CXSJM6P-20资料下载
SM320C6201BGLPS20中文资料
SM320C6201B, SMJ320C6201B DIGITAL SIGNAL PROCESSOR
SGUS031B – APRIL 2000 – REVISED AUGUST 2001
D Highest Performance Fixed-Point Digital
Copyright 2001, Texas Instruments Incorporated
On products compliant to MILĆPRFĆ38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.
AA Y W V U T R P N M L K J H G F E D C B A
GLP 429-PIN BALL GRID ARRAY (BGA) PACKAGE (BOTTOM VIEW)
D
D
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21
D Two Multichannel Buffered Serial Ports
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 CPU description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 signal groups description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 device and development support nomenclature . . . . . . . . . 23 documentation support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 clock PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 power-supply sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 absolute maximum ratings over operating case temperature ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 recommended operating conditions . . . . . . . . . . . . . . . . . . . 28 electrical characteristics over recommended ranges of supply voltage and operating case temperature . . . . 29 parameter measurement information . . . . . . . . . . . . . . . 30 signal transition levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . input and output clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . asynchronous memory timing . . . . . . . . . . . . . . . . . . . . . synchronous-burst memory timing . . . . . . . . . . . . . . . . . synchronous DRAM timing . . . . . . . . . . . . . . . . . . . . . . . . HOLD/HOLDA timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . reset timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . external interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . host-port interface timing . . . . . . . . . . . . . . . . . . . . . . . . . multichannel buffered serial port timing . . . . . . . . . . . . . DMAC, timer, power-down timing . . . . . . . . . . . . . . . . . . JTAG test-port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 31 34 36 40 44 45 47 48 51 59 60 61
SPP20N60元件参数
Marking 20N60S5 20N60S5
Maximum Ratings
Parameter
Symbol
Continuous drain current
ID
TC = 25 °C
TC = 100 °C
Pulsed drain current, tp limited by Tjmax
ID puls
Avalanche energy, single pulse
-
t d(off)
-
120 - ns
25
-
140 210
Fall time
tf
-
30 45
Gate Charge Characteristics
Gate to source charge
Qgs
VDD=350V, ID=20A
Gate to drain charge
Qgd
Gate charge total
0.012 0.091
Unit Ws/K
Ptot (t)
Tj R th1
C th 1
C th 2
Rth,n Tcase External Heatsink
C th ,n
Tamb
Rev. 2.1
Page 4
2004-03-30
SPP20N60S5 SPB20N60S5
1 Power dissipation Ptot = f (TC)
Symbol dv/dt
Value 20
Unit V/ns
Symbol RthJC RthJA
Tsold
Values
Unit
min. typ. max.
-
corex cxdn6s0521 非隔离dc-dc模块-用户手册说明书
非隔离DC-DC模块CXDN6S0521产品说明书V1.001产品概述CXDN6S0521是非隔离型DC-DC电源模块,采用双面表贴结构和同步整流技术,占用的PCB面积仅为标准面积的一半。
在空间性能和成本受限的产品中该模块是一个理想的选择。
1.1产品特性◆可实现与TI公司的PTH05000W脚对脚替换◆输入电压范围:5.0V(4.5V~5.5V)◆输出电压范围:0.9V~3.3V◆最大输出电流:6.0A◆效率:91%(满载条件)◆输入欠压保护◆输出过流保护◆预偏置启动能力◆过温保护◆双面表贴结构1.2管脚排列图1管脚排列图引出端管脚说明:1.3功能框图该模块包括开/关抑制,输出电压调整(微调),输出电流限制和真正意义上的过温度保护。
为了实现高的转换效率,本模块输出侧使用了同步整流技术。
其输出预偏置性能能够保证在启动期间输出端不会吸入电流。
Vo Adj图2功能框图2电特性2.1绝对最大额定值2.2推荐工作条件2.3电特性若无特殊说明,测试条件为T A = -40℃~+85℃,V I = 5.0V,V O = 3.3V, C IN = 330μF,C OUT = 100μF。
3应用信息3.1典型应用注:R SET =(12VOUT−0.6-2.21)kΩ图3典型应用电路图3.2输出电压设置通过RSET 设置输出电压值,R SET =(12VOUT−0.6-2.21)kΩ,下表列出典型的输出电3.3操作规程及注意事项模块必须采取防静电措施进行操作。
取用模块时应佩戴防静电手套,防止ESD对模块造成损伤。
将模块插入电路板上的底座时,应注意模块的方向,防止插反;将模块从电路板上的底座取出时,应注意施力方向以确保模块管脚均匀受力。
推荐下列操作措施:a) 模块应在防静电的工作台上操作,或佩戴防静电手套;b) 试验设备和器具应做好接地处理;c) 不能随意触摸模块表面及引线;d) 模块应存放在导电材料制成的容器中(如:集成电路专用盒);e) 生产、测试、使用以及转运过程中应避免使用引起静电的塑料、橡胶或丝织物;f) 相对湿度尽可能保持在50%以上;g) 使用时,正确区分模块的电源和地,防止发生短路。
PM10CSJ060中文资料
G
F
S - DIA. (2 TYP.)
P
L M M E B 2.0 X 0.5 MM TAB (5 TYP.) 0.6 X 0.4 MM TAB (18 TYP.) K M M
T P
VWPC WP WFO VWPI V NC
U
VUPC UP UFO VUPI VVPC VP VFO VVPI
P
V N1
WN
FO
VN
UN
GND GND IN SI FO OUT V CC
GND GND IN SI FO OUT V CC
TB
GND
GND GND IN SI FO OUT V CC
GND
V CC
WN
VN
S WN
O WN
S UN
UN
FO
TC
O UN
S VN
O VN
N
W
V
U
Outline Drawing and Circuit Diagram Dimensions A B C D E F G H J K Inches 3.72±0.04 3.33±0.02 2.99 2.300±0.02 2.20±0.02 1.73±0.04 1.32±0.03 1.01 0.75 0.71±0.04 Millimeters 94.5±1.0 84.5±0.5 76.0 58.42±0.5 56.0±0.5 44.0±1.0 33.6±0.8 25.7 19.0 18.0±1.0 Dimensions L M N P Q R S T U V Inches 0.561 0.55±0.01 0.513 0.31±0.02 0.300 0.20 Rad. 0.18 Dia. 0.14 0.13±0.02 0.100±0.01 Millimeters 14.25 14.0±0.25 13.04 8.0±0.5 7.62 Rad. 5.0 Dia. 4.5 3.5 3.2±0.5 2.54±0.25
电网保护-Sepam 20系列
19
说明
20
预定义功能说明
21
使用SFT2841 软件调整预定义功能
22
特性
22
基本单元
22
描述
23
说明
26
尺寸
27
技术特性
28
环境特性
29
接线图
29
基本单元
29
Sepam 20系列
30
Sepam 40系列
31
相电流输入
32
剩余电流输入
33
电压输入
33
Sepam 20系列
34
Sepam 40系列
35
1A至6250A
-
220V至250kV
Sepam 40系列
1A至6250A 0.4至1.3 In 见In额定相电流 2A,5A或20A额定值
1A至6250A (In0 = In)
1A至6250A (In0 = In/10)
220V至250kV
3VTs: V1, V2, V3 2VTs: U21, U32 1VT: V1
Sepam 20系列传感器输入
相电流输入 剩余电流输入 相电压输入 剩余电压输入 温度输入 (在MET148-2模块上)
S20
3 1 0 0 0
T20, M20
3 1 0 0 8
B21, B22
0 0 3 1 0
Sepam 40系列传感器输入
相电流输入 上)
42
10输入/4输出模块
42
描述
43
安装
44
Sepam 20系列的逻辑输入/ 输出分配
45
Sepam 40系列的逻辑输入/ 输出分配
46
沛城4820通信铁锂BMS规格书P16S20A-4435-29
BMS产品规格书目录1. 简介 (5)2. 功能特性 (5)3. 功能示意框图 (6)4. 电气特性 (6)4.1 基本参数设置 (6)4.2 LED指示说明 (8)4.3 蜂鸣器动作说明 (9)4.4 按键说明 (9)4.5 休眠及唤醒 (9)5 通信说明 (10)5.1 RS232通信 (10)5.2 RS485通信 (10)5.3 拨码开关设置 (10)6 接口定义 (11)6.1 接口图示 (11)6.2 电气接口定义 (12)6.3 安装连接说明 (13)7 实物图和尺寸图 (13)8 使用注意事项 (14)1.简介随着锂电池在通信行业的广泛应用,对电池管理系统也提出了高性能、高可靠性及高性价比等要求。
本产品是专门针对基站后备电池设计的BMS,采用集成化的设计将采集、管理、通信等功能集成于一体。
可广泛应用在室内室外基站,如一体化基站、边际站、直放站、宏基站、太阳能基站等。
2.功能特性●具有单体电压、总体电压检测,过充、过放告警及保护功能。
常温下静态电压采样精度可达≤20mV。
●具有充、放电电流检测,充、放电过流告警及保护功能。
充电电流显示为正,放电电流显示为负,常温下电流采样精度可达≤2%@FS。
●具有电芯温度检测,电芯高、低温告警及保护功能,常温下温度采样精度可达≤3℃。
●短路保护功能。
●具有充电均衡功能。
●电芯容量估算功能。
电池组满充容量、当前容量、设计容量可以通过上位机进行设置,在进行完整充放电循环后容量可自动更新。
●LED状态指示功能。
●上位机软件控制功能,可通过上位机软件方便地对过充、过放、充放电过流、过温、欠温等保护参数,容量、休眠、均衡等参数进行设置。
●RS232通信功能,采用隔离通信。
●RS485通信功能,采用隔离通信。
3. 功能示意框图4. 电气特性4.1基本参数设置 (注:以下参数除特殊注明以外,25℃环温下测试)指示说明表1 LED工作状态指示表2 容量指示说明表3 LED闪动说明备注:可通过上位机使能或禁止LED指示灯告警,出厂默认为使能的。
ATMEGA644P-20MU中文资料
