1.3 不等式的解集(含答案)
2017-2018学年高中数学人教B版选修4-5:第一章 1.3 绝对值不等式的解法
![2017-2018学年高中数学人教B版选修4-5:第一章 1.3 绝对值不等式的解法](https://img.taocdn.com/s3/m/7066f9ebf61fb7360b4c65c5.png)
[对应学生用书P10][读教材·填要点]1.含绝对值的不等式|x|≤a与|x|≥a的解集2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法(1)|ax+b|≤c⇔-c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c或ax+b≤-c.3.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法(1)分区间讨论法:以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负进而去掉绝对值符号是解题关键.(2)图象法:构造函数,结合函数的图象求解.(3)几何法:利用绝对值不等式的几何意义求解.[小问题·大思维]1.|x|以及|x-a|±|x-b|表示的几何意义是什么?提示:|x|的几何意义是数轴上表示数x的点到原点O的距离;|x-a|±|x-b|的几何意义是数轴上表示数x的点与表示数a,b的点的距离之和(差).2.如何解|x-a|<|x-b|、|x-a|>|x-b|(a≠b)型的不等式的解集?提示:可通过两边平方去绝对值符号的方法求解.[对应学生用书P10][例1] 解下列不等式: (1)1<|x -2|≤3; (2)|2x +5|>7+x ; (3)1x 2-2≤1|x |. [思路点拨] 本题考查较简单的绝对值不等式的解法.解答本题(1)可利用公式转化为|ax +b |>c (c >0)或|ax +b |<c (c >0)型不等式后逐一求解,也可利用绝对值的定义分两种情况去掉绝对值符号,还可用平方法转化为不含绝对值的不等式.(2)可利用公式法转化为不含绝对值的不等式. (3)可分类讨论去掉分母和绝对值.[精解详析] (1)法一:原不等式等价于不等式组⎩⎪⎨⎪⎧ |x -2|>1,|x -2|≤3,即⎩⎪⎨⎪⎧x <1或x >3,-1≤x ≤5,解得-1≤x <1或3<x ≤5,所以原不等式的解集为{x |-1≤x <1或3<x ≤5}. 法二:原不等式可转化为:①⎩⎪⎨⎪⎧ x -2≥0,1<x -2≤3,或②⎩⎪⎨⎪⎧x -2<0,1<-(x -2)≤3,由①得3<x ≤5,由②得-1≤x <1,所以原不等式的解集是{x |-1≤x <1或3<x ≤5}. (2)由不等式|2x +5|>7+x ,可得2x +5>7+x 或2x +5<-(7+x ), 整理得x >2或x <-4.∴原不等式的解集是{x |x <-4或x >2}. (3)①当x 2-2<0且x ≠0,即当-2<x <2, 且x ≠0时,原不等式显然成立. ②当x 2-2>0时,原不等式与不等式组⎩⎨⎧|x |>2,x 2-2≥|x |等价,x 2-2≥|x |即|x |2-|x |-2≥0, ∴|x |≥2,∴不等式组的解为|x |≥2, 即x ≤-2或x ≥2. ∴原不等式的解集为(-∞,-2]∪(-2,0)∪(0,2)∪[2,+∞).含一个绝对值不等式的常见类型及其解法: (1)形如|f (x )|<a ,|f (x )|>a (a ∈R )型不等式 此类不等式的简单解法是等价命题法,即 ①当a >0时,|f (x )|<a ⇒-a <f (x )<a . |f (x )|>a ⇔f (x )>a 或f (x )<-a . ②当a =0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )≠0.③当a <0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )有意义.(2)形如|f (x )|<g (x ),|f (x )|>g (x )型不等式 此类不等式的简单解法是等价命题法,即 ①|f (x )|<g (x )⇔-g (x )<f (x )<g (x ),②|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x )(其中g (x )可正也可负). 若此类问题用分类讨论法来解决,就显得较复杂. (3)形如a <|f (x )|<b (b >a >0)型不等式 此类问题的简单解法是利用等价命题法,即 a <|f (x )|<b (0<a <b )⇔a <f (x )<b 或-b <f (x )<-a . (4)形如|f (x )|<f (x ),|f (x )|>f (x )型不等式 此类题的简单解法是利用绝对值的定义,即 |f (x )|>f (x )⇔f (x )<0, |f (x )|<f (x )⇔x ∈∅.1.设函数f (x )=|2x -a |+5x ,其中a >0. (1)当a =3时,求不等式f (x )≥5x +1的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =3时,不等式f (x )≥5x +1可化为|2x -3|≥1, 由此可得x ≥2或x ≤1.故不等式f (x )≥5x +1的解集为{x |x ≤1或x ≥2}.(2)由f (x )≤0得|2x -a |+5x ≤0,此不等式可化为不等式组⎩⎪⎨⎪⎧x ≥a 2,2x -a +5x ≤0或⎩⎪⎨⎪⎧x <a 2,-(2x -a )+5x ≤0,即⎩⎨⎧x ≥a 2,x ≤a7或⎩⎨⎧x <a 2,x ≤-a3,因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x | x ≤-a 3.由题设可得-a3=-1,故a =3.[例2] 解不等式|x +7|-|3x -4|+3-22>0. [思路点拨] 先求出零点即x =-7,43,再分段讨论.[精解详析] 原不等式化为 |x +7|-|3x -4|+2-1>0,当x >43时,原不等式为x +7-(3x -4)+2-1>0,得x <5+22,即43<x <5+22;当-7≤x ≤43时,原不等式为x +7+(3x -4)+2-1>0, 得x >-12-24,即-12-24<x ≤43;当x <-7时,原不等式为 -(x +7)+(3x -4)+2-1>0, 得x >6-22,与x <-7矛盾; 综上,不等式的解为-12-24<x <5+22.(1)|x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.(2)|x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的图象解法和画出函数f (x )=|x -a |+|x -b |-c 的图象是密切相关的,其图象是折线,正确地画出其图象的关键是写出f (x )的分段表达式.不妨设a <b ,于是f (x )=⎩⎪⎨⎪⎧-2x +a +b -c , (x ≤a ),b -a -c , (a <x <b ),2x -a -b -c , (x ≥b ).这种图象法的关键是合理构造函数,正确画出函数的图象,求出函数的零点,体现了函数与方程结合、数形结合的思想.(3)形如|f (x )|<|g (x )|型不等式此类问题的简单解法是利用平方法,即 |f (x )|<|g (x )|⇔[f (x )]2<[g (x )]2 ⇔[f (x )+g (x )][f (x )-g (x )]<0.2.设函数f (x )=|2x +1|-|x -3|. (1)解不等式f (x )≥4; (2)求函数y =f (x )的最小值.解:(1)由题意得,f (x )=|2x +1|-|x -3|=⎩⎨⎧-x -4, x <-12,3x -2, -12≤x ≤3,x +4,x >3,所以不等式f (x )≥4,等价于⎩⎪⎨⎪⎧ x <-12,-x -4≥4或⎩⎪⎨⎪⎧-12≤x ≤3,3x -2≥4或⎩⎪⎨⎪⎧x >3,x +4≥4,解得x ≤-8或x ≥2.所以原不等式的解集为{x |x ≤-8或x ≥2}. (2)由(1)知,当x <-12时,f (x )=-x -4,所以f (x )在⎝⎛⎭⎫-∞,-12上单调递减; 当-12≤x ≤3时,f (x )=3x -2,所以f (x )在⎣⎡⎦⎤-12,3上单调递增; 当x >3时,f (x )=x +4,所以f (x )在(3,+∞)上单调递增. 故当x =-12时,y =f (x )取得最小值,此时f (x )min =-72.[例3] 设函数f (x )=|x -1|+|x -a |. 如果∀x ∈R ,f (x )≥2,求a 的取值范围.[思路点拨] 本题考查绝对值不等式的解法.解答本题应先对a 进行分类讨论,求出函数f (x )的最小值,然后求a 的取值范围.[精解详析] 若a =1,f (x )=2|x -1|,不满足题设条件.若a <1,f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤a ,1-a , a <x <1,2x -(a +1), x ≥1,f (x )的最小值为1-a .若a >1,f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤1,a -1, 1<x <a ,2x -(a +1), x ≥a ,f (x )的最小值为a -1.所以∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,从而a 的取值范围为(-∞,-1]∪[3,+∞).含有参数的不等式的求解问题分两类,一类不需要对参数进行讨论,另一类如本例,对参数a 进行讨论,得到关于参数a 的不等式(组),进而求出参数的取值范围.3.(辽宁高考)已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解:(1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6, x ≤2,2, 2<x <4,2x -6, x ≥4.当x ≤2时,由f (x )≥4-|x -4|,得-2x +6≥4, 解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|,得2x -6≥4, 解得x ≥5.所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a , x ≤0,4x -2a , 0<x <a ,2a , x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2}, 所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3.[对应学生用书P12]一、选择题1.若不等式|ax +2|<6的解集为(-1,2),则实数a 的取值为( ) A .8 B .2 C .-4D .-8解析:原不等式化为-6<ax +2<6, 即-8<ax <4. 又∵-1<x <2,∴验证选项易知a =-4适合. 答案:C2.如果1x <2和|x |>13同时成立,那么x 的取值范围是( )A.⎩⎨⎧⎭⎬⎫x | -13<x <12 B.⎩⎨⎧⎭⎬⎫x | x >12或x <-13C.⎩⎨⎧⎭⎬⎫x | x >12 D.⎩⎨⎧⎭⎬⎫x | x <-13或x >13解析:解不等式1x <2得x <0或x >12;解不等式|x |>13得x >13或x <-13.如图所示:∴x 的取值范围为⎩⎨⎧⎭⎬⎫x | x >12或x <-13.答案:B3.如果关于x 的不等式|x -a |+|x +4|≥1的解集是全体实数,则实数a 的取值范围是( )A .(-∞,3]∪[5,+∞)B .[-5,-3]C .[3,5]D .(-∞,-5]∪[-3,+∞)解析:在数轴上,结合绝对值的几何意义可知a ≤-5或a ≥-3. 答案:D4.若关于x 的不等式|x +1|≥kx 恒成立,则实数k 的取值范围是( ) A .(-∞,0] B .[-1,0] C .[0,1]D .[0,+∞)解析:作出y =|x +1|与l1;y =kx 的图象如图,当k <0时,直线一定经过第二、四象限,从图看出明显不恒成立;当k =0时,直线为x 轴,符合题意;当k >0时,要使|x +1|≥kx 恒成立,只需k ≤1.综上可知k ∈[0,1]. 答案:C 二、填空题5.不等式|2x +1|-2|x -1|>0的解集为________.解析:原不等式即|2x +1|>2|x -1|,两端平方后解得12x >3,即x >14.答案:⎩⎨⎧⎭⎬⎫x | x >146.不等式|x +1||x +2|≥1的实数解集为________.解析:|x +1||x +2|≥1⇔|x +1|≥|x +2|,x +2≠0⇔(x +1)2≥(x +2)2,x ≠-2⇔x ≤-32,x ≠-2.答案:(-∞,-2)∪⎝⎛⎦⎤-2,-32 7.若不等式| x +1x | >|a -2|+1对于一切非零实数x 均成立,则实数a 的取值范围是________.解析:∵|x +1x |≥2,∴|a -2|+1<2,即|a -2|<1,解得1<a <3.答案:1<a <38.若关于x 的不等式|x -1|+|x -a |≥a 的解集为R (其中R 是实数集),则实数a 的取值范围是________.解析:不等式|x -1|+|x -a |≥a 恒成立, a 不大于|x -1|+|x -a |的最小值, ∵|x -1|+|x -a |≥|1-a |,∴|1-a |≥a,1-a ≥a 或1-a ≤-a ,解得a ≤12.答案:⎝⎛⎦⎤-∞,12 三、解答题9.解不等式|2x -4|-|3x +9|<1. 解:(1)当x >2时,原不等式可化为⎩⎪⎨⎪⎧x >2,(2x -4)-(3x +9)<1, 解得x >2.(2)当-3≤x ≤2时,原不等式可化为⎩⎪⎨⎪⎧-3≤x ≤2,-(2x -4)-(3x +9)<1, 解得-65<x ≤2. (3)当x <-3时,原不等式可化为 ⎩⎪⎨⎪⎧ x <-3,-(2x -4)+(3x +9)<1,解得x <-12.综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫x | x <-12或x >-65. 10.已知函数f (x )=|2x -1|+|x -2a |.(1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围.解:(1)当a =1时,原不等式可化为|2x -1|+|x -2|≤3,当x >2时,得3x -3≤3,则x ≤2,无解;当12≤x ≤2时,得x +1≤3,则x ≤2,所以12≤x ≤2; 当x <12时,得3-3x ≤3,则x ≥0,所以0≤x <12. 综上所述,原不等式的解集为[0,2].(2)原不等式可化为|x -2a |≤3-|2x -1|,因为x ∈[1,2],所以|x -2a |≤4-2x ,即2x -4≤2a -x ≤4-2x ,故3x -4≤2a ≤4-x 对x ∈[1,2]恒成立.当1≤x ≤2时,3x -4的最大值为2,4-x 的最小值为2,所以a 的取值范围为1.11.已知函数f (x )=|x +3|+|x -a |(a >0).(1)当a =4时,已知f (x )=7,求x 的取值范围;(2)若f (x )≥6的解集为{x |x ≤-4或x ≥2},求a 的值.解:(1)因为|x +3|+|x -4|≥|x +3-x +4|=7,当且仅当(x +3)(x -4)≤0时等号成立. 所以f (x )=7时,-3≤x ≤4,故x ∈[-3,4].(2)由题知f (x )=⎩⎪⎨⎪⎧ a -3-2x , x ≤-3,a +3,-3<x <a ,2x +3-a , x ≥a ,当a +3≥6时,不等式f (x )≥6的解集为R ,不合题意;当a +3<6时,不等式f (x )≥6的解为⎩⎪⎨⎪⎧ x ≤-3,a -3-2x ≥6或⎩⎪⎨⎪⎧x ≥a ,2x +3-a ≥6, 即⎩⎨⎧ x ≤-3,x ≤a -92或⎩⎨⎧ x ≥a ,x ≥a +32. 又因为f (x )≥6的解集为{x |x ≤-4或x ≥2},所以a =1.。
北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)
![北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)](https://img.taocdn.com/s3/m/142be423ef06eff9aef8941ea76e58fafbb04550.png)
