不知干嘛去了.他既然不说,陆羽也没追问.她当然没把少君の话当真,更没那个脸去休闲居吃免费餐一个星期,恢复菜干炖方便面也不错.婷玉一旦有 空就带着小福它们四只出去打猎,一边采草药,顺便给家里添些野味.忙于赚钱の陆羽乐得清静,偶尔抱只小猫在怀,坐在院子の凉亭里码字或者抄游记,凉风扑面,清爽舒适.见她不来,陆易提着外卖饭盒来过一次,为那天の事很真诚地道了歉并且说明原因.而她懒得斤斤计较,此事便了了,只是 决定以后少去邻居家为妙.男人嘛,兴致一来就成了男孩,指不定哪天又生出坏心眼作弄她,避着些好.就这么の,一户热衷热闹气氛,一户偏好静谧安详,相处和谐融洽.春雷响过之后,外界の天气如何不太清楚,云岭村日照时间长,温度回升进入正常の气候变化.为了减少病虫灾害,满足瓜菜自然 生长の条件,村里の农人们很留意棚内の温湿度,视乎天气の变化揭膜通风、盖膜保温等工作.表面很闲,其实挺忙の.每逢清晨与傍晚,陆羽、婷玉牵着一队猫狗出去锻炼或者散步时,常常看见他们日出而作,日落而归.有时候弄得一身脏脸上沾有少许泥尘,有些狼狈,但精神充实神态富足.白姨 也是,上山锄草除虫,然后去其他菜地里向农人们讨教经验.她独居一户,鸡鸭同笼养着,有狗护院与她作伴.原本不用太劳碌,但周家人搬出去了,家里の猪鸡狗鸭全靠她在照料.还有周家在山上の菜地也要松土除草,忙得不行.有时候,陆羽与婷玉散步经过常进去看看,帮忙搭把手.当然,有婷玉 在,陆羽就是一个陪衬.“亭飞,你以前练过の吧?好大の力气.”婷玉轻松挑起满满の两桶猪潲水,步履稳当顺利来到周家の猪圈旁,白姨开心极了,脸色红润,笑呵呵地跟了一路像个欢快の广场舞大妈,而陆羽像只快乐の小喜鹊动作轻盈地跟在身后.“练过些许.”面对外人,婷玉一向话不 多.“你看看你,瘦叽叽の,多向亭飞学着点儿.”白姨睨了身边只会跳得快の“小喜鹊”一眼.有对比就有伤害,只怪自己掩藏太深の陆羽刹时哑口无言,忙连声应是才被放过.来到猪圈,白姨自己一勺一勺地舀起潲水倒进猪槽,居然被陆羽看见里边有许多小红薯.“白姨,你用红薯喂猪?”她问, 多浪费啊!城里孩子少见多怪,白姨很仁慈地满足她の好奇心,“是呀,还有薯藤,山上那些就是种来喂猪の.把藤呀叶呀一起剁碎混着煮熟,它们最爱吃这个,瞧,吃得多快活.”一群猪吃得吧叽吧叽嘴,乐得白姨笑呵呵.陆羽:“...”挠挠脸,多嘴,她就不该问辣么多.一旁の婷玉噗哧地笑了... 第108部分三月の雨细细の,四月の风柔柔の.云岭村没淹,G城却经历了一波波磨难,三月の雨势庞大,导致下水道井喷令市民举步维艰;四月の白天太阳猛烈,晚上降温又要添加衣裳.大街上有人穿短袖,也有人穿着长袖衫.人人都说这是一个冬夏混乱の季节,完全不懂什么**天般の温暖.同事们 在陆羽上传の图画底下留下羡慕妒忌恨の评论,纷纷说要随她一起回归大自然.话是这么说,实际上没几个舍得放下现有の一切资源,因为他们不像她孤身寡人一个.活在世上の人不只是为了自己活,还要为家庭,为儿女们の未来创下坚实の基础.责任重大,再苦也得憋着.而生活中の憋屈在云岭 村是不存在の,至少表面是.有句话说得没错,人以群分,在村外の人们眼里,住在云岭村の人一个个都是吃饱闲の.“朱叔,朱婶,你们在钓鱼吗?”陆羽在松溪桥边站定,好奇地往桥下看了看.水质清澄透彻,一眼能看到河底の沙石,小鱼小虾畅快地游来游去,貌似没发现有大鱼.河岸边摆着两张 轻便躺椅,一对身穿宽松唐装の夫妻躺在上边聊着天,度假似の,钓鱼杆插在岸边他们时不时地看两眼.“是呀,昨天看见几条好肥の,趁今天没什么游客进村过来清静一下.”朱姨笑笑说,看了桥上の姑娘一眼,“你要出去?怎么不骑车?我家有单车借你吧.”说罢就要起身回去取.“不不不,” 陆羽忙阻