Features•High-performance, Low-power AVR® 8-bit Microcontroller •Advanced RISC Architecture–131 Powerful Instructions – Most Single-clock Cycle Execution –32 x 8 General Purpose Working Registers–Fully Static Operation–Up to 20 MIPS Throughput at 20 MHz–On-chip 2-cycle Multiplier•Nonvolatile Program and Data Memories–16/32/64K Bytes of In-System Self-Programmable FlashEndurance: 10,000 Write/Erase Cycles–Optional Boot Code Section with Independent Lock BitsIn-System Programming by On-chip Boot ProgramTrue Read-While-Write Operation–512B/1K/2K Bytes EEPROMEndurance: 100,000 Write/Erase Cycles–1/2/4K Bytes Internal SRAM–Programming Lock for Software Security•JTAG (IEEE std. 1149.1 Compliant) Interface–Boundary-scan Capabilities According to the JTAG Standard–Extensive On-chip Debug Support–Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface •Peripheral Features–Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes–One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode–Real Time Counter with Separate Oscillator–Six PWM Channels–8-channel, 10-bit ADCDifferential mode with selectable gain at 1x, 10x or 200x–Byte-oriented Two-wire Serial Interface–Two Programmable Serial USART–Master/Slave SPI Serial Interface–Programmable Watchdog Timer with Separate On-chip Oscillator–On-chip Analog Comparator–Interrupt and Wake-up on Pin Change•Special Microcontroller Features–Power-on Reset and Programmable Brown-out Detection–Internal Calibrated RC Oscillator–External and Internal Interrupt Sources–Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby•I/O and Packages–32 Programmable I/O Lines–40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF•Operating Voltages–1.8 - 5.5V for ATmega164P/324P/644PV–2.7 - 5.5V for ATmega164P/324P/644P•Speed Grades–ATmega164P/324P/644PV: 0 - 4MHz @ 1.8 - 5.5V, 0 - 10MHz @ 2.7 - 5.5V–ATmega164P/324P/644P: 0 - 10MHz @ 2.7 - 5.5V, 0 - 20MHz @ 4.5 - 5.5V•Power Consumption at 1 MHz, 1.8V, 25°C for ATmega164P/324P/644P –Active: 338/398/TBD µA–Power-down Mode:0.035 /0.027/TBD µA–Power-save Mode:0.5 /0.5/TBD µA (Including 32 kHz RTC)8-bit Microcontrollerwith 16/32/64K Bytes In-System ProgrammableATmega164P/V ATmega324P/V ATmega644P/V28011DS–AVR–02/07ATmega164P/324P/644P1.Pin ConfigurationsFigure 1-1.Pinout ATmega164P/324P/644PNote:The large center pad underneath the QFN/MLF package should be soldered to ground on theboard to ensure good mechanical stability.38011DS–AVR–02/07ATmega164P/324P/644P1.1DisclaimerTypical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.48011DS–AVR–02/07ATmega164P/324P/644P2.OverviewThe ATmega164P/324P/644P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega164P/324P/644P achieves throughputs approaching 1 MIPS per MHz allowing the sys-tem designer to optimize power consumption versus processing speed.2.1Block DiagramFigure 2-1.Block DiagramThe AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than con-ventional CISC microcontrollers.58011DS–AVR–02/07ATmega164P/324P/644PThe ATmega164P/324P/644P provides the following features: 16/32/64K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512B/1K/2K bytes EEPROM, 1/2/4K bytes SRAM, 32 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), three flexible Timer/Counters with compare modes and PWM, 2 USARTs, a byte oriented 2-wire Serial Interface, a 8-channel, 10-bit ADC with optional differential input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,the Atmel ATmega164P/324P/644P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.The ATmega164P/324P/644P AVR is supported with a full suite of program and system devel-opment tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.2.2Comparison Between ATmega164P, ATmega324P and ATmega644P2.3Pin Descriptions2.3.1VCCDigital supply voltage.2.3.2GNDGround.Table 2-1.Differences between ATmega164P and ATmega644PDevice Flash EEPROM RAM A Tmega164P 16 Kbyte 512 Bytes 1 Kbyte A Tmega324P 32 Kbyte 1 Kbyte 2 Kbyte A Tmega644P64 Kbyte2 Kbyte4 Kbyte68011DS–AVR–02/07ATmega164P/324P/644P2.3.3Port A (PA7:PA0)Port A serves as analog inputs to the Analog-to-digital Converter.Port A also serves as an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.Port A also serves the functions of various special features of the ATmega164P/324P/644P as listed on page 79.2.3.4Port B (PB7:PB0)Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,even if the clock is not running.Port B also serves the functions of various special features of the ATmega164P/324P/644P as listed on page 81.2.3.5Port C (PC7:PC0)Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,even if the clock is not running.Port C also serves the functions of the JTAG interface, along with special features of the ATmega164P/324P/644P as listed on page 84.2.3.6Port D (PD7:PD0)Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,even if the clock is not running.Port D also serves the functions of various special features of the ATmega164P/324P/644P as listed on page 86.2.3.7RESETReset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 9-1 on page 50. Shorter pulses are not guaranteed to generate a reset.2.3.8XTAL1Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.78011DS–AVR–02/07ATmega164P/324P/644P2.3.9XTAL2Output from the inverting Oscillator amplifier.2.3.10AVCCAVCC is the supply voltage pin for Port F and the Analog-to-digital Converter. It should be exter-nally connected to V CC , even if the ADC is not used. If the ADC is used, it should be connected to V CC through a low-pass filter.2.3.11AREFThis is the analog reference pin for the Analog-to-digital Converter.3.ResourcesA comprehensive set of development tools, application notes and datasheetsare available for download on /avr.88011DS–AVR–02/07ATmega164P/324P/644P4.Register SummaryAddressNameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Page(0xFF)Reserved -------(0xFE)Reserved --------(0xFD)Reserved --------(0xFC)Reserved --------(0xFB)Reserved -------(0xFA)Reserved --------(0xF9)Reserved -------(0xF8)Reserved --------(0xF7)Reserved --------(0xF6)Reserved --------(0xF5)Reserved -------(0xF4)Reserved --------(0xF3)Reserved --------(0xF2)Reserved --------(0xF1)Reserved -------(0xF0)Reserved --------(0xEF)Reserved -------(0xEE)Reserved --------(0xED)Reserved --------(0xEC)Reserved --------(0xEB)Reserved -------(0xEA)Reserved --------(0xE9)Reserved --------(0xE8)Reserved --------(0xE7)Reserved -------(0xE6)Reserved --------(0xE5)Reserved --------(0xE4)Reserved --------(0xE3)Reserved -------(0xE2)Reserved --------(0xE1)Reserved -------(0xE0)Reserved -------(0xDF)Reserved --------(0xDE)Reserved --------(0xDD)Reserved --------(0xDC)Reserved -------(0xDB)Reserved --------(0xDA)Reserved --------(0xD9)Reserved --------(0xD8)Reserved --------(0xD7)Reserved --------(0xD6)Reserved --------(0xD5)Reserved --------(0xD4)Reserved --------(0xD3)Reserved --------(0xD2)Reserved --------(0xD1)Reserved --------(0xD0)Reserved --------(0xCF)Reserved --------(0xCE)UDR1 USART1 I/O Data Register184(0xCD)UBRR1H ----USART1 Baud Rate Register High Byte189/201(0xCC)UBRR1L USART1 Baud Rate Register Low Byte189/201(0xCB)Reserved --------(0xCA)UCSR1C UMSEL11UMSEL10UPM11UPM10USBS1UCSZ11UCSZ10UCPOL1187/200(0xC9)UCSR1B RXCIE1TXCIE1UDRIE1RXEN1TXEN1UCSZ12RXB81TXB81186/200(0xC8)UCSR1A RXC1TXC1UDRE1FE1DOR1UPE1U2X1MPCM1185/199(0xC7)Reserved --------(0xC6)UDR0 USART0 I/O Data Register 184(0xC5)UBRR0H ----USART0 Baud Rate Register High Byte189/201(0xC4)UBRR0L USART0 Baud Rate Register Low Byte189/201(0xC3)Reserved --------(0xC2)UCSR0C UMSEL01UMSEL00UPM01UPM00USBS0UCSZ01UCSZ00UCPOL0187/200(0xC1)UCSR0B RXCIE0TXCIE0UDRIE0RXEN0TXEN0UCSZ02RXB80TXB80186/200(0xC0)UCSR0ARXC0TXC0UDRE0FE0DOR0UPE0U2X0MPCM0185/19998011DS–AVR–02/07ATmega164P/324P/644P(0xBF)Reserved --------(0xBE)Reserved --------(0xBD)TWAMR TWAM6TWAM5TWAM4TWAM3TWAM2TWAM1TWAM0-232(0xBC)TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN -TWIE 228(0xBB)TWDR 2-wire Serial Interface Data Register230(0xBA)TWAR TWA6TWA5TWA4TWA3TWA2TWA1TWA0TWGCE 232(0xB9)TWSR TWS7TWS6TWS5TWS4TWS3-TWPS1TWPS0230(0xB8)TWBR 2-wire Serial Interface Bit Rate Register228(0xB7)Reserved --------(0xB6)ASSR -EXCLK AS2TCN2UBOCR2AUBOCR2BUBTCR2AUBTCR2BUB153(0xB5)Reserved --------(0xB4)OCR2B Timer/Counter2 Output Compare Register B 152(0xB3)OCR2A Timer/Counter2 Output Compare Register A152(0xB2)TCNT2 Timer/Counter2 (8 Bit)152(0xB1)TCCR2B FOC2A FOC2B --WGM22CS22CS21CS20151(0xB0)TCCR2A COM2A1COM2A0COM2B1COM2B0--WGM21WGM20148(0xAF)Reserved --------(0xAE)Reserved --------(0xAD)Reserved --------(0xAC)Reserved --------(0xAB)Reserved --------(0xAA)Reserved --------(0xA9)Reserved --------(0xA8)Reserved --------(0xA7)Reserved --------(0xA6)Reserved --------(0xA5)Reserved --------(0xA4)Reserved --------(0xA3)Reserved --------(0xA2)Reserved --------(0xA1)Reserved --------(0xA0)Reserved --------(0x9F)Reserved --------(0x9E)Reserved --------(0x9D)Reserved --------(0x9C)Reserved --------(0x9B)Reserved --------(0x9A)Reserved --------(0x99)Reserved --------(0x98)Reserved --------(0x97)Reserved --------(0x96)Reserved --------(0x95)Reserved --------(0x94)Reserved --------(0x93)Reserved --------(0x92)Reserved --------(0x91)Reserved --------(0x90)Reserved --------(0x8F)Reserved --------(0x8E)Reserved --------(0x8D)Reserved --------(0x8C)Reserved --------(0x8B)OCR1BH Timer/Counter1 - Output Compare Register B High Byte 134 (0x8A)OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 134(0x89)OCR1AH Timer/Counter1 - Output Compare Register A High Byte 134(0x88)OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 134(0x87)ICR1H Timer/Counter1 - Input Capture Register High Byte 135(0x86)ICR1L Timer/Counter1 - Input Capture Register Low Byte 135(0x85)TCNT1H Timer/Counter1 - Counter Register High Byte 134(0x84)TCNT1L Timer/Counter1 - Counter Register Low Byte134(0x83)Reserved --------(0x82)TCCR1C FOC1A FOC1B ------133(0x81)TCCR1B ICNC1ICES1-WGM13WGM12CS12CS11CS10132(0x80)TCCR1A COM1A1COM1A0COM1B1COM1B0--WGM11WGM10130(0x7F)DIDR1------AIN1D AIN0D 235(0x7E)DIDR0ADC7DADC6DADC5DADC4DADC3DADC2DADC1DADC0D255AddressNameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Page108011DS–AVR–02/07ATmega164P/324P/644P(0x7D)Reserved --------(0x7C)ADMUX REFS1REFS0ADLAR MUX4MUX3MUX2MUX1MUX0251(0x7B)ADCSRB -ACME ---ADTS2ADTS1ADTS0233(0x7A)ADCSRA ADENADSCADATEADIFADIEADPS2ADPS1ADPS0252(0x79)ADCH ADC Data Register High byte 254(0x78)ADCL ADC Data Register Low byte254(0x77)Reserved --------(0x76)Reserved --------(0x75)Reserved --------(0x74)Reserved --------(0x73)PCMSK3PCINT31PCINT30PCINT29PCINT28PCINT27PCINT26PCINT25PCINT2469(0x72)Reserved --------(0x71)Reserved --------(0x70)TIMSK2-----OCIE2B OCIE2A TOIE2155(0x6F)TIMSK1--ICIE1--OCIE1B OCIE1A TOIE1135(0x6E)TIMSK0-----OCIE0B OCIE0A TOIE0107(0x6D)PCMSK2PCINT23PCINT22PCINT21PCINT20PCINT19PCINT18PCINT17PCINT1669(0x6C)PCMSK1PCINT15PCINT14PCINT13PCINT12PCINT11PCINT10PCINT9PCINT869(0x6B)PCMSK0PCINT7PCINT6PCINT5PCINT4PCINT3PCINT2PCINT1PCINT070(0x6A)Reserved --------(0x69)EICRA --ISC21ISC20ISC11ISC10ISC01ISC0066(0x68)PCICR ----PCIE3PCIE2PCIE1PCIE068(0x67)Reserved --------(0x66)OSCCAL Oscillator Calibration Register39(0x65)Reserved --------(0x64)PRR PRTWI PRTIM2PRTIM0PRUSART1PRTIM1PRSPI PRUSART0PRADC47(0x63)Reserved --------(0x62)Reserved --------(0x61)CLKPR CLKPCE ---CLKPS3CLKPS2CLKPS1CLKPS039(0x60)WDTCSR WDIF WDIE WDP3WDCE WDE WDP2WDP1WDP0580x3F (0x5F)SREG I T H S V N Z C 120x3E (0x5E)SPH SP15SP14SP13SP12SP11SP10SP9SP8120x3D (0x5D)SPL SP7SP6SP5SP4SP3SP2SP1SP0120x3C (0x5C)Reserved --------0x3B (0x5B)RAMPZ -------RAMPZ0150x3A (0x5A)Reserved --------0x39 (0x59)Reserved --------0x38 (0x58)Reserved --------0x37 (0x57)SPMCSR SPMIE RWWSBSIGRD RWWSREBLBSETPGWRTPGERSSPMEN2770x36 (0x56)Reserved --------0x35 (0x55)MCUCR JTD BODS BODSEPUD --IVSEL IVCE 78/2650x34 (0x54)MCUSR ---JTRF WDRF BORF EXTRF PORF 53/2660x33 (0x53)SMCR ----SM2SM1SM0SE 460x32 (0x52)Reserved --------0x31 (0x51)OCDR On-Chip Debug Register2610x30 (0x50)ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1ACIS02520x2F (0x4F)Reserved --------0x2E (0x4E)SPDR SPI 0 Data Register1650x2D (0x4D)SPSR SPIF0WCOL0-----SPI2X01650x2C (0x4C)SPCR SPIE0SPE0DORD0MSTR0CPOL0CPHA0SPR01SPR001630x2B (0x4B)GPIOR2General Purpose I/O Register 2270x2A (0x4A)GPIOR1General Purpose I/O Register 1270x29 (0x49)Reserved --------0x28 (0x48)OCR0B Timer/Counter0 Output Compare Register B 1070x27 (0x47)OCR0A Timer/Counter0 Output Compare Register A1070x26 (0x46)TCNT0 Timer/Counter0 (8 Bit)1070x25 (0x45)TCCR0B FOC0A FOC0B --WGM02CS02CS01CS001060x24 (0x44)TCCR0A COM0A1COM0A0COM0B1COM0B0--WGM01WGM001070x23 (0x43)GTCCR TSM -----PSR2PSR543101570x22 (0x42)EEARH ----EEPROM Address Register High Byte220x21 (0x41)EEARL EEPROM Address Register Low Byte220x20 (0x40)EEDR EEPROM Data Register220x1F (0x3F)EECR --EEPM1EEPM0EERIE EEMWE EEWE EERE 230x1E (0x3E)GPIOR0General Purpose I/O Register 0280x1D (0x3D)EIMSK -----INT2INT1INT0670x1C (0x3C)EIFR-----INTF2INTF1INTF067AddressNameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0PageATmega164P/324P/644PAddress Name Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0Page 0x1B (0x3B)PCIFR----PCIF3PCIF2PCIF1PCIF068 0x1A (0x3A)Reserved--------0x19 (0x39)Reserved--------0x18 (0x38)Reserved--------0x17 (0x37)TIFR2-----OCF2b OCF2A TOV2156 0x16 (0x36)TIFR1--ICF1--OCF1B OCF1A TOV1136 0x15 (0x35)TIFR0-----OCF0B OCF0A TOV0108 0x14 (0x34)Reserved--------0x13 (0x33)Reserved--------0x12 (0x32)Reserved--------0x11 (0x31)Reserved--------0x10 (0x30)Reserved--------0x0F (0x2F)Reserved--------0x0E (0x2E)Reserved--------0x0D (0x2D)Reserved--------0x0C (0x2C)Reserved--------0x0B (0x2B)PORTD PORTD7PORTD6PORTD5PORTD4PORTD3PORTD2PORTD1PORTD091 0x0A (0x2A)DDRD DDD7DDD6DDD5DDD4DDD3DDD2DDD1DDD091 0x09 (0x29)PIND PIND7PIND6PIND5PIND4PIND3PIND2PIND1PIND091 0x08 (0x28)PORTC PORTC7PORTC6PORTC5PORTC4PORTC3PORTC2PORTC1PORTC090 0x07 (0x27)DDRC DDC7DDC6DDC5DDC4DDC3DDC2DDC1DDC090 0x06 (0x26)PINC PINC7PINC6PINC5PINC4PINC3PINC2PINC1PINC091 0x05 (0x25)PORTB PORTB7PORTB6PORTB5PORTB4PORTB3PORTB2PORTB1PORTB090 0x04 (0x24)DDRB DDB7DDB6DDB5DDB4DDB3DDB2DDB1DDB090 0x03 (0x23)PINB PINB7PINB6PINB5PINB4PINB3PINB2PINB1PINB090 0x02 (0x22)PORTA PORTA7PORTA6PORTA5PORTA4PORTA3PORTA2PORTA1PORTA090 0x01 (0x21)DDRA DDA7DDA6DDA5DDA4DDA3DDA2DDA1DDA090 0x00 (0x20)PINA PINA7PINA6PINA5PINA4PINA3PINA2PINA1PINA090 Notes: 1.For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.2.I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-isters, the value of single bits can be checked by using the SBIS and SBIC instructions.3.Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate onall bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructionswork with registers 0x00 to 0x1F only.4.When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O regis-ters as data space using LD and ST instructions, $20 must be added to these addresses. The A Tmega164P/324P/644P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from $60 - $FF, only the ST/STS/STD and LD/LDS/LDD instructionscan be used.5.Instruction Set SummaryMnemonics Operands Description Operation Flags#Clocks ARITHMETIC AND LOGIC INSTRUCTIONSADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H1 ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S2 SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H1 SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H1 SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H1 SBCI Rd, K Subtract with Carry Constant from Reg.Rd ← Rd - K - C Z,C,N,V,H1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S2 AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V1 ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V1OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V1ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V1 EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V1 COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V1 NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H1 SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V1 CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K)Z,N,V1INC Rd Increment Rd ← Rd + 1Z,N,V1 DEC Rd Decrement Rd ← Rd − 1 Z,N,V1 TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V1 CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V1 SER Rd Set Register Rd ← 0xFF None1 MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C2 MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C2 MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C2 FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1Z,C2FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1Z,C2 FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1Z,C2 BRANCH INSTRUCTIONSRJMP k Relative Jump PC ← PC + k + 1None2 IJMP Indirect Jump to (Z)PC ← Z None2 JMP k Direct Jump PC ←k None3 RCALL k Relative Subroutine Call PC ← PC + k + 1None4 ICALL Indirect Call to (Z)PC ←Z None4 CALL k Direct Subroutine Call PC ←k None5 RET Subroutine Return PC ← STACK None5 RETI Interrupt Return PC ← STACK I5 CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3None1/2/3 CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H1CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None1/2/3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3None1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3None1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1None1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1None1/2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1None1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1None1/2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1None1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1None1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1None1/2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1None1/2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1None1/2 BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1None1/2 BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1None1/2 BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1None1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1None1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1None1/2 BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1None1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1None1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1None1/2ATmega164P/324P/644PMnemonics Operands Description Operation Flags#Clocks BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1None1/2BRIE k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1None1/2BRID k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1None1/2BIT AND BIT-TEST INSTRUCTIONSSBI P,b Set Bit in I/O Register I/O(P,b) ←1None2CBI P,b Clear Bit in I/O Register I/O(P,b) ←0None2LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0Z,C,N,V1LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0Z,C,N,V1ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)Z,C,N,V1ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)Z,C,N,V1ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6Z,C,N,V1SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)None1BSET s Flag Set SREG(s) ← 1SREG(s)1BCLR s Flag Clear SREG(s) ← 0 SREG(s)1BST Rr, b Bit Store from Register to T T ← Rr(b)T1BLD Rd, b Bit load from T to Register Rd(b) ←T None1SEC Set Carry C ←1C1CLC Clear Carry C ← 0 C1SEN Set Negative Flag N ←1N1CLN Clear Negative Flag N ← 0 N1SEZ Set Zero Flag Z ←1Z1CLZ Clear Zero Flag Z ← 0 Z1SEI Global Interrupt Enable I ←1I1CLI Global Interrupt Disable I ← 0 I1SES Set Signed Test Flag S ←1S1CLS Clear Signed Test Flag S ← 0 S1SEV Set Twos Complement Overflow.V ←1V1CLV Clear Twos Complement Overflow V ← 0 V1SET Set T in SREG T ←1T1CLT Clear T in SREG T ← 0 T1SEH Set Half Carry Flag in SREG H ←1H1CLH Clear Half Carry Flag in SREG H ← 0 H1DATA TRANSFER INSTRUCTIONSMOV Rd, Rr Move Between Registers Rd ← Rr None1 MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None1LDI Rd, K Load Immediate Rd ←K None1LD Rd, X Load Indirect Rd ← (X)None2LD Rd, X+Load Indirect and Post-Inc.Rd ← (X), X ← X + 1None2LD Rd, - X Load Indirect and Pre-Dec.X ← X - 1, Rd ← (X)None2LD Rd, Y Load Indirect Rd ← (Y)None2LD Rd, Y+Load Indirect and Post-Inc.Rd ← (Y), Y ← Y + 1None2LD Rd, - Y Load Indirect and Pre-Dec.Y ← Y - 1, Rd ← (Y)None2LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q)None2LD Rd, Z Load Indirect Rd ← (Z)None2LD Rd, Z+Load Indirect and Post-Inc.Rd ← (Z), Z ← Z+1None2LD Rd, -Z Load Indirect and Pre-Dec.Z ← Z - 1, Rd ← (Z)None2LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q)None2LDS Rd, k Load Direct from SRAM Rd ← (k)None2ST X, Rr Store Indirect(X) ← Rr None2ST X+, Rr Store Indirect and Post-Inc.(X) ← Rr, X ← X + 1None2ST- X, Rr Store Indirect and Pre-Dec.X ← X - 1, (X) ← Rr None2ST Y, Rr Store Indirect(Y) ← Rr None2ST Y+, Rr Store Indirect and Post-Inc.(Y) ← Rr, Y ← Y + 1None2ST- Y, Rr Store Indirect and Pre-Dec.Y ← Y - 1, (Y) ← Rr None2STD Y+q,Rr Store Indirect with Displacement(Y + q) ← Rr None2ST Z, Rr Store Indirect(Z) ← Rr None2ST Z+, Rr Store Indirect and Post-Inc.(Z) ← Rr, Z ← Z + 1None2ST-Z, Rr Store Indirect and Pre-Dec.Z ← Z - 1, (Z) ← Rr None2STD Z+q,Rr Store Indirect with Displacement(Z + q) ← Rr None2STS k, Rr Store Direct to SRAM(k) ← Rr None2LPM Load Program Memory R0 ← (Z)None3LPM Rd, Z Load Program Memory Rd ← (Z)None3LPM Rd, Z+Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1None3ELPM Extended Load Program Memory R0 ← (RAMPZ:Z)None3ELPM Rd, Z Extended Load Program Memory Rd ← (Z)None3ELPM Rd, Z+Extended Load Program Memory Rd ← (RAMPZ:Z), RAMPZ:Z ←RAMPZ:Z+1None3。
J-JS-AS606(AS606数据手册)_V1.8