第一讲不等式的基本性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【知识总结】一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a 向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】【类型】一、不等式的概念例1.给出下列表达式:①()a b c ab ac +=+;②20-<;③5x ≠;④21a b >+;⑤222x xy y -+;⑥236x ->,其中属于不等式的是______.(填序号) 【答案】②③④⑥【分析】根据不等式的定义判断即可. 解:①a (b+c )=a b+ac 是等式;②-2<0是用不等号连接的式子,故是不等式; ③x≠5是用不等号连接的式子,故是不等式; ④2a >b+1是用不等号连接的式子,故是不等式; ⑤x 2-2xy+y 2是代数式;⑥2x-3>6是用不等号连接的式子,故是不等式, 故答案为:②③④⑥.【点拨】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.【训练】下列式子:①-1>2;②3x≥-1;③x -3;④s =vt ;⑤3x -4<2y ;⑥3x -5=2x +2;⑦a 2+2≥0;⑧a 2+b 2≠c 2.其中是不等式的是___________________.(只填序号) 【答案】①②⑤⑦⑧ 【解析】【分析】根据不等式的定义即可得出结论.解:根据不等式的定义:①-1>2,②3x ≥-1,⑤3x -4<2y ,⑦a 2+2≥0,⑧a 2+b 2≠c 2是不等式;③x -3,④s =vt ,⑥3x -5=2x +2不是不等式. 故答案为:①②⑤⑦⑧.【点拨】本题考查了不等式的概念.掌握不等式的概念是解题的基础. 【训练】下列式子属于不等式的是_______________.① 50-< ② 2x 3= ③ 3x 12-> ④4x 2y 0-≤ ⑤ 2x 3x 20-+> ⑥ x 2y - ⑦ 57x ≠ ⑧54< ⑨ x y 0+≥【答案】①③④⑤⑦⑧⑨【解析】【分析】根据不等式的概念即可解题. 解:∵不等式要求用不等号连接 ∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨【点拨】本题考查了不等式的识别,属于简单题,熟悉不等式的概念是解题关键.【类型】二、不等式的解及解集例2.(2018·安徽全国·七年级单元测试)下列数值中哪些是不等式3x-1≥5的解?哪些不是? 100, 98, 51, 12, 2, 0, -1, -3, -5.【答案】100, 98, 51, 12, 2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解. 【解析】试题分析:把上述各数分别代入不等式315x -≥的左边计算出左边的值,看是否大于或等于5即可. 试题解析:∵在不等式315x -≥中,当100x =时,左边=312995x -=>; 当98x =时,左边=312935x -=>; 当51x =时,左边=311525x -=>; 当12x =时,左边=31355x -=>; 当2x =时,左边=315x -=;当0x =时,左边=3115x -=-<; 当1x =-时,左边=3145x -=-<; 当3x =-时,左边=31105x -=-<; 当5x =-时,左边=31165x -=-<;∴上述各数中,100,98,51,12,2是不等式315x -≥的解;0,-1,-3,-5不是不等式315x -≥的解. 例3. 把下列不等式的解集在数轴上表示出来. (1)x≥-3; (2)x >-1; (3)x≤3;(4)x<-32. 【答案】(1)(2) (3)(4)【解析】将上述不等式的解集规范的表示在数轴上即可. 试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点拨:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”. 【训练】在数轴上表示不等式﹣3≤x <6的解集和x 的下列值:﹣4,﹣2,0,142,7,并利用数轴说明x 的这些数值中,哪些满足不等式﹣3≤x <6,哪些不满足? 【答案】﹣2,0,142满足不等式;﹣4,7不满足不等式 【分析】根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集和x 的下列值:﹣4,﹣2,0,142,7在数轴上表示出来,这些值如果在解集范围内则表示满足不等式,否则就是不满足不等式.解:根据图可知:x 的下列值:﹣2,0,142满足不等式;x 的下列值:﹣4,7不满足不等式.【点拨】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【类型】三、不等式的性质例4.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)x 15-<. (2)4x 13-≥. (3)1x 142-+≥. (4)4x 10-<-. 【答案】(1)x 6<;(2)x 1≥;(3)x 6≤-;(4)5x 2>.【分析】(1)利用不等式的性质将两边加上1即可求解;(2)利用不等式的性质先将两边加上1,再两边同除以4即可求解; (3)利用不等式的性质先将两边减去1,再两边同除以12-即可求解; (3)利用不等式的性质将两边同除以-4即可求解; 解:(1)x 15-<,两边加上1得:x 1151-+<+, 解得:x 6<; (2)4x 13-≥,两边加上1得:4x 1131-+≥+,即4x 4≥, 两边除以4得:x 1≥; (3)1x 142-+≥, 两边减去1得:1x 11412-+-≥-,即1x 32-≥, 两边除以12-得:x 6≤-; (4)4x 10-<-, 两边除以4-得:5x 2>. 【点拨】本题考查不等式的性质,解题的关键是熟练掌握不等式的性质.【训练】根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)5x>4x+8 (2)x+2<-1 (3)-23x>-1(4)10-x>0 (5)-15x<-2 (6)3x+5<0【答案】(1)x>8;(2)x<-3;(3)x<32;(4)x<10;(5)x>10;(6)x<-53.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变;依次分析各小题即可.解:(1)根据不等式性质1,不等式两边都减4x,不等号的方向不变,得5x-4x>4x+8-4x,即x>8;(2)根据不等式性质1,不等式两边都减去2,不等号的方向不变,得x+2-2<-1-2即x<-3;(3)根据不等式性质3,不等式两边同除以-23,不等号的方向改变,得-23x÷(-23)<-1÷(-23)即x<32;(4)根据不等式性质1,不等式两边同减10,不等号的方向不变,得10-x-10>0-10即-x>-10,再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;(5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,得-15x·(-5)>-2×(-5)即x>10;(6)根据不等式性质1,不等式两边都减去5,不等号的方向不变得3x+5-5<0-5即3x<-5,再根据不等式性质2,不等式两边同除以3,不等号的方向不变,得3x÷3<-5÷3即x<-53.【点拨】本题主要考查了不等式的基本性质,本题重在考查不等式的三条基本性质,特别是性质3,两边同乘以(•或除以)同一个负数时,一定要改变不等号的方向!•这条性质是初学者最易出错也经常出错的地方.。
不等式的解集
![不等式的解集](https://img.taocdn.com/s3/m/646b0a68905f804d2b160b4e767f5acfa1c783bb.png)
不等式的解集1. 引言在数学中,不等式是描述数值之间大小关系的工具。
不等式的解集是满足给定不等式的所有实数值的集合。
解集的求解是解决不等式问题的关键步骤,对于理解和应用不等式具有重要意义。
本文将介绍不等式解集的概念、求解方法和常见类型的不等式,并提供一些实例来帮助读者更好地理解和应用不等式解集的求解过程。
2. 不等式解集的定义给定一个不等式,解集是满足此不等式的所有实数值组成的集合。
通常用数学符号表示如下:解集:{x | 不等式}其中,x表示满足不等式的实数值,竖线表示“使得”或“满足的条件”,不等式表示约束条件。
例如,解集 {x | x > 0} 表示所有大于0的实数构成的集合。
3. 不等式解集的求解方法解不等式的一般方法是通过分析和推导找出满足不等式的数值范围。
以下是一些常见的不等式解集求解方法:3.1. 一元一次不等式的解集求解一元一次不等式是指表达式中只含有一次幂的单个未知数的不等式。
解一元一次不等式的步骤如下:1.将不等式转化为等式。
2.根据等式的解集,绘制数轴并进行标记。
3.根据不等式的类型(大于、小于、大于等于、小于等于),确定解集的位置。
例如,对于不等式2x + 3 < 7,我们可以将其转化为等式2x + 3 = 7,解得 x = 2。
由于不等式为小于关系,解集为{x | x < 2}。
3.2. 一元二次不等式的解集求解一元二次不等式是指表达式中含有二次项的单个未知数的不等式。
解一元二次不等式的步骤如下:1.将不等式转化为等式。
2.根据等式的解集,绘制二次函数的图像。
3.根据不等式的类型(大于、小于、大于等于、小于等于),确定解集的位置。
例如,对于不等式x^2 - 4x + 3 > 0,我们可以将其转化为等式x^2 - 4x + 3 = 0。
解得 x = 1 或 x = 3。
通过绘制函数图像,我们可以确定解集为{x | x < 1 或 x > 3}。
不等式的解法含答案
![不等式的解法含答案](https://img.taocdn.com/s3/m/d28c2bfd9e3143323868930d.png)
2.2不等式的解法考点1 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)化为标准形式;(2)确定判别式Δ的符号;(3)若Δ≥0,则求出该不等式对应的二次方程的根,若Δ<0,则对应的二次方程无根;(4)结合二次函数的图象得出不等式的解集.特别地,若一元二次不等式的左边的二次三项式能分解因式,则可立即写出不等式的解集.考点2 含参数的一元二次不等式的解法解含参数的一元二次不等式的一般步骤:(1)二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.考点3 不等式恒成立问题不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧ a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧ a <0,Δ<0.考点4 分式不等式、高次不等式的解法分式不等式不能两边直接同时乘以分母,而是移项后转化为分子分母的乘积与0的大小关系。
注意分母不为0的讨论()0()()0()f x f x g x g x >⇔>,()0()()0()f x f xg x g x <⇔< ()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩,()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩解高次不等式时,使用数轴穿根法。
其步骤是:(1)将的最高次项的系数化为正数,(2)将()f x 分解为若干个一次因式的积或二次不可分因式之积,(3)在数轴上上从小到大依次标根,从右上方依次穿根,奇次根穿过,偶次根不穿。
考点5 含绝对值不等式的解法含绝对值不等式通过化归,去掉绝对值号,变成不含绝对值符号不等式。
高一数学具体的不等式试题答案及解析
![高一数学具体的不等式试题答案及解析](https://img.taocdn.com/s3/m/630c94deac51f01dc281e53a580216fc700a5320.png)
高一数学具体的不等式试题答案及解析1.不等式的解集是A.B.C.D.【答案】D【解析】:因为方程的两个根为,所以不等式的解集是。
故选D。
【考点】一元二次不等式的解法.点评:熟练掌握一元二次不等式的解法和实数的性质是解题的关键.2.不等式的解集是【答案】【解析】等价于,所以,,故不等式的解集是。
【考点】简单分式不等式解法点评:简单题,分式不等式解法,主要是转化成整式不等式求解。
3.不等式≥0的解集 .【答案】R【解析】根据题意,不等式≥0等价于,那么根据绝对值的几何意义可知,任意实数的绝对值都大于等于零,故可知解集为R.【考点】一元二次不等式的解集点评:主要是考查了一元二次不等式的解法的运用,属于基础题。
4.函数在上满足,则的取值范围是()A.B.C.D.【答案】D【解析】根据题意,当a=0时,显然成立,故排除答案B,C,对于当时,函数为二次函数,那么使得在实数域上函数值小于零,则判别式小于零,开口向下可知得到,解得,综上可知为,选D.【考点】不等式点评:主要是考查了函数性质的运用,属于基础题。
5.已知存在实数使得不等式成立,则实数的取值范围是 .【答案】【解析】解:由题意借助数轴,|x-3|-|x+2|∈[-5,5],∵存在实数x使得不等式|x-3|-|x+2|≥|3a-1|成立,∴5≥|3a-1|,解得-5≤3a-1≤5,即-≤a≤2,故答案为[-,2]【考点】绝对值不等式点评:本题考查绝对值不等式,求解本题的关键是正确理解题意,区分存在问题与恒成立问题的区别,本题是一个存在问题,解决的是有的问题,故取|3a-1|≤5,即小于等于左边的最大值即满足题意,本题是一个易错题,主要错误就是出在把存在问题当成恒成立问题求解,因思维错误导致错误6.若不等式kx2-2x+6k<0(k≠0)。
(1)若不等式解集是{x|x<-3或x>-2},求k的值;(2)若不等式解集是R,求k的取值。
【答案】(1);(2)【解析】解:∵不等式kx2-2x+6k<0(k≠0),不等式的解集是{x|x<-3或x>-2},∴根据二次函数与方程的关系,得:k<0,且-3,-2为关于x的方程kx2-2x+6k=0的两个实数根,据韦达定理有-3+(-2)=,(2)根据题意,由于k=0,不符合题意舍去,当k不为零时,则根据开口向下,判别式小于零可知,4-24k<0,k<0得到取值范围是【考点】二次函数与不等式点评:本题考查了函数恒成立问题,着重考查二次函数的图象与性质,同时考查了分类讨论思想的运用和转化思想,易错点在于忽略当k=0的情形,属于中档题7.已知关于的不等式的解集是,则 .【答案】【解析】因为,关于的不等式的解集是,所以,a=。
不等式的概念及解集练习题5套(含答案)
![不等式的概念及解集练习题5套(含答案)](https://img.taocdn.com/s3/m/afde9dead15abe23482f4d95.png)
不等式的概念及解集同步练习题5套(含答案)同步练习题(1)知识点:1、不等式:含有符号“<、>、≥、≤、≠”的式子2、不等式的解:使含有未知数的不等式成立的值 3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:同步练习:1.用 连接的式子叫做不等式;2.当x = 3时,下列不等式成立的是 ( )A 、x +3>5B 、x +3>6C 、x +3>7D 、x +3>8 3.下列说法中,正确的有 ( )①4是不等式x +3>6的解,②x +3<6的解是x <2③3是不等式x +3≤6的解,④x >4是不等式x +3≥6的解的一部分 A 、1个 B 、2个 C 、3个 D 、4个4.图中表示的是不等式的解集,其中错误的是( ) A 、x ≥-2 B 、x <1 C 、x ≠、x <05.下列说法中,正确的是 ( )A 、x=3是不等式2x>5的一个解B 、x=3是不等式2x>5的解集C 、x=3是不等式2x>5的唯一解D 、x=2是不等式2x>5的解6.x 与3的差的2倍小于x 的2倍与3倍的差,用不等式表示为 ( ) A 、2(x-3)<(x-3) B 、2x-3<2(x-3) C 、2(x-3)<2x-3 D 、2x-3<1/2(x-3)7.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A 、13cm B 、6cm C 、5cm D 、4cm 9.1.1《不等式及其解集》同步练习题(1)答案: 1.符号“<、>、≥、≤、≠” 2-7 ABDACB0-1-2知识点:1、不等式:含有符号“<、>、≥、≤、≠”的式子2、不等式的解:使含有未知数的不等式成立的值 3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:同步练习:1、在下列式子中:①x-1>3x;②x+1>y;③1/3x - 1/2y;④4<7;⑤x ≠2;⑥x=0;⑦2x-1≥y;⑧x ≠y 是不等式的是 。
1.3一元一次不等式的解集
![1.3一元一次不等式的解集](https://img.taocdn.com/s3/m/9b876c08a6c30c2259019ea1.png)
例二
解不等式,并在数轴上表示。
3(1-x) ≥ 8 + x
小试牛刀
解不等式,并在数轴上表示出来。
(1) 3x ≥ 5-2x (2) 3(2x-1) > x
(3) x-4 >3( x+2) (4) 2(x-1) <x-2
典型例题
例4:不等式x≤2的正整数解是( C )
A. 1 C. 1,2 B. 0,1 D. 0,1,2
-4 -3 -2 -1 0
1
2
在x=-2处画实心圆点。
(2)用不等式表示图中所示的解集.