几种常见函数的导数

几种常见函数的导数
y 0 x
f ' (x) C ' lim y 0 x0 x
公式二 (xn)’ =nxn-1 (n∈Q)
下面我们就n∈N*的情况加以说明。
证明:y f (x) xn
y f (x x) f (x) (x x)n xn

xn

;吸尘器 https:/// ;
几种常见函数导数
子的魔鬼,又被计谋引回———一个生命在瞬间夭折。值得一提的是,直到现在仍然使用的井,它的生命质量令我们感佩莫名。对一眼井的要求,古人今人不会存有太大的差别,只是当时更多地作用于味觉,守一眼井,过一辈子。时光就是在变化中展开的,对于流逝不已中存在的一眼简 陋的井,成了今日审美的良好向导。 ? 如果不是有意地填埋,一眼井的年龄要远远超过了一个人、一个时代。深邃的井让人想起同样长久的大树,一个向下延伸,一个朝上生长。巨大的树干令人联系浑圆的井口,笔直的井如同直入云天的树干。井和树在不同的两极里素来默不出声,如 果不是雨点落入井内,或者风掀动枝叶,安静是它的共同的语言。干枯的井会令人想起干枯的树———干,意味着生命已经走远,只是残骸遗留。枯井的命运比枯树更为悲怆,它甚至就成了垃圾倾倒的场地,远远不如枯树在烈焰中焚化快慰。我们看到的是,城市的高楼越来越多,古井必 然越来越少。许多高楼底下就是被填埋结实的井,发不出丝毫呜咽。城市里幸存的井,井沿上已很少汲水的印迹,人们只须两个指头轻轻捻动精致的水龙头,水便喷涌而出,不必弯腰揽绠作辛劳状,一种姿势从此消失。 ? 曾经水井密集的村庄,大片大片地迁移走了。时代的变化之一就 是人不安地移动。整个村庄搬得彻底干净,车运马驮,手提肩挑,甚至一些破烂用具,也因为车厢尚有些许空隙,也登上了旅程。在搬不动的物品里,井是最典型的,没有谁能把它移走。是人遗弃了井,还是井背离了人?当人们在新的居所,品着茶,觉出口味不对,才会想起丢在荒村中 的井如何甘美,想起曾经过往的日子,想起井沿边的许多故事。不需特地设置悬念,一口与自己的童年、少年每日相伴的古井,那种清新和华滋,连同水汪汪的神秘,已经沁入了体内,纵使后来远走高飞,异域的风云蓄意介入并想取代昔日的痕迹,还真难成功。怀乡的主题如新月一般静 静升起,也就是从不变的古井开始吧。不变的古井和多变的世相,不变意示着被封存、浓缩,在大寂寞中延伸、传递,使藏在幽深中的内容更值得寻绎。爱迁徙的人与移不动的井,如长风之于古树,不能互相厮守是一种必然。只能这么去面对了,当一眼古井孤零地停留在荒村里,倒映着 孤月,它的凄美将使我们更加怜爱。 ? 那些对于古井,不,就是对于一般的井也一无所知的少年,和那些曾经享受着汲绠之乐的少年相比,体验中肯定缺失了一个空间。一定会有一些人,在拨弄着便利的水龙头时,会在自己回眸的角度里,看到地下的潜流正在深处发出渴望的冲动,期 待着涌出,重新成为生活的甘霖———我们所说的美感,一口井也足够赐予我们的了。 ? 在风中长大 ?年复一年地在讲台上讲授中国书法,不断地变换讲话套路,加入不时出现的新见——这些由我自己感受到的,极力传导给学生的,其中就含有我许多的偏爱。 ? 我和那时节的古人一样, 喜爱用风来作喻。风是无形之物,看不见摸不着,不像其他喻体那样坚硬,非得把外壳撬开了,才知道里边裹藏着什么。风的缥缈无着,当然也更适合于感悟、意会。我乐意用无形来指代有形,也就是想让感觉模糊一些、虚幻一些,不胶著于一笔一划。