AS606 数据手册
版本 1.8,2014 年 06 月
杭州晟元芯片技术有限公司 杭州市文一西路 998 号海创园 9 幢东楼
AS606 数据手册
声明
下列文件包涵晟元芯片技术有限公司(以下简称为晟元)的私有信息。这些信息是精确、可靠的,在 没有本公司管理层许可的情况下,第三方不得使用或随意泄露;当然,任何在没有授权、特殊条件、限 制或告知的情况下对此信息的复制和擅自修改都是侵权行为。 在任何时间,无需告知任何方的情况下,晟元有权对本公司产品和服务进行更改、添加、删除、改 进以及其它任何变更。在对本公司产品的使用中,晟元不背负任何责任或义务;而第三方在使用中则不 得侵害任何专利或其它知识产权。 所有产品的售出都受制于本公司在定购承认书里的销售条款和条件。本公司利用测试、工具、质量 控制等技术手段来支持产品的相关性能符合所需规格的一定程度的保证。除了明确的政府书面要求外, 没必要执行每款产品的所有参数测试。 除了晟元的 logo 设计,其它所有的商标或注册商标都是属于各自所有者所有。 晟元芯片技术有限公司 2005–2020©版权。版权所有,.3 1.4 1.5 1.6
日期 2013-04-18 2013-06-21 2013-08-15 2013-09-23 2013-09-27 2013-10-07 2014-02-19
1.8
III
J-JS-AS606
AS606 数据手册
目录
声明 ...........................................................................................................................
CXM6_Datasheet
Applications• Spotlights/Track Lights • Downlights • Replacment lamps• Shop Lighting • Hospitality Lighting • Architectural and SpecialtyFeatures:• High lumen output and efficacy typical• Over 520 lm, 120 LPW @ 3000K, 25ºC • Over 570 lm, 131 LPW @ 5000K, 25ºC• Complete CCT range 2700K, 3000K, 3500K, 4000K, 5000K and 6500K • 80 or 90 CRI min. up to 95 min. in warm white• 2-step and 3-step MacAdam Ellipse color binning accuracy• Excellent optical emission uniformity and color over angle consistency • Exceptional long term color stability• Superior thermal conductivity for uniform heat spreading • Environmentally friendly: RoHS and REACh compliant •Table of ContentsTechnology Overview ......2Test Specifications .........2Chromaticity Bins ..........3Product Ordering & Shipping Part Numbers ..............4Product Typical Flux Range .5Product Flux Bins ...........6Operating Characteristics ..7Optical and Electrical Character-istics .......................8Spectra ....................9Mechanical Dimensions ..10Packaging Information ...10Handling Notes ..........11CXM-6 COB Arrays White LEDUnderstanding XNova™ COB LED Test SpecificationsEvery XNova™ LED is fully tested to ensure it meets the high quality standards customers have come to expect from Luminus’ products.Luminus XNova™ Chip-on-Board (COB) LED series offers a complete lighting class solution designed for high performance illumination applications. The selection covers a wide lumen range from less than 400lm to over 10,000lm, all major color temperatures and can deliver color rendering greater than 97 at 2700K and 3000K and R9 equal to 95.ReliabilityDesigned from the ground up, the XNova™ COB LED is one of the most reliable light sources in the world today. Havingpassed a rigorous suite of environmental and mechanical stress tests, including mechanical shock, vibration, temperature cycling and humidity. Only then are the devices qualified for use in a wide range of lighting application including some of the most demanding commercial applications. Delivered with fully qualified LM80 test data and TM21 lifetime results that certify lumen maintenance at 35,000 hours or more, XNova™ COB LEDs are ready for the toughest challenges.UL Recognized ComplianceXNova COB arrays are tested in accordance with ANSI/UL 8750 to ensure safe operation for their intended applications.REACh & RoHS ComplianceAll LED products manufactured by Luminus are REACh and RoHS compliant and free of hazardous materials, including lead and mercury.TraceabilityEach XNova COB LED is marked with a 2D bar code that contains a unique serial number. With this serial number, Luminus has the ability to provide customers with actual test datameasurements for a specific LED. In addition, the 2D bar code is linked to manufacturing date codes that enables traceability of production processes and materials.Testing TemperatureXNova™ COB products are measured at temperatures typical for the LED operating in the fixture. Each device is tested at 85ºC junction temperature eliminating the need to scale data sheet specifications to real world situations.Chromaticity Bin RangeChromaticity binning delivers color consistency for every order. Standard products are delivered with a 3-step MacAdam ellipse. This ensures color performance matching in the application. For the most demanding application, Luminus is one of only a few companies that can provide a 2-step ellipse bin. These tightly controlled, small distribution bins provide customers predictable, repeatable colors.Chromaticity Bin StructureChromaticity Bins: 1931 CIE Curve*Note: Luminus maintains a +/- 0.005 tolerance on chromaticity (CIEx and CIEy) measurements.Note 1: NN nomenclature corresponds to the following: 27 = 2700K30 = 3000K 35 = 3500K 40 = 4000K 50 = 5000K 65 = 6500KNote2: XX CRI is specified as minumum value 80 CRI is 80 minumum, R9 > 0 90 CRI is 90 minumum , R9 > 5095 CRI is 95 minumum, R9 >90Example 1:The ordered part number CXM-6-27-80-36-AA00-F2-3 which refers to a 6.3millimeter diameter emitter, at color temperature 2700K, a minimum CRI of80, a typical voltage of 36V, a standard package, with typical flux of 440 lumens, and a 3-step MacAdam ellipse chromaticity range.CXM 6 NNXX 36 QQPP FFG WProduct Ordering and Shipping Part Number NomenclatureAll CXM-6 products are packaged and labeled with part numbers as outlined in the table on page 5 and 6. Luminus may include any smaller chromaticity bin that is contained in the larger bin as part of the ordered part. When shipped, each package will contain only a single flux and chromaticity bin. The part number designation is as follows:CXM-6CXM-6 Part Numbers (Typical)The following tables describe products with typical flux and minimum flux measured at 120mA and specified at Tj = 85ºC. The values at 25ºC are calculated and shown for reference only. All product is measured and specified at 85ºC junction temperature. Luminus may choose to ship a smaller chromatiticy bin in an order for a larger.*Note: Luminus maintains a +/- 6% tolerance on flux measurements.Luminus maintains a +/- 2% tolerance on CRI measurements.CXM-6 Flux Bin Part NumbersThe following tables describe the products with a maximum and minimum output flux measured at 120mA and specified at Tj = 85ºC. The values at 25ºC are calculated and shown for reference only.