X<2 X≤2
ห้องสมุดไป่ตู้
X≥ -7.5
在数轴上表示下列不等式:
(1)x ≥ – 2.5
(2) –1 < x ≤ 3
练 习
例二
解不等式,并在数轴上表示。
2x + 5 ≤7
例二
解不等式,并在数轴上表示。
2x + 5 > 7(2-x)
不成立 成立 成立 成立
(4)x=6 (5)x=8
2x+3=2x6+3=15>7 2x+3=2x8+3=19>7
小贴士:
不等式的解:能使不等式成立的
未知数的值,叫做不等式的解。
不等式的解集:一个不等式的所有解组 成的集合,称为这个不等式的解集。
求不等式的解集的过程,叫做解不等式。
回顾旧知
正方向 原点 1、数轴的三要素是_____, 单位长度 和______。
小 2、数轴上,越向左的点表示的数越______;向 大 右的点表示的数越______;(填大与小)
数型结合思想
(1)x >a
1.3 不等式的解集(含答案)
![1.3 不等式的解集(含答案)](https://img.taocdn.com/s3/m/4bfd78a383c4bb4cf7ecd1e1.png)
1.3 不等式的解集A卷:基础题一、选择题1.下面说法正确的是()A.x=3是不等式2x>3的一个解B.x=3是不等式2x>3的解集C.x=3是不等式2x>3的唯一解D.x=3不是不等式2x>3的解2.在数轴上表示x<-3的解集,下图中表示正确的是()3.如图,数轴上表示的数的范围是()A.-2<x<4 B.-2<x≤4C.-2≤x<4 D.-2≤x≤44.如图,在数轴上表示不等式2x-6≥0的解集,正确的是()A B C D二、填空题5.a≥1的最小值是m,b≤8的最大值是n,则m+n=_____.6.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,•已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔_____支.7.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是______.8.不等式2x+3>9的解集是_____.三、解答题9.在数轴上表示下列不等式的解集:(1)x>12;(2)x≤-110.三个连续奇数之和不大于70,那么这三个奇数中最大奇数可能取的最大值是多少?11.如果方程组523,52m n am n a+=+⎧⎨+=-⎩的解满足m+n≤6,求a的取值范围.12.已知不等式3(x+5)-6>5与不等式5x+6a>4的解集相同,求a的值.B 卷:提高题一、七彩题1.(一题多解)当x 取哪些整数时,不等式x+2<12(x+5)与不等式3(x -2)+9>2x 同时成立?2.(一题多变题)已知│2x -24│+(3x -y -k )2=0,若y<0,求k 的取值范围.(1)一变:y>0,求k 的取值范围;(2)二变:k>0,求y 的取值范围;(3)三变:k<0,求y 的取值范围.二、知识交叉题3.(科内交叉题)已知x=3是方程x=2x a -1的解,求不等式(10-a )x<53的解集.三、实际应用题4.朱妞家计划用40000元装修新房,新房的使用面积为100平方米,卫生间和厨房共10平方米,厨房和卫生间装修的工料费为每平方米200元,•卫生间和厨房配套的卫生洁具和厨房厨具还要用去2000元,这种情况下,居室和客厅装修工料费x(元/•平方米)应满足什么样的条件,才不会超过预算.四、经典中考题5.(2007,青海,2分)不等式8-3x≥0的最大整数解是______.6.(2008,上海,4分)不等式x-3<0的解集是____.C卷:课标新型题1.(结论开放题)写出四个满足不等式3x-2≤5x+8的负整数解.2.(说理题)在一次“人与自然”知识竞赛中,竞赛试题共有25道,•每道题都给出4个选项,其中只有一个选项是对的,要求学生把正确选项写出来,每题选对得4分,不选或错选扣2分,如果一个学生在本次竞赛中,得分不低于60分,•那么他至少选对多少道题?3.请同学们讨论下列各题的说法对不对?如果不对,请说明理由.(1)x=3是不等式3x<11的一个解;(2)x=3是不等式3x<11的一个解集;(3)不等式3x<11的解集是x<3;(4)不等式3x<11的解集是x<11 3.参考答案A卷一、1.A 2.B 3.B4.B 点拨:不等式两边都加上6,得2x≥6,不等式两边都除以2,得x≥3.二、5.9 点拨:因为a≥1的最小值是m,所以m=1,因为b≤8的最大值是n,所以n=8,所以m+n=1+8=9.6.13 点拨:设能买钢笔x支,则买笔记本(30-x)本,依题意5x+2(30-x)≤100,解得x≤403,故最多可买钢笔13支.7.15 点拨:第三边的取值范围是4<x<10,所以第三边长的最小整数值为5,故这样的三角形的周长最小值是3+7+5=15.8.x>3 点拨:不等式2x+3>9的两边都减去3,得2x>6,不等式两边都除以2,得x>3.三、9.解:(1)如图1所示,(2)如图2所示.图1 图2点拨:在数轴上表示不等式的解集时应牢记:边界点含于解集用实心圆点,•不含于解集用空心圆圈;方向遵循“大于向右走,小于向左走”的原则.10.解:设这三个连续奇数分别为n-2,n,n+2,依题意,得n-2+n+n+2≤70,3n≤70,n≤2313,n的最大值为23,当n=23时,n+2=23+2=25.这三个奇数中最大奇数可能取的最大值是25.点拨:根据题意列出关于n的不等式,求出n的解集,当n取最大值时,求最大奇数的值.11.解:523(1)52(2)m n am n a+=+⎧⎨+=-⎩(1)+(2)得6(m+n)=4+2a,所以m+n=426a +=23a +,因为m+n≤6,所以23a +≤6,a≤16. 12.解:由3(x+5)-6>5得x>-43,由5x+6a>4得x>465a -, 由题意知-43=465a -,a=169. 点拨:本题是不等式与方程的综合综合,先解两个不等式,•根据两个不等式的解集相同得到方程,解这个方程求出a 的值.B 卷一、1.解法一:解不等式x+2<12(x+5)得2x+4<x+5,2x -x<5-4, 所以x<1.解不等式3(x -2)+9>2x 得3x -6+9>2x ,3x -2x>-3,所以x>-3.用数轴表示以上两个不等式的解集如图所示.所以x 取-2,-1,0时,两个不等式同时成立.解法二:解不等式x+2<12(x+5)得x+2<12x+52,x -12x<52-2,12x<12,x<1.解不等式3(x -2)+9>2x 得x>-3.用数轴表示以上两个不等式的解集如图所示,所以x 取-2,-1,0时,两个不等式同时成立.2.解:由非负数的性质,得2240,30,x x y k -=⎧⎨--=⎩,所以12,36.x y k =⎧⎨=-⎩, 因为y<0,所以36-k<0,所以k>36.(1)当y>0时,36-k>0,所以k<36.(2)由y=36-k 得k=36-y ,若k>0,则36-y>0,所以y<36.(3)若k<0,则36-y<0,所以y>36.点拨:本题考查非负数的性质及解简单的不等式.二、3.解:由x=2x a --1得2x=x -a -2,因为x=3,所以a=-x -2=-3-2=-5,所以不等式(10-•a)x<53为(10+5)x<53,15x<53,x<19.点拨:本题是方程与不等式的综合运用,通过解方程求出a的值,把a•的值代入到不等式,然后求不等式的解集.三、4.解:由题意得(100-10x)+10×200+2000≤40000,所以x≤400,即每平方米最多用400元才不会超过预算.四、5.2 点拨:解这个不等式,得x≤223,所以不等式8-3x≥0的最大整数解是2.6.x<3C卷1.解:-1,-2,-3,-4.点拨:解不等式3x-2≤5x+8,得x≥-5,•所有满足题意的负整数解有-1,-2,-3,-4,-5.此题答案不唯一,任意写出四个即可.2.解:设该学生选对了x道题,则不选或错选(25-x)道题,由题意,得4x-2(25-x) ≥60,解得x≥1813,所以,该生至少选对19道题.点拨:此类题目必须算清得分与失分两层意思,并用含未知数的式子表示出来方能利用不等式的邻界点和题目实际求得结果.x不能取18,理由是18不在x≥1813的范围内.3.解:(1)这句话是正确的;(2)不正确,•因为不等式的解集是所有符合条件的解的集合,3只是其中之一;(3)不等式的解集是所有符合条件的解的集合,而x<3却丢掉了其中的一部分,所以说法(3)不正确,而(4)正确.。
1.3不等式的解集
![1.3不等式的解集](https://img.taocdn.com/s3/m/8da51f6c1eb91a37f1115ce2.png)
画数轴
找点
画点 牵线
ቤተ መጻሕፍቲ ባይዱ 巩固练习
回顾交流 情境引入
P12随堂练习: 第2题
将下列不等式的解集表示在数轴上: ( 1) x > 4 ; (2)x ≤ -1 ; 获得新知 (3)x≥-2 ; ( 4) x ≤ 6 。
知识应用 巩固练习 课堂小结 作业布置
在数轴上观察 ⑶x ≥-2的负整数解有哪些? ⑷x ≤6的非负整数解有哪些?
回顾交流 情境引入 获得新知 知识应用 巩固练习 课堂小结 作业布置
回顾交流
• 方程⑴3x-5=4、⑵2x-1 = 3x的 解分别是什么? ⑵ x = -1 ⑴x=3 方程的解就是使方程左右相 等的未知数的值
-1 0
0
• 画数轴,并在数轴上找到表示3、 -1 、 0 的点
3
-3 -2 -1 1 2 3 4
实数和数轴上的点是一一对应的
情境引入
回顾交流 情境引入 获得新知 知识应用 巩固练习 课堂小结 作业布置
• 燃放某种烟花时,为了确保安全, 人在点燃导火线后要在燃放前转移 到10m以外的安全区域。已知导火线 的燃烧速度为0.02m/s,人离开的速 度为4m/s,那么导火线的长度应为 多少厘米?
获得新知
• 不等式 x-5≤-1的解集为
x ≤4 • 不等式 x >0 的解集为 x是所有非零实数
P12随堂练习:( 第1题)判断
2
1)不等式x-1>0有无数个解( )
(2)不等式 2x - 3 ≤ 0 的解为 x≥ ;2
3
知识应用
回顾交流 情境引入 获得新知 知识应用 巩固练习 课堂小结 作业布置
• 将不等式x >5的解集在数轴上表示 出来 • 将不等式x-5≤-1的解集在数轴上 表示出来
不等式的解集典型例题
![不等式的解集典型例题](https://img.taocdn.com/s3/m/3ea63079fe4733687e21aaf5.png)
(4)正确,因为x<3是不等式2x+1<7的所有解组成的集合.
说明:要注意区分“不等式的解”与“不等式解集”的意义.
例2将下列不等式的解集在数轴上表示出来:
(1)x>2;(2)x<2;(3)x≥2;
(4)x≤2;(5)x≥-3;(6)x≤a(a>0)
解:(1)如图
(2)如图
(3)如图
(4)如图
(5)如图
(6)如图
说明:在数轴上表示不等式的解集时,要特别注意画线的方向和起点:大于向右画,小于向在画;不等号中含有等号起点画实心圆点,不含有等号起点画圆圈.
例3分别用x的不等式表示下列用数轴表示的不等式的解集:
典型例题
例1判断下列说法是否正确?为什么?
(1)x=1是不等式2x+1<7的解;
(2)x=1是不等式2x+1<7的解集;
(3)不等式2x+1<7的解集为x<3
解:(1)正确.因为1能使不等式2x+1<7成立.
(2)不正确.因为不等式2x+1<7有无数个解,而x=1仅是其中的一个,因此不能称为解集.
解:(1)x≥-2;(2)x<-2
例4求不等式x+3<6的正整数解.
解:由不等式的基本性质1,得x<6-3,即x<3是不等式x+3<6的解集,因此不等式x+3<6的正整数解为1,2,共两个.
说明:本例是求不等式的特殊解(正整数解),可先利用不等式的基本性质求出不等式的所有解(即不等式的解集),然后从所有解中筛选出特殊解.