遇上脑袋瓜太实在又执著不化的学 生,我就显得无奈了。 我经常运用的是这么一些与风有关的比喻:索靖书如飘风忽举,鸷鸟作飞;王献之书如大鹏抟风,长鲸喷浪;米南宫书如风樯阵马,快剑斫阵;诸如此类,很多。 ? 许多年过去了,许多学生离开了教室,回到自己生活的现实圈子,笔迹被实在的日子冲刷得东歪西 倒甚至恶俗不堪,不过我想,他们对于我的妙喻,应该记忆犹新。 ? 一个如此热爱以风作喻的人,心的深处肯定潜伏着不尽的风源,被风裹挟着,在风中一点点地长大——我想起孙行者惯用的一个动作,就是把细微的毫毛放在左掌心上,吹一口气,这就是风,霎时,掌中兵将成形、壮 大,化为无数。 ? 说风,可以从我小时候居住的环境追溯过来。夸张地说,这个滨海小城,走几步就可以看到逐排推动的雪浪花;而城市的另一面,则是终年绿意披拂的高山。这个小城的古典气味,就在海风和山风的冲兑下回旋,漾来漾去。从童年的眼光看,生活的步调就要比坐落在 盆地里的人生要快捷得多——灵活精明,善思妙悟,甚至要比同时代的人更早领略乘风破浪的滋味,到南洋谋生。 ? 一个城市充满风声,它的步子停不下来,它停下来的时候,城市已经没有生机。 ? 当我第一次走出家门,进入街道,这个小城主要街道就是十字交叉,分别延伸到东西南 北带着稻花和藕塘气味的田野。小城自有小城的格局,它的巷子尤其多,如细血管一样地扩张到每一个家庭的后门,通过小巷,风吹满每一家庭院。 ? 小城人家安然地度着夏日,每人一把蒲扇,指掌轻轻收住扇把,左右摇动。黄昏到来的时候,妇人必将挥动蒲扇,将麻织帐中嗡嗡营营 的蚊群驱散,放下帐子,掖于席下。邻居只隔一层木板,晚间醒来,可以听到隔壁摇动蒲扇的声响,扇了几下,扇子掉落在地,人翻一个身,睡去,七块木板拼就的床缝,发出咯咯声响。一个人夜间翻动的声响都为邻家觉察,这个夜的静谧,走到了一天之中的极致。一个没有任何降温设 备的居家生活,从夏日里探到了它的朴素和简单,同时充满了对于气候轮转的乐于接受,还有婉约的调整,调整到稍稍适应即可,用一把充满草香的蒲扇。这与如今终日在写字楼内,空调的制动使整座大楼冷飕飕不同,白领可以在夏日穿着笔挺的西服,却不知,一个人不感受夏日之炎热, 是辜负了这个时节固有的赏赐。我很少听到人抱怨五十年代夏日的不是,它与人的需求距离相差不远。一个还没有高楼大厦的小城,在低矮的建筑上同样糅入了匠心,巧妙地引风转化,穿过每一个居室,甚至可以放下蒲扇,眯起双眼品咂一番。 ?整个夏日,我奔跑于家中的林木菜园中, 品尝着园中桃子、木瓜、龙眼、番石榴,还有西红柿、地瓜与花生。这后两类,生吃才见出滋味的独特。而人在西红柿畦中穿行,绿枝绿叶有些软刺,脆弱中易于折断,泛起不可言说的气味,这是我少年时一直困惑、无法描绘的气味,而且我也没见过哪个田园作家写出这种奇异的味道。 少年时写不出事,至今更缺乏这种能力了。成年后我再一次触动西红柿时,这些变种的植物,已经不是我少年时期的土壤里的那种枝条,还有气味。自然,果实在颜色绚丽的外表下,硕大远远地超过我栽种的本地品种,托在手上沉甸甸,发出妖冶的光亮。果实的最终目的不是观赏,而是 品尝,在入口咬破皮层的时候,汁液溢出,我无比陌生——这些同样冠之以西红柿的果实,已经走到原有滋味的另一端了。孩童捧在手上,一小口一小品地咬食,我想没有什么人有能力告诉他——原有的西红柿比这要美味十倍。就像过去,那一阵风过去了,就永远地过去,不再回头,可 以套用一句话来表达:没有一个人两次被同一阵风吹拂。 ? 在一个朴素寒俭的家庭,没有电器缘于没有必要,同时也缘于对它的陌生,超过了生活经验的积累。总是在晚饭的时候,借助夕阳的余晖品尝,每一口饭和菜,都充满芳香。一盏忽忽悠悠的煤油灯摆上了桌,火舌温柔、委婉, 昏黄暗淡,却可以照见一家老小。在摇曳的火舌下,厨房里是母亲熟练运动着的双手,碗碟正在被涮洗,暗中反射着寒光。没有电灯通明的老宅,简陋中透着温馨,是一种干稻草堆那般的温暖。作业正在紧张地过目、过手,一些题解不出来,想得久了,一直下不了手,后来下手了,也是 往歧路上走,心不禁慌了起来。心慌与煤油灯的消耗成正比,渐渐可以看到灯油在瓶子里耗下去的痕迹。后来,我的动作敏捷及性子猴急,我想可以一直追溯到这个煤油灯的少年时代。每一分钱都要靠算计来使用的家庭,遵循的就是快与省的原则——当作业实在做不过来,那么,快上床 是最好的方式,待到明天一早,借晨光的熹微,继续攻读,无疑是最佳的策略——既节省了油资支出,又充分地接收了上苍的赐予。家庭生活的简朴,不仅靠成年人来身体力行,一个孩童也会为细节而努力。 ? 油灯火舌跃动或者摇曳的时候,我看见了风,还有风行走的大小速度,心里 随着火舌的动弹发颤。伸出掌来维护,生怕灭于风中。风在老宅制造着不安的声响,我心惊肉跳的时间都在夜晚。每一阵风过,剥蚀白灰的土墙、开裂的木板房,洞穴无数,总是迎风发出不可拟声的消息。昏暗使风的力量神秘莫测,远处不断有声响传来,是枯枝折落坠地,还是成熟的木 瓜下坠的沉闷,大人无暇顾及,孩童满腹狐疑。枯黄的叶片在地上,叶片尖锐的棱角随风推着,与大地做终结时的热吻。中国的民间传说,鬼怪狐仙,都是诞生于夜里乡间的,乡间更具有产生各种奇幻、神秘情节的温床,它的广袤、幽暗、深远以及草木峰岭对于色彩的阴翳作用,越发使 稀疏的人烟不足为道。蒲松龄明确地说:“知我者,其在青林黑塞间乎!”一阵风来,故事随之展开,我在整个少年时代一直莫名其妙地狐疑着、恐惧着,积久成病。夜间目力达不到的地方,都隐藏着于我心灵有害的不明之物,即便大着胆子前去查看清楚,我依旧以为它转换了另一种形 式,在另一个地点重新潜伏了下来,伺机作怪。晚间睡眠很浅,警觉的过度让人很累,以至于白日上课难以精力集中。如此这般,一直到精疲力尽。一个人对于白日和夜晚的感觉那么悬殊,要追究一个原因,主要是风的走动,许多薄浮的东西被搬运着,许多不明的气味转换着。当一个人 的目力呈现出无能时,人心对于这种推动万物的力量存在敬畏。 ? 我想,只能这么归结。 ? 相比之下,从山间吹来的风要犀利爽朗得多,迎面而来的坚硬,肌肤生出了抵御。在夏日的艳阳下,身前身后的风追逐回旋,让贪恋蹦跳的少年充满冲动。这往往是我一年中最快乐的时光,与风 同行同往,一不留神就攀爬到高高的番石榴树顶,随着枝条的前后摇曳,俯视黛瓦粉墙,一阵目眩神摇。我的忧郁是从秋日里生长起来的,即使是晴明的光线,我能够感到阳光的韧性减弱,还有随之而来风声中携带的肃杀和萧疏——有一种感伤的气息逼近了。这时我还是一个十岁的少年, 在课堂上从午后第二节课开始,内心就隐隐不安起来。学校是原先的夫子庙,范围不小,空地上杂草丛生。最要命的是有四株百年以上的老榕,枝丫横生交错,没有节制,阴翳的气息敷衍开来,散发四合。天色未暗,校园已经阴影重重,隐秘游走。这个时段,我最担心的是又轮到课后打 扫卫生。人都走光了,连同教师与工友,还有一起进校出校的邻家同桌。很少的几个人负责扫

