(完整版)异步电动机变频调速系统..

合集下载

异步电动机变频调速控制系统

异步电动机变频调速控制系统

主电路(续)
泵升限制电路——由于二极管整流器不能为 异步电机的再生制动提供反向电流的通路,所 以除特殊情况外,通用变频器一般都用电阻吸 收制动能量。减速制动时,异步电机进入发电 状态,首先通过逆变器的续流二极管向电容C 充电,当中间直流回路的电压(通称泵升电压) 升高到一定的限制值时,通过泵升限制电路使 开关器件导通,将电机释放的动能消耗在制动 电阻上。为了便于散热,制动电阻器常作为附
所谓“通用”,包含着两方面的含义: (1)可以和通用的笼型异步电机配套使用; (2)具有多种可供选择的功能,适用于各种
不同性质的负载。
下页图绘出了一种典型的数字控制通用变 频器-异步电动机调速系统原理图。
1. 系统组成
K
UR
RR00
RR11
RRbb
UI
~
M 3~
RR22
VTb
显示

设定


接口
件单独装在变频器机箱外边。
二极管整流电流波形具有较大的谐波分 量,使电源受到污染。
为了抑制谐波电流,对于容量较大的 PWM变频器,都应在输入端设有进线电抗 器,有时也可以在整流器和电容器之间串 接直流电抗器。还可用来抑制电源电压不 平衡对变频器的影响。
电路分析(续)
控制电路——现代PWM变频器的控制电路 大都是以微处理器为核心的数字电路,其 功能主要是接受各种设定信息和指令,再 根据它们的要求形成驱动逆变器工作的 PWM信号,再根据它们的要求形成驱动逆 变器工作的PWM信号。微机芯片主要采用 8位或16位的单片机,或用32位的DSP,现 在已有应用RISC的产品出现。
控制电路(续)
信号设定——需要设定的控制信息主要有:U/f 特性、工作频率、频率升高时间、频率下降时间 等,还可以有一系列特殊功能的设定。由于通用 变频器-异步电动机系统是转速或频率开环、恒 压频比控制系统,低频时,或负载的性质和大小 不同时,都得靠改变 U / f 函数发生器的特性来补 偿,使系统达到恒定,甚至恒定的功能(见第 6.2.2节),在通用产品中称作“电压补偿”或 “转矩补偿”。

(完整版)异步电动机变频调速系统..

(完整版)异步电动机变频调速系统..