1.3不等式的解集学案
![1.3不等式的解集学案](https://img.taocdn.com/s3/m/9ae11fe319e8b8f67c1cb975.png)
图1-2 1.3不等式的解集 主备人:王军 审核人: 姓名 班级学习目标:正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;学习重点:1.理解不等式中的有关概念.2.探索不等式的解集并能在数轴上表示出来. 学习难点:探索不等式的解集并能在数轴上表示出来预习导学:1、不等式的基本性质不等式的基本性质1:不等式的两边都加上(或减去)同一个_________,不等号的方向________.不等式的基本性质2:不等式的两边都乘以(或除以)同一个__________,不等号的方向_________.不等式的基本性质3:不等式的两边都乘以(或除以)同一个__________,不等号的方向_________.2、.设a >b .用“<”或“>”号填空. (1)a -3 b -3; (2)2a 2b ; (3)-4a -4b ; (4)5a 5b ; (5)当a >0,b 0时,ab >0; (6)当a >0,b 0时,ab <0; (7)当a <0,b 0时,ab >0; (8)当a <0,b 0时,ab <0.合作探求:1、当x 的值分别取-1、0、2、3、3.5、5时,不等式x -3>0和x -4<0能分别成立吗? 解:当x 取 时不等式x -3>0成立;当x 取 时不等式x -4<0成立2、(1)x =5,6,8能使不等式x >5成立吗?(2)你还能找出一些使不等式x >5成立的x 的值吗?例如 等。
由此看来,6,7,8,9,10…都能使不等式成立,那么大家能否根据方程的解来类推 出不等式的解呢? 不等式的解唯一吗?3、现实生活中的不等式.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m 以外的安全区域.已知导火线的燃烧速度为以0.02 m/s ,人离开的速度为4 m/s ,那么导火线的长度应为多少厘米?解:设导火线的长度应为x 厘米,依题意有: 即x故导火线的长度应 厘米几个概念1、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.如x =3.5、5都是不等式x -3>0的解. x =-1、0、2、3、3.5都是不等式x -4<0的 解不等式的解不唯一,有无数个解.2、不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集3、解不等式:求不等式解集的过程叫做解不等式.(二)借助数轴将表示不等式的解集1、请你用自己的方式将不等式x -5>0的解集表示在数轴上,并与同伴交流.不等式x >5的解集可以用数轴上表示 的点的 边部分来表示(图1-1),在数轴上表示5的点的位置上画 圆圈,表示5 这个解集内.2、若一个不等式的解集是x ≤4,如何表示?可以用数轴上表示 的点及其 边部分来表示(图1-2),在数轴上表示4的点的位置上画 圆点,表示4 这个解集内.3、合作交流:如何把不等式的解集在数轴上表示出来呢?请举例说明.如:x >3, 即为数轴上表示 的点的 边部分,在数轴上表示3的点的位置上画 圆圈,表示不包括这一点.x <3,可以用数轴上表示 的点的 边部分来表示,在这一点上画 圆圈.x ≥3,可以用数轴上表示 的点和它的 边部分来表示,在表示3的点的位置上画圆点,表示包括这一点.x≤3,可以用数轴上表示的点和它的边部分来表示,在表示3的点的位置上画画圆点。
新教材苏教版高中数学选择性必修一不等式的解集
![新教材苏教版高中数学选择性必修一不等式的解集](https://img.taocdn.com/s3/m/4a51b299bdeb19e8b8f67c1cfad6195f312be8f6.png)
2.2.2不等式的解集课标要求 1.了解不等式(组)解集的概念,会求简单的一元一次不等式(组)的解集.2.了解绝对值不等式的概念,会求形如|x|≤m,|x|≥m的绝对值不等式的解集. 素养要求 1.通过求不等式(组)的解集,提升数学运算素养.2.通过学习绝对值不等式及其解法,提升直观想象及数学运算素养.一、集合的基本概念1.思考解不等式时常用不等式的哪些性质?提示不等式的性质;常用以下四条性质:性质1a>b⇒a+c>b+c性质2a>b,c>0⇒ac>bc性质3a>b,c<0⇒ac<bc推论1a+b>c⇒a>c-b2.填空(1)不等式的解集不等式的所有解组成的集合称为不等式的解集.(2)不等式组的解集对于由若干个不等式联立得到的不等式组来说,这些不等式的解集的交集称为不等式组的解集.温馨提醒(1)求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).(2)不等式组中若有一个不等式的解集为∅,则不等式组的解集为∅;每一个不等式的解集均不是∅,不等式组的解集也可能是∅.3.做一做(1)不等式4x-511<1的正整数解的个数为________.答案 3(2)不等式组⎩⎨⎧-2x -5≥0,2x -32≥0的解集为________.答案 ∅二、绝对值不等式1.思考 方程|x |=3的解是什么?你能给出|x |>3的解集吗?解绝对值不等式的基本思路是什么?提示 方程|x |=3的解是x =±3.结合y =|x |=⎩⎪⎨⎪⎧x ,x ≥0-x ,x <0的图像求得|x |>3的解集为{x |x >3,或x <-3}.去绝对值号,进行等价转化,再解不含绝对值号的不等式. 2.填空 (1)绝对值不等式的概念一般地,含有绝对值的不等式称为绝对值不等式. (2)两种简单的绝对值不等式的解集①关于x 的不等式|x |>m (m >0)的解为x >m 或x <-m ,解集为(-∞,-m )∪(m ,+∞);②关于x 的不等式|x |<m (m >0)的解为-m <x <m ,解集为(-m ,m ). (3)数轴上两点之间的距离公式及线段中点的坐标公式①一般地,如果实数a ,b 在数轴上对应的点分别为A ,B ,即A (a ),B (b ),则线段AB 的长为AB =|a -b |,这就是数轴上两点之间的距离公式.②如果线段AB 的中点M 对应的数为x ,即M (x ),则x a +b2;这就是数轴上的中点坐标公式.温馨提醒 (1)|ax +b |≤c 和|ax +b |≥c 型不等式的解法 |ax +b |≤c ⇔-c ≤ax +b ≤c ; |ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(2)|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想.3.做一做 若A ,B 两点在数轴上的坐标分别为A (2),B (-4),则AB =________,线段AB 的中点M 的坐标为________. 答案 6 -1题型一 解不等式组例1 解不等式组:⎩⎪⎨⎪⎧x +1≥-7+x 2,3(x +1)≤5x -1.解不等式组:⎩⎪⎨⎪⎧x +1≥-7+x 2,①3(x +1)≤5x -1,②①式两端同时乘以2,得2x +2≥-7-x , 然后两端同时加上x -2,得3x ≥-9, 不等式3x ≥-9两端同时乘以13,得x ≥-3, 同理,解不等式②得x ≥2, 所以不等式组的解集是[2,+∞). 思维升华 一元一次不等式组的解法 (1)分开解:分别解每个不等式,求出其解集.(2)集中判:根据同大取大,同小取小,大小小大中间找,大大小小找不到,确定不等式组的解集.(或把不等式的解集在数轴上表示出来,数形结合确定不等式组的解集)训练1 解不等式组:⎩⎪⎨⎪⎧3(x -1)<2x ,①x 3-1+x 2<1.②解 由①得x <3, 由②得x >-9.所以原不等式组的解集为(-9,3). 题型二 含一个绝对值的不等式的解法 例2 求下列绝对值不等式的解集: (1)|3x -1|≤6;(2)3≤|x -2|<4.解 (1)因为|3x -1|≤6⇔-6≤3x -1≤6, 即-5≤3x ≤7,从而得-53≤x ≤73,所以原不等式的解集是⎩⎨⎧⎭⎬⎫x |-53≤x ≤73. (2)因为3≤|x -2|<4,所以3≤x -2<4或-4<x -2≤-3, 即5≤x <6或-2<x ≤-1.所以原不等式的解集为:{x |-2<x ≤-1,或5≤x <6}. 思维升华 绝对值不等式的解题策略:等价转化法 (1)形如|x |<a ,|x |>a (a >0)型不等式: |x |<a ⇔-a <x <a . |x |>a ⇔x >a 或x <-a .(2)形如a <|x |<b (b >a >0)型不等式: a <|x |<b (0<a <b )⇔a <x <b 或-b <x <-a . 训练2 不等式|2x +1|>3的解集是( ) A.{x |x <-2,或x >1} B.{x |-2<x <1} C.{x |x <-2,或x ≥1} D.{x |-2≤x <1} 答案 A解析 由|2x +1|>3,得2x +1>3或2x +1<-3,因此x <-2或x >1,所以原不等式的解集为{x|x<-2,或x>1}.题型三解含有两个绝对值的不等式例3 解不等式|x-1|+|x-2|≤5.解法一①当x≤1时,原不等式变为1-x+2-x≤5,∴-1≤x≤1;②当1<x≤2时,原不等式变为x-1+2-x≤5,1≤5恒成立,∴1<x≤2;③当x>2时,原不等式变为x-1+x-2≤5,∴2<x≤4,综上,原不等式的解集为[-1,4].法二如图,设数轴上与1,2对应的点分别为A,B,那么A,B两点间的距离为1,因此区间[1,2]上的数都是不等式的解.设在A左侧有一点A1到A,B两点的距离和为5,A1对应数轴上的x,所以1-x+2-x=5,得x=-1.同理,设B点右侧有一点B1到A,B两点的距离和为5,B1对应数轴上的x,所以x-1+x-2=5,得x=4.从数轴上可看到,点A1,B1之间的点到A,B的距离之和都小于5,点A1的左侧或点B1的右侧的任何点到A,B的距离之和都大于5,所以原不等式的解集是[-1,4].思维升华 1.去绝对值号,利用零点分段法分类讨论求解.2.利用绝对值的几何意义解决含有两个绝对值的不等式|x-a|+|x-b|≥c,|x-a|+|x-b|≤c比较直观,但只适用于数据较简单的情况.训练3 (1)求不等式|x-1|+|x-2|>2的解集;(2)已知数轴上A(x),B(-1),且线段AB的中点到C(1)的距离大于5,求x的取值范围.解 (1)法一 设A (1),B (2),则AB 的中点M ⎝ ⎛⎭⎪⎫32,则|x -1|+|x -2|>2⇔⎪⎪⎪⎪⎪⎪x -32>1⇔x-32<-1或x -32>1⇔x <12或x >52,∴原不等式的解集为⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫52,+∞.法二 原不等式等价于⎩⎪⎨⎪⎧x ≤1,1-x +2-x >2或⎩⎪⎨⎪⎧1<x <2,x -1+2-x >2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2>2,解得x <12或无解或x >52,∴x <12或x >52.故原不等式的解集为⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫52,+∞.(2)AB 的中点M ⎝⎛⎭⎪⎫x -12, 由题意⎪⎪⎪⎪⎪⎪x -12-1>5,即⎪⎪⎪⎪⎪⎪x -32>5,∴|x -3|>10,x -3<-10或x -3>10, 即x <-7或x >13,∴x 的取值范围是(-∞,-7)∪(13,+∞). [课堂小结]1.解不等式的过程中要不断地使用不等式的性质.求不等式组解集时常利用数轴求交集.2.含绝对值的不等式|x |<a 与|x |>a 的解集x ≠0}一、基础达标1.代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ) A.(-1,3] B.[-3,1) C.[-2,2) D.(-2,2]答案 C解析 由题意知-1<1-m ≤3, ∴-2≤m <2.2.(多选)不等式组⎩⎪⎨⎪⎧2x -13>1,x >m ,m ∈N 的解集为(2,+∞),则m 的值可以是( )A.0B.1C.2D.3答案 ABC解析 由2x -13>1,得x >2.由题意得⎩⎪⎨⎪⎧x >2,x >m ,m ∈N 的解集为(2,+∞),∴m ≤2,又m ∈N , 故m =0,1,2.3.若方程组⎩⎨⎧x +2y =1+m ,2x +y =3中,未知数x ,y 满足x +y >0,则m 的取值范围是( )A.(-4,+∞)B.[-4,+∞)C.(-∞,-4)D.(-∞,-4] 答案 A解析 解方程组⎩⎪⎨⎪⎧x +2y =1+m ,2x +y =3得⎩⎨⎧x =5-m3,y =2m -13.由x +y >0,得5-m 3+2m -13>0, 解得m >-4.4.设不等式|x -a |<b 的解集为(-1,2),则a ,b 的值分别为( ) A.1,3 B.-1,3 C.-1,-3 D.12,32答案 D解析 由|x -a |<b ,得a -b <x <a +b . 由题意(a -b ,a +b )=(-1,2), ∴⎩⎪⎨⎪⎧a -b =-1,a +b =2,∴⎩⎪⎨⎪⎧a =12,b =32.5.对任意实数x ,若不等式|x +1|-|x -2|>k 恒成立,则k 的取值范围为( ) A.(-∞,3) B.(-∞,-3) C.(1,3] D.(-∞,-3] 答案 B解析 |x +1|,|x -2|的几何意义分别为数轴上的点X 到表示-1和2的点的距离,|x +1|-|x -2|的几何意义为两距离之差,由图可得其最小值为-3,故选B.6.已知数轴上,A (x ),B (1),且AB =72,则x 的值为________. 答案 92或-52解析 由题意|x -1|=72,∴x -1=±72, ∴x =92或x =-52.7.不等式组⎩⎪⎨⎪⎧2x -13-5x -12≤1,5x -2<3(x +2)的所有正整数解的和为________.答案 6解析 解原不等式组,得不等式组的解集是-511≤x <4,所以不等式组的正整数解是1,2,3,故它们的和为1+2+3=6. 8.不等式|x +1|>|5-x |的解集是________. 答案 (2,+∞)解析 两边平方得(x +1)2>(5-x )2, 即x 2+2x +1>25-10x +x 2,∴x >2. 9.已知数轴上,A (-1),B (x ),C (6). (1)若A ,B 关于点C 对称,求x 的值;(2)若线段AB 的中点到C 的距离小于5,求x 的取值范围. 解 (1)由数轴上中点坐标公式得6=-1+x2, ∴x =13.(2)AB 的中点为-1+x2, 由题意得⎪⎪⎪⎪⎪⎪x -12-6<5,即⎪⎪⎪⎪⎪⎪x -132<5,|x -13|<10, ∴-10<x -13<10,3<x <23, 即x 的取值范围是(3,23). 10.解不等式3<|2x -3|<5. 解 ∵3<|2x -3|<5,∴3<2x -3<5或-5<2x -3<-3,即3<x <4或-1<x <0.故原不等式的解集为(-1,0)∪(3,4). 二、能力提升11.(多选)|2x -1|>1的充分不必要条件可以是( ) A.x >1 B.x <0 C.x >1或x <0 D.0<x <1答案 AB解析 由|2x -1|>1得2x -1>1,或2x -1<-1,解得x >1或x <0,故选AB. 12.若不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1有解,则实数a 的取值范围是________. 答案 (-36,+∞)解析 解不等式1+x <a ,得x <a -1.解不等式x +92+1≥x +13-1,得x ≥-37.因为不等式组有解,所以a -1>-37, 即a >-36.13.解不等式|x -1|+|x +2|<5. 解 法一 记A (1),B (-2),则AB 的中点为M ⎝ ⎛⎭⎪⎫-12,|x -1|+|x +2|<5⇔⎪⎪⎪⎪⎪⎪x -⎝ ⎛⎭⎪⎫-12<52,即⎪⎪⎪⎪⎪⎪x +12<52, ∴-52<x +12<52,-3<x <2,故原不等式的解集为(-3,2). 法二 原不等式等价于⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)<5或⎩⎪⎨⎪⎧-2<x <1,-(x -1)+(x +2)<5或⎩⎪⎨⎪⎧x ≥1,(x -1)+(x +2)<5,解得-3<x ≤-2或-2<x <1或1≤x <2,∴-3<x <2.故原不等式的解集为(-3,2).三、创新拓展14.已知不等式|x +2|-|x +3|>m ,求出满足下列条件的m 的取值范围.(1)不等式有解;(2)不等式解集为R ;(3)不等式解集为∅.解 法一 因|x +2|-|x +3|的几何意义为数轴上任意一点P (x )与两定点A (-2),B (-3)距离的差.即|x +2|-|x +3|=P A -PB .由图像知(P A -PB )max =1,(P A -PB )min =-1.即-1≤|x +2|-|x +3|≤1.(1)若不等式有解,m 只要比|x +2|-|x +3|的最大值小即可,即m <1, m 的范围为(-∞,1).(2)若不等式的解集为R ,即不等式恒成立,m 只要比|x +2|-|x +3|的最小值还小,即m <-1,m 的范围为(-∞,-1).(3)若不等式的解集为∅,m 只要不小于|x +2|-|x +3|的最大值即可,即m ≥1,m 的范围为[1,+∞).法二 由|x +2|-|x +3|≤|(x +2)-(x +3)|=1,|x +3|-|x +2|≤|(x +3)-(x +2)|=1,可得-1≤|x+2|-|x+3|≤1.(1)若不等式有解,则m∈(-∞,1).(2)若不等式解集为R,则m∈(-∞,-1).(3)若不等式解集为∅,则m∈[1,+∞).。
专题05 不等式与不等式组专题详解(解析版)
![专题05 不等式与不等式组专题详解(解析版)](https://img.taocdn.com/s3/m/d5ea3a6fd0d233d4b04e6963.png)
专题05 不等式与不等式组专题详解专题05 不等式与不等式组专题详解 (1)9.1 不等式 (3)知识框架 (3)一、基础知识点 (3)知识点1 不等式及其解集 (3)知识点2 不等式的基本性质 (4)二、典型题型 (5)题型1 不等式的概念 (5)题型2 根据数量关系列不等式 (5)题型3不等式的解(集) (6)题型4 不等式性质的运用 (6)题型5 实际问题与不等式 (7)三、难点题型 (8)题型1 不等式性质的综合应用 (8)题型2 用作差法比较大小 (9)9.2 一元一次不等式 (10)知识框架 (10)一、基础知识点 (10)知识点1 一元一次不等式的解法 (10)知识点2 列不等式解应用题 (11)二、典型题型 (13)题型1 一元一次不等式的判定 (13)题型2 解一元一次不等式 (13)题型3 列不等式,求取值范围 (14)题型4 一元一次不等式的应用 (14)三、难点题型 (16)题型1 含参数的不等式 (16)题型2 不等式的整数解 (16)题型3 方程与不等式 (17)题型4 含绝对值的不等式 (18)9.3 一元一次不等式组 (19)知识框架 (19)一、基础知识点 (19)知识点1 一元一次不等式组及解集的定义 (19)知识点2 一元一次不等式组解集的确定及解法 (19)知识点3 双向不等式及解法 (21)二、典型题型 (23)题型1 一元一次不等式组的判定 (23)题型2 一元一次不等式组的解集 (23)题型3 解一元一次不等式组 (24)题型4 一元一次不等式组的应用 (25)一、用不等式组解决实际问题 (25)二、方案设计 (26)三、最值问题 (27)三、难点题型 (29)题型1 由不等式组确定字母的取值 (29)题型2 不等式组中的数学思想 (30)一、整体思想 (30)二、数形结合 (31)三、分类讨论 (31)题型3 不等式的应用 (32)题型4 不等式的综合 (33)9.1 不等式知识框架{基础知识点{不等式及其解集不等式的基本性质典型题型{ 不等式的概念根据数量关系列不等式不等式的解(集)不等式性质的运用实际问题与不等式难点题型{不等式性质的综合应用作差法比较大小 一、基础知识点知识点1 不等式及其解集1)不等式:用不等符号表示不等关系的式子。
不等式的解集
![不等式的解集](https://img.taocdn.com/s3/m/ca55edd33186bceb19e8bb93.png)
• 8
• 10
• 12
• 14
16
•• 18 20
(2)当水位在下列位置时 发电机能正常工作吗 x1 = 8; x2 = 10; x3 =15 当水位在下列位置时,发电机能正常工作吗 当水位在下列位置时 发电机能正常工作吗? x4 =19 x 不满足。也就是说, x2 满足不等式12 显然 x3、x4 满足不等式 ≤x≤ 20, 而 ,1 不满足。也就是说, 当水位在15m,19m时,发电机能正常工作;当水位在 ,10m 当水位在 , 时 发电机能正常工作;当水位在8m, 发电机不能正常工作。 时,发电机不能正常工作。
引 例
下图是我市某座古桥对车辆的限重标志, 下图是我市某座古桥对车辆的限重标志,表示车辆在 该古桥行驶时的重量(包括自重量和载重量)不得超过5 该古桥行驶时的重量(包括自重量和载重量)不得超过 表示车辆的载重量, 吨.若用x (吨)表示车辆的载重量,那么自重量为 吨的小 若用 吨 表示车辆的载重量 那么自重量为2吨的小 货车要安全通过该桥, 货车要安全通过该桥,则x与5,2之间的数量关系能用等 , 之间的数量关系能用等 式表示吗?若不能,应该用怎样的式子表示? 式表示吗?若不能,应该用怎样的式子表示?
