演绎推理-高中数学知识点讲解
合情推理和演绎推理之间的联系和差异-高中数学知识点讲解
合情推理和演绎推理之间的联系和差异1.合情推理和演绎推理之间的联系和差异【知识点的认识】合情推理:“合乎情理”的推理,包括归纳推理和类比推理.①归纳推理:特殊→一般,部分→整体②类比推理:特殊→特殊演绎推理:又称为“逻辑推理”,从一般性原理出发,推出某个特殊情况下的结论的推理.形式为:一般→特殊区别:(1)合情推理前提为真,结论可能为真,是或然性推理;演绎推理前提为真,结论亦为真,是必然性推理.(2)合情推理中的归纳、类比是“开拓型”和“发散型”的思维方法,虽然结论未必正确,但有创造性,对科学发现有帮助;演绎推理是“收敛型”或“封闭型”的思维方法,虽然结论一定正确,但不能取得突破性进展,形式化程度比合情推理高.联系:合情推理和演绎推理二者相辅相成,就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结论、证明思路的发现主要靠合情推理.【命题方向】常以选择、填空题形式出现,属于基础题,注意弄清合情推理和演绎推理之间的区别和联系.例:给出下面几个推理:①由“6=3+3,8=3+5,10=3+7,12=5+7…”得到结论:任何一个不小于 6 的偶数都等于两个奇质数之和;②由“三角形内角和为 180°”得到结论:直角三角形内角和为 180°;③由“正方形面积为边长的平方”得到结论:正方体的体积为边长的立方;④由“a2+b2≥2ab(a,b∈R)”推得 sin2x≤1.其中是演绎推理的序号是.分析:演绎推理的模式是三段论模式,包括大前提,小前提和结论,演绎推理的特点是从一般到特殊,根据上面的特点,判断下面四个结论是否正确,结果①是一个归纳推理,③是一个类比推理,②④是演绎推理.解答:演绎推理的模式是三段论模式,包括大前提,小前提和结论,演绎推理的特点是从一般到特殊,根据上面的特点,判断下面四个结论是否正确,由“6=3+3,8=3+5,10=3+7,12=5+7…”得到结论:任何一个不小于 6 的偶数都等于两个奇质数之和;这是一个归纳推理,故①不选;由“三角形内角和为 180°”得到结论:直角三角形内角和为 180°;是一个演绎推理,故选②由“正方形面积为边长的平方”得到结论:正方体的体积为边长的立方;这是一个类比推理,故不选③由“a2+b2≥2ab(a,b∈R)”推得 sin2x≤1.这是一个演绎推理,故选④总上可知②④符合要求,故答案为:②④点评:本题考查演绎推理的特点,考查归纳推理和类比推理的特点,本题是一个基础题,这种题目不用计算,只要根据几个推理的特点得到正确结论即可.。
高二数学演绎推理苏教版知识精讲
高二数学演绎推理苏教版【本讲教育信息】一. 教学内容: 演绎推理二. 重点、难点:教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系 教学难点:演绎推理的应用二. 基础知识与基本方法 1、知识结构⎧⎧⎪⎨⎨⎩⎪⎩归纳推理合情推理推理类比推理演绎推理--三段论2、演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.3、合情推理与演绎推理的区别:①归纳是由特殊到一般的推理; ②类比是由特殊到特殊的推理; ③演绎推理是由一般到特殊的推理. 4、推理的特点从推理的结论来看,合情推理的结论不一定正确,有待证明;演绎推理中只要前提正确,推理形式正确,则得到的结论一定正确. 5、“三段论”是演绎推理的一般模式;包括(1)大前提——已知的一般原理; (2)小前提——所研究的特殊情况; (3)结论——据一般原理,对特殊情况做出的判断.6、演绎推理的结构:三段论推理的依据,用集合的观点来理解:若集合M 的所有元素都具有性质P ,S 是M 的一个子集,那么S 中所有元素也都具有性质P.7、各种推理的思维模式归纳推理的思维过程为:实验、观察→概括、推广→猜测一般结论。
类比推理的思维过程为:观察、比较→联想、类推→猜测新的结论演绎推理的思维过程为:若M 具有性质P ,S 为M 的子集,则S 具有性质P. “三段论”可以表示为大前提:M 是P , 小前提:S 是M ,结论:S 是P 。
【典型例题】例1. 把下列推理写成三段论的形式(1)太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此冥王星以椭圆形轨道绕太阳运行;(2)在一个标准大气压下,水的沸点是100°C ,所以在一个标准大气压下把水加热到100°C 时,水会沸腾;(3)一切奇数都不能被2整除,)12(100+是奇数,所以)12(100+不能被2整除; (4)三角函数都是周期函数,αtan 是三角函数,因此αtan 是周期函数;(5)两条直线平行,同旁内角互补。
数学演绎推理知识点总结
数学演绎推理知识点总结数学演绎推理有许多重要的知识点,包括命题逻辑、谓词逻辑、集合论、证明方法等等。
在本文中,我们将对这些知识点进行总结和讨论,以便读者更好地理解数学演绎推理的基本原理和方法。
一、命题逻辑命题逻辑是研究命题之间的逻辑关系的数学分支,它主要针对命题的真假和逻辑连接词的运算定理。
命题逻辑中最基本的概念是"命题",即一个明确的陈述,它要么为真,要么为假。
常见的逻辑连接词包括"非"、"与"、"或"、"蕴含"和"双条件"等,通过这些逻辑连接词可以构造复合命题,并且对复合命题进行推理和运算。
在命题逻辑中,有一些基本的推理规则,包括化简、合取析取、假言推理、拒取实证等等。
这些推理规则可以帮助我们根据已知命题推导出新的结论,从而更深入地理解命题之间的逻辑关系。
二、谓词逻辑谓词逻辑是命题逻辑的扩展,它不仅关注命题的真假和逻辑连接词的运算,还引入了谓词和量词的概念,用于描述命题的主语和谓语之间的关系。
谓词逻辑在数学领域中具有重要的应用,特别是在集合论、代数结构和数学分析等领域。
在谓词逻辑中,有一些基本的概念和定理,包括谓词、量词、逆否命题、对偶命题、等价命题等等。
这些概念和定理可以帮助我们更好地理解命题之间的逻辑关系,以及推导出新的数学结论。
三、集合论集合论是研究集合之间的关系和运算的数学分支,它是数学演绎推理的重要组成部分。
在集合论中,有一些重要的概念和定理,包括集合的基本运算、集合的关系、集合的运算定理、集合的基数等等。
这些概念和定理对于理解数学结构、证明数学定理和解决数学问题都具有重要的作用。
在集合论中,有一些重要的推理规则,包括包含关系的推导、等价关系的推导、自然数和实数的推理等等。
这些推理规则可以帮助我们更好地理解集合之间的关系和运算,以及推导出新的数学结论。
四、证明方法证明是数学演绎推理的核心内容,它是通过一系列严格的推理步骤和推理规则来验证数学结论的正确性。
最新人教版高中数学选修2-2第二章《演绎推理》知识梳理