《自动控制元件及线路》课程实习报告异步电动机变频调速系统1.4.1 系统原理框图及各部分简介本文设计的交直交变频器由以下几部分组成,如图1.1所示。

图1.1 系统原理框图系统各组成部分简介:供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。

因为本设计中采用中等容量的电动机,所以采用三相380V电源。

整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。

在本设计中采用三相不可控整流。

它可以使电网的功率因数接近1。

滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。

逆变电路:逆变部分将直流电逆变成我们需要的交流电。

在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。

电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。

控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。

这些信号经过光电隔离后去驱动开关管的关断。

1.4.2 变频器主电路方案的选定变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。

随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。

静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。

1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。

由于中间不经过直流环节,不需换流,故效率很高。

因而多用于低速大功率系统中,如回转窑、轧钢机等。

但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。

2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。

交流异步电动机变频调速系统设计报告

交流异步电动机变频调速系统设计报告

交流异步电动机变频调速系统设计报告一、引言异步电动机在工业生产中具有广泛的应用,通过变频调速系统可以实现对异步电动机的精确控制,提高生产效率和控制精度。

本文将详细介绍异步电动机变频调速系统设计的原理和过程。

二、系统设计原理异步电动机通过变频器驱动,实现调速功能。

变频器将交流电源转换为直流电源,通过PWM技术将直流电转换为交流电,进而控制电机的转速。

变频器的主要组成部分包括整流器、中间环节直流母线、逆变器和控制电路。

整流器将交流电源转换为直流电源,并通过滤波电路削波,保持直流电的稳定性。

中间环节直流母线存储电能,为逆变器提供稳定的电源。

逆变器将直流电源转换为交流电源,并通过PWM调制技术调整交流电的频率和幅值,从而控制电机的转速。

控制电路通过传感器采集电机的运行状态,并通过对逆变器的控制信号实现控制目标。

三、系统设计步骤1.确定系统需求:根据应用场景和任务要求,确定对异步电动机的调速要求,包括速度范围、控制精度等。

2.选择电机和变频器:根据系统需求,选择适合的异步电动机和变频器,确保其参数和性能满足需求。

3.设计电路连接:根据电机和变频器的技术规格,设计电机与变频器的连线方式和电路连接,确保信号传输畅通。

4.设计控制系统:根据系统需求,设计控制系统包括传感器、控制电路和控制算法等,确保对电机的精确控制。

5.实施系统调试:将设计好的电路和控制系统进行组装和调试,确保系统能够正常工作。

6.测试系统性能:对系统进行性能测试,包括速度响应、负载变化等测试,验证系统的设计目标是否达到。

7.优化系统性能:根据测试结果,对系统进行调整和优化,提高系统的性能和稳定性。

8.编写设计报告:整理系统设计过程、实施步骤和测试结果,撰写设计报告。

四、系统设计考虑因素1.变频器和电机的匹配性:选择变频器时需要考虑其输出能力是否足够满足电机的需求,包括最大输出功率、额定电流等。

2.控制系统的精确性:设计控制系统时需要考虑传感器的精度、控制器的计算性能等因素,确保控制系统能够精确控制电机的转速。

实验四异步电动机变频调速系统

实验四异步电动机变频调速系统

实验四异步电动机变频调速系统(一)转速开环恒压频比控制变频调速系统实验一.实验目的1.通过实验掌握转速开环恒压频比控制调速系统的组成及工作原理。

2.掌握V/F控制方式下,选取不同的模式电机的静特性差异。

二.实验数据及分析转速开环恒压频比控制静特性n(r/min)1475 1488 1501 1511 1525 1543Ia(A) 2.5 2.2 2.0 1.9 1.8 1.7T(N.m) 100% 83.9% 68.1% 54.6% 37.4% 15%n(r/min)902 916 931 945 953 966Ia(A) 2.3 2.1 1.9 1.7 1.7 1.6T(N.m) 100% 82.7% 64.0% 46.4% 33.6% 16.5%n(r/min)475 488 495 508 518 528 Ia(A) 1.9 1.7 1.6 1.6 1.5 1.5T(N.m) 85% 69.2% 56.1% 45.1% 28.0% 21.7%n(r/min)472 485 495 506 508 525 Ia(A) 2.0 1.8 1.7 1.7 1.6 1.6T(N.m) 62.5% 50.5% 39.2% 27.4% 20.8% 3.6%三.思考题1.说明转速开环恒压频比控制静特性特点答:其他条件相同,转速与频率大致成正比;频率一样时,转速越高,带动转矩能力越差。

2.说明低频补偿对系统静特性的影响。

答:由于临界转矩随f减小而减小,f较低时,电动机负载能力较弱。

低频补偿可以增强系统负载能力,同转速时有低频补偿情况T较小。

3.说明载波频率的大小对电机运行影响答:低频时转矩大,噪音小,但此时主元器件开关损耗大,整机发热较多,效率下降。

高频时转矩变小,电流输出波形比较理想。

(二)异步电动机带速度传感器矢量控制系统实验一.实验目的1.通过实验掌握异步电动机带速度传感器矢量控制系统的组成及工作原理;2.掌握异步电动机带速度传感器矢量控制系统静、动特性。

4章 交流异步电动机变频调速系统

4章 交流异步电动机变频调速系统

为交流异步电动机转矩系数,其中Nr为转子绕组有效匝数;
φr为转子功率因数角。
可见,转矩控制的困难体现在以下几点: T T ① m 是由定子电流is iA , iB , iC 和转子电流 ir ia , ib , ic 共同产生的,它的
空间位置相对于定子和转子都是运动的。 ② m 与 I r 是两个相互耦合的变量,且 I 对于一般的鼠笼形异步电机是无法 r ③ r 是与转速相关的时变量(与转差s有关), 且当电机运行时转子电阻 Rr 随温度变化而变化, Te 也随之变化。除此以外,式中的 Te 只是平均转矩的概念, 对平均转矩的控制已十分困难了,更何况瞬时转矩。对转速的控制实质上就是 对转矩的控制,转矩控制的困难是实现交流电机高性能调速的主要障碍,也是 过去限制交流调速系统获得广泛应用的主要原因。 2)调速装置中器件发展的限制:调速装置中两大组成部件是主电路和控制电路。 主电路中的主要器件—电力电子功率器件在近五十年来更新换代了五代之多,以 适应变频调速(PWM脉宽调制)的需要。控制电路中的主要器件—微处理器在 近二十年中运算速度提高了数倍,以适应高性能变频调速复杂算法的需要。交流 调速系统的发展依赖于新型电力电子器件的应用、微电子技术的发展。
直流调速系统中各部分分别为5%,40%和55%,而交流调速系统中各部分分别 为10%,60%和30%。特别是当功率大于500 kW,交流调速系统的成本比直流 调速系统的成本明显降低。 4.1.2交流电动机的调速方法及其主要应用领域 1.交流电动机的调速方法 由电机学可知,交流电动机的同步转速表达式为 60 f s (4.6) ns np ns 为同步转速。 式(4.6)中,np为电机极对数;fs为电机定子供电频率; (1) 同步电动机的调速方法 可见,均匀地改变同步电动机的定子供电频率fs,就可以平滑地调节电动机

完整版《三相异步电动机变频调速系统设计》

完整版《三相异步电动机变频调速系统设计》

完整版《三相异步电动机变频调速系统设计》
一、异步电动机变频调速系统简介
异步电动机变频调速系统是一种基于变频器技术完成频率控制的调速系统,其结构组成主要包括:异步电动机、变频器、控制器和传动机构等组成。

本系统可以实现对电动机的输出功率、转速和负载的关系,从而提高机器的能源利用率,减少电机输出的能耗。

二、异步电动机变频调速系统组成
1.异步电动机:异步电动机是一种由能量变换设备的机械部分,它通过电能激励的电磁作用而可发生转动,其结构由定子、转子及密封装置等组成。