(2)2x
x
≥
-2
4
-3 -2 -1
(3)-2x(3)-2x-2 > -10
解:两边同时加2得: 两边同时加2
-2x > - 8
两边同时除以- 两边同时除以-2得: x < 4
-1
0 1
2
3
4
随堂练习
• 1,判断正误:
√
×
•
(1)不等式x-1>0有无数个解 ( ) -3 -2 -1 0 1 2 3 4 5 6 7 8 • (2)不等式2x-3 ≤0的解集为 x ≥ 2/3 ( -3 -2 -1 0 1 2 3 4 5 6 7 8 ) • 2,将下列不等式的解集分别表示在数 -3 -2 -1 0 1 2 3 4 5 6 7 8 轴上: • (1)x>4 -3 -2 -1 0 1 2 3 4 5 6 7 8
不等式的解集(解析版) )
![不等式的解集(解析版) )](https://img.taocdn.com/s3/m/1e7efeb084254b35eefd34d4.png)
提升训练2.5 不等式的解集一、选择题 1.不等式成立的一个充分不必要条件是( ) A .或B .C .或D .【答案】A 【解析】 由题意,不等式,解得或, 根据充分不必要条件的判定方法,可得或是或成立的充分不必要条件,即或是成立的充分不必要条件,故选A.2.不等式2x ﹣1<1的解集在数轴上表示正确的是( ) A . B . C .D .【答案】C 【解析】不等式移项合并得:2x <2, 解得:x <1,表示在数轴上,如图所示:故选:C .3.不等式组3020x x -≤⎧⎨+>⎩,的解集是( )A .23x -<≤B .23x -≤<C .3x ≥D .2x <-【答案】A 【解析】3020x x ①②-≤⎧⎨+>⎩ 解不等式①得x≤3, 解不等式②得x>-2所以,不等式组的解集是2x 3-<≤ 故选:A4.设x ∈R ,则“213x -≤”是“10x +≥”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】213x -≤12x ⇒-≤≤,10x +≥ 1x ⇒≥-,显然由题设能推出结论,但是由结论不能推出题设,因此“213x -≤”是“10x +≥”的充分不必要条件,故本题选A. 5.已知a R ∈,则“2a ≤”是“|2|||x x a -+>恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】函数y =|x ﹣2|+|x|的值域为[2,+∞),则当a 2≤时,|x ﹣2|+|x|>a 不恒成立. 若|x ﹣2|+|x|>a 恒成立,则说明a 小于函数y =|x ﹣2|+|x|的最小值2,即a <2. 故“a 2≤”是“|x ﹣2|+|x|>a 恒成立”的必要不充分条件. 故选:B .6.已知条件:|1|2p x +>,条件:>q x a ,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .1a ≤ B .1a ≥ C .1a ≥- D .3a ≤-【答案】B 【解析】由条件:12p x +>,解得3x <-或1x >;因为p ⌝是q ⌝的充分不必要条件,所以q 是p 的充分不必要条件,则a 的取值范围是1a ≥, 故选B .7.不等式组103412x x x ->⎧⎪⎨-≤-⎪⎩的解集在数轴上应表示为( )A .B .C .D .【答案】C 【解析】x 103x 4x 12①②->⎧⎪⎨-≤-⎪⎩, 解不等式①得:x 1>, 解不等式②得:x 2≤,∴不等式组的解集为1x 2<≤,在数轴上表示不等式组的解集为故选C .8.已知关于x 的不等式组12x m x m -<⎧⎨->-⎩的解集中任意一个x 的值都不在-1≤x≤2的范围内,则m 的取值范围( )A .m <-2或m >4B .-2≤m≤4C .m≤-2或m≥4D .-2<m <4【答案】C 【解析】x −m<1① x −m>2② 解①得:x<m+1, 解②得:x>m-2,新教材配套提升训练则m-2<x<m+1,因为不等式解集x 的值都不在-1≤x≤2的范围内, ∴m-2≥2,或m+1≤-1. 则m≥4或m≤-2. 因此选C 9.不等式组5335x x x a -<+⎧⎨<⎩的解集为4x <,则a 满足的条件是( )A .a<4B .a=4C .a ⩽4D .a ⩾4【答案】D 【解析】 解不等式组得4x ax <<⎧⎨⎩ , ∵不等式组5335x ax x <-<+⎧⎨⎩的解集为x<4, ∴a ⩾4. 故选D10.如果关于x 的不等式(a +2)x >a +2的解集为x <1,那么a 的取值范围是( ) A .a >0 B .a <0C .a >﹣2D .a <﹣2【答案】D 【解析】∵(a+2)x >a+2两边都除以(a+2)得x <1, ∴a+2<0, ∴a <﹣2. 故选:D .11.若不等式组2120x xx m ->-⎧⎨+≤⎩有解,则m 的取值范围是( )A .1m >-B .1m ≥-C .1m ≤-D .1m <-【答案】D 【解析】由2120x xx m ->-⎧⎨+≤⎩得1,x x m >≤-因为不等式组2120x xx m ->-⎧⎨+≤⎩有解,则m 的取值范围是-m>1,即m<-1故选:D12.已知关于x 的不等式组200x x a +>⎧⎨-≤⎩的整数解共有4个,则a 的最小值为( )A .1B .2C .2.1D .3【答案】B 【解析】200x x a +>⎧⎨-≤⎩①② 解①得x>-2,解②得x≤a. 则不等式组的解集是-2<x≤a.不等式有4个整数解,则整数解是-1,0,1,2. 则a 的范围是2≤a<3.a 的最小值是2. 故答案是:B 二、填空题13.不等式4x ﹣6≥7x ﹣15的正整数解的个数是______. 【答案】3 【解析】不等式的解集是x≤3,故不等式4x-6≥7x -15的正整数解为1,2,3 故答案为:3 14.不等式的解集为_________________;【答案】【解析】 ∵|x+1|<2x ﹣1,∴或,解得:x >2,故不等式的解集是(2,+∞), 故答案为:(2,+∞).15.若不等式组2322x x x m +≥-⎧⎨-≤⎩无解,则m 的取值范围是______.【答案】m <-4 【解析】2322x x x m +≥-⎧⎨-≤⎩①②∵解不等式①得:x≥-2, 解不等式②得:x≤2+m , 又∵不等式组无解, ∴-2>2+m , 解得:m <-4, 故答案为:m <-4. 16.若关于的不等式在[﹣1,1]上恒成立,则实数的取值范围为________;【答案】[-1,1] 【解析】 不等式|ax ﹣1|≤2, ∴﹣2≤ax ﹣1≤2, ∴﹣1≤ax≤3; 又x ∈[﹣1,1],若a >0,则﹣a≤ax≤a ,∴,解得0<a≤1;若a=0,则﹣1≤0≤3,满足条件;若a <0,则a≤ax≤﹣a ,∴,解得﹣1≤a <0;综上,实数a 的取值范围是[﹣1,1]. 故答案为:[﹣1,1]. 三、解答题17.设x ∈R ,解不等式||+|2 1|>2x x -. 【答案】1{|1}3x x x <->或. 【解析】当x <0时,原不等式可化为122x x -+->,解得x <–13: 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或. 18.解不等式133x x +--<.【答案】5|2x x ⎧⎫<⎨⎬⎩⎭.【解析】由133x x +--<.当1x ≤-时,原不等式化为()()133x x -++-<,解得1x ≤-; 当13x -<≤时,原不等式化为133x x ++-<,解得512x -<<; 当3x >时,原不等式化为()133x x +--<,此时不等式无解. 综上可得原不等式的解集为5|2x x ⎧⎫<⎨⎬⎩⎭. 19.关于x 的不等式对任意恒成立,求a 的取值范围.【答案】【解析】 因为,所以原不等式可化为:,,对任意恒成立,,故答案为:.20.解下列不等式(组),并把解集在数轴上表示出来.(1)5(x+1)﹣6>3(x+2);(2)12134(1)34xx x x +⎧-⎪⎨⎪-<-⎩….【答案】(1)72x >,见解析;(2)x <0,见解析. 【解析】(1)∵5(x+1)﹣6>3(x+2) ∴5x+5﹣6>3x+6, 解不等式得x >72. 数轴表示如图:(2)121(1)34(1)34(2)xx x x +⎧-⎪⎨⎪-<-⎩… 解不等式①,得x≤4,解不等式②,得x <0, ∴不等式组的解集为x <0, 数轴表示如图:21.已知关于x 的不等式组9511x x x a +>+⎧⎨<+⎩的解集是x <2,求a 的取值范围.【答案】a ≥1 【解析】9511x x x a +>+⎧⎨<+⎩①②, 解①得x <2, 解②得x <a+1,∵不等式组9511x xx a+>+⎧⎨<+⎩的解集是x<2,∴a+1≥2,∴a≥1.故答案为a≥122.已知的解集为.(1)求的值;(2)若,求证:.【答案】(1).(2)见解析【解析】(1)解:不等式可化为,解得,所以,,.(2)证明:若,则,即.。
2022年上海六年级数学下学期同步教材满分攻略第07讲不等式及其性质与一元一次不等式的解法(练习版)
![2022年上海六年级数学下学期同步教材满分攻略第07讲不等式及其性质与一元一次不等式的解法(练习版)](https://img.taocdn.com/s3/m/859160ae294ac850ad02de80d4d8d15abe230034.png)
第07讲不等式及其性质与一元一次不等式的解法(核心考点讲与练)一.不等式的定义(1)不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.(2)凡是用不等号连接的式子都叫做不等式.常用的不等号有“<”、“>”、“≤”、“≥”、“≠”.另外,不等式中可含未知数,也可不含未知数.二.不等式的性质(1)不等式的基本性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若a>b,那么a±m>b±m;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或>;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若a>b,且m<0,那么am<bm或<;(2)不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.【规律方法】1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.不等式的传递性:若a>b,b>c,则a>c.三.不等式的解集(1)不等式的解的定义:使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集.(3)解不等式的定义:求不等式的解集的过程叫做解不等式.(4)不等式的解和解集的区别和联系不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示.不等式的每一个解都在它的解集的范围内.四.在数轴上表示不等式的解集用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.【规律方法】不等式解集的验证方法某不等式求得的解集为x>a,其验证方法可以先将a代入原不等式,则两边相等,其次在x>a的范围内取一个数代入原不等式,则原不等式成立.五.一元一次不等式的定义(1)一元一次不等式的定义:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.(2)概念解析一方面:它与一元一次方程相似,即都含一个未知数且未知项的次数都是一次,但也有不同,即它是用不等号连接,而一元一次方程是用等号连接.另一方面:它与不等式有区别,不等式中可含、可不含未知数,而一元一次不等式必含未知数.但两者也有联系,即一元一次不等是属于不等式.六.解一元一次不等式根据不等式的性质解一元一次不等式基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.七.一元一次不等式的整数解解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.可以借助数轴进行数形结合,得到需要的值,进而非常容易的解决问题.八.由实际问题抽象出一元一次不等式用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.九.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.一.不等式的定义(共3小题)1.(2008秋•江干区期末)若图示的两架天平都保持平衡,则对a、b、c三种物体的重量判断正确的是()A.a>c B.a<c C.a<b D.b<c2.(2020秋•娄底期末)下面给出了5个式子:①3>0,②4x+y<2,③2x=3,④x﹣1,⑤x+2≤3,其中不等式有()A.2个B.3个C.4个D.5个3.(2021秋•肥西县期末)若x是非负数,则x0(填不等号).二.不等式的性质(共5小题)4.(2021春•嘉定区期中)如果a>b,那么下列不等式中正确的是()A.a﹣b>0B.ac2>bc2C.c﹣a>c﹣b D.a+3<b﹣3 5.(2021春•浦东新区期末)已知a>b,那么下列各式中,不一定成立的是()A.ac2>bc2B.2a>2b C.a+3>b﹣1D.2﹣a<2﹣b 6.(2021春•嘉定区期末)如果a<b,那么下列不等式中不成立的是()A.3a<3b B.﹣3a<﹣3b C.﹣a>﹣b D.3+a<3+b7.(2021春•普陀区期末)如果0<a<b,那么下列不等式中不一定成立的是()A.|a|<|b|B.a﹣1<b﹣1C.1﹣a>1﹣b D.m2a<m2b 8.(2021•浦东新区模拟)如果a>b,那么下列各式中一定正确的是()A.c+a>c+b B.c﹣a>c﹣b C.ac>bc D.a2>b2三.不等式的解集(共4小题)9.(2021春•金山区期末)如果不等式组的解集是,那么a的值可能是()A.B.0C.﹣0.7D.110.(2021春•松江区期末)不等式组的解集是.11.(2020春•密山市期末)若不等式组的解集为x>3,则a的取值范围是.12.(2021春•浦东新区校级期中)已知不等式(a+b)x+(2a﹣3b)<0的解集是x<,求关于x的不等式(a﹣3b)x>2a﹣b的解集.四.在数轴上表示不等式的解集(共3小题)13.(2020春•虹口区期中)不等式组的解集在数轴上表示正确的是()A.B.C.D.14.(2019春•奉贤区期末)关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的值是.15.(2019春•黄浦区期末)解不等式组:,并把不等式组的解集表示在数轴上.五.一元一次不等式的定义(共1小题)16.(2021春•浦东新区期中)下列不等式中,是一元一次不等式的是()A.x﹣y>2B.x<8C.3>2D.x2>x六.解一元一次不等式(共8小题)17.(2021春•闵行区期末)若关于x的方程:5x﹣2a=6+4a﹣x的解是非负数,则a的取值范围是()A.a≥1B.a≤﹣1C.a≥﹣1D.a≥018.(2021春•浦东新区期末)不等式2x﹣1≤4的解集是.19.(2021春•浦东新区期末)已知不等式(2a﹣b)x+3a﹣4b<0的解集为,则不等式ax >b的解集为.20.(2021春•松江区期末)解不等式:2(3﹣y)≤4﹣3(y﹣1).21.(2021春•金山区期末)解不等式:.22.(2021春•上海期中)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.23.(2021春•杨浦区期中)解不等式:1+≥.24.(2021春•奉贤区期中)解不等式,并把解集在数轴上表示出来:.七.一元一次不等式的整数解(共3小题)25.(2021春•浦东新区期中)不等式3x﹣4≥4+2(x﹣2)的最小整数解是()A.﹣4B.3C.4D.526.(2021春•浦东新区校级期末)若是非负数,那么满足题意的最小整数x是.27.