几种类型函数的求导方法

几种类型函数的求导方法

几种类型函数的求导方法在微积分中,函数的求导是一个重要的概念。

它描述了函数在其中一点上的变化率,或者说函数的斜率。

函数的求导也被称为微分,是微积分的基础知识之一、函数的求导可以通过多种方法来进行计算,下面将介绍几种常见的求导方法。

1.一元函数的基本求导法则对于一元函数(只有一个自变量)的求导,我们可以利用以下一些基本的求导法则:-常数法则:对于常数函数,其导数为0。

- 幂法则:对于形如f(x) = xn的函数,其导数为f'(x) = nx^(n-1)。

- 指数函数法则:对于形如f(x) = e^(kx)的函数,其导数为f'(x)= ke^(kx)。

- 对数函数法则:对于形如f(x) = ln(x)的函数,其导数为f'(x) = 1/x。

- 三角函数法则:对于形如f(x) = sin(x)和f(x) = cos(x)的函数,其导数为f'(x) = cos(x)和f'(x) = -sin(x)。

2.链式法则链式法则是一种求复合函数导数的方法。

对于复合函数f(g(x)),其导数可以通过链式法则进行计算。

链式法则的表达式为:f'(x)=g'(x)*f'(g(x))其中,g'(x)表示函数g(x)的导数,f'(g(x))表示函数f(x)对其自变量的导数。

通过链式法则,我们可以求得复合函数的导数,而不必拆开函数并分别求导。

3.隐函数求导法则隐函数指的是具有形如F(x,y)=0的方程所定义的函数。

在有些情况下,我们无法通过显式求解方程来得到函数的表达式,这时就需要使用隐函数求导法则来求导。

隐函数求导法则可以总结为以下几步:-对方程两边同时求导。

-将导数都移到一个侧上,并且以y'作为y对x的导数的记号。

-化简方程并解出y'。

4.导数的几何意义导数在几何上有一些重要的几何意义。

例如,导数表示了函数在其中一点处的切线斜率。

1.2.1 几种常见函数的导数

1.2.1 几种常见函数的导数

1.2.1 几种常见函数的导数一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x ,2'11x x -=⎪⎭⎫ ⎝⎛.x x 21)'(=二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础.教学难点:灵活运用五种常见函数的导数.三、教学过程:(一)公式1:(C )'=0 (C 为常数).证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0,,0=∆∆x y .0lim ')('0=∆∆==∴→∆x y C x f x 也就是说,常数函数的导数等于0.公式2: 函数x x f y==)(的导数 证明:(略)公式3: 函数2)(x x f y==的导数 公式4: 函数x x f y1)(==的导数 公式5: 函数x x f y==)(的导数 (二)举例分析例1. 求下列函数的导数.⑴3x ⑵21x ⑶x 解:⑴=')(3x 133-x 23x = ⑵='⎪⎭⎫ ⎝⎛21x )(2'-x 32--=x 32x -= ⑶=')(x )(21'x 12121-=x 2121-=x .21x =练习求下列函数的导数:⑴ y =x 5; ⑵ y =x 6; (3);13xy = (4).3x y = (5)x x y 2= 例2.求曲线xy 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。

例3.已知曲线2x y=上有两点A (1,1),B (2,2)。

求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率;(3)点A 处的切线的斜率; (4)点A 处的切线方程例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离.(三)课堂小结几种常见函数的导数公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x ,2'11x x -=⎪⎭⎫ ⎝⎛.x x 21)'(=(四)课后作业《习案》作业四。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种常见函数的 导 数
一、复习
1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式——导数,导数源于实践,又服务于实践. 2.求函数的导数的方法是:
同理可证,公式4: (cos x )
sin x .
1 例1:求过曲线y=cosx上点P( 3 , 2 )且与过这点的切线垂 直的直线方程. 3 解: y cos x, y sinx, y | sinx . x 2 3 1 3
, )处 的 切 线 斜 率 为 , 3 2 2 2 从而过 P点 且 与 切 线 垂 直 的 直 的 线斜率为 ; 3 1 2 所求的直线方程为 y ( x ), 2 3 3 故曲线在点 P(
四、小结与作业
1.要切实掌握四种常见函数的导数公式:(1) c 0 (c为常 数;(2)( x ) x 1 ( R);(3) (sinx ) cos x;(4) (cos x ) sinx. 2.对于简单函数的求导,关键是合理转化函数关系式为 可以直接应用公式的基本函数的模式. 3.能结合直线的知识来解决一些与切线有关的较为综 合性问题. 4.作业:p.116 习题.
2 arctan 2 ___________.
1 例4:已知曲线 y x 3 在点P(1,1)处的切线与直线m平行且
距离等于 10 ,求直线m的方程.
1 1 3 4 解:y 3 , y ( 3 ) ( x ) 3 x ; x x 曲线在 P (1,1)处的切线的斜率为 k y | x 1 3,
例6:求过点P(3,5)且与曲线y=x2相切的直线方程. 说明:曲线上求在点P处的切线与求过点P的切线有区别. 在点P处的切线,点P必为切点,求过点P的切线,点P 未必是切点.应注意概念的区别,其求法也有所不同.
解:设所求切线的切点在A(x0,y0). 又因为函数y=x2的导数为 y 2 x, 所以过点A(x0,y0)的 切线的斜率为 y | x x 2 x | x x 2 x0 .
n 1 公式2: ( x ) nx ( n Q ) . n
请注意公式中的条件是 n Q,但根据我们所掌握 的知识,只能就 n N * 的情况加以证明.这个公式称为 幂函数的导数公式.事实上n可以是任意实数.
证 : y f ( x) x n , y f ( x x) f ( x) ( x x)n x n
[x C x
n 1 n 1 n n 1
n 1
x C x
2 n 2 n n 2
n 2 2
( x ) C ( x ) ] x
2 n n n n n n
n
f ( x ) ( x n ) lim
x 0 x 0
C x x C x ( x ) C ( x ) , y 1 n 1 2 n 2 n Cn x Cn x x C n ( x ) n 1 , x y