该部件能够接受输入的直流电压,完成外界功率转换。

2.变频器:变频器是由变频技术控制异步电动机输出电压和频率的装置,其特性是能够将低电压变高,将低频率调整到高频率,使输出电压与频率可以随着被控制设备的运行状况而灵活变化,能有效节省电源能耗,减少设备故障。

3.控制器:控制器是负责控制变频器给异步电动机提供指令的,它的功能有:对异步电动机的转矩与频率进行控制;实现变频器与异步电动机的细微调整;实现较快速度的反应。

完整版《三相异步电动机变频调速系统设计》

完整版《三相异步电动机变频调速系统设计》

完整版《三相异步电动机变频调速系统设计》三相异步电动机变频调速系统是一种应用广泛的电机控制系统,通过对电机的供电频率和电压进行调整,实现电机的调速功能。

本文将对三相异步电动机变频调速系统进行详细的设计。

1.系统结构三相异步电动机变频调速系统主要由电机、变频器和控制系统三部分组成。

电机作为执行元件,接受变频器输出的电压和频率进行运行;变频器则负责将输入的电网电压和频率转换为适合电机运行的电压和频率;控制系统则完成对变频器的控制和监测,实现对电机的精确调速。

2.硬件设计在硬件设计方面,需要选择适合电机的变频器和控制器,并完成相应的接线和连接。

变频器通常需要选择带有电压和频率调节功能的型号,以满足不同工作条件下的电机要求。

控制器则需要选择具备快速响应和稳定性能的型号,以确保系统的准确调速。

3.变频器参数设置变频器的参数设置对于电机的工作性能影响较大。

在设置参数时,首先需要根据电机的额定功率和工作特性确定变频器的额定输出功率。

同时,还需要根据电机的额定电压和额定转速设置变频器的额定输出电压和额定输出频率。

此外,还需要根据电机的负载特性设置变频器的过载保护和反馈调节参数。

4.控制系统设计控制系统的设计主要包括速度信号检测、计算和反馈控制三个步骤。

速度信号检测可以通过安装编码器或霍尔传感器等装置实现。

根据检测到的速度信号,控制系统可以计算出电机的当前转速,并与设定的目标转速进行比较,得到误差信号。

通过对误差信号进行PID控制,控制系统可以调整变频器的输出频率和电压,以实现对电机转速的控制。

5.保护措施设计三相异步电动机变频调速系统在运行过程中需要考虑到一些保护措施,以防止电机过载、短路等故障。

常见的保护措施包括过载保护、过流保护、过热保护和失速保护等。

通过在控制系统中添加相应的保护逻辑和监测装置,可以及时发现并处理电机故障,保证系统的安全运行。

总之,三相异步电动机变频调速系统设计涉及到硬件设计、变频器参数设置、控制系统设计和保护措施设计等方面。

异步电动机变频调速系统VVVF系统

异步电动机变频调速系统VVVF系统

主讲:赵士滨
广师©
广师©
第七章 异步电动机变频调速系统(VVVF系统)
§7-1变频调查的基本控制方式
三相异步电机定子第相电动势的有效值是: 式中 Eg—— 气隙磁通在定子每相中感应电罢势有效值,单位 为V; f1——定子频率,单位为HN; N1——定子每相绕组串联匝数; kN1——基波绕组系数; Φm——每极气极隙磁通量,单位为Wb。 只要控制好Eg和f1,便可达到控制磁通Φm的目的。
广师©
* U 为了解决这个问题,在 给定信号 和电压、 频率的控制信号Uabs 之间设置了给定积 分器GI和绝对值变 换器GAB。
广师©
(一)给定积分器
由模拟电子路给成的给定积分器原理图如图7-28所示,它 包含了三级运算放大器。
广师©
第一级是放大倍数的极性鉴别器(R1>100R0)其输出电压U1只取 * * 与给定电压 U 相反的极性,不管 U 大小如何,U1都是饱和值. * 第二级是反向器,使其输出电压U2的极性再倒一下,变成与 U 极 性相同。 第三级是积分器,经RC积分使输出电压 Ugi 成为斜坡信号,积 分的变化率用电位器RP来调节。
广师©
SPWM变频器的工作原理
图7-12a是SPWM变频 器的主电路,图中 VT1 ~ VT6 是逆变器的六个功率开关 器件(在这里画的是 GTR),各由一个续流二 极管反并联接,整个逆变 器由三相整流器提供的恒 直流电压供电。图7-12b是 它的控制电路,一组三相 对称的正弦参考电压信号 Ura、Urb 、Urc 由参考信 号发生器提供,其频率决 定逆变器输出的基波频率, 应在所要求的输出频率范 围内可调。
广师©
参考信号的幅值也 可在一定范围内变 化,以决定输出电 压的大小。 三角波载波信号 是共用的,分别与 每相参考电压比较 后,给出“正”或 “零”的饱和输出, 产生SPWM脉冲序 列波Uda、 Udb 、 Udc ,作为逆变器功 率开关器件的驱动 控制信号。