(2021春•奉贤区期末)不等式的3x﹣6≤2+x非负整数解共有.八.由实际问题抽象出一元一次不等式(共3小题)28.(2021春•杨浦区期末)用不等式表示y与﹣8的和的2倍是非负数:.29.(2021春•普陀区期中)“a的2倍减去3的差是一个非负数”用不等式表示为.30.(2021春•奉贤区期中)用不等式表示“﹣x的一半减去6所得的差不大于5”.九.一元一次不等式的应用(共4小题)31.(2021春•金山区期末)小明准备用26元买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5盒方便面,他最多可以买几根火腿肠()A.4B.5C.6D.732.(2021春•奉贤区期中)长方形的一边长是4,另一边长是x+3,它的面积不大于32,则x的取值范围是.33.(2019春•黄浦区期末)小新要到商店去买练习本.现有甲、乙两个商店供他选择.已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价打七折;乙商店的优惠条件是:从第一本开始就按标价打八五折.(1)小新要买20本练习本,他若选择甲商店,需要花元,他若选择乙商店,需要花元;(2)若小新一共有24元,他最多可以买多少本练习本?34.(2017春•黄浦区校级期中)为了保护环境,池州海螺集团决定购买10台污水处理设备,现有H和G两种型号设备,其中每台价格及月处理污水量如下表:H G价格(万元/台)1512250220处理污水量(吨/月)经预算,海螺集团准备购买设备的资金不高于130万元.(1)请你设计该企业有几种购买方案?(2)哪种方案处理污水多?题组A 基础过关练一.选择题(共6小题)1.(2021•上海模拟)如果a >b ,那么下列结论中一定成立的是( ) A .1﹣a >1﹣bB .2+a >2+bC .ab >b 2D .a 2>b 22.(2021春•普陀区期中)如果a >b ,那么下列结论中,正确的是( ) A .a ﹣1>b ﹣1B .1﹣a >1﹣bC .D .﹣2a >﹣2b3.(2020春•虹口区期中)不等式组的解集在数轴上表示正确的是( )A .B .C .D .4.(2021春•浦东新区期中)下列不等式中,是一元一次不等式的是( ) A .x ﹣y >2B .x <8C .3>2D .x 2>x5.(2021春•闵行区期末)若关于x 的方程:5x ﹣2a =6+4a ﹣x 的解是非负数,则a 的取值范围是( ) A .a ≥1B .a ≤﹣1C .a ≥﹣1D .a ≥06.(2021春•浦东新区期中)不等式3x ﹣4≥4+2(x ﹣2)的最小整数解是( ) A .﹣4B .3C .4D .5二.填空题(共7小题)7.(2021春•嘉定区期中)若x >y ,用“>”或“<”填空:1﹣x 1﹣y . 8.(2021春•浦东新区校级期末)如果a <0<b ,那么2﹣3b 2﹣3a .9.(2021春•罗湖区期末)若a <b ,则﹣+1 ﹣+1(填“>”或“<”). 10.(2021•奉贤区三模)使得的值不大于1的x 的取值范围是 .11.(2021春•浦东新区期中)不等式3x ﹣5<x 的解集是 .分层提分12.(2021春•普陀区期末)不等式2x﹣3<4x的最小整数解是.13.(2021春•普陀区期中)“a的2倍减去3的差是一个非负数”用不等式表示为.三.解答题(共4小题)14.(2021春•奉贤区期中)已知2﹣2(a﹣1)>3a﹣1,化简:|2﹣2a|+|a﹣3|.15.(2021春•青浦区期中)求不等式的负整数解.16.(2021春•武安市期末)解不等式:,把它的解集表示在数轴上,并写出它的最大整数解.17.现在很多家庭使用“峰谷”电表,“峰电”指早上8点到晚上10点期间使用的用电量,每度电0.56元,“谷电”指晚上10点到第二天早上8点的用电量,每度电0.28元.而没有安装“峰谷”电的用户不分白天和晚上,每度电0.53元.小王知道后也想安装“峰谷”电表,已知小王家平均每月“峰电”为100度,请你帮他分析一下当平均每月“谷电”在几度以上时,使用“峰谷”电表合算.题组B 能力提升练一.填空题(共8小题)1.(2018春•浦东新区期末)比较大小:如果a<b,那么2﹣3a2﹣3b.(填“>”“<”或“=”)2.(2017春•宁江区期末)已知x>y,则﹣2x﹣2y(填“>”“<”或“=”)3.(2021春•浦东新区校级期中)已知一元一次方程3x﹣m+1=2x﹣1的解不大于0,那么m的取值范围是.4.(2020春•虹口区期中)不等式x+5>3x﹣7的最大整数解是.5.(2019春•金山区期末)小华家到学校共2.4千米,某一天小华从家出发去上学,恰好走到一半路程时,发现离按时到校时间只有12分钟,如果小华要按时赶到学校,那么他剩下一半路程的平均速度至少是千米/小时,才能按时到校.6.(2018春•普陀区期中)当1﹣2m的值不小于3m+2的值时,m的取值范围是.7.(2021春•上海期中)关于x的方程x﹣=的解为非负数,则自然数a=.8.(2018春•普陀区期末)小红同学到文具店花了10元钱购买中性笔和笔记本,已知中性笔每支0.8元,笔记本每本1.2元.如果她购买的中性笔数量大于笔记本数量,那么她买了本笔记本.二.解答题(共7小题)9.(2021春•浦东新区校级期末)解不等式:,并把它的解集在数轴上表示出来.10.(2020春•虹口区期中)解不等式:<11.(2019春•金山区期末)解不等式:x﹣≥1﹣.12.(2019春•松江区期中)已知2(a﹣3)=,求关于x的不等式的解集.13.(2018春•黄浦区期末)列式计算:求使的值不小于的值的非负整数x.14.(2017春•浦东新区期末)已知不等式5(x﹣2)﹣9>7(x﹣11)+36,它的最大整数解恰好是方程x﹣ax=20的解,求a的值.15.(2005•黑龙江)某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)2528售价(万元/套)3034(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价﹣成本.。
人教版七年级下册第九章不等式与不等式组知识点(含答案)
![人教版七年级下册第九章不等式与不等式组知识点(含答案)](https://img.taocdn.com/s3/m/5220526c31b765ce05081443.png)
不等式与不等式组知识点归纳一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。
2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4.解不等式:求不等式的解集的过程,叫做解不等式。
5.用数轴表示不等式的解集。
二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
例:1.已知不等式3x-a ≤0的正整数解恰是1,2,3,则a 的取值范围是 。
2.已知关于x 的不等式组⎩⎨⎧-≥->-1250x a x 无解,则a 的取值范围是 。
3.不等式组⎪⎩⎪⎨⎧>+≤+0221042x x 的整数解为 。
4.如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为 。
5.已知关于x 的不等式组⎪⎩⎪⎨⎧<++>+01234a x xx 的解集为2<x ,那么a 的取值范围是 。
6.当x 时,代数式52+x 的值不大于零7.若x <1,则22+-x 0(用“>”“=”或“”号填空) 8.不等式x 27->1,的正整数解是9. 不等式x ->10-a 的解集为x <3,则a 10.若a >b >c ,则不等式组⎪⎩⎪⎨⎧c x b x ax 的解集是11.若不等式组⎩⎨⎧--3212 b x a x 的解集是-1<x <1,则)1)(1(++b a 的值为 12.有解集2<x <3的不等式组是 (写出一个即可)13.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 ”其中蛋白质的含量为 _____ g14.若不等式组⎩⎨⎧3 x ax 的解集为x >3,则a 的取值范围是三、一元一次不等式(重点)1.一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
1.3 不等式的解集综合型题目——辅导资料B
![1.3 不等式的解集综合型题目——辅导资料B](https://img.taocdn.com/s3/m/dd48eb8202d276a200292e7b.png)
1.3 不等式的解集一、课前练习:解下列不等式或方程组(1)3(x -1)<4x +2 (2)2132->+x x (3)⎩⎨⎧=+=+42634y x y x (4)1323334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩二、教学新课:例1.已知方程3(x -2a )+2=x -a +1的解适合不等式2(x -5)≥8a ,求a 的取值范围。
解:解方程得x =215-a ,代入不等式2(x -5)≥8a 中有5a -1-10≥8a ,所以a ≤-311。
例2.如果方程组,⎩⎨⎧-=++=+m y x m y x 13313的解满足x +y >0,求m 的取值范围,并把m 的值表示在数轴上.解法1:解得:m >-1解法2:解原方程组得解为⎪⎪⎩⎪⎪⎨⎧-=+=431415my m x ∵方程组的解满足x +y >0 ∴431415m m -++>0 即5m +1+1-3m >0,解得:m >-1例3.某校校长带领该校市级“三好学生”去北京旅游,甲旅行社说:如果买一张全票则其余学生可享受半价优惠.乙旅行社说:包括校长在内全部按票价的6折优惠(即按全价的60%收费).已知全票价为240元.(1)设学生人数为x ,甲、乙旅行社收费分别用y 甲、y 乙表示,分别写出y 甲、y 乙与x 的函数关系式.(2)当学生是多少时,两家旅行社收费相同? (3)当x >4时,选择哪家旅行社较合算?解:(1)y 甲=240+240x ·50%,即y 甲=240+120x y 乙=240(x +1)·60%,即y 乙=144x +144(2)若y 甲=y 乙,则240+120x =144x +144 解得:x =4(3)y 甲-y 乙=240+120x -(144x +144)=-24x +96 当x >4时,-24x +96<0, 即y 甲<y 乙这时选择甲旅行社较合算.三、课堂练习:一、选择题:1.使不等式x -5>4x -1成立的最大整数是( ) A.-1 B.-2 C.2 D.02.若方程组⎩⎨⎧-=-=+323a y x y x 的解是正数,那么( )A.a >3B.a ≥6C.-3<a <6D.-5<a <33.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个4.不等式ax +b >0(a <0)的解集是( ) A.x >-ab B.x <-ab C.x >ab D.x <ab5.如果不等式(m -2)x >2-m 的解集是x <-1,则有( )A.m >2B.m <2C.m =2D.m ≠2 6.若关于x 的方程3x +2m =2的解是正数,则m 的取值范围是( ) A.m >1 B.m <1 C.m ≥1 D.m ≤1 7.已知(y -3)2+|2y -4x -a |=0,若x 为负数,则a 的取值范围是( ) A.a >3 B.a >4 C.a >5 D.a >6二、填空题:1.当132<<m 时,点P (1,23--m m )在第 象限.2.(1)若0<<b a ,则)(21a b - 0;(2)22+-a a 1+-a (用“<”或“>”填空)3.若12+>+b b a ,则a b (用“<”、“=”或“>”填空)4.若不等式03>+-n x 的解集是2<x ,则不等式03<+-n x 的解集是 .5.如果关于x 的不等式()51+<-a x a 和42<x 的解集相同,则a 的值为 .6.不等式3(x +2)≥4+2x 的负整数解为________.7.若代数式2)52(3+k 的值不大于代数式5k -1的值,则k 的取值范围是________.8.如果三角形的三边长分别是3 cm 、(1-2a ) cm 、8 cm ,那么a 的取值范围是________. 三、解答题:1.如果不等式4x -3a >-1与不等式2(x -1)+3>5的解集相同,请确定a 的值2.已知方程012=+ax 的解是3=x ,求不等式()62-<+x a 的解集。
《不等式的解集》习题含解析北师大八年级下数学
![《不等式的解集》习题含解析北师大八年级下数学](https://img.taocdn.com/s3/m/ea82cfc10b4c2e3f56276391.png)
《不等式的解集》习题一、选择题1.下列数值中不是不等式5x≥2x+9的解的是()A.5B.4C.3D.22.如果关于+1的解集为<0 B.m<﹣1C.m>1 D.m>﹣1 3.下列说法错误的是()A.2x<﹣8的解集是x<﹣4B.x<5的正整数解有无穷个C.﹣15是2x<﹣8的解D.x>﹣3的非负整数解有无穷个4.如图,数轴上所表示关于x的不等式组的解集是()A.x≥2B.x>2 C.x>﹣1 D.﹣1<x≤25.不等式3x﹣1>x+1的解集在数轴上表示为()A.B.C.D.6.在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.7.关于>2的解集为x>1,则m的值为()A.0B.1 C.2 D.3二、填空题8.不等式x2≥0的解集是.9.一个关于x的不等式的解集为一切实数,这个不等式可以是.10.关于x的不等式﹣2x+a≤2的解集如图所示,则a的值是.11.某不等式的解集如图,则这个解集用不等式表示为.三、解答题12.下列各数中,是不等式x+1<4解的数有哪些?哪些不是不等式的解?8、7、5.5、4、2、1、0、2.5、﹣6.13.解不等式:﹣x>1,并把解集在数轴上表示出来.14.解不等式,并把它的解集表示在数轴上:5x﹣2>3(x+1)15.请用不等式表示如图的解集.参考答案一、选择题1.答案:D解析:【解答】移项得,5x﹣2x≥9合并同类项得,3x≥9系数化为1得,x≥3所以,不是不等式的解集的是x=2.故选:D.【分析】根据一元一次不等式的解法,移项、合并,系数化为1求出不等式的解集,再确定答案.2.答案:B解析:【解答】∵不等式(m+1)x>m+1的解集为<﹣1故选:B.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的取值范围.3.答案:B解析:【解答】A、两边同时除以2,即可得到,故原说法正确;B、x<5的正整数解有1,2,3,4共有4个,故原说法错误;C、解2x<﹣8得:x<﹣4,﹣15是不等式的解,故原说法正确;D、原说法正确.故选B.【分析】利用等式的性质,以及不等式的解集.4.答案:A解析:【解答】由数轴可得:关于x的不等式组的解集是:x≥2.故选:A.【分析】根据在数轴上表示不等式组解集的方法进行解答.5.答案:C解析:【解答】由3x﹣1>x+1,可得2x>2,解得x>1,所以一元一次不等式3x﹣1>x+1的解在数轴上表示为:故选:C.【分析】首先根据解一元一次不等式的方法,求出不等式3x﹣1>x+1的解集,然后根据在数轴上表示不等式的解集的方法,把不等式3x﹣1>x+1的解集在数轴上表示出来即可.6.答案:C解析:【解答】x﹣1<0解得:x<1,故选:C.【分析】解不等式x﹣1<0得:x<1,即可解答.7.答案:B解析:【解答】解不等式,根据题意得:2﹣m=1,解得:m=1.故选B.【分析】首先解关于x的不等式,然后根据不等式的解集是的方程,从而求解.二、填空题8.答案:一切实数.解析:【解答】x2≥0,x是任意实数.【分析】根据解不等式的方法,可得答案.9.x2+1>0.解析:【解答】∵一个关于x的不等式的解集为一切实数,∴这个不等式可以是x2+1>0.【分析】根据不等式的解集的定义,任意写出一个不等式符合提出的条件即可.10.答案:0.解析:【解答】∵﹣2x+a≤2∴22ax-≥∵x≥﹣1∴22a-=﹣1解得:a=0.【分析】先用a表示出x的取值范围,再根据数轴上x的取值范围求出a的值即可.11.答案:x≤3解析:【解答】根据图示知,该不等式的解集是:x≤3;【分析】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.三、解答题12.答案:8、7、5.5、4不是不等式的解.解析:【解答】∵x+1<4,∴x<3.∴2、1、0、2.5、﹣6是不等式的解.8、7、5.5、4不是不等式的解.【分析】利用不等式的基本性质,将不等式左边的常数项1改变符号以后移到右边,再合并同类项,解出x的解集,即可求解.13.答案:x<﹣1.解析:【解答】不等式﹣x>1,解得:x<﹣1,【分析】不等式x系数化为1,求出解集,表示在数轴上.14.答案:见解答过程.解析:【解答】5x﹣2>3x+3,2x>5,∴52x>.【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.15.答案:见解答过程.解析:【解答】(1)由数轴表示的不等式的解集,得x<﹣1;(2)由数轴表示的不等式的解集,得x≥1;(3)由数轴表示的不等式的解集,得x≤﹣1;(4)由数轴表示的不等式的解集,得x>3.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示,可得答案.。
2022中考真题分类11——不等式(参考答案)
![2022中考真题分类11——不等式(参考答案)](https://img.taocdn.com/s3/m/6d36307ae55c3b3567ec102de2bd960590c6d9db.png)
2022中考真题分类11——不等式一、解不等式1. (2022·辽宁阜新)不等式组120.510.5x x −−≤⎧⎨−<⎩的解集,在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集. 【详解】解:由−x −1≤2,得:x ≥−3, 由0.5x −1<0.5,得:x <3, 则不等式组的解集为−3≤x <3, 故选:A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 2. (2022·江苏镇江)如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a −<C .22a b >D .22a b +<+0b a −>,∴B 选项的结论不成立;22a b <,∴C选项的结论不成立; 22a b +<+,∴D 选项的结论成立.故选:D .【点睛】本题主要考查了不等式的性质,有理数大小的比较法则,利用点在数轴上的位置确定出a ,b 的取值范围是解题的关键.3. (2022·山东临沂)满足1m 的整数m 的值可能是( ) A .3 B .2 C .1 D .0【详解】310<<13−<,10110−=−3m ∴≥,故选:A .【点睛】本题考查了绝对值的化简,无理数的估算和不等式的求解,熟练掌握知识点是解题的关键.4.(2022·浙江衢州)不等式组3221112x x x −+⎧⎪⎨−⎪⎩<(),>的解集是( )A .3x <B .无解C .24x <<D .3<<4x键.5. (2022·广西河池)如果点P (m ,1+2m )在第三象限内,那么m 的取值范围是( ) A .102m −<<B .12m >−C .0m <D .12m <−6. (2022·山东滨州)把不等式组321132x xx x −<⎧⎪+−⎨≥⎪⎩中每个不等式的解集在同一条数轴上表示出来,正确的为( )A .B .C .D .∴不等式组的解集为35x−<≤,在数轴上表示为:,故选:C.【点睛】本题考查了解一元一次不等式组及在数轴上表示解集,熟练掌握知识点是解题的关键.7.(2022·辽宁锦州·中考真题)不等式131722x x−≤−的解集在数轴上表示为()A.B.C.D.故选C.二、含参不等式8.(2022·山东济宁)若关于x的不等式组>0,72>5x ax−⎧⎨−⎩仅有3个整数解,则a的取值范围是()A.-4≤a<-2B.-3<a≤-2C.-3≤a≤-2D.-3≤a<-2【答案】D【分析】先求出每个不等式的解集,再求出不等式组的解集,即可解答.【详解】解:>072>5x a x −⎧⎨−⎩①②由①得,x a > 由②得,1x <因不等式组有3个整数解1x a ∴<<32a ∴−≤<−故选:D .【点睛】本题考查解一元一次不等式组、一元一次不等式组的整数解,掌握相关知识是解题关键.9. (2022·湖南邵阳)关于x 的不等式组()1233111222x x x a ⎧−>−⎪⎪⎨⎪−<−⎪⎩有且只有三个整数解,则a 的最大值是( ) A .3 B .4C .5D .610. (2022·山东聊城)关于x ,y 的方程组2232x y k x y k −=−⎧⎨−=⎩的解中x 与y 的和不小于5,则k 的取值范围为( )A .8k ≥B .8k >C .8k ≤D .8k <【答案】A【分析】由两式相减,得到3x y k +=−,再根据x 与 y 的和不小于5列出不等式即可求解.【详解】解:把两个方程相减,可得3x y k +=−, 根据题意得:35k −≥, 解得:8k ≥.所以k 的取值范围是8k ≥. 故选:A .【点睛】本题考查二元一次方程组、不等式,将两式相减得到x 与y 的和是解题的关键. 11. (2022·四川达州)关于x 的不等式组23112x a x x −+<⎧⎪⎨−+⎪⎩恰有3个整数解,则a 的取值范围是_______. 【答案】23a ≤<【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围11x+②2a−,3,不等式组有解∴不等式组的解集为:2a−不等式组211x+恰有3<.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题要根据整数解的取值情12.(2022·内蒙古·中考真题)已知关于x的不等式组531xa x−≥−⎧⎨−<⎩无解,则a的取值范围是_____.【答案】a≥2【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.【详解】解:531xa x−≥−⎧⎨−<⎩①②,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为a≥2.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.13. (2022·四川绵阳)已知关于x 的不等式组2325323x x mx x +≥+⎧⎪+⎨−<−⎪⎩无解,则1m 的取值范围是_________.14. (2022·四川攀枝花)如果一元一次方程的解是一元一次不等式组的解.则称该一元一次方程为该一元一次不等式组的关联方程.若方程1103x −=是关于x 的不等式组2220x nn x −≤⎧⎨−<⎩的关联方程,则n 的取值范围是 ___________.即n 的取值范围为:13n ≤<, 故答案为:13n ≤<.【点睛】本题主要考查解一元一次不等式组和一元一次方程,解题的关键是理解并掌握“关联方程”的定义和解一元一次不等式组、一元一次方程的能力.三、不等式实际应用15. (2022·四川绵阳)某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:请解答下列问题:(1)第一天,该经营户用1700元批发了菠萝和苹果共300kg ,当日全部售出,求这两种水果获得的总利润?(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88kg ,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?16.(2022·黑龙江牡丹江)某工厂准备生产A和B两种防疫用品,已知A种防疫用品每箱成本比B种防疫用品每箱成本多500元.经计算,用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等.请解答下列问题:(1)求A,B两种防疫用品每箱的成本;(2)该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱,该工厂有几种生产方案?(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)【答案】(1)A种防疫用品2000元/箱,B种防疫用品1500元/箱(2)共有6种方案17.(2022·内蒙古呼和浩特)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?【答案】(1)去年每吨土豆的平均价格是2200元(2)应将175吨土豆加工成薯片,最大利润为202500元【分析】(1)设去年每吨土豆的平均价格是x元,则第一次采购的平均价格为(x+200)元,第二次采购的平均价格为(x-200)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的土豆枣数,根据所有采购的土豆必须全部加工完且用时不超过18. (2022·广西·中考真题)金鷹酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问: (1)甲,乙两个工程队每天各安装多少台空调,才能同时完成任务?(2)金鹰酒店响应“縁色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度:据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时,若电费0.8元/度,请你估计该酒店每天所有客房空调所用电费 W (单位:元)的范围?【答案】(1)甲工程队每天安装20台空调,乙工程队每天安装15台空调,才能同时完成任务(2)9601344W ≤≤,9.60>,的增大而增大,100m ≤≤140m 时,1344.【点睛】本题考查了列分式方程解决实际问题,列函数解析式,不等式的应用,准确理解题意,熟练掌握知识点是解题的关键.19. (2022·黑龙江)学校开展大课间活动,某班需要购买A 、B 两种跳绳.已知购进10根A 种跳绳和5根B 种跳绳共需175元:购进15根A 种跳绳和10根B 种跳绳共需300元.(1)求购进一根A 种跳绳和一根B 种跳绳各需多少元?(2)设购买A 种跳绳m 根,若班级计划购买A 、B 两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元? 【答案】(1)购进一根A 种跳绳需10元,购进一根B 种跳绳需15元(2)有三种方案:方案一:购买A 种跳绳23根,B 种跳绳22根;方案二:购买A 种跳绳24根,B 种跳绳21根;方案三:购买A 种跳绳25根,B 种跳绳20根 (3)方案三需要费用最少,最少费用是550元【分析】(1)设购进一根A 种跳绳需x 元,购进一根B 种跳绳需y 元,可列方程组1051751510300x y x y +=⎧⎨+=⎩,解方程组即可求得结果; (2)根据题意可列出不等式组()()101545560101545548m m m m ⎧+−≤⎪⎨+−≥⎪⎩,解不等式组得到解集再结合m 为正整数即可确定方案;(3)设购买跳绳所需费用为w 元,根据题意,得5675w m =−+,结合函数的性质,可知w 随m 的增大而减小,由此即可求得答案.【详解】(1)解:设购进一根A 种跳绳需x 元,购进一根B 种跳绳需y 元,根据题意,得1051751510300x y x y +=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩,答:购进一根A 种跳绳需10元,购进一根B 种跳绳需15元;(2)根据题意,得()()101545560101545548m m m m ⎧+−≤⎪⎨+−≥⎪⎩,解得2325.4m ≤≤,∵m 为整数,∴m 可取23,24,25.∴有三种方案:方案一:购买A 种跳绳23根,B 种跳绳22根; 方案二:购买A 种跳绳24根,B 种跳绳21根; 方案三:购买A 种跳绳25根,B 种跳绳20根;(3)设购买跳绳所需费用为w 元,根据题意,得()1015455675w m m m =+−=−+ ∵50−<,∴w 随m 的增大而减小,∴当25m =时,w 有最小值,即w 525675550=−⨯+=(元) 答:方案三需要费用最少,最少费用是550元.【点睛】本题主要考查的是不等式应用题、二元一次方程组应用题、一次函数相关应用题,根据题意列出对应的方程是解题的关键.20. (2022·贵州黔东南)某快递公司为了加强疫情防控需求,提高工作效率,计划购买A 、B 两种型号的机器人来搬运货物,已知每台A 型机器人比每台B 型机器人每天少搬运10吨,且A型机器人每天搬运540吨货物与B型机器人每天搬运600吨货物所需台数相同.(1)求每台A型机器人和每台B型机器人每天分别搬运货物多少吨?(2)每台A型机器人售价1.2万元,每台B型机器人售价2万元,该公司计划采购A、B两种型号的机器人共30台,必须满足每天搬运的货物不低于2830吨,购买金额不超过48万元.请根据以上要求,完成如下问题:①设购买A型机器人m台,购买总金额为w万元,请写出w与m的函数关系式;②请你求出最节省的采购方案,购买总金额最低是多少万元?【答案】(1)每台A型机器人每天搬运货物90吨,每台B型机器人每天搬运货物为100 w m m m;1.22300.860②由题意得:()901003028300.86048m m m ⎧+−≥⎨−+≤⎩,解得:1517m ≤≤, ∵-0.8<0,∴w 随m 的增大而减小,∴当m =17时,w 有最小值,即为0.8176046.4w =−⨯+=,答:当购买A 型机器人17台,B 型机器人13台时,购买总金额最少,最少金额为46.4万元.【点睛】本题主要考查分式方程的应用、一元一次不等式组的应用及一次函数的应用,熟练掌握分式方程的应用、一元一次不等式组的应用及一次函数的应用是解题的关键. 21. (2022·广西玉林)我市某乡村振兴果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨:因龙眼大量上市,价格下跌,第二次购买龙眼的价格为0.3万元/吨,两次购买龙眼共用了7万元. (1)求两次购买龙眼各是多少吨?(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉? 【答案】(1)第一次购买了7吨龙眼,第二次购买了14吨龙眼 (2)至少要把15吨龙眼加工成桂圆肉【分析】(1)设第一次购买龙眼x 吨,第二次购买龙眼y 吨,根据题意列出二元一次方程组即可求解;(2)设将a 吨龙眼加工成桂圆肉,则(21-a )吨龙眼加工成龙眼干,则总的销售额为:31.50.5a +,则根据题意有不等式31.50.539a +≥,解该不等式即可求解.【详解】(1)设第一次购买龙眼x 吨,第二次购买龙眼y 吨, 根据题意有:210.40.37x y x y +=⎧⎨+=⎩,解得:714x y =⎧⎨=⎩, 即第一次购买龙眼7吨,第二次购买龙眼14吨;(2)设将a 吨龙眼加工成桂圆肉,则(21-a )吨龙眼加工成龙眼干,则总的销售额为:0.210(21)0.5331.50.5a a a ⨯⨯+−⨯⨯=+, 则根据题意有:31.50.539a +≥, 解得:15a ≥,即至少要把15吨龙眼加工成桂圆肉.【点睛】本题考查了二元一次方程组即一元一次不等式的应用,明确题意列出二元一次方程组即一元一次不等式是解答本题的关键.22. (2022·河南)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A 种菜苗的价格是菜苗基地的54倍,用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A 种菜苗的价格.