数学人教B选修2-2第二章2.1.2 演绎推理1.掌握演绎推理的基本模式,特别是三段论模式,并学会运用这些推理模式进行推理.2.了解合情推理、演绎推理之间的联系和区别.1.演绎推理根据概念的定义或一些真命题,依照一定的逻辑规则得到正确结论的过程,叫做________.它的特征是:当前提为____时,结论______为真.演绎推理的特点:(1)演绎的前提是一般性原理,演绎所得的结论是蕴涵于前提之中的个别、特殊事实,结论完全蕴涵于前提之中.(2)在演绎推理中,前提与结论之间存在必然的联系,只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的.因而演绎推理是数学中严格证明的工具.(3)演绎推理是一种收敛性的思维方法,它的创造性较少,但却具有条理清晰、令人信服的论证作用,有助于科学的理论化和系统化.【做一做1】演绎推理是().A.部分到整体,个别到一般的推理B.特殊到特殊的推理C.一般到特殊的推理D.一般到一般的推理2.演绎推理的四种推理规则(1)假言推理:用符号表示这种推理规则就是“如果p q,p真,则q真”.假言推理的本质是,通过验证结论的充分条件为真,判断结论为真.(2)三段论推理:用符号表示这种推理规则就是“M是P,S是M,所以______”.(3)传递性关系推理:用符号表示推理规则是“如果aRb,bRc,则______”,其中“R”表示具有传递性的关系。
(4)完全归纳推理:把所有情况都考虑在内的演绎推理规则叫做完全归纳推理.三段论推理是演绎推理的一般模式,在数学证明中,以上四种演绎推理规则是经常用到的,一道证明题,往往要综合应用这些推理规则.如果违背了这些规则,那么证明就是错误的.【做一做2-1】下面几种推理过程是演绎推理的是().A.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A +∠B=180°B.某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数都超过50人C.由平面三角形的性质,推测空间四面体的性质D.在数列{a n}中a1=1,a n=12⎝⎛⎭⎫a n-1+1a n-1(n≥2),由此归纳出{a n}的通项公式【做一做2-2】“因为a⊥α,b⊥α,所以a∥b,又因为b∥c,所以a∥c.”以上推理的两个步骤分别遵循的推理规则是().A.第一步遵循假言推理,第二步遵循传递性关系推理B.第一步遵循三段论推理,第二步遵循假言推理C.第一步遵循三段论推理,第二步遵循传递性关系推理D.第一步遵循传递性关系推理,第二步遵循三段论推理合情推理与演绎推理有哪些区别与联系?相辅相成的.合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的.在数学中,演绎推理可以验证合情推理的结论的正确性,合情推理可以为演绎推理提供方向和思路.题型一假言推理【例题1】设数列{a n}为等差数列,求证:以b n=a1+a2+…+a nn为通项的数列{b n}为等差数列.分析:由{a n}为等差数列,推证{b n}为等差数列,只要证得b n+1-b n=d为常数即可.反思:假言推理的规则为“如果p q,p真,则q为真”.题型二三段论推理【例题2】已知A,B,C,D四点不共面,M,N分别是△ABD和△BCD的重心,求证MN∥平面ACD.分析:应用线面平行的判定定理证明.反思:“三段论”是演绎推理的一般模式,包括:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断.题型三传递性关系推理【例题3】设a,b,c为正实数,求证:a2+b2+b2+c2+a2+c2>a+b+c.分析:应用均值不等式找出a2+b2与a+b,b2+c2与b+c,a2+c2与a+c的关系,再应用同向不等式相加法则可证明.反思:传递性关系推理论证时必须保证各量间的关系能正确传递.题型四完全归纳推理【例题4】已知函数f(x)=(12x-1+12)·x3.(1)判断f(x)的奇偶性;(2)证明f(x)>0.反思:完全归纳推理必须把所有情况都考虑在内.完全归纳推理不同于归纳推理,后者仅仅证明了几种特殊情况,它不能说明结论的正确性,而前者则把所有情况都作了证明.题型五易错辨析易错点:在应用三段论推理证明问题时,应明确什么是问题中的大前提和小前提.在推理的过程中,大前提、小前提和推理形式之一错误,都可能导致结论错误.【例题5】如图,在△ABC中,AC>BC,CD是AB边上的高,求证:∠ACD>∠BCD.错证:在△ABC中,因为CD⊥AB,AC>BC,所以AD>BD,于是∠ACD>∠BCD.1如图,因为AB ∥CD ,所以∠1=∠2,又因为∠2=∠3,所以∠1=∠3.所用的推理规则为( ).A .三段论推理、假言推理B .三段论推理、传递性关系推理C .三段论推理、完全归纳推理D .三段论推理、三段论推理2“因指数函数y =a x 是减函数(大前提),且y =3x 是指数函数(小前提),所以y =3x 是减函数(结论).”上面推理的错误是( ).A .大前提错导致结论错B .小前提错导致结论错C .推理形式错导致结论错D .大前提和小前提都错导致结论错3下面的推理是传递性关系推理的是( ).A .在同一三角形中若三角形两边相等,则该两边所对的内角相等,在△ABC 中,AB =AC ,所以在△ABC 中,∠B =∠CB .因为2是偶数,所以2是素数C .因为a ∥b ,b ∥c ,所以a ∥cD .因为2是有理数或无理数,且2不是有理数,所以2是无理数4因为当a >0时,|a |>0;当a =0时,|a |=0;当a <0时,|a |>0,所以当a 为实数时,|a |≥0.此推理过程运用的是演绎推理中的__________推理.5关于函数f (x )=lg x 2+1|x |(x ≠0),有下列命题: ①其图象关于y 轴对称;②当x >0时,f (x )是增函数;当x <0时,f (x )为减函数;③f (x )的最小值是lg 2;④当-1<x <0或x >1时,f (x )是增函数;⑤f (x )无最大值,也无最小值.其中所有正确结论的序号是__________.答案:基础知识·梳理1.演绎推理 真 必然【做一做1】C2.(2)S 是P (3)aRc【做一做2-1】A 选项D 是归纳推理,选项C 是类比推理,选项B 既不是合情推理也不是演绎推理.【做一做2-2】C典型例题·领悟【例题1】证明:设数列{a n }的首项为a 1,公差为d ,因为b n -b n -1=n (a 1+a n )2·1n -(n -1)(a 1+a n -1)2·1n -1=a 1+a n 2-a 1+a n -12=a n -a n -12 =d 2(n ≥2),而d 2是个常数,所以数列{b n }为等差数列. 【例题2】证明:如图,连结BM ,BN ,并延长,分别交AD ,DC 于P ,Q 两点,连结PQ .