第六章交流异步电动机变频调速系统PPT课件

第六章交流异步电动机变频调速系统PPT课件

电动势值较高时,可以忽略定子绕组的漏磁阻
抗压降,而认为定子相电压 Us ≈ Eg,
8
则得 U s 常值
这是恒压频f1 比的控制方式。
(6-3)
但是,在低频时 Us 和 Eg 都较小,定子阻 抗压降所占的份量就比较显著,不再能忽略。
这时,需要人为地把电压 Us 抬高一些,以便 近似地补偿定子压降。
3
第一节 变频调速的基本控制方式和机械特性 通过改变定子供电频率来改变同步转速实现
对异步电动机的调速,在调速过程中从高速到 低速都可以保持有限的转差率,因而具有高效 率、宽范围和高精度的调速性能。可以认为, 变频调速是异步电动机的一种比较合理和理想 的调速方法 。
原理:利用电动机的同步转速随频率变化的特 性,通过改变电动机的供电频率进行调速。保
带定子压降补偿的恒压频比控制特性示于下
图中的 b 线,无补偿的控制特性则为a 线。
2. 基频以上调速
在基频以上调速时,频率应该从f1N向上升高,
但定子电压Us 却不可能超过额定电压
9
UsN ,最多只能保持Us = UsN ,这将迫使磁通
与频率成反比地降低,相当于直流电机弱磁升 速的情况。
Us UsN
11
Us Φm
恒转矩调速
UsN ΦmN
Us
恒功率调速
Φm
O
f1N
f1
图6-2 异步电机变压变频调速的控制特性
异步电动机的变压变频调速是进行分段控制的:
基频以下,采取恒磁恒压频比控制方式;
基频以上,采取恒压弱磁升速控制方式。
12
U Te
P
N
UN
Te
U
P
O
变电压调速

异步电动机变频调速系统

异步电动机变频调速系统

异步电动机变频调速系统异步电动机变频调速系统是属于转差功率不变型调速系统,是异步电动机各种调速方法中调速性能最好、效率最高的一种调速方法,因而在实际生产中得到广泛应用。

变频调速的基本工作原理异步电动机的转速表达式为 )1(n 60p1s f n -==0n )1(s - 在三相异步电动机中存在下列关系:m N q k N f E φ11144.4=如忽略定子阻抗压降,则1U ≈ m N q k N f E φ11144.4=式中 1U -----定子相电压q E ——气隙磁通在定子每相绕组中感应电动势的有效值,V ;1f -----定子的电源频率1N ——定子每相绕组串联匝数;1N k ——基波绕组系数;m φ——每极气隙磁通量,Wb 。

变频调速的基本控制方式和机械特性变频调速的基本控制方式1. 基频以下调速控制方式要保持m φ不变,当频率1f 从额定值N f 1向下调节时,应同时降低q E ,使1f E q=常数,即采用恒定电动势频率比的控制方式。

1U ≈q E ,取11f U =常数,即采用恒压频比的控制方式。

在低频时,1U 和q E 都较小,定子阻抗压降所占的分量就比较显著,不能忽略,因而必须对1U 进行定子阻抗压降补偿,人为地把电压1U 提高一些,尽可能维持磁通m φ基本不变。

2. 基频以上调速控制方式在基频以上调速时,可以从N f 1往上增加,如要维持m φ恒定,必须随频率1f 的增加而相应增加1U ,但电压1U 一般不能超过电动机的额定电压N U 1,只能保持在电动机的额定电压N U 1上。

所以在基频以上调速时只能放弃维持磁通m φ恒值的要求,使磁通m φ与频率成反比地降低,相当于直流电动机的弱磁升速的情况。

在基频以下调速属于恒转矩调速,在基频以上调速属于恒功率调速。

变频调速的机械特性异步电动机恒压恒频时的机械特性当定子电压1U 和角频率1ω都为恒定值时,异步电动机的电磁转矩e T 为 2212122212121122211)()()(33l l p p m e L L s R sR R s U n s R I n P T ++'+'=''=Ω=ωωωω式中 m P ---电磁功率1ω---电源角频率1Ω--同步机械角速度p n --极对数1U --定子电压1R 、'2R --定子每相电阻和折合到定子侧的转子每相电阻1l L 、'2l L --定子每相漏感和折合到定子侧的转子每相漏感当s 很小时,可忽略上式分母中含s 项,转矩近似与s 成正比,这时机械特性)(s f T e =是一段直线,如图19-3所示。