*Note: Luminus maintains a +/- 6% tolerance on flux measurements.Luminus maintains a +/- 2% tolerance on CRI measurements.CXM-6 Operating Characteristics 1Note 1: Ratings are based on operation at a constant junction temperature of T j = 85ºC.Note 2: To prevent damage refer to operating conditions and derating curves for appropriate maximum operating conditions Note 3: Voltage is rated at typical forward current. For voltage at higher drive current, refer to performance graphs.Note 4: CXM-6 COB LEDs are designed for operation up to an absolute maximum forward drive current as specified above. Refer to the current vs. casetemperature derating curves for further information. Note 5: Caution must be taken not to stare at the light emitted from these LEDs. Under special circumstances, the high intensity could damage the eye.Optical and Electrical CharacteristicsRelative Output Flux vs. Forward Current @ 85ºCForward Current vs. Forward Voltage @ 85ºCCXM-6 Optical & Electrical CharacteristicsRelative Output Flux vs. Junction TemperatureChange in Voltage vs. Junction TemperatureChange in CIEx vs. Case Temperature (3000K, 80CRI)Change in CIEy vs. Case Temperature (3000K, 80CRI)Typical Polar Radiation PatternTypical Angular Radiation Pattern0% 20%40%60%80% 100%120%-80-60 -40 -20 0 20 40 60 80R e l a t i v e I n t e n s i t y (%)Anglular Displacement (Degrees)Typical SpectrumCXM-6 Optical & Electrical CharacteristicsMechanical DimensionsShipping ContainerEach bag is boxed for easier storage/stacking Trays are sealed in an anti -static bag 5 trays are stacked together with one tray as a cover••11PDS-002214 Rev 05 © 2014 Luminus Devices, Inc. - All Rights ReservedXNova products are designed for robust performance in general lighting application. However, care must be taken when handling andassembling the LEDs into their fixtures. To avoid damaging XNova COBs please follow these guide lines.The following is an overview of the application notes detailing some of the practices to follow when working with these devices. More detailed information is available on the Luminus web site at .General HandlingDevices are made to be lifted or carried with tweezers on two adjacent corners opposite the contact pads. At no time should the devices be handled by or should anything come in contact with the light emitting surface (LES) area. This area includes the yellow colored circular area and the ring surrounding it. There are electrical connections under the LES which if damaged will cause the device to fail.In addition, the ring frame itself should not be used for moving, lifting or carrying the device. Also do not attach any optics or mechanical holders to the ring as it is not capable to handle the mechanical stress.Static ElectricityXNova COBs are electronic devices which can be damaged by electrostatic discharge (ESD). Please use appropriate measures to assure the devices do not experience ESD during theirhandling and or storage. ESD protection guidelines should be used at all times when working with XNova COBs.Storage: XNova products are delivered in ESD shielded bags and should be stored in these bags until used.Assembly: Individuals handling XNova COBs during assembly should be trained in ESD protection practices. Assemblers should maintain constant conductive contact with a path to ground by means of a wrist strap, ankle straps, mat or other ESD protection system.Transporting: When transporting the devices from oneassembly area to another, ESD shielded carts and carriers should be used.Electrical ContactXNova COBs are designed with contact pads on their top surface. These pads are clearly marked with + and – polarity. Wires can be soldered to the contact pads for electrical connections or other solderless connector products are available.If wires are being soldered to the COB product, we recommend attaching these wires prior to mounting the devices to a heat sink. Please contact Luminus for specific recommendations on how to solder wires if not familiar with the standard practice. Luminus can also offer design recommendations for jigs to allow easily soldering multiple products in rapid succession.Chemical CompatibilityThe resin material used to form the LES can getter hydrocarbons from the surrounding environment. As a results, certainchemical compounds are not recommended for use with theXNova products. Use of these compounds can cause damage to the light output of the device and may permanently damage the device. Please refer to for a list of the compounds not recommended for use with the XNova COB products.Thermal Interface Material (TIM)Proper thermal management is critical for successful operation of any LED system. Excess operating temperature can reduce the light output of the device. And excessive heating can cause permanent damage to the device. Proper TIM material is acrucial component for effective heat transfer away from the LED during normal operation. Please refer to for specific recommendations for TIM solutions.。
STP20NM60FD中文资料
1/11June 2003STP20NM60FD -STF20NM60DSTW20NM60FDN-CHANNEL 600V -0.26Ω -20A TO-220/TO-220FP/TO-247FDmesh™POWER MOSFET (with FAST DIODE)n TYPICAL R DS (on)=0.26Ωn HIGH dv/dt AND AVALANCHE CAPABILITIES n 100%AVALANCHE TESTEDnLOW INPUT CAPACITANCE AND GATE CHARGEn LOW GATE INPUT RESISTANCEnTIGHT PROCESS CONTROL AND HIGH MANUFACTURING YIELDSDESCRIPTIONThe FDmesh™associates all advantages of re-duced on-resistance and fast switching with an in-trinsic fast-recovery body diode.It is therefore strongly recommended for bridge topologies,in par-ticular ZVS phase-shift converters.APPLICATIONS n ZVS PHASE-SHIFT FULL BRIDGECONVERTERS FOR SMPS AND WELDING EQUIPMENTORDERING INFORMATIONTYPE V DSS R DS(on)I D Pw STP20NM60FD STF20NM60D STW20NM60FD600V 600V 600V<0.29 Ω<0.29 Ω<0.29 Ω20A 20A 20A192W 45W 214WSALES TYPE MARKING PACKAGE PACKAGINGSTP20NM60FD P20NM60FD TO-220TUBE STF20NM60D F20NM60D TO-220FP TUBE STW20NM60FDW20NM60FDTO-247TUBESTP20NM60FD -STF20NM60D -STW20NM60FD2/11ABSOLUTE MAXIMUM RATINGS( )Pulse width limited by safe operating area(1)I SD ≤ 20A,di/dt ≤ 400A/µs,V DD ≤V (BR)DSS ,T j ≤T JMAX.(*)Limited only by maximum temperature allowedTHERMAL DATAAVALANCHE CHARACTERISTICSSymbol ParameterValueUnit STP20NM60FDSTF20NM60DSTW20NM60FDV DS Drain-source Voltage (V GS =0)600V V DGR Drain-gate Voltage (R GS =20k Ω)600V V GS Gate-source Voltage±30VI D Drain Current (continuous)at T C =25°C 2020(*)20A I D Drain Current (continuous)at T C =100°C 12.612.6(*)12.6A I DM ( )Drain Current (pulsed)8080(*)80A P TOT Total Dissipation at T C =25°C 19245214W Derating Factor1.200.36 1.42W/°C dv/dt (1)Peak Diode Recovery voltage slope 20V/ns V ISO Insulation Withstand Voltage (DC)-2500-V T j T stgOperating Junction Temperature Storage Temperature–65to 150°C °CTO-220TO-220FPTO-247Rthj-case Thermal Resistance Junction-case Max 0.652.80.585°C/W Rthj-ambThermal Resistance Junction-ambient Max62.530°C/W T lMaximum Lead Temperature For Soldering Purpose300°CSymbol ParameterMax ValueUnit I AR Avalanche Current,Repetitive or Not-Repetitive (pulse width limited by T j max)10A E ASSingle Pulse Avalanche Energy(starting T j =25°C,I D =I AR ,V DD =35V)700mJ3/11STP20NM60FD -STF20NM60D -STW20NM60FDELECTRICAL CHARACTERISTICS (T CASE =25°C UNLESS OTHERWISE SPECIFIED)ON/OFFDYNAMICSWITCHING ONSWITCHING OFFSOURCE DRAIN DIODENote: 1.Pulsed:Pulse duration =300µs,duty cycle 1.5%.2.Pulse width limited by safe operating area.3.C oss eq.is defined as a constant equivalent capacitance giving the same charging time as C oss when V DS increases from 0to 80%Symbol ParameterTest ConditionsMin.Typ.Max.Unit V (BR)DSS Drain-sourceBreakdown Voltage I D =250µA,V GS =0600V I DSS Zero Gate VoltageDrain Current (V GS =0)V DS =Max RatingV DS =Max Rating,T C =125°C 110µA µA I GSS Gate-body Leakage Current (V DS =0)V GS =±30V±100µA V GS(th)Gate Threshold Voltage V DS =V GS ,I D =250µA 345V R DS(on)Static Drain-source On ResistanceV GS =10V,I D =10A0.260.29ΩSymbol ParameterTest ConditionsMin.Typ.Max.Unit g fs (1)Forward Transconductance V DS >I D(on)x R DS(on)max,I D =10A9S C iss C oss C rss Input Capacitance Output Capacitance Reverse Transfer Capacitance V DS =25V,f =1MHz,V GS =0131058030pF pF pF C oss eq.