(2)菜苗基地每捆B 种菜苗的价格是30元.学校决定在菜苗基地购买A ,B 两种菜苗共100捆,且A 种菜苗的捆数不超过B 种菜苗的捆数.菜苗基地为支持该校活动,对A ,B 两种菜苗均提供九折优惠.求本次购买最少花费多少钱.20xx代入检验:将20x是原方程的解,20∴菜苗基地每捆A种菜苗的价格为)解:设:购买Am≤由题意可知:100m≤,解得5023.(2022·江苏苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大..利润不低于800元,求正整数m的最大值.【答案】(1)甲种水果的进价为每千克12元,乙种水果的进价为每千克20元24.(2022·四川遂宁)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?方案四:采购篮球33个,采购足球17个.【点睛】本题考查二元一次方程组的应用、一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式组.25.(2022·四川达州)某商场进货员预测一种应季T恤衫能畅销市场,就用4000元购进一批这种T恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T恤衫每件的进价分别是多少元?(2)如果两批T恤衫按相同的标价销售,最后缺码的40件T恤衫按七折优惠售出,要使两批T恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T恤衫的标价至少是多少元?【点睛】本题考查了列分式方程解决实际问题,列不等式解决实际问题,准确理解题意,找准数量关系是解题的关键.26. (2022·四川德阳)习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A 种树苗500株,B 种树苗400株,已知B 种树苗单价是A 种树苗单价的1.25倍. (1)求A 、B 两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A 种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?【答案】(1)A 种树苗的单价是4元,则B 种树苗的单价是5元(2)有6种购买方案,购买A 种树苗,25棵,购买B 种树苗75棵费用最低,最低费用是475元.【分析】(1)设A 种树苗的单价是x 元,则B 种树苗的单价是1.25x 元,根据“花费4000元集中采购了A 种树苗500株,B 种树苗400株,”列出方程,即可求解;(2)设购买A 种树苗a 棵,则购买B 种树苗(100-a )棵,其中a 为正整数,根据题意,列出不等式组,可得2025a ≤≤,从而得到有6种购买方案,然后设总费用为w 元,根据题意列出函数关系式,即可求解.【详解】(1)解:设A 种树苗的单价是x 元,则B 种树苗的单价是1.25x 元,根据题意得:500400 1.254000x x +⨯=,解得:4x =, ∴1.25x =5,答:A 种树苗的单价是4元,则B 种树苗的单价是5元;(2)解:设购买A 种树苗a 棵,则购买B 种树苗(100-a )棵,其中a 为正整数,根据题意得:()02545100480a a a <≤⎧⎨+−≤⎩, 解得:2025a ≤≤,∵a 为正整数,∴a 取20,21,22,23,24,25, ∴有6种购买方案, 设总费用为w 元,∴()45100500w a a a =+−=−+, ∵-1<0,∴w 随a 的增大而减小,∴当a =25时,w 最小,最小值为475, 此时100-a =75,答:有6种购买方案,购买A 种树苗,25棵,购买B 种树苗75棵费用最低,最低费用是475元.【点睛】本题主要考查了一元一次方程的应用,一元一次不等式组的应用,一次函数的应用,明确题意,准确得到数量关系是解题的关键.27. (2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同. (1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价−进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【答案】(1)m =10;(2)11种;(3)购进甲种运动鞋95双,购进乙种运动鞋105双,可获得最大利润28.(2022·内蒙古·中考真题)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品的单价;(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.2⎩x150x160150160xy均为正整数可取的正整数值是相对应的y可取的正整数值是∴共有6种进货方案)设总利润为∵50>∴W 随x 的增大而增大∴当160x =时,W 有最大值:516030003800⨯+=(元)∴当购进A 种纪念品160件,B 种纪念品20件时,可获得最大利润,最大利润是3800元.【点睛】本题考查二元一次方程组、一元一次不等式组和一次函数的实际应用.根据题意正确的列出二元一次方程组,一元一次不等式组,根据一次函数的性质进行求解,是解题的关键.29. (2022·辽宁阜新)某公司引入一条新生产线生产A ,B 两种产品,其中A 产品每件成本为100元,销售价格为120元,B 产品每件成本为75元,销售价格为100元,A ,B 两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A ,B 两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A ,B 两种产品各多少件?(2)下个月该公司计划生产A ,B 两种产品共180件,且使总利润不低于4300元,则B 产品至少要生产多少件?【答案】(1)这个月生产A 产品30件,B 产品70件 (2)140件【分析】(1)设生产A 产品x 件,B 产品y 件,根据题意列出方程组,求出即可; (2)设B 产品生产m 件,则A 产品生产()180m −件,根据题意列出不等式组,求出即可.【详解】(1)解:设生产A 产品x 件,B 产品y 件,根据题意,得()()100758250,120100100752350x y x y +=⎧⎨−+−=⎩ 解得3070x y =⎧⎨=⎩,∴这个月生产A 产品30件,B 产品70件, 答:这个月生产A 产品30件,B 产品70件;(2)解:设B 产品生产m 件,则A 产品生产()180m −件,根据题意,得()()()100751201001804300m m −+−−≥, 解这个不等式,得140m ≥. ∴B 产品至少生产140件, 答:B 产品至少生产140件.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,能根据题意列出方程组和不等式是解此题的关键.30. (2022·湖北黄石)某校为配合疫情防控需要,每星期组织学生进行核酸抽样检测;防疫部门为了解学生错峰进入操场进行核酸检测情况,调查了某天上午学生进入操场的累计人数y (单位:人)与时间x (单位:分钟)的变化情况,发现其变化规律符合函数关系式:2(08),640,(810)ax bx c x y x ⎧++≤≤=⎨<≤⎩数据如下表. 10x640(1)求a ,b ,c 的值;(2)如果学生一进入操场就开始排队进行核酸检测,检测点有4个,每个检测点每分钟检测5人,求排队人数的最大值(排队人数-累计人数-已检测人数);(3)在(2)的条件下,全部学生都完成核酸检测需要多少时间?如果要在不超过20分钟让全部学生完成核酸检测,从一开始就应该至少增加几个检测点? 【答案】(1)10a =−,160b =,0c(2)490人(3)从一开始应该至少增加3个检测点【分析】(1)根据题意列方程,待定系数法求解析式即可求解;(2)根据排队人数=累计人数-已检测人数,首先找到排队人数和时间的关系,再根据二次函数和一次函数的性质,找到排队人数最多时有多少人;8分钟后入校园人数不再增加,检测完所有排队同学即完成所有同学体温检测;(3)设从一开始就应该增加m 个检测点,根据不等关系“要在20分钟内让全部学生完成c;,由(1)知y=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 不等式的解集
A卷:基础题
一、选择题
1.下面说法正确的是()
A.x=3是不等式2x>3的一个解B.x=3是不等式2x>3的解集
C.x=3是不等式2x>3的唯一解D.x=3不是不等式2x>3的解
2.在数轴上表示x<-3的解集,下图中表示正确的是()
3.如图,数轴上表示的数的范围是()
A.-2<x<4 B.-2<x≤4C.-2≤x<4 D.-2≤x≤4
4.如图,在数轴上表示不等式2x-6≥0的解集,正确的是()
A B C D
二、填空题
5.a≥1的最小值是m,b≤8的最大值是n,则m+n=_____.
6.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,•已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔_____支.
7.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是______.
8.不等式2x+3>9的解集是_____.
三、解答题
9.在数轴上表示下列不等式的解集:
(1)x>1
2
;(2)x≤-1
10.三个连续奇数之和不大于70,那么这三个奇数中最大奇数可能取的最大值是多少?
11.如果方程组
523,
52
m n a
m n a
+=+
⎧
⎨
+=-
⎩
的解满足m+n≤6,求a的取值范围.
12.已知不等式3(x+5)-6>5与不等式5x+6a>4的解集相同,求a的值.
B 卷:提高题
一、七彩题
1.(一题多解)当x 取哪些整数时,不等式x+2<
12(x+5)与不等式3(x -2)+9>2x 同时成立?
2.(一题多变题)已知│2x -24│+(3x -y -k )2=0,若y<0,求k 的取值范围.
(1)一变:y>0,求k 的取值范围;(2)二变:k>0,求y 的取值范围;
(3)三变:k<0,求y 的取值范围.
二、知识交叉题
3.(科内交叉题)已知x=3是方程x=
2x a -1的解,求不等式(10-a )x<53
的解集.
三、实际应用题
4.朱妞家计划用40000元装修新房,新房的使用面积为100平方米,卫生间和厨房共10平方米,厨房和卫生间装修的工料费为每平方米200元,•卫生间和厨房配套的卫生洁具和厨房厨具还要用去2000元,这种情况下,居室和客厅装修工料费x(元/•平方米)应满足什么样的条件,才不会超过预算.
四、经典中考题
5.(2007,青海,2分)不等式8-3x≥0的最大整数解是______.
6.(2008,上海,4分)不等式x-3<0的解集是____.
C卷:课标新型题
1.(结论开放题)写出四个满足不等式3x-2≤5x+8的负整数解.
2.(说理题)在一次“人与自然”知识竞赛中,竞赛试题共有25道,•每道题都给出4个选项,其中只有一个选项是对的,要求学生把正确选项写出来,每题选对得4分,不选或错选扣2分,如果一个学生在本次竞赛中,得分不低于60分,•那么他至少选对多少道题?
3.请同学们讨论下列各题的说法对不对?如果不对,请说明理由.
(1)x=3是不等式3x<11的一个解;
(2)x=3是不等式3x<11的一个解集;
(3)不等式3x<11的解集是x<3;
(4)不等式3x<11的解集是x<11 3
.
参考答案
A卷
一、1.A 2.B 3.B
4.B 点拨:不等式两边都加上6,得2x≥6,不等式两边都除以2,得x≥3.二、5.9 点拨:因为a≥1的最小值是m,所以m=1,
因为b≤8的最大值是n,所以n=8,所以m+n=1+8=9.
6.13 点拨:设能买钢笔x支,则买笔记本(30-x)本,
依题意5x+2(30-x)≤100,解得x≤40
3
,故最多可买钢笔13支.
7.15 点拨:第三边的取值范围是4<x<10,所以第三边长的最小整数值为5,故这样的三角形的周长最小值是3+7+5=15.
8.x>3 点拨:不等式2x+3>9的两边都减去3,得2x>6,不等式两边都除以2,得x>3.三、9.解:(1)如图1所示,(2)如图2所示.
图1 图2
点拨:在数轴上表示不等式的解集时应牢记:边界点含于解集用实心圆点,•不含于解集用空心圆圈;方向遵循“大于向右走,小于向左走”的原则.
10.解:设这三个连续奇数分别为n-2,n,n+2,
依题意,得n-2+n+n+2≤70,3n≤70,n≤231
3
,n的最大值为23,
当n=23时,n+2=23+2=25.
这三个奇数中最大奇数可能取的最大值是25.
点拨:根据题意列出关于n的不等式,求出n的解集,当n取最大值时,求最大奇数的值.
11.解:
523(1)
52(2)
m n a
m n a
+=+
⎧
⎨
+=-
⎩
(1)+(2)得6(m+n)=4+2a,
所以m+n=426a +=23a +,因为m+n≤6,所以23a +≤6,a≤16. 12.解:由3(x+5)-6>5得x>-43,由5x+6a>4得x>465a -, 由题意知-43=465a -,a=169
. 点拨:本题是不等式与方程的综合综合,先解两个不等式,•根据两个不等式的解集相同得到方程,解这个方程求出a 的值.
B 卷
一、1.解法一:解不等式x+2<12
(x+5)得2x+4<x+5,2x -x<5-4, 所以x<1.解不等式3(x -2)+9>2x 得3x -6+9>2x ,3x -2x>-3,
所以x>-3.用数轴表示以上两个不等式的解集如图所示.
所以x 取-2,-1,0时,两个不等式同时成立.
解法二:解不等式x+2<1
2(x+5)得x+2<12x+52,x -12x<52-2,12x<12
,x<1.解不等式3(x -2)+9>2x 得x>-3.用数轴表示以上两个不等式的解集如图所示,所以x 取-2,-1,0时,两个不等式同时成立.
2.解:由非负数的性质,得2240,30,x x y k -=⎧⎨--=⎩,所以12,36.x y k =⎧⎨=-⎩
, 因为y<0,所以36-k<0,所以k>36.
(1)当y>0时,36-k>0,所以k<36.
(2)由y=36-k 得k=36-y ,若k>0,则36-y>0,所以y<36.
(3)若k<0,则36-y<0,所以y>36.
点拨:本题考查非负数的性质及解简单的不等式.
二、3.解:由x=
2x a --1得2x=x -a -2,因为x=3,所以a=-x -2=-3-2=-5,
所以不等式(10-•a)x<5
3
为(10+5)x<
5
3
,15x<
5
3
,x<
1
9
.
点拨:本题是方程与不等式的综合运用,通过解方程求出a的值,把a•的值代入到不等式,然后求不等式的解集.
三、4.解:由题意得(100-10x)+10×200+2000≤40000,
所以x≤400,即每平方米最多用400元才不会超过预算.
四、5.2 点拨:解这个不等式,得x≤22
3
,所以不等式8-3x≥0的最大整数解是2.
6.x<3
C卷
1.解:-1,-2,-3,-4.
点拨:解不等式3x-2≤5x+8,得x≥-5,•
所有满足题意的负整数解有-1,-2,-3,-4,-5.
此题答案不唯一,任意写出四个即可.
2.解:设该学生选对了x道题,则不选或错选(25-x)道题,
由题意,得4x-2(25-x) ≥60,解得x≥181
3
,
所以,该生至少选对19道题.
点拨:此类题目必须算清得分与失分两层意思,并用含未知数的式子表示出来方能利
用不等式的邻界点和题目实际求得结果.x不能取18,理由是18不在x≥181
3
的范围内.
3.解:(1)这句话是正确的;(2)不正确,•因为不等式的解集是所有符合条件的解的集合,3只是其中之一;(3)不等式的解集是所有符合条件的解的集合,而x<3却丢掉了其中的一部分,所以说法(3)不正确,而(4)正确.。