异步电动机变频调速系统PPT课件

异步电动机变频调速系统PPT课件
交流调速有很多方法,例如调压调速、转子串电阻调速、转差离合器 调速、变极对数调速等,这些方法技术落后、调速性能差、效率低, 使用越来越少,取而代之的是变频调速系统。
目前,变频调速系统使用较为普遍,例如工农业生产、家用电器等领 域,且具有节能、调速效率较高等特点。变频调速系统正向着高性能、 高精度、大容量、微型化、数字化和智能化方向发展。
主回路 18
.
主回路:整流桥为三相全控桥,逆变器为1200导电型,中间环节采用 电抗器滤波,为电流型变频调速系统。
电压控制回路:采用电压外环、电流内环的双闭环结构。电压控制回 路采用了相位控制技术。关于电压控制回路的说明:
采用闭环控制电压,来保证实际电压与给定电压相一致。
电流调节器的给定值为电压调节器的输出值,而反馈值为电动机 电流的实际值。一方面,采用闭环控制电流,可保证实际电流与 给定电流一致,且在动态过程中,能够保证恒流加速或减速。另 一方面,如果按电机最大允许电流设计电压调节器的限幅值,能 保证主回路电流不超过最大允许电流,提高了可靠性。
.
9
3、斩波器调压
换流器—L—C
斩波器调压原理图如下:
斩波器:调压
换流电路
逆变器:调频
二极管 整流器
晶闸管 VT
开关
VD
L 斩波器 C
逆变器
M 3~
整流器采用三相二极管整流桥,把交流电变换成直流电; 逆变器采用三相全控桥,实现变频; 斩波器采用脉频调制或脉宽调制,输出大小可调的直流电压。
特点:斩波器调压的特点是输入功率因数高,动态响应快。
G
图 六行电 恒电 频 回压 , 控给 在 性载保 ;跃把将为环 三
+
GF
AVR GT1
-

实验五 三相异步电机变频调速系统实验

实验五 三相异步电机变频调速系统实验

实验五 三相异步电机变频调速系统实验一、实验目的(1)掌握SPWM 的调速基本原理和实现方法。

(2)掌握马鞍波变频的调速基本原理和实现方法。

(3)掌握SVPWM 的调速基本原理和实现方法。

二、实验原理异步电机转速基本公式为:60(1)f n s p =- 其中n 为电机转速,f 为电源频率,p 为电机极对数,s 为电机的转差率。

当转差率固定在最佳值时,改变f 即可改变转速n 。

为使电机在不同转速下运行在额定磁通,改变频率的同时必须成比例地改变输出电压的基波幅值。

这就是所谓的VVVF (变压变频)控制。

工频50Hz 的交流电源经整流后可以得到一个直流电压源。

对直流电压进行PWM 逆变控制,使变频器输出PWM 波形中的基波为预先设定的电压/频率比曲线所规定的电压频率数值。

因此,这个PWM 的调制方法是其中的关键技术。

目前常用的变频器调制方法有SPWM ,马鞍波PWM ,和空间电压矢量PWM 等方式。

(1)SPWM 变频调速方式:正弦波脉宽调制法(SPWM )是最常用的一种调制方法,SPWM 信号是通过用三角载波信号和正弦信号相比较的方法产生,当改变正弦参考信号的幅值时,脉宽随之改变,从而改变了主回路输出电压的大小。

当改变正弦参考信号的频率时,输出电压的频率即随之改变。

在变频器中,输出电压的调整和输出频率的改变是同步协调完成的,这称为VVVF (变压变频)控制。

SPWM 调制方式的特点是半个周期内脉冲中心线等距、脉冲等幅,调节脉冲的宽度,使各脉冲面积之和与正弦波下的面积成正比例,因此,其调制波形接近于正弦波。

在实际运用中对于三相逆变器,是由一个三相正弦波发生器产生三相参考信号,与一个公用的三角载波信号相比较,而产生三相调制波。

如图4-1所示。

图5-1 正弦波脉宽调制法(2)马鞍波PWM变频调速方式前面已经说过,SPWM信号是由正弦波与三角载波信号相比较而产生的,正弦波幅值与三角波幅值之比为m,称为调制比。

异步电动机的调速

异步电动机的调速
2
பைடு நூலகம்
′σ R2 x22 ] − [− 2 + ′ dT 3 pf1 E1 s R2 = ( ) =0 2 ′ ′ ds 2π f 1 R2 sx2σ 2 [ + ] ′ s R2 ′ ′ R2 x′ 2 R2 2σ = ⇒ sm = 2 ′ ′ s R2 x 2σ
一、变频调速
1) 保持E1/f1=const 保持E
异步电动机的调速
补充内容
异步电动机的调速
60 f 1 n = n1 (1 − s ) = (1 − s ) p 三相异步电动机的调速方法很多,大致可以分成以下 三相异步电动机的调速方法很多, 几种类型: 几种类型:
1)变频调速 1)变频调速 2)变极调速 2)变极调速 3)变转差率调速 3)变转差率调速 变转差率调速包括:包括降低电源电压、绕线式异步 变转差率调速包括:包括降低电源电压、 电动机转子回路串电阻
一、变频调速
′ R2 3 pU S T = 2 ′ R2 ′ 2 2πf1 R1 + + ( x1σ + x 2σ ) S
2 1
2) 保持U1/f1=const 保持U
==
sm =
3 p U1 2 f 2π 1 ′ R2 ′ 2 R1 + + (x1σ + x 2σ ) ' s
U1 ≈ E1 = 4.44 f1 N1k dp1Φ m

降低电源频率时,必须同时降低电源电压。 降低电源频率时,必须同时降低电源电压。降低电源电 压有两种控制方法。 压有两种控制方法。
一、变频调速
1) 保持E1/f1=const 保持E
R′ ′ 2 3( I 2 ) 2 PM s = 3p T = = 2π n1 2π f 1 R ′ Ω1 2 60 s ′ R2 2 3 pf 1 E1 s = 2π f 1 R 2 2 ′ ′ 2 + ( x 2σ ) s ′ E2 + (x ′ σ 2