(3)Equivalent Output CapacitanceV GS =0V,V DS =0V to 480V 190pF R GGate Input Resistancef=1MHz Gate DC Bias =0Test Signal Level =20mV Open Drain2.7ΩSymbol ParameterTest ConditionsMin.Typ.Max.Unit t d(on)t r Turn-on Delay Time Rise TimeV DD =300V,I D =10A R G =4.7ΩV GS =10V(Resistive Load see,Figure 3)2512ns ns Q g Q gs Q gdTotal Gate Charge Gate-Source Charge Gate-Drain ChargeV DD =480V,I D =20A,V GS =10V37101752nC nC nCSymbol ParameterTest ConditionsMin.Typ.Max.Unit t r(Voff)t f t cOff-voltage Rise Time Fall TimeCross-over TimeV DD =480V,I D =20A,R G =4.7Ω,V GS =10V(Inductive Load see,Figure 5)82230ns ns nsSymbol ParameterTest ConditionsMin.Typ.Max.Unit I SD I SDM (2)Source-drain CurrentSource-drain Current (pulsed)2080A A V SD (1)Forward On Voltage I SD =20A,V GS =0 1.5V t rr Q rr I RRMReverse Recovery Time Reverse Recovery Charge Reverse Recovery CurrentI SD =20A,di/dt =100A/µs,V DD =60V,T j =150°C (see test circuit,Figure 5)3402.817ns µC ASTP20NM60FD -STF20NM60D -STW20NM60FD4/115/11STP20NM60FD -STF20NM60D -STW20NM60FDSTP20NM60FD -STF20NM60D -STW20NM60FD6/11Source-drain Diode ForwardCharacteristics7/11STP20NM60FD -STF20NM60D -STW20NM60FDFig.5:Test Circuit For Inductive Load Switching And Diode Recovery TimesFig.4:Gate Charge test CircuitFig.2:Unclamped Inductive WaveformFig.1:Unclamped Inductive Load TestCircuitFig.3:Switching Times Test Circuit For ResistiveLoadSTP20NM60FD-STF20NM60D-STW20NM60FD8/11STP20NM60FD-STF20NM60D-STW20NM60FD9/11STP20NM60FD-STF20NM60D-STW20NM60FD10/11元器件交易网STP20NM60FD-STF20NM60D-STW20NM60FD Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for theconsequences of use of such information nor for any infringement of patents or other rights of third parties which may result fromits use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specificationsmentioned in this publication are subject to change without notice. This publication supersedes and replaces all informationpreviously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices orsystems without express written approval of STMicroelectronics.© The ST logo is a registered trademark of STMicroelectronics© 2003 STMicroelectronics - Printed in Italy - All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - MoroccoSingapore - Spain - Sweden - Switzerland - United Kingdom - United States.© 11/11。
SMC滑台气缸MXS6-20参考资料
产品名称:SMC滑台气缸MXS6-20参考资料
气动是利用撞击作用或转动作用产生的空气压力使其运动或作功,气动就是以压缩空气为动力源,带动机械完成伸缩或旋转动作。
因为是利用空气具有压缩性的特点,吸入空气压缩储存,空气便像弹簧一样具有了弹力,然后用控制元件控制其方向,带动执行元件的旋转与伸缩。
从大气中吸入多少空气就会排出多少到大气中,不会产生任何化学反应,也不会消耗污染空气的任何成分,另外气体的粘性较液体要小,所以说流动速度快,也很环保。
SUP65P06-20中文资料
80 g fs – Transconductance (S)
TC = –55_C r DS(on)– On-Resistance ( W )
0.025
25_C 60 125_C 40
0.020
VGS = 10 V
0.015 VGS = 20 V 0.010
20
0.005
0 0 20 40 60 80 100
Ciss
16
VDS = 30 V ID = 65 A
4000
12
3000
8
2000 Coss
1000
Crss
4
0 0 10 20 30 40 50 60
0 0 25 50 75 100 125 150 175
VDS – Drain-to-Source Voltage (V)
Qg – Total Gate Charge (nC)
TO-263
G DRAIN connected to TAB
G D S Top View SUP65P06-20
G
D S D
Top View SUB65P06-20 P-Channel MOSFET
ABSOLUTE MAXIMUM RATINGS (TC = 25_C UNLESS OTHERWISE NOTED)
元器件交易网
SUP/SUB65P06-20
Vishay Siliconix
P-Channel 60-V (D-S), 175_C MOSFET
PRODUCT SUMMARY
V(BR)DSS (V)
–60
rDS(on) (W)
0.020
ID (A)
–65a
TO-220AB
MB87P2020中文资料
Page 2
元器件交易网
Table of Contents
Table of Contents
PART A - Lavender and Jasmine Overview
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
PART B - Functional Descriptions B-1 Clock Unit (CU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.1 Application overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Jasmine/Lavender Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 APLL Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
FX20KMJ-06中文资料
103
7 5 4 3 2
SWITCHING TIME (ns)
Tch = 25°C f = 1MHZ VGS = 0V Coss
102
7 5 4 3 2
tf
tr td(on) Tch = 25°C VGS = –10V VDD = –30V RGEN = RGS = 50Ω –2 –3 –4–5 –7 –101 –2 –3 –4–5
ON-STATE VOLTAGE VS. GATE-SOURCE VOLTAGE (TYPICAL) –10
Tc = 25°C Pulse Test
DRAIN-SOURCE ON-STATE RESISTANCE rDS (ON) (mΩ)
DRAIN-SOURCE ON-STATE VOLTAGE VDS (ON) (V)
VDD = –30V, ID = –10A, VGS = –10V, RGEN = RGS = 50Ω
IS = –10A, VGS = 0V Channel to case IS = –20A, dis/dt = 100A/µs
PERFORMANCE CURVES
POWER DISSIPATION DERATING CURVE 50 POWER DISSIPATION PD (W) DRAIN CURRENT ID (A) MAXIMUM SAFE OPERATING AREA
–2
–102 40
–7 –5 –3 –2 tw = 10µs 100µs 1ms TC = 25°C Single Pulse 10ms
30
–101
–7 –5 –3 –2
20
10
–100
–7 –5
0
0
PM20CJ060模块和SA4828的接口
1前言智能化全数字式专用变频器的设计(1)考为了提高变频器的工作可靠性和控制精度,采用智能化数字化设计,同时也结合小型化的特点,主功率器件采用智能功率模块(IPM)PM20CSJ060。
输入为单相220V交流,经单相全桥整流器整流后供给智能功率模块,输出为三相220V交流,接0.5kW三相异步电动机(改为△接法)。
(2)采用8位单片机51作为系统CPU用来管理系统,它具有运算速度快,精度高,指令功能强等特点。
并带有A/D转换器,可以完成模拟量和数字量信号的检测。
控制运算及数据处理,保护功能的逻辑判断,给PWM产生电路SA4828送设定和控制数据,以及管理键盘和数码显示等功能。
(3)SPWM波发生器采用英国MITEL公司的增强型运动控制大规模集成电路SA4828。
该芯片作为一种独立于微处理器的外设形式工作,但它可以受控于任何类型的微处理器而几乎不需要附加任何逻辑电路。
管脚的配置使其能适用于大部分总线格式,包括复用的地址/数据总线格式和RD/WR或R/W 控制模式。
由于仅在改变运行状态时需要微处理器的介入,因此工作时芯片几乎不占用CPU的资源。
SA4828采用全数字化操作,载波频率可达24kHz。
内部ROM中存有三种可选的输出电源波形,谐波抑制技术可减少功率器件的损耗。
16位频率控制精度,三个独立的幅值寄存器可进行三相不平衡补偿。
利用SA4828设计的变频器硬件结构图如图1所示。
3SA4828的功能特点及工作原理3.1SA4828管脚图及管脚功能说明SA4828管脚图如图2所示。
管脚功能说明见表1。
3.2SA4828内部结构框图及工作原理图1采用SA4828的变频器硬件结构框图图2SA4828管脚图图3为SA4828的内部结构框图,从图中可以看到SA4828主要由三部分构成:(1)接收并存储微处理器命令(控制字)的部分,它主要由总线控制、总线译码、暂存器R0、R1…R5,虚拟寄存器R14、R15及32位初始化寄存器和48位控制寄存器构成;(2)从波形ROMS读取调制波形的部分,它由地址发生器和波形解压缩缓冲器构成;(3)三相输出控制电路及输出脉冲锁存电路,每相输出控制电路又由脉冲删除电路和脉冲延迟电路组成。
EMS22P30-M25-LS6中文资料(bourns)中文数据手册「EasyDatasheet - 矽搜」
电气特性
解析度................................................................................................................................................................................................................ 1024国 绝缘电阻(500 VDC) ......................................................................................................................................................................1,000兆欧 电气行程........................................................................................................................................................................................................续 电源电压........................................................................................................................................................................5.0 VDC±10%,3.3 VDC±10% 电源电流.................................................................................................................................................................................................20 mA(最大值)