因为M ,N 分别是△ABD 和△BCD 的重心,所以P ,Q 分别是AD ,DC 的中点,又因为BM MP =2=BN NQ,所以MN ∥PQ .又因为MN ⃘平面ADC ,PQ ⊆平面ADC ,所以MN ∥平面ACD .【例题3】证明:因为a 2+b 2≥2ab ,a ,b ,c 为正实数,所以2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2.所以a 2+b 2≥(a +b )22.所以a 2+b 2≥22(a +b ).同理a 2+c 2≥22(a +c ).b 2+c 2≥22(b +c ),所以有a 2+b 2+b 2+c 2+c 2+a 2≥22(2a +2b +2c )=2(a +b +c ).即a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ).又2(a +b +c )>a +b +c ,所以a 2+b 2+b 2+c 2+c 2+a 2>a +b +c .【例题4】(1)解:函数f (x )的定义域为2x -1≠0,即{x |x ≠0},f (-x )-f (x )=⎝⎛⎭⎫12-x -1+12(-x )3-⎝⎛⎭⎫12x -1+12x 3=⎝⎛⎭⎫2x 1-2x +12(-x )3-⎝⎛⎭⎫12x -1+12x 3=2x2x -1·x 3-12x 3-12x -1x 3-12x 3 =x 3-x 3=0.所以f (-x )=f (x ).所以f (x )是偶函数.(2)证明:因为x ≠0,所以当x >0时,2x >1,2x -1>0,x 3>0,所以f (x )>0;当x <0时,-x >0,f (x )=f (-x )>0,所以f (x )>0.【例题5】错因分析:错证中由AD >BD 得出∠ACD >∠BCD 是错误的,因为只有在同一个三角形中才有大边所对的角较大这一结论成立.正确证法:在△ABC 中,因为CD ⊥AB ,所以∠ACD +∠A =∠BCD +∠B =90°.又AC >BC ,所以∠B >∠A ,于是∠ACD >∠BCD .随堂练习·巩固1.B 本题前面证∠1=∠2用的是三段论推理,后半部分证∠1=∠3用的是传递性关系推理.2.A y =a x (a >0,a ≠1)的单调性与a 有关,若a >1,则为增函数;若0<a <1,则为减函数.3.C4.完全归纳5.①③④ 显然f (-x )=f (x ),∴其图象关于y 轴对称.当x >0时,f (x )=lg x 2+1x=lg ⎝⎛⎭⎫x +1x . ∵φ(x )=x +1x在(0,1)上是减函数,在(1,+∞)上是增函数, ∴f (x )在(0,1)上是减函数,在(1,+∞)上是增函数.∴f(x)min=f(1)=lg 2.∵f(x)为偶函数,∴f(x)在(-1,0)上是增函数.。
高中数学 第二章 推理与证明 第4课时 演绎推理课件 新人教B版选修1-2.pptx
(2)如图,连接 GE. ∵GE∥A1A, ∴GE⊥平面 ABC. ∵DC⊥平面 ABC, ∴GE∥DC.
又∵GE=DC=12a, ∴四边形 GECD 为平行四边形. ∴EC∥GD. 又∵EC⊄平面 AB1D,DG⊂平面 AB1D, ∴EC∥平面 AB1D.
点评
1.用三段论证明命题的步骤 (1)理清楚证明命题的一般思路. (2)找出每一个结论得出的原因. (3)把每个结论的推出过程用“三段论”表示出来.
(2) y=sinx的增区间为2kπ-π2≤x≤2kπ+2π,k∈Z → 2kπ-π2≤2x+φ≤2kπ+π2,k∈Z → 递增区间 (3) 求y=sin2x+φ的导数 → y=sin2x+φ的切线的斜率的取值范围 → 验证直线5x-2y+c=0是否与y=sin2x+φ相切
变式训练 2 有一段演绎推理:“直线平行于平面,则平行于
平面内所有直线;已知直线 b 在平面 α 外,直线 a 在平面 α 内,直
线 b∥平面 α,则直线 b∥直线 a”,结论显然是错误的,这是因为
() A.大前提错误
B.小前提错误
C.推理形式错误 D.非以上错误
解析:直线平行平面 α,则该直线与平面内的直线平行或异面, 故大前提错误.
点评 将演绎推理写成三段论的方法 (1)用三段论写推理过程时,关键是明确大、小前提. (2)用三段论写推理过程中,有时可省略小前提,有时甚至也可 大前提与小前提都省略.
(3)在寻找大前提时,可找一个使结论成立的充分条件作为大前
提.
变式训练 1 将下列推理写成“三段论”的形式. (1)向量是既有大小又有方向的量,故 0 也有大小和方向. (2)正方形的对角线互相垂直.
解析:(1)因为向量是既有大小又有方向的量,大前提 0 是向量,小前提 所以 0 也有大小和方向.结论 (2)因为菱形的对角线互相垂直,大前提 正方形是菱形,小前提 所以正方形的对角线互相应用
演绎推理知识点总结
演绎推理知识点总结一、命题与命题关系命题是对事实或观点的陈述,它可以是真也可以是假。
在演绎推理中,我们会用到不同的命题关系来进行推理。
命题关系包括等价关系、包含关系、矛盾关系和反对关系。
等价关系是指两个命题的真值相等,包含关系是指一个命题的真值包含另一个命题的真值,矛盾关系是指两个命题的真值互相排斥,反对关系是指两个命题的真值不能同时为真。
二、概念和判断概念是指一类事物的共同特征的抽象表现,而判断是对事物进行断言或评价的认识形式。
在演绎推理中,我们需要运用概念和判断的知识来进行合理的推理。
概念包括分布概念和量词概念,判断包括肯定判断和否定判断。
三、三段论三段论是演绎推理的重要形式之一,它由前提、中项和结论三部分组成。
三段论又分为假言三段论和名言三段论。
假言三段论是指由前提中的假言命题推出结论的推理形式,名言三段论是指由前提中的名言命题推出结论的推理形式。
在三段论中,需要注意中项是否充分,以及结论是否必然。
四、形式逻辑形式逻辑是演绎推理中的一种具体形式,它主要包括范畴逻辑和命题逻辑。
范畴逻辑是研究范畴与范畴之间的关系,它以主观概念和论题为研究对象,通过范畴之间的关系来进行推理。
命题逻辑是研究命题与命题之间的关系,它以命题为研究对象,通过命题之间的关系来进行推理。
在形式逻辑中,我们需要掌握量词的运用、联结词的排列规则以及等价变换的方法。
五、示诸演绎示诸演绎是一种演绎推理的特殊形式,它是指通过多个已知前提来推出一个结论。
在示诸演绎中,我们需要使用多段论的方法,将多个前提逐一进行推理,最终得出结论。
示诸演绎在现实生活中应用广泛,尤其在科学研究和社会分析中有重要价值。
以上就是演绎推理的知识点总结,希望能对读者有所帮助。
演绎推理是一种重要的思维方式,它有助于我们在日常生活和学习工作中更加清晰、准确地进行分析和判断。
通过深入理解演绎推理的原理和方法,我们可以提高自己的逻辑思维能力,更好地应对各种问题和挑战。
高中数学合情推理与演绎推理
合情推理是从已知的 结论推测未知的结论, 发现与猜想的结论都 要经过进一步严格证 明.