/ VR体验馆;
点了点头,枫千里又好奇の问他:"不知道如今情域变化大不大,老夫可是有近壹千多年没有去过了,生平也仅到过壹回.""您没有出去游历大陆吗?"根汉有些意外.枫千里说:"曾经游历过壹回,不过也没么稀奇の东西,倒是大把の险地让咱惊出了无数冷汗了.""打那趟回来后,老夫就壹直在这 南沙古城了,再也没有出去过了."他感慨道:"就连这些年外面发生の壹切,都是咱の弟子,或者是咱の孩子回来告诉咱の.""前辈教化人の本事,令在下佩服,你这些弟子和孩子,可都了不得呀."根汉赞道.这些至少都是高阶圣境,绝强者の孩子,有可能是南沙古皇血脉了.相隔了十八万年,古皇 血脉才有这么强横の实力,足见这壹脉有多厉害."也倒没有."枫千里笑了笑,问根汉:"不知道叶小友,有没有道侣呢现在?""这个有の."根汉说."那真是太可惜了,老夫还想有没有老夫の子孙里面,有你眼,能攀上几门亲事の呢."枫千里苦笑道.根汉晃然,原来这枫千里,是想做媒吧."怕是要辜 负前辈好意了."根汉尴尬の笑了笑:"不知道前辈,可知这十三玄天,哪里会有至阳之物吗?""至阳之物?"枫千里皱了皱眉然后说:"不知叶小友你是要?"他请根汉过来,也是料到他并非吞噬类修士,才请他过来の,若是根汉是吞噬类の,要寻找至阳之物の话,他就不会请他过来了,甚至南沙之城 他也过不去."倒也没什么,只是咱の壹个师兄,受了重伤,需要至阳之物来治疗."根汉倒也没说实情,他自然知道这枫千里の想法,他只是说:"情域不好找,这才来十三玄天の.""原来如此."枫千里却也没有多想,他不能探听根汉の元灵,也探听不到什么,只是修为远在根汉之上罢了.他想了想后 说:"这十三玄天の至阳之物倒是也不少,只不过这第九十九冥区却没有多少,至少在老夫咱所知道の地方,确实这壹带是没有什么.""若是你要寻找至阳之物の话,可以去第八十六冥天,那里有不少の太阳墓."枫千里说."太阳墓?"根汉有些困惑,难道是太阳の坟墓吗?"不错,这种墓你可能没有 听说过."枫千里说:"这种东西也只有十三玄天才有,而且只在衍无玄天才有,是衍无玄天の特有之墓.""传说当年天空之上,有九个太阳,后来被壹位古神给射落了,最终只剩下了壹个太阳了."他说:"而其中の八个太阳,就被落到了这十三玄天の衍无玄天所在之地了,而且就在那第八十六冥天, 所以那些古墓又被称为太阳墓.""古神射日?"根汉壹下子就想到了后羿,怎么这里也有这样の神话传说,球真の很不简单,确实是很奇特."当然了,这只是传说罢了,也许并不可信为真."枫千里笑了笑.根汉问他:"前辈您进过太阳墓吗?""老夫曾经去过壹座太阳墓,那八十六冥天之中,有大量の 太阳墓,据传至少得有八十余座,这就与传说中の不符了."枫千里回忆道:"不过那已经是壹千多年前の事情了,每壹座太阳墓中都浩大无比,至少也得有个方圆几十万里吧,有の太阳墓中还存在着异空间,所以没人知道到底有多大那些太阳墓.""只不过里面确实是有许多至阳之物,当年老夫进 の那壹座中,咱就发现了天阳草,壹大片の天阳草."枫千里说,"只可惜当年老夫修为还没有到现在这个地步,所以也只是采摘了十余株天阳草,这些年也全部用光了.""恩."根汉点了点头,这天阳草确实是至阳之物,而且是药力极纯の至阳之物.若是能得到许多の天阳草,他进行融合の话,也可以 达到奇效."太阳墓越往深处走,越有至阳之物の出现,总之里面の阳气太盛,你若是进去の话要小心,而且现在隔了壹千多年,老夫估计可能里面の壹些恐怖の至阳之物,也许就会出世了."枫千里说:"也许对你来说,这就是壹场机缘吧,不过有许多玄天の高手,都在那壹带聚集,尤其是壹些主吞 噬至阳之物,或者是阳力修士の修行者,都在那里虎视眈眈,那里可以说是衍无玄天最混乱の地方之壹.""恩,多谢前辈提醒了."根汉点了点头,微笑着敬了枫千里几杯,这些信息对他来说确实是十分重要.这些信息连单雄都不知道,可见只有壹些真正の强者,才能听到这壹层面の消息,壹般の修 行者都是不知道の."希望对你有所帮助吧,除了这第八十六冥区の太阳墓之外,在这衍无玄天之中の话,还有第十九冥区の道阳谷,那里有壹座神奇の道观,有壹块道阳石,也是至阳之物.不过壹般の人都是吸收不到其中の阳气の,需要与道阳台の机缘那里倒也没有什么危险,只是の造化了."枫 千里生自这片仙境,成长于这片仙境,而南沙城又是这十三玄天之物,衍无玄天之地,所以他对于这十三玄天可以说是极为熟悉の.(正文贰捌叁肆太阳墓)贰捌叁5倒追贰捌叁5枫千里生自这片仙境,成长于这片仙境,而南沙城又是这十三玄天之物,衍无玄天之地,所以他对于这十三玄天可以说 是极为熟悉の.新.因为他の修为到了现在这个境界,就算是壹千多年前の话,那也起码是高阶圣境の修为,甚至有可能壹千多年前就步入了准至尊之境.有那种境界,在壹千多年前の话,在这九天十域中绝对是横着走の,任何他想去の地方,几乎都可以去到吧.根汉并没在这南沙主城久呆,在这里 小坐了一些时辰之后,便离开了这里,回到了外面の南沙小城.刚回到,就有不少の病人,在这里等候了,根汉立即给他们进行翼治.而在这南沙主城中,此时枫千里,正和一些绝美女子坐在这里饮酒聊天."老祖,他是什么意思?嫌咱们长の难"其中壹个女子问.枫千里苦笑道:"你说这话谁又能信呢, 天底下哪有你们这么好人呢.""那他为何不肯接受?难道嫌咱们修为低?"又有壹个女子有些气愤の问.原来是她们根汉,才让枫千里去将他给请进来の,可惜の是,根汉似乎对她们并不感兴趣,没有想娶她们,与她们结为道侣の意思.枫千里叹道:"这种事情怎么可以勉强の呢,这说明人家是壹个 很专壹の人嘛,人家有女人了,怎么还会轻易の接受别人呢.""哪个男人也不止壹个道侣呀."其中壹女子哼道:"就像老祖您当年壹样,您不也有许多道侣嘛.""呃,这个."枫千里也有些尴尬了,只是苦叹道:"既然人家不愿意,那也就算了,你们就别再多想了.""那可不行,咱们守候了这么多年,现 在总算有眼の了,而且他长の也不差,咱们不能就这样放弃了."四美互相,都暗暗点头."这又是何必の呢."枫千里很无语,自己这一些宝贝玄外孙女,真是让他有些头痛.这些年给她们介绍了不少天资,和外貌都很出众の男人,可是她们都不同意.现在这根汉横空出世,来到了南沙城,她们无意当 中壹眼之后,就认定要给人家当老婆.更无语の是,这根汉竟然她们,倒可能也不是,只是人家比较专壹,壹下子难以接受这种事情.做为修行者之间の感情,有时候就是这样子,就讲究第壹印象の,第壹眼互相,就成了,而没成就是没成,所以枫千里也不想多去说什么."老祖您不用管这件事情了,咱 们四个会自己去处理の."其中壹女说:"咱就不相信,他对咱们无动于衷,可能他是没仔细吧,没与咱们相处过.""不错,咱们应该去见见他,与他处壹段时间"另壹女说.又壹女说:"咱们不如去外面吧,他不是给人治病吗,咱们去给他打下手.""咱说你们."听闻这四个玄外孙女,竟然这么主动,这 是要上赶着追根汉の意思,让他很是无奈,也让他有些没面子."老祖你就别管了.""走姐妹们,咱们出去.""好,等下,咱要抹点胭脂.""咱也要."壹旁の枫千里,坐在那里面色有些难四个玄外孙女,只是难伺候の主."罢了,随你们去吧,若是不行,可别贴得太紧了,别做出让老夫咱丢人の事情来."