完整版《三相异步电动机变频调速系统设计》

完整版《三相异步电动机变频调速系统设计》

完整版《三相异步电动机变频调速系统设计》三相异步电动机变频调速系统设计摘要:变频调速技术是现代电气控制领域中的重要技术之一,广泛应用于水泵、风机、压缩机等各种场合。

本文以三相异步电动机为对象,着重介绍了变频调速系统的设计思路和实施步骤。

通过整理相关文献和实践经验,提供了一个完整的设计指南,希望能对读者进行指导和借鉴。

关键词:三相异步电动机;变频调速;设计一、引言随着工业自动化程度的不断提高,越来越多的机械设备开始采用变频调速技术。

相比传统的定频运行方式,变频调速具有调速范围广、运行稳定、能耗低等优点,在提高设备性能和效率的同时,也可以延长设备的使用寿命。

三相异步电动机作为最常用的驱动器之一,广泛应用于各个领域。

二、变频调速系统设计思路1.设计目标确定:根据实际需求确定设计的目标,包括调速范围、调速精度、系统运行稳定性等方面。

2.系统结构设计:根据目标确定系统的结构形式,包括控制器的选择、传感器的安装位置等。

3.控制策略选择:选择合适的控制策略,包括开环控制和闭环控制。

4.参数调节及整定:对系统的各项参数进行调节和整定,以获得最佳的运行效果。

三、变频调速系统实施步骤1.电机选型:根据实际需求选定合适的三相异步电动机。

2.变频器的选取:根据电机的功率、调速要求等参数选取合适的变频器。

3.运行控制程序的设计:根据实际需求设计运行控制程序,包括开机、停机、变速等功能。

4.传感器的选取与安装:根据系统要求选取合适的传感器,并将其正确安装在电机或相关位置。

5.控制器的选取与配置:根据系统的需求选取合适的控制器,并进行相应的配置和参数设定。

6.调试与测试:完成系统的硬件和软件的安装后,进行系统的调试和测试,以确保其正常工作。

7.系统运行与优化:在系统正式投入使用后,对系统进行运行监测和性能优化,以获得最佳的运行效果。

四、应用实例以一台水泵为例,设计了一个变频调速系统,并进行了实际测试。

通过对变频器的调节和控制器的优化,实现了水泵的稳定运行和能耗降低的目标。

三相异步电动机变频调速

三相异步电动机变频调速

.一、三相异步电动机变频调速原理由于电机转速 n 与旋转磁场转速 n1接近,磁场转速 n1改变后,电机转速 n 也60 f 1可知,改变电源频率 f 1,可以调节磁场旋转,从就随之变化,由公式 n1p而改变电机转速,这种方法称为变频调速。

根据三相异步电动机的转速公式为60 f1n1 1 sn 1 sp式中 f 1为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s为异步电动机的转差率。

所以调节三相异步电动机的转速有三种方案。

异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。

改变异步电动机定子绕组供电电源的频率 f 1,可以改变同步转速n ,从而改变转速。

如果频率 f 1连续可调,则可平滑的调节转速,此为变频调速原理。

三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为U 1E1 4.44 f 1N 1k m m式中 E1为气隙磁通在定子每相中的感应电动势;f1为定子电源频率; N1为定子每相绕组匝数; k m为基波绕组系数,m为每极气隙磁通量。

如果改变频率 f 1,且保持定子电源电压U1不变,则气隙每极磁通m 将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。

因此,降低电源频率 f 1时,必须同时降低电源电压,已达到控制磁通m 的目的。

.1、基频以下变频调速为了防止磁路的饱和,当降低定子电源频率 f 1时,保持U1为常数,使气每f 1极磁通m 为常数,应使电压和频率按比例的配合调节。

这时,电动机的电磁转[1][8]m 1 pU r 2r 21m 1 p U 1 2f 1ss 1T矩为222 f 1r 2 22 f 1r 2x 12r 1x 2r 1x 1 x 2ss上 式 对 s 求 导 , 即dT ,有最大转矩和临界转差率为ds12U2f11111T m22 f 1 r 1222 2 f1f 1r 1 22r 1x 1 x 2r 1 x 1 x 2s mr 2由上式可知:当U1常数时,在 f 1 较高时,即接近额22f 1x 1 x 2r 1定频率时, r 1 = x 1 x 2 ,随着 f 1 的降低, T m 减少的不多; 当 f 1 较低时, x 1 x 2较小; r 1 相对变大,则随着 f 1 的降低, T m 就减小了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《自动控制元件及线路》课程实习报告异步电动机变频调速系统1.4.1 系统原理框图及各部分简介本文设计的交直交变频器由以下几部分组成,如图1.1所示。

图1.1 系统原理框图系统各组成部分简介:供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220V,中大功率的采用三相380V电源。