演绎推理是由一般到 特殊的推理,它常用 来证明和推理数学问 题,注意推理过程的 严密性,书写格式的 规范性.
归纳推理、类比推理、演绎推理等问题是 高考的热点,归纳、类比推理大多数出现 在填空题中,为中、低档题.演绎推理大 多数出现在解答题中,为中、高档题 目.在知识的交汇点处命题,背景新颖的 创新问题,常考常新,值得重视.
34.
新课标 ·文科数学(安徽专用)
自 主
(2)归纳三角恒等式sin2α+cos2(30°-α)-sin
落 实 ·
cos(30°-α)=34.
固
基
证明如下:
础
sin2α+cos2(30°-α)-sin αcos(30°-α)
高
α考 体 验
· 明 考 情
=
1-cos 2
2α +
1+cos(620°-2α) -sin
【思路点拨】
从特殊②计算结果为
3 4
,观察每个三角
函数式中三角函数名称与角的变化规律,归纳出一般性结
论;然后利根用据演(1绎)的推计理算进结行果证,将明该.同学的发现推
广为三角恒等式,并证明你的结论.
【尝试解答】 (1)选择②式,计算如下:
sin215°+cos215°+sin 15°cos 15°=1-12sin 30°=
01
归纳推理和类比推理的共同特点和区别是什么?
02
【提示】 共同点:两种推理的结论都有待于证明.
03
不同点:归纳推理是由特殊到一般的推理,类比推理是由特殊到特殊的推理.
二.演绎推理所获得的结论一定可靠吗?
【提示】 演绎推理是由一般性的命题推出特殊性命 题的一种推理模式,是一种必然性推理.演绎推理的 前提与结论之间有蕴含关系,因而,只要前提是真实 的,推理的形式是正确的,那么结论必定是真实的, 但是错误的前提可能导致错误的结论.
高中数学 第二章 推理与证明 1 演绎推理课件 新人教B版选修2-2
P SM
所有的金属(M)都能够导电(P) M……P
铜(S)是金属(M) 铜(S)能够导电(P)
S……M S……P
演绎推理的结论一定正确吗?
(1)因为指数函数 y a x是增函数,
而
y
1
x
是指数函数,
2
பைடு நூலகம்所以
y
1
x
是增函数。
2
错因:大前提是错误的,所以结论是 错误的。
(2)如图:在△ABC中,AC>BC,CD是AB边上 的高,求证∠ACD>∠BCD。
证明: 在△ABC中, 因为CD⊥AB,AC>BC 所以AD>BD, 于是∠ACD>∠ BCD。
A
C DB
错因:偷换概念
(3)因为金属铜、铁、铝能够导电 (大前提),而金是金属(小前 提),所以金能导电(结论)
❖错因:推理形式错误。
因为演绎推理是从一般到特殊的推理 ,铜、铁、铝 是特殊事例,从特殊到 特殊的推理不是演绎推理。
(3) 在演绎推理中,只要前提和推 理形大式前是提正确的小,前结提 论必定结正论确。
所有金属都能导电 铜是金属
铜能导电
太阳系大行星以椭 冥王星是太阳 冥王星以椭圆形 圆轨道绕太阳运行 系的大行星 轨道绕太阳运行
奇数都不能被2整除 2007是奇数 2007不能被2整除
小明是一名高二年级的学生,17岁,迷恋上网络,沉迷于 虚拟的世界当中。由于每月的零花钱不够用,便向亲戚要钱 ,但这仍然满足不了需求,于是就产生了歹念,强行向路人 抢取钱财。但小明却说我是未成年人而且就抢了50元,这应 该不会很严重吧??如果你是法官,你会如何判决呢?
❖ .合情推理的结论不一定成立.
合情推理
高中数学推理知识点总结
⾼中数学推理知识点总结 ⾼中数学的推理题往往在数学考试当中占据很⼤部分的分数,但是很多学⽣也学习不好,知识点不明⽩,该怎么办?⼩编在此整理了相关资料,希望能帮助到您。
⾼中数学推理知识点1、归纳推理:顾名思义,⼀个归纳的过程。
⽐如,⼀个篮⼦⾥有苹果梨葡萄草莓等等,那么你发现苹果是⽔果、梨是⽔果、葡萄是⽔果、草莓是⽔果,然后你猜想:篮⼦⾥装的是⽔果。
这个推理是由特殊推到⼀般的过程,可能正确也可能不正确,如果篮⼦⾥确实都是⽔果,那么你就猜对了;如果篮⼦⾥有⼀根胡萝⼘,那你就猜错了。
所以才会有证明。
2、类⽐推理:同样顾名思义,⼀个类⽐的过程。
例如,你知道苹果⽔分多⼜甜、梨⽔分多⼜甜、葡萄⽔分多⼜甜,所以你推理出同样作为⽔果,⾹蕉⽔分多⼜甜,那这个结论显然是不对的,⾹蕉并没有什么⽔分。
但如果你推导出荔枝⽔分多⼜甜,这就是正确的。
(这个例⼦中指的都是正常⽔果)显然,这个推理⽅式是⼀个由特殊推特殊的过程,也不⼀定正确。
3、演绎推理:⼀般推特殊,⼀定对。
例如,f(x)=1,那么f(1)=1 ⾼中数学证明知识点 1、综合法:即我们正常的证明过程,由条件⼀直往下推。
例如,1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量,证明:2菠萝重量=160葡萄重量。
证明:因为1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量 ____________所以1菠萝的重量=4*20葡萄重量=80葡萄重量 ____________所以2菠萝重量=160葡萄重量。
2、分析法:由结论推出等价结论,去证明这个等价结论成⽴。
同样上⾯的例⼦的证明:要证明2菠萝重量=160葡萄重量,即证明2*1菠萝重量=2*80葡萄重量,即证明1菠萝重量=80葡萄重量。
因为1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量 所以1菠萝的重量=4*20葡萄重量=80葡萄重量,原式即证。
3、反证法:先假设结论相反,然后根据已知推导,最后发现和已知不符,收!这是⼀个战胜⾃⼰的过程! 4、数学归纳法: 解题过程: A.命题在n=1(或n0)时成⽴,这是递推的基础; B.假设在n=k时命题成⽴; C.证明n=k+1时命题也成⽴ ⾼中数学推理与证明 ⼀、公理、定理、推论、逆定理: 1.公认的真命题叫做公理。
演绎推理 课件
.
(2)证明:如果梯形的两腰和一底相等,那么它的对角线必平分
另一底上的两个角.