M62241资料
SINGLE CHIP BATTERY CHARGER CONTROL ICThe M62241FP is designed as 1chip Integrated Circuit for controlling battery charger. This IC contains analog circuits needed for controlling charge, and time-sequential-control logic circuits. This IC has various functions such as not only charge-controlling but also battery temperature detection, protection against over-current / over-voltage, and safety timer. The combination with some parts gives a charge circuit for Lithium -ionbattery easily.ApplicationFEATUREVCR with camera, cellular phone, battery charger for general electronic equipments.PIN configuration (Top view)Outline 24P2Q-A123456789101112VCC VDET GND PC BP BN VBOUT TH CHGSW THS IDET ADJ0PGNDCC RC ADJ1ADJ2ADJ3DCJK CHGLED REFINREFOUT VBIN 131415161819202122232417Designed to operate at as low as 4V CR oscillation circuit for internal logicTerminating timer for preventing overcharge 30min. indicating timerMain output switch drive circuitLED drive circuit (1 system)to indicate charging status System reset circuit for detecting the lowering of supply voltageTemperature detection for Lithium-ion batteryVoltage/current control for feedback to the primary side of switching regulatorVarious protections such as overvoltage detection at charging, overcurrent detection at adaptor connectionDESCRIPTIONSINGLE CHIP BATTERY CHARGER CONTROL IC DESCRIPTION OF TERMINALSSINGLE CHIP BATTERY CHARGER CONTROL ICFUNCTION OUTLINETHERMAL DERATING (MAXIMUM RATING)0501001504001000140025751252006001200OPERATING TEMPERATURE Topr(°C)8001)Adapter voltage control2)Lithium Constant current/voltage charge control 3)Battery connect detection4)Battery temperature detection 5)Battery voltage detection 6)Charge current detection 7)LED Indication 8)Timer9)Adapter mode changeAbsolute Maximum RatingsParameterSupply voltage Operating temperature Storage temperaturePower dissipation Thermal derating CHGSW pin drive currentCHGSW pin low output voltage(Iol=30mA)LED pin driving currentLED pin low output voltage(Iol=10mA)PC pin driving currentPC pin low output voltage(Iol=10.0mA)CHG pin driving currentCHG pin low output voltage(Iol=1.0mA)Input pin input voltage rangeEndurable voltage of open output interception REFOUT pin output voltageREFOUT pin output current(Vrefout=3.1V)REFOUT input/output voltage gapFunction Supply voltage range Symbol Vccm x Pd Topr Tstg Ktheta Idchgsw Vlchgsw Idled Vlled Idpc Vlpc Idchg Vlchg Vin Voc Vrefout Irefout VdrefoutVcc Ratings Unit -20 to +75-40 to +125V mW °C °C 16.0mW/°C 1200-12.0mA V mA mA mA V V V mA VV V V 50.00.620.00.620.00.61.00.60 to Vcc Vcc 1.3 to 3.12.00.94.0 to 15.0V (Ta=25°C,unless otherwise noted)SINGLE CHIP BATTERY CHARGER CONTROL ICELECTRICAL CHARACTERISTICS(Vcc=9.0V, Vrefout=2.783V,Ta=25°C)SINGLE CHIP BATTERY CHARGER CONTROL IC FUNCTIONAL DESCRIPTION<Each voltages written in following are set in standard application circuit.>1. Adapter Constant Voltage ControlVDET pin supplies this block with voltage to control voltages of both adapter and protectionduring charge.Control reference voltage ,applied by REFOUT pin , is constant.Output voltage is generated from dividing the adapter voltage by external two resistorsconnected to VDET pin and the modification of the dividing ratio of these resistors by CHG pinchanges the voltage of Adapter/Charge.2. Charge Constant Current Control blockIDET pin supplies this block with voltage to control constant current during charge and iscontrolled directly by the voltage of 0.1Ωresistance ,connected to low side,for the currentdetection.Control referential voltage is set by ratio between external two resistors connected toREFOUT pin.Buttery temperature detection control performs switching quick and trickle byselecting ADJ pin as follows:.Quick charge: ADJ1pinTrickle charge: ADJ2pinAdapter constant voltage control ,written in 1 clause, is capable of invalidating this control.3. Charge constant voltage control blockVBIN pin supplies this block with voltage to control constant voltage during charging.Output voltage of VBOUT pin,gained differentially from battery voltage,supplies to VBIN pin.Control referential voltage ,applied from REFOUT pin, is constant.4. Charge SW driving Circuit control blockThis block controls SW pin,driving transistor for charging SW.Charge off : SW=OPENCharge on : SW=L5. Battery voltage differential gain blockBattery voltage input from B+/B- pin directly and outputs to VBOUT pin after differential gained.The gain of Amplifier is 1/3VBOUT=1/3(VB+ - VB-)Input of OPAmp for differential gain or feedback resistance depends on external circuit element.6. Output current & voltage Amplifier blockThe voltage between GND and IDET pin is available to several detector after amplified.The gain of this amplifier is 13.The Gain Range:0 to 2A(Input voltage 0 to 0.2V) ->0.2 to 2.6VSINGLE CHIP BATTERY CHARGER CONTROL IC7. Detection of battery connection /battery temperatureThis block detects the battery connection and the battery temperature by the input voltage dividing between thermistor inside battery package and resistances outside REFIN pin.Each referential voltage for detection is set by dividing REFOUT pin voltage by inside resistances.The dividing circuits are grounded to THS pin connected directly to - terminal of batteryto prevent input voltage of TH pin from changing by the current of external circuit.<1> Battery connection detectionThe battery connection is recognized in case the resistance of the thermistor connected toTH pin is less than the following:Thermistor resistance(Rth): less than approximately 100kΩDetecting timing is as follows:60msec * 2 times =120msec(Foc=3.41KHz)<2> Battery temperature detectionThis block controls to switch charging after detecting the battery temperature by the dividingratio between resistance pulled up and thermistors.Detecting timing is as follows:60msec * 2 times =120msec(Foc=3.41KHz)For further details,read the 20 clause.8. Over discharge detection blockIn case the voltage majored before starting to charge is less than the detection voltage,the overdischarge mode is taken over before waiting.It continues to wait until the battery charges fromexternal circuit and the charge mode is taken over after the voltage becomes more than the detection voltage.The differential gain output voltage of the battery is majored at this block.The referential voltage for detecting is set by the dividing ratio between resistors connected to theREFOUT pin.The Over Discharge detection voltage (V Blow) is 4.0V.This detection is disregarded during charging.The detection timing is as follows:300msec *4 times = 1.2sec. (foc=3.41kHz)9.Over Voltage detection blockNG mode is taken over ,in case the voltage majored before starting to charge is more than thefollowing voltage.The referential voltage for detecting is REFOUT output voltