如何判断晶振好坏
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何判断晶振好坏
1 用万用表(R×10k挡)测晶振两端的电阻值,若为无穷大,说明晶振无短路或漏电;再将试电笔插入市电插孔内,用手指捏住晶振的任一引脚,将另一引脚碰触试电笔顶端的金属部分,若试电笔氖泡发红,说明晶振是好的;若氖泡不亮,则说明晶振损坏。(引自网上,请注意安全,未经证实)
2.用数字电容表(或数字万用表的电容档)测量其电容,一般损坏的晶振容量明显减小(不同的晶振其正常容量具有一定的范围,可测量好的得到,一般在几十到几百PF
3 贴近耳朵轻摇,有声音就一定是坏的(内部的晶体已经碎了,还能用的话频率也变了)
4 测试输出脚电压。一般正常情况下,大约是电源电压的一半。因为输出的是正弦波(峰峰值接近源电压),用万用表测试时,就差不多是一半啦。
5 用代换法或示波器测量。
晶振在应用具体起到什么作用
微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振、陶瓷谐振槽路;RC(电阻、电容)振荡器。一种是皮尔斯振荡器配置,适用于晶振和陶瓷谐振槽路。另一种为简单的分立RC振荡器。
基于晶振与陶瓷谐振槽路的振荡器通常能提供非常高的初始精度和较低的温度系数。RC振荡器能够快速启动,成本也比较低,但通常在整个温度和工作电源电压范围内精度较差,会在标称输出频率的5%至50%范围内变化。
但其性能受环境条件和电路元件选择的影响。需认真对待振荡器电路的元件选择和线路板布局。在使用时,陶瓷谐振槽路和相应的负载电容必须根据特定的逻辑系列进行优化。具有高Q 值的晶振对放大器的选择并不敏感,但在过驱动时很容易产生频率漂移(甚至可能损坏)。影响振荡器工作的环境因素有:电磁干扰(EMI)、机械震动与冲击、湿度和温度。这些因素会增大输出频率的变化,增加不稳定性,并且在有些情况下,还会造成振荡器停振。
上述大部分问题都可以通过使用振荡器模块避免。这些模块自带振荡器、提供低阻方波输出,并且能够在一定条件下保证运行。最常用的两种类型是晶振模块和集成RC振荡器(硅振荡器)。晶振模块提供与分立晶振相同的精度。硅振荡器的精度要比分立RC振荡器高,多数情况下能够提供与陶瓷谐振槽路相当的精度。
选择振荡器时还需要考虑功耗。分立振荡器的功耗主要由反馈放大器的电源电流以及电路内部的电容值所决定。CMOS放大器功耗与工作频率成正比,可以表示为功率耗散电容值。比如,HC04
反相器门电路的功率耗散电容值是90pF。在4MHz、5V电源下工作时,相当于1.8mA的电源电流。再加上20pF的晶振负载电容,整个电源电流为2.2mA。陶瓷谐振槽路一般具有较大的负载电容,相应地也需要更多的电流。相比之下,晶振模块一般需要电源电流为10mA ~60mA。硅振荡器的电源电流取决于其类型与功能,范围可以从低频(固定)器件的几个微安到可编程器件的几个毫安。一种低功率的硅振荡器,如MAX7375,工作在4MHz时只需不到2mA的电流。
在特定的应用场合优化时钟源需要综合考虑以下一些因素:精度、成本、功耗以及环境需求。
每个单片机系统里都有晶振,全称是叫晶体震荡器,在单片机系统里晶振的作用非常大,他结合单片机内部的电路,产生单片机所必须的时钟频率,单片机的一切指令的执行都是建立在这个基础上的,晶振的提供的时钟频率越高,那单片机的运行速度也就越快。
晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。
晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。
晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。
下面我就具体的介绍一下晶振的作用以及原理,晶振一般采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。其中Co,C1,L1,RR是晶体的等效电路。
无源晶体与有源晶振的区别、应用范围及用法:
1、无源晶体——无源晶体需要用DSP片内的振荡器,在datasheet上有建议的连接方法。无源晶体没有电压的问题,信号电平是可变的,也就是说是根据起振电路来决定的,同样的晶体可以适用于多种电压,可用于多种不同时钟信号电压要求的DSP,而且价格通常也较低,因此对于一般的应用如果条件许可建议用晶体,这尤其适合于产品线丰富批量大的生产者。无源晶体相对于晶振而言其缺陷是信号质量较差,通常需要精确匹配外围电路(用于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路需要做相应的调整。建议采用精度较高的石英晶体,尽可能不要采用精度低的陶瓷警惕。
2、有源晶振——有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。对于时序要求敏感的应用,个人认为还是有源的晶振好,因为可以选用比较精密的晶振,甚至是高档的温度补偿晶振。有些DSP 内部没有起振电路,只能使用有源的晶振,如TI的6000系列等。有源晶振相比于无源晶体通常体积较大,但现在许多有源晶振是表贴的,体积和晶体相当,有的甚至比许多晶体还要小。几点注意事项:
1、需要倍频的DSP需要配置好PLL周边配置电路,主要是隔离和滤波;
2、20MHz以下的晶体晶振基本上都是基频的器件,稳定度好,20MHz以上的大多是谐波的(如3次谐波、5次谐波等等),稳定度差,因此强烈建议使用低频的器件,毕竟倍频用的PLL电路需要的周边配置主要是电容、电阻、电感,其稳定度和价格方面远远好于晶体晶振器件;
3、时钟信号走线长度尽可能短,线宽尽可能大,与其它印制线间距尽可能大,紧靠器件布局布线,必要时可以走内层,以及用地线包围;
4、通过背板从外部引入时钟信号时有特殊的设计要求,需要详细参考相关的资料。
此外还要做一些说明:
总体来说晶振的稳定度等方面好于晶体,尤其是精密测量等领域,绝大多数用的都是高档的晶振,这样就可以把各种补偿技术集成在一起,减少了设计的复杂性。试想,如果采用晶体,然后自己设计波形整形、抗干扰、温度补偿,那样的话设计的复杂性将是什么样的呢?我们这里设计射频电路等对时钟要求高的场合,就是采用高精度温补晶振的,工业级的要好几百元一个。特殊领域的应用如果找不到合适的晶振,也就是说设计的复杂性超出了市场上成品晶振水平,就必须自己设计了,这种情况下就要选用晶体了,不过这些晶体肯定不是市场上的普通晶体,而是特殊的高端晶体,如红宝石晶体等等。
更高要求的领域情况更特殊,我们这里在高精度测试时采用的时钟甚至是原子钟、铷钟等设备提供的,通过专用的射频接插件连接,是个大型设备,相当笨重
晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。
一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。
晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。
谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。
晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。
石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械Γ只嵩谙嘤Φ姆