【解题探究】1.题(1)中的推理是什么形式? 2.题(2)中证明的方法和步骤是什么? 【探究提示】1.题中的推理是三段论的形式. 2.先将文字语言转化为几何语言,利用平行线的性质去寻求角的 关系.
【自主解答】(1)推理:“①矩形是平行四边形,②正方形是矩形, ③所以正方形是平行四边形”中: 矩形是平行四边形,………………………………………大前提 正方形是矩形,……………………………………………小前提 所以正方形是平行四边形.………………………………结论 答案:②
因为x2-x1>0,且a>1,所以a x2 x1>1. 而-1<x1<x2, 所以x1+1>0,x2+1>0, 所以f(x2)-f(x1)>0, 所以f(x)在(-1,+∞)上为增函数.
方法二:(导数法)f(x)= ax x 1 3 ax 1 3 .
x 1
x 1
所以f′(x)=axlna+ 3.
【微思考】 合情推理与演绎推理的作用分别是什么? 提示:合情推理的作用是探索方法,寻求思路,发现规律,得到猜想, 而演绎推理的作用在于对由合情推理得到的结论,进行严格的证 明.
【题型示范】
类型一 用三段论证明几何问题
【典例1】(1)推理:“①矩形是平行四边形;②正方形是矩形;
③所以正方形是平行四边形”中的小前提是
【自主解答】(1)该推理过程写成三段论形式:
不等式两边同除以一个正数,不等号的方向不变,…大前提
(a2+a+1)x>3,a2+a+1大于0,…………………………小前提 x> 3 .…………………………………………结论
高中数学2212演绎推理课件新人教B选修12.ppt
真命题
,依照一定的 逻辑规则
得到正确结论的
过程,通常叫做演绎推理. (2)特征:当 前提 为真时, 结论
必然为
真.
2.三种演绎推理规则
推理 三段论推 传递性 完全归 规则 理 关系推理 纳推理
M是P 推理 S是M 方式 所以S是,P
如果aRb, bRc,则
把所有情 况都考虑
a(RRc 表示具有 传递性的 关系)
∠A=∠B.结论
(2)三角形内角和等于180°,
大前提
Rt△ABC是三角形,
小前提
Rt△ABC内角和为180°.
结论
[解析] 本题主要考查用“三段论”证明函数的单调 性的方法,解决此类问题应先找出证明的大前提,然后在 大前提下证明小前提满足大前提,从而得出结论.
[证明] 对∀x1,x2∈I,且 x1<x2,若 f(x1)<f(x2),则 y =f(x)在 I 上是增函数.大前提
设 x1,x2 是(-1,+∞)上的任意两数,且 x1<x2,则 f(x1)-f(x2)=ax1+xx11-+21-ax2-xx22- +21 =ax1-ax2+xx11- +21-xx22- +21 =ax1-ax2+(x13+(x11)-(xx2+2) 1),
大前提 小前提 结论
[解析] (1)该推理形式是正确的,满足了“三段论” 中的一般形式:大前提、小前提、结论,因此推理形式是 正确的.
(2)推理的结论是错误的,这是因为大前提中a与1的关 系无法确定,故所作出的结论是错误的.
[例 4] 指出下列推理中的错误,并分析产生错误的原 因.
(1)整数是自然数,-3 是整数,所以-3 是自然数; (2)无理数是无限小数,13(=0.333…)是无限小数,所以13 是无理数.
最新人教版高中数学选修2-2第二章《合情推理与演绎推理》教材梳理
庖丁巧解牛知识²巧学一、合情推理1.归纳推理由某类事件的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者是由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).要点提示①归纳推理的前提是已知的几个特殊现象,归纳所得的结论是尚属于未知的一般现象,该结论超越了前提所包容的范围.②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.③归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.知识拓展归纳推理的步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题.深化升华①归纳推理的实质是由部分到整体、由个别到一般.②应用归纳推理获得的新结论,一般只能作为猜想,虽然猜想是否正确还有待严格的证明,但是这个猜想可以为我们的研究提供一种方向.2.类比推理由两类对象具有某些类似的特征和已知其中一类对象的某些特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).方法点拨①类比推理实质是由特殊到特殊的推理.②运用类比推理常常要先寻找合适的类比对象,我们可以从不同角度出发确定类比对象,基本原则是根据当前的实际,选择适当的类比对象.知识拓展类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题.3.合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.深化升华①合情推理是指“合乎情理”的推理,得到一个新结论之前,合情推理常常能帮助我们猜想和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思想和方向.②一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠,例如费马猜想就被大数学家欧拉推翻了.③合情推理的过程概括为:二、演绎推理1.演绎推理从一般性原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理,演绎推理又称为逻辑推理.深化升华①演绎推理是由一般到特殊的推理.②数学中的证明主要是通过演绎推理来进行的.2.三段论推理(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.(2)“三段论”可以表示为:大前提:M是P小前提:S是M结论:S是P.(3)公理化方法:尽可能少地选择原始概念和一组不加证明的原始命题(公理、公设),以此为出发点,应用演绎推理,推出尽可能多的结论的方法,称为公理法.公理化方法的精髓是:利用尽可能少的前提,推出尽可能多的结论.深化升华①利用集合知识说明“三段论”:若集合M的所有元素都有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.②应用三段论解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.知识拓展假言推理①定义:如果一个推理规则能用符号表示为“如果p q,p真,则q真”,那么这种推理规则叫做假言推理.假言推理的本质是,通过验证结论的充分条件为真,判断结论为真.②假言推理的步骤:确定命题p能够推出命题q;判断命题p是否为真,如果p为真,则q为真.知识拓展关系推理①定义:如果一个推理规则可以用符号表示为“如果a≥b,b≥c,则a≥c”,那么这种推理规则叫做关系推理.②关系推理的步骤:确定原式a和式子b存在的关系a≥b;论证式子b和c存在关系b≥c,从而推出a≥c.知识拓展完全归纳推理把所有情况都考虑在内的演绎推理规则叫做完全归纳推理.例如,对所有的n(3≤n<+∞),证明n边形的内角和为(n-2)π就是完全归纳推理.3.合情推理与演绎推理合情推理与演绎推理是常见的两种推理方式.从推理形式上看,合情推理是由局部到整体、个别到一般的推理(归纳),或是由特殊到特殊的推理(类比);而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待于进一步证明;演绎推理在大前提、小前提和推理形式都正确的情况下,得到的结论一定正确.方法点拨在数学中,证明命题的正确性,都是用演绎推理,而合情推理不能用作证明. 问题²探究问题1 类比平面向量和空间向量,列出它们相似(相同)的性质.思路:从平面向量和空间向量的定义、运算法则、运算律、数量积、共线,共面以及向量基本定理等几个方面来进行类比.探究:(1)从定义的角度考虑:平面向量:平面内既有大小又有方向的向量;空间向量:空间内既有大小又有方向的向量. (2)从运算法则的角度考虑:两个平面向量相加的三角形法则和平行四边形法则在空间中仍成立.始点相同的三个不共面的向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则在空间的推广.(3)从运算律、数量积的角度考虑,平面向量和空间向量是相同的.运算律:①a+b=b+a(加法交换律);②(a+b)+c=a+(b+c)(加法结合律);③λ(a+b)=λa+λb(数乘分配律).数量积的性质:①a²e=|a|cos〈a,e〉(e是单位向量);②a⊥b a²b=0;③|a|2=a²a.数量积的运算律:①(λa)²b=λ(a²b);②a²b=b²a(交换律);③a²(b+c)=a²b+a²c(分配律).(4)从向量共线,共面的角度考虑:共线向量定理:向量b与a(a≠0)共线的充要条件是:有且只有一个实数λ,使得b=λa.共面向量定理:如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在实数对x,y,使p=x a+y b.(5)从向量基本定理的角度考虑:平面向量基本定理:如果e1,e2是同一平面内的两个不共线的向量,那么对于这一平面内任一向量a,有且只有一对实数λ1,λ2,使得a=λ1e1+λ2e2,其中e1,e2表示平面向量的一组基底. 空间向量基本定理:如果三个向量a、b、c不共面,那么对于空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=x a+y b+z c,其中{a,b,c}叫做空间的一个基底,a、b、c都叫基向量. 问题2 将三角形与四面体进行类比,你能想出几种类比呢?思路:可以取三角形为类比源,由三角形的已知知识预测和发现关于四面体的某些新命题. 探究:第一,三角形的内角平分线交于一点,这一点是三角形的内切圆的圆心.于是得到类比猜想:四面体各个面所成二面角的平分面交于一点,该点为四面体内切球的球心.第二,三角形的三条中线交于一点,这一点是三角形的重心,并分各条中线成2∶1两部分.由此得到类比猜想:四面体的四条中线(顶点与相对面三角形重心的连线)交于一点,该点是四面体的重心,且分各中线成2∶1两部分.第三,直角三角形的三边之间有关系c2=a2+b2.由此猜想:三个侧面两两垂直的四面体的各面面积之间有关系D2=A2+B2+C2.问题3 从A地出发到河边饮完马再到B地去,在河边哪个地方饮马可使路途最短?如图2-1-1所示.图2-1-1思路:先作点A关于MN的对称点A′,连结BA′,交MN于P,则P点即为所求.探究:用演绎法证明如下:如图2-1-1所示,在MN上取一点P′(异于点P),则AP ′=P ′A ′,AP=PA ′,从而AP ′+P ′B=A ′P ′+P ′B>A ′P+PB=AP+PB. 由此可知:A 到B 经P 点距离最短. 典题²热题例1设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n 条直线交点的个数,则f(4)=___________;当n>4时,f(n)=___________. 思路解析:f(2)=0,f(4)-f(3)=3,f(5)-f(4)=4,…, f(n)-f(n-1)=n-1.累加得f(n)=f(2)+2+3+4+…+n-1=2)]1(2)[2(-+-n n =21(n+1)(n-2).答案:521(n+1)(n-2) 深化升华 本小题考查观察、分析、归纳推理、累加求通项等知识,是一个很灵活的题目. 例2在数列{a n }中,a 1=1,a n+1=nn a a +22(n ∈N *),猜想这个数列的通项公式.思路分析:根据已知条件和递推关系,先求出数列的前几项.然后总结归纳其中的规律,写出通项.解:{a n }中,a 1=1,a 2=322211=+a a ,a 3=,42212222==+a a a 4=522233=+a a ,…. ∴{a n }的通项公式为a n =12+n . 证明:∵a 1=1,a n+1=211221122+=+=+∴+n n n n n n a a a a a a ∴21111=-+n n a a . 即数列{n a 1}是以11a =1为首项,公差为21的等差数列.na 1=1+21(n-1)=21(n+1),a n =12+n .例3已知在△ABC 中,不等式π9111≥∠+∠+∠C B A ,在四边形ABCD 中,不等式π2161111≥∠+∠+∠+∠D C B A 成立, 在五边形ABCDE 中,不等式π32511111≥∠+∠+∠+∠+∠E D C B A ,猜想在n 边形A 1A 2…A n 中,有怎样的不等式成立? 思路分析:根据已知特殊的值: πππ3252169、、,…,总结归纳出一般性的规律:π)2(2-n n (n ≥3).s解:在n 边形A 1A 2…A n 中,π)2(1111121321-≥∠+∠++∠+∠+∠-n n A A A A A n n (n ≥3). 拓展延伸 平面内有n 条直线,其中任何两条都不平行,任何三条不过同一点,试归纳它们的交点的个数.解:n=2时,交点的个数f(2)=1. n=3时,交点的个数f(3)=3. n=4时,交点的个数f(4)=6. n=5时,交点的个数f(5)=10. 猜想归纳:f(n)=21n(n-1)(n ≥2). 深化升华 运用归纳推理可以去发现一些新的几何命题,再运用相关的方法证明它的真假,这是数学发明,创新的一条途径.例4已知在Rt △ABC 中,若∠C=90°,则cos 2A+cos 2B=1;在立体几何中,给出四面体性质的猜想.思路分析:考虑到平面中的图形是直角三角形,所以我们在空间选取有3个面两两垂直的直四面体P —A ′B ′C ′,且三个面分别与面A ′B ′C ′所成的二面角为α、β、γ.解:如图212所示,在Rt △ABC 中,cos 2A+cos 2B=(c b )2+2222)(cb ac a +==1. 于是把结论类比到四面体P —A ′B ′C ′中,我们猜想,三棱锥P-A ′B ′C ′中,若三个侧面PA ′B ′,PB ′C ′,PC ′A ′两两互相垂直,且分别与底面所成的角为α、β、γ,则cos 2α+cos 2β+cos 2γ=1.图2-1-2深化升华 类比推理应从具体问题出发,通过观察、分析、联想进行对比,归纳,提出猜想.拓展延伸 在Rt △ABC 中,若∠C=90°,AC=b,BC=a,则△ABC 的外接圆半径r=222b a +.