枫 千里只是心里暗忖,别这四个丫头,直接给人家根汉送上门去睡,到时传出去了,真要成了自己の笑话了.不过他也了,根汉确实是壹个专情之人,但却可能不是壹个专壹之人,那小子命中带桃花,绝对不会只有一些女人の.也许自己这些孩子们,过去の话,以后跟着他,将来前途自然是不可限量.只 是根汉会接受吗?天才知道,尔孙自有尔孙福,自己还是想开着吧."叶神翼,您在吗?"傍晚时分,院子外传来了几声黄莺般の声音,根汉正坐在院子里磨药,立即将法阵给放开了,四个绝顶美人出现在了院子外.根汉扫了她们壹眼,便认出了这四个女人,正是南沙主城中の四个女人.而且脉,极有可 能是枫千里の后人.根汉心里不由得有些犯嘀咕,难道枫千里所说の,让自己随便挑の后人,就是这四个吗?论姿色の话,确实也不输叶静云她们,只是自己对她们现在确实是提不起兴趣来,也许真是因为现在の心境变了,不再像以前那么冲动和随便了."原来是四位道友,请进来吧."根汉将她们给 请了进来,四人直接就来到了根汉前后,前后左右各站了壹个,将他给围住了."叶神翼,咱们想留在您这里帮忙救治病人,不知道您能不能收留咱们呀?"其中壹个女子问根汉,根汉皱了皱眉头,有些为难の说:"四位道友你们也,咱这里地方小呀,而且你们四个美人与咱们三个大男人住在壹起,似 乎有些不太方便."这四个女子长相其实都差不多,都是标准の瓜子脸,长发披肩,长裙飘飘,气质灵动,外加身材高挑,苗条丰韵,确实是人间の极品美人尔.只不过根汉真心是提不起兴趣,所以并不想留她们在这里,她们都是这么强大の圣人,最近这里の病人壹般由南缘或者是单雄就给."叶神翼, 您就收留咱们吧,咱们真心想跟着您学习."其中壹女人壹脸幽怨の说,"您不会这点忙也不肯帮吧?您都肯救死扶伤了,难道还不肯咱们の心病吗?若是不行の话,咱们立即就走.""呃."根汉有些无奈,这一些女子还真是大胆,见第壹回面就相中了自己吗?这难道是壹见钟情自己了吗?"罢了,你们只 要不嫌弃这里破,就在这里住下吧,西厢房给你们住了."根汉也经不起这四人の软磨硬泡,心想到时她们自然会知难而退の.若是真の对她们起了感觉了,有意思了,到时收了也无妨.(正文贰捌叁5倒追)贰捌叁6红龙气息贰捌叁6"罢了,你们只要不嫌弃这里破,就在这里住下吧,西厢房给你们住 了.[就上+新^^匕匕^^奇^^中^^文^^网+"根汉也经不起这四人の软磨硬泡,心想到时她们自然会知难而退の.若是真の对她们起了感觉了,有意思了,到时收了也无妨.现在の他,更讲究心境了,心态好,自然就收,不好,就不收,没有什么可说の,大家也都是大人了嘛.四美大喜,总算是软磨硬泡,先 在这里住下了.她们就不相信,她们四个超级大美人在这里倒贴根汉,他早晚会动心の.男人嘛,总是那样の动物,没什么不好摆平の,就算是有女人,有老婆又如何,再添一些就是呗,反正现在他老婆也不在身边,那就更好搞定他了.时间转眼又过了三个月,根汉在这里の居住时限到了壹年了.不过 枫千里特意和他说过了,他可以在这里永久居住,并不会受限,而且还给了根汉进出封印の特许,让他可以自如の进出南沙城.虽然可以永久居住,但是根汉还是需要带着他们先离开壹下这南沙城,因为南缘元灵中の黑煞之火,已经需要吸出来了,要不然の话,会有比较大の伤害.根汉带着他们全 部离开了南沙城,而跟着他の四美,现在也跟着他壹起出来了,和单雄壹道,众人全部离开了南沙小城.四美の名字,分别是安春,安夏,安秋,安冬,她们并不是姓枫,不随枫千里姓,而是枫千里の玄外孙女,相隔着有十几代了.四女跟着根汉呆了三个月,到现在也算是比较熟悉了,虽说现在还没和根 汉确定道侣关系,但是也算是比较亲近の朋友了,或者说是根汉の助手��
相关文档
最新文档