因为本设计中采用中等容量的电动机,所以采用三相380V电源。

整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。

在本设计中采用三相不可控整流。

它可以使电网的功率因数接近1。

滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。

逆变电路:逆变部分将直流电逆变成我们需要的交流电。

在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。

电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。

控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。

这些信号经过光电隔离后去驱动开关管的关断。

1.4.2 变频器主电路方案的选定变频器最早的形式是用旋转发电机组作为可变频率电源,供给交流电动机。

随着电力半导体器件的发展,静止式的变频电源成为了变频器的主要形式。

静止式变频器从变换环节分为两大类:交-直-交变频器和交-交变频器。

1.交-交型变频器:它的功能是把一种频率的交流电直接变换成另一种频率可调电压的交流电(转换前后的相数相同),又称直接式变频器。

由于中间不经过直流环节,不需换流,故效率很高。

因而多用于低速大功率系统中,如回转窑、轧钢机等。

但这种控制方式决定了最高输出频率只能达到电源频率的1/3~1/2,所以不能高速运行。

2.交-直-交型变频器:交-直-交变频器是先把工频交流通过整流器变成直流,然后再直流变换成频率电压可调的交流,又称间接变频器,交-直-交变频器是目前广泛应用的通用变频器。

它根据直流部分电流、电压的不同形式,又可分为电压型和电流型两种:(1)电流型变频器电流型变频器的特点是中间直流环节采用大电感器作为储能环节来缓冲无功功率,即扼制电流的变化,使电压波形接近正弦波,由于该直流环节内阻较大,故称电流源型变频器。

(2)电压型变频器电压型变频器的特点是中间直流环节的储能元件采用大电容器作为储能环节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相当于电压源,故称电压型变频器。

由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以其主要优点是运行几乎不受负载的功率因数或换流的影响,它主要适用于中、小容量的交流传动系统。

与之相比,电流型变频器施加于负载上的电流值稳定不变,其特性类似于电流源,它主要应用在大容量的电机传动系统以及大容量风机、泵类节能调速中。

由于交-直-交型变频器是目前广泛应用的通用变频器,所以本次设计中选用此种间接变频器,在交-直-交变频器的设计中,虽然电流型变频器可以弥补电压型变频器在再生制动时必须加入附加电阻的缺点,并有着无须附加任何设备即可以实现负载的四象限运行的优点,但是考虑到电压型变频器的通用性及其优点,在本次设计中采用电压型变频器。

2交流异步电动机变频调速原理及方法2.1 三相异步电机工作的基本原理2.1.1 异步电机的等效电路异步电动机的转子能量是通过电磁感应而得来的。

定子和转子之间在电路上没有任何联系,其电路可用图2.1来表示[3]。

图2.1异步电动机的定、转子图图2.1中:其有效值可计算如下:11114.44N m E f N K =Φ (2-1)电动机的T 形等效电路图,由于交流异步电动机三相对称,所以现只取A 相进行计算分析。

A 相的T 形等效电路如图2.2所示。

图2.2 电动机的T 形等效电路图2.1.4 异步电机变频调速原理交流异步电动机是电气传动中使用最为广泛的电动机类型。

我国异步电动机的使用容量约占拖动总容量的八成以上,因此了解异步电动机的调速原理十分重要。

交流调速是通过改变电定子绕组的供电的频率来达到调速的目的的,但定子绕组上接入三相交流电时,定子与转子之间的空气隙内产生一个旋转的磁场,它与转子绕组产生感应电动势,出现感应电流,此电流与旋转磁场相互作用,产生电磁转矩。

使电动机转起来。

电机磁场转速称为同步转速,用0n 表示:p fn 600= (2-7)式中:f 为三相交流电源频率,一般是50Hz ;p 为磁极对数。

当p =1是,0n =3000r /min ;p =2时,0n =1500r /min 。

由上式可知磁极对数p 越多,转速0n 就越慢,转子的实际转速n 比磁场的同步转速0n 要慢一点,所以称为异步电动机,这个差别用转差率s 表示: %10000⨯-=n n n s (2-8)在加上电源转子尚未转动瞬间,n =0,这时s =1;启动后的极端情况n =0n ,则s =0,即s 在0~1之间变化,一般异步电动机在额定负载下的 s =1%~6%。

综合(2-7)和(2-8)式可以得出:060(1)(1)f s n n s p -=-= (2-9) 由式(2-9)可以看出,对于成品电机,其极对数p 已经确定,转差率s 的变化不大,则电机的转速n 与电源频率f 成正比,因此改变输入电源的频率就可以改变电机的同步转速,进而达到异步电机调速的目的。

3变频器主电路设计3.1 主电路的工作原理变频调速实际上是向交流异步电动机提供一个频率可控的电源。

能实现这个功能的装置称为变频器。

变频器由两部分组成:主电路和控制电路,其中主电路通常采用交-直-交方式,先将交流电转变为直流电(整流,滤波),再将直流电转变为频率可调的交流电(逆变)。

在本设计中采用图3.1的主电路,这也是变频器常用的格式。

图3.1 电压型交直交变频调速主电路3.1.1 主电路各部分的设计1.交直电路设计选用整流管61VD VD 组成三相整流桥,对三相交流电进行全波整流。

整流后的电压为d U =1.35L U =1.35×380V=513V。

滤波电容F C 滤除整流后的电压波纹,并在负载变化时保持电压平稳。

当变频器通电时,滤波电容F C 的充电电流很大,过大的冲击电流可能会损坏三相整流桥中的二极管,为了保护二极管,在电路中串入限流电阻L R ,从而使电容F C 的充电电流限制在允许的范围内。