把上面的结论推广到空间,写出相似的结论.解:我们同样取空间有三条侧棱两两垂直的四面体A —BCD,且AB=a,AC=b,AD=c,则此三棱锥外接球的半径R=2222c b a ++.例5设a 1,a 2,a 3,…,a n ,…均为自然数,称a 1++++43211a a a 为无穷连分数,例如2=(2-1)+1=1+++++=+2121211121,这里a 1=1,a n =2(n ∈N *,n ≥2).请你与上式类似地将3写成无穷连分数,并写出a n .思路分析:本题给出了无穷连分数的定义以及范例,依定义仿范例,即可解决问题. 解:3=1+(3-1)=1+13111121311121311132+++=-++=++=++++++=-+++=211121111)13(21111同时有a 1=a 2n =1,a 2n+1=2(n ∈N *).深化升华 对有些提供了范例的信息迁移型创新题,解答时可根据所给的信息与所求的问题的相似性,运用类比推理,使问题得以解决,另外在解有些信息迁移型创新题时,也可类比旧的问题的解决方法,依照它解决新信息中的问题. 例6试将下列演绎推理写成三段论的形式.(1)太阳系的大行星都以椭圆形轨道绕太阳运行;(2)所有导体通电时发热,铁是导体,所以铁通电时发热;(3)一次函数是单调函数,函数y=2x-1是一次函数,所以y=2x-1是单调函数;(4)等差数列的通项公式具有形式a n =pn+q(p,q 是常数),数列1,2,3,…,n 是等差数列,所以数列1,2,3,…,n 的通项具有a n =pn+q 的形式.思路分析:分清三段论的大前提、小前提、结论是解题的关键. 解:(1)大前提:太阳系的大行星都以椭圆形轨道绕太阳运行; 小前提:冥王星是太阳系里的大行星; 结论:冥王星以椭圆形轨道绕太阳运行. (2)大前提:所有导体通电发热; 小前提:铁是导体; 结论:铁通电时发热.(3)大前提:一次函数是单调函数; 小前提:函数y=2x-1是一次函数; 结论:y=2x-1是单调函数.(4)大前提:等差数列的通项公式具有形式a n =pn+q; 小前提:数列1,2,3,…,n 是等差数列;结论:数列1,2,3,…,n 的通项具有a n =pn+q 的形式.深化升华 分清楚“三段论”中的大前提、小前提、结论,要抓住它们的定义,即大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况作出判断.例7用三段论证明:x 2+3>3x.思路分析:证明本例所依据的是:a-b>0⇔a>b.小前提是证明:(x 2+3)-3x>0,这是证明本例的关键.解:∵(x 2+3)-3x=(x-23)2+43≥43>0, ∴根据“三段论”,得x 2+3>3x.深化升华 由于本例所依据的大前提a-b>0⇔a>b 很明显,因此在证明过程中往往将其省略掉了.例8求证函数y=1212+-x x 是奇函数,且在定义域上是增函数.思路分析:本题在证明过程中使用了三段论推理,假言推理等推理规则.解:y=1221122)12(+-=+-+xx x 所以f(x)的定义域为x ∈R . f(-x)+f(x)=(1-122+-x )+(1-122+x )=2-(122+x +122+-x) =2-(1222121+∙++x x x )=2-12)12(2++xx =2-2=0, 即f(-x)=-f(x),所以f(x)是奇函数.任取x 1,x 2∈R ,且x 1<x 2. 则f(x 1)-f(x 2)=(1-1221+x )-(1-1222+x )=2(1222+x -1221+x ) =2²)12)(12(221221++-x x x x . 由于x 1<x 2,从而022,222121<-<x x x x ,所以f(x 1)<f(x 2),故f(x)为增函数.例9(2005全国高考 )设f(x)=sin(2x+φ)(-π<φ<0)的图象的一条对称轴是直线x=8π. (1)求φ;(2)求y=f(x)的单调增区间;(3)证明直线5x-2y+c=0与函数y=f(x)的图象不相切. (1)解:∵x=8π是函数y=f(x)的图象的对称轴,∴sin(2³8π+φ)=±1. ∴4π+φ=k π+2π,k ∈Z . ∵-π<φ<0,∴φ=43π-.(2)解:由(1)知φ=43π-,因此y=sin(2x-43π-).由题意得2k π-2π≤2x 43π-≤2k π+2π,k ∈Z .∴函数y=sin(2x-43π-)的单调增区间为[k π+8π,k π+85π],k ∈Z .(3)证明:∵|y ′|=|[sin(2x-43π-)]′|=|2cos(2x-4π)|≤2,∴曲线y=f(x)的切线斜率的取值范围为[-2,2]. 而直线5x-2y+c=0的斜率为25>2, ∴直线5x-2y+c=0与函数y=sin(2x-43π-)的图象不相切. 深化升华 第三问考查直线与三角函数图象的位置关系,很有新意.把函数值域、导数、斜率有机地联系在一起,是一道灵活的好题.。
高中数学 知识点考点解析含答案 知识讲解 合情推理与演绎推(理)(基础)1211
合情推理与演绎推理【学习目标】1. 理解合情推理的含义,能利用归纳和类比进行推理,做出猜想。
2. 理解演绎推理的含义,掌握演绎推理的基本模式,能利用“三段论”进行简单的推理.【要点梳理】要点一、推理的概念及分类1. 推理的概念:根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.要点诠释:(1)任何推理都是由前提和结论两部分组成,前提是推理所依据的命题,它告诉我们已知的知识是什么,推理的前提可以是一个,也可以是几个.结论是根据前提推得的命题,它告诉我们推出的知识是什么.(2) 推理也可以看做是用连结词将前提和结论逻辑的连结,常用的连结词有:“因为……,所以……”“根据……,可知……”“如果……,那么……”等.2. 推理的分类:⎧⎨⎩合情推理推理演绎推理 (1) 合情推理:根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。
其中归纳推理和类比推理是最常见的合情推理。
归纳推理是由特殊到一般的推理;类比推理是由特殊到特殊的推理.合情推理的推理过程要点诠释:由合情推理的过程可以看出,合情推理的结论往往超越了前提所包含的范围,带有猜想的成分,因此推理所得的结论未必正确,但是,合情推理具有猜测和发现结论、探索和提供证明的思路和方向的作用.(2) 演绎推理:从一般性的原理出发,按照严格的逻辑法则,推出某个特殊情况下的结论的推理,叫做演绎推理.演绎推理是由一般到特殊的推理.要点二、归纳推理1.定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。
2.归纳推理的特点(1)归纳推理是由部分到整体、由个别到一般的推理;(2)归纳推理的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以“前提真而结论假”的情况有可能发生的(如教科书所述的“费马猜想”);(3)人们在进行归纳推理的时候,总是先搜集一定的事实材料,有了个别性的、特殊性的事实作为前提,然后才能进行归纳推理,因此归纳推理要在观察和实验的基础上进行;(4)归纳推理能够发现新事实、获得新结论,是做出科学发现的重要手段.要点诠释:归纳推理的结论可真可假归纳推理一般都是从观察、实验、分析特殊情况开始,提出有规律性的猜想;一般地,归纳的个别情况越多,就越具有代表性,推广的一般性命题就越可靠.由于归纳推理的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以归纳推理所得的结论不一定是正确的.3.运用归纳推理时的一般步骤(1)通过观察特例发现某些相似性(特例的共性或一般规律);(2)把这种相似性推广为一个明确表述的一般命题(猜想);(3)对所得出的一般性命题进行检验.在数学上,检验的标准是能否进行严格的证明.4.完全归纳法和不完全归纳法(1)完全归纳法:通过对某类事物中的每一个对象或每一子类的考察,从中概括出关于此类事物的一般性结论的推理.由于完全归纳法考察了某类事物的全部情况,因而由正确的前提必然能得到正确的结论,所以完全归纳法可以作为数学严格证明的工具,在数学解题中有着广泛的应用.(2)不完全归纳法:通过对某类事物的一部分对象或一部分子类的考察,从中概括出关于该类事物的一般性结论的推理.由于不完全归纳法是对某类事物中的某一部分对象进行考察,因此,前提和结论之间未必有必然的联系,由不完全归纳法得到的结论,结论不一定正确,结论的正确与否,还需要经过严格的逻辑论证和实践检验.在本书中,如无特别说叫,归纳法都足指不完全归纳法.要点三、类比推理1.定义:类比推理(以下简称类比)是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.2.类比推理的几个特点(1)类比是从人们已经掌握了的事物的属性之中,推测正在研究中的事物的属性,它以旧有认识作基础,类比出新的结果;(2)类比是从一种事物的特殊属性推测另一种事物的特殊属性;(3)类比的结果是猜测性的,不一定可靠,但它却具有发现的功能.3.运用类比推理的一般步骤(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质推测另一类事物的性质,得出一个明确的命题(猜想).(3)检验猜想.要点诠释:(1)如果类比的两类事物的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的结论就越可靠.(2)事物之间的各个性质之间,并不是孤立存在的,而是相互联系的,相互制约的,如果两个事物在性质上相同或类似,那么它们在另一些性质上也可能相同或类似.因而类比的结论可能是真的,类比也可能具有必然性.(3)类比的结论具有偶然性,即可能真,也可能假.要点四、演绎推理(1)定义:从一般性的原理出发,按照严格的逻辑法则,推出某个特殊情况下的结论的推理,叫做演绎推理. 简言之,演绎推理是由一般到特殊的推理.(2)一般模式:“三段论”是演绎推理的一般模式,常用的一种格式:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的结论.要点诠释:①如果一个推理规则能用符号表示为“如果a ⇒b ,b ⇒c ,则a ⇒c”,那么这种推理规则叫做三段论推理.②三段论推理包含了三个命题,第一个命题称为大前提,它提供了一个一般性的原理;第二个命题称为小前提,它指出了一个特殊对象,两者结合起来,揭示了一般原理与特殊对象的内在联系,从而得到第三个命题——结论.(3)用集合的观点理解“三段论”若集合M 的所有元素都具有性质P ,S 是M 的子集,那么S 中所有元素都具有性质P .要点诠释:演绎推理的结论一定正确演绎推理是一个必然性的推理,因而只要大前提、小前提及推理形式正确,那么结论一定是正确的,它是完全可靠的推理。
高二数学选修讲义第章演绎推理
填空题答题技巧
仔细审题
认真阅读题目,理解题意,明确题目要求和考查的知识点。
缺什么补什么
根据题目所给的信息和条件,分析缺失的部分,有针对性地补充 。
注意细节
在填写答案时,注意符号、单位等细节问题,避免不必要的失分 。
解答题答题技巧
规范书写
按照解题步骤,逐步推导,书写规范、清晰,方便阅卷老师理解 。
联系
相互转化:在某些情况下,演绎推理和归纳推理可以相 互转化。例如,通过归纳推理得到的一般结论可以作为 演绎推理的前提。
演绎推理在数学中应用
数学定理证明
数学中的许多定理都是通过演绎 推理来证明的。通过已知的定义 、公理或已证定理,推导出新的
定理或结论。
问题解决
在解决数学问题时,经常需要运用 演绎推理的方法。根据已知条件, 通过逻辑推理得出问题的解决方案 。
反证法应用举例
几何问题中的应用
01
在几何问题中,反证法常常用于证明一些难以直接证明的结论
,例如证明某两条线段相等或某两个角相等。
代数问题中的应用
02
在代数问题中,反证法可以用于证明一些与方程、不等式等相
关的结论。
数论问题中的应用
03
在数论问题中,反证法可以用于证明一些与整数性质相关的结
论,例如证明某个整数是素数或合数。
02
导出的矛盾不够明显或存在争议 ,导致证明无效。
XX
PART 06
典型例题分析与解答技巧
REPORTING
选择题答题技巧
排除法
根据题目条件和选项,逐一排除不可能的选项, 缩小选择范围。
特殊值法
通过取特殊值或特殊位置,简化问题,快速找到 正确答案。
图形结合法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
演绎推理
1.演绎推理
【知识点的认识】
1.演绎推理:根据一般性的真命题(或逻辑规则)导出特殊命题为真的推理,叫做演绎推理.规则符号表示为:若p⇒q,p 为真,则q 为真.
*演绎推理是一种收敛性的思维方法,只要前提为真,推理形式正确,结论必正确,前提和结论之间存在必然关系,因此演绎推理是数学中严格证明的工具.
2.三段论推理:是演绎推理的一般模式.可表示为:
若b⇒c,而a⇒b,则a⇒c
三段论包括三要素:
(1)大前提:已知的一般原理
(2)小前提:所研究的特殊情况
(3)结论:根据一般原理,对特殊情况做出的判断.
演绎推理
(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理;
(2)特点:演绎推理是由一般到特殊的推理;
(3)演绎推理是一种收敛性的思维方法,只要前提为真,推理形式正确,结论必正确,前提和结论之间存在必然
关系,因此演绎推理是数学中严格证明的工具.
(4)模式:三段论.“三段论”是演绎推理的一般模式,包括:
“三段论”的结①大前提﹣﹣已知的一般原理;
构
②小前提﹣﹣所研究的特殊情况;
③结论﹣﹣根据一般原理,对特殊情况做出的判断.
“三段论”的表①大前提﹣﹣M 是P.
示
②小前提﹣﹣S 是M.
③结论﹣﹣S 是P.
【例题解析】
例:关于演绎推理的说法正确的是()
A:演绎推理是由一般到一般的推理B:只要大前提正确,由演绎推理得到的结果必正确C:演绎推理在大前提、小前提和推理形式都正确的情况下,得到的结论一定正确D:演绎推理不能用于命题的证明
解答:解:演绎推理是由一般到特殊的推理,是一种必然性的推理,故A 不正确,
演绎推理得到的结论不一定是正确的,还要取决于小前提是否真实,故B 不正确,
演绎推理一般模式是“三段论”形式,即大前提小前提和结论,在大前提、小前提和推理形式都正确的情况下,得到的结论一定正确,故C 正确,
演绎推理不能用于命题的证明,故D 不正确,
总上可知有C 是正确的,
故选:C.
本题考查演绎推理的意义,演绎推理是由一般性的结论推出特殊性命题的一种推理模式,演绎推理的前提与结论之间有一种蕴含关系.。