当F C 充电到一定程度,使L S 闭合,将限流电阻短路。

在许多下新型的变频器中,L S 已有晶闸管替代。

电源指示灯HL 除了指示电源通电外,还作为滤波电容放电通路和指示。

由于滤波电容的容量较大,放电时间比较长(数分钟),几百伏的电压会威胁人员安全。

因此维修时,要等指示灯熄灭后进行。

B R 为制动电阻,在变频器的交流调速中,电动机的减速是通过降低变频器的输出频率而实现的,在电动机减速过程中,当变频器的输出频率下降过快时,电动机将处于发电制动状态,拖动系统的动能要回馈到直流电路中,使直流电路电压(称泵升电压)不断上升,导致变频器本省过电压保护动作,切断变频器的输出。

为了避免出现这一现象,必须将再生到直流电路的能量消耗掉,B R 和B V 的作用就是消耗掉这部分能量。

如图3.1所示,当直流中间电路上电压上升到一定值,制动三极管B V 导通,将回馈到直流电路的能量消耗在制动电阻上。

2.直交电路设计选用逆变开关管61V V -组成三相逆变桥,将直流电逆变成频率可调的交流电,逆变管在这里选用IGBT 。

续流二极管127VD VD -的作用是:当逆变开关管由导通变为截止时,虽然电压突然变为零,但是由于电动机线圈的电感作用,储存在线圈中的电能开始释放,续流二极管提供通道,维持电流在线圈中流动。

另外,当电动机制动时,续流二极管为再生电流提供通道,使其回流到直流电源。

电阻0601R R -,电容0601C C -,二极管0601VD VD -组成缓冲电路,来保护逆变管。

由于开关管在开通和关断时,要受集电极电流c I 和集电极与发射极间的电压ce V 的冲击,因此要通过缓冲电路进行缓解。

当逆变管关断时,ce V 迅速上升,c I 迅速降低,过高增长的电压对逆变管造成危害,所以通过在逆变管两端并联电容(0601C C -)来减小电压增长率。

当逆变管开通时,ce V 迅速下降,c I 迅速升高,并联在逆变管两端的电容由于电压降低,将通过逆变管放电,这将加速电流c I 的增长率,造成IGBT 的损坏。

所以增加电阻0601R R -,限制电容的放电电流。

可是当逆变管关断时,该电阻又会阻止电容的充电,为了解决这个矛盾,在电阻两端并联二极管(0601VD VD -),使电容充电时避开电阻,通过二极管充电。

放电时,通过电阻放电,实现缓冲功能。

这种缓冲电路的缺点是增加了损耗,所以适用于中小功率变频器。

因本次设计所选用的电动机为中容量型,在此选用此种缓冲电路。

3.1.2 变频器主电路设计的基本工作原理1.整流电路整流电路是把交流电变换为直流电的电路。

本设计中采用了三相桥式不控整流电路,主要优点是电路简单,功率因数接近于1,由于整流电路原理比较简单,设计中不再做详细的介绍。

2.逆变的基本工作原理将直流电转换为交流电的过程称为逆变。

完成逆变功能的装置叫做逆变器,它是变频器的主要组成部分,电压性逆变器的工作原理如下:(2)三相逆变电路三相逆变电路的原理图见图3.3所示。

图3-3中,1S ~6S 组成了桥式逆变电路,这6个开关交替地接通、关断就可以在 输出端得到一个相位互相差2π/3的三相交流电压。

当1S 、4S 闭合时,V U u -为正;3S 、2S 闭合时,V U u -为负。

用同样的方法得:当3S 、6S 同时闭合和5S 、4S 同时闭合,得到W V u -,5S ,2S 同时闭合和1S 、6S 同时闭合,得到U W u -。

为了使三相交流电V U u -、W V u -、U W u -在相位上依次相差2π/3;各开关的接通、关断需符合一定的规律,其规律在图3.3b 中已标明。

根据该规律可得V U u -、W V u -、U W u -波形如图下图所示。

结构图 开关的通断规律波形图观察6个开关的位置及波形图可以发现以下两点:①各桥臂上的开关始终处于交替打开、关断的状态如1S 、2S 。

②各相的开关顺序以各相的“首端”为准,互差2π/3电角度。

如3S 比1S 滞后2π/3,5S 比3S 滞后2π/3。

上述分析说明,通过6个开关的交替工作可以得到一个三相交流电,只要调节开关的通断速度就可调节交流电频率,当然交流电的幅值可通过D U 的大小来调节。

3.2 主电路参数计算根据前面所给出的原始参数,主电路各部分的计算如下[6]:1.整流二极管的参数计算m I (峰值电流)2N I =2×15.6=22.06Ad I (有效值)= /2m I 二极管额定电流值e I =(1.5~2)Id/1.57=14.91A ~19.88A额定电压值e U =(2~3)m U =(2~3)×2×380=1074.64V ~1611.96V2.滤波电容系统采用三相不控整流,经滤波后d U =1.1×2×380=591.05V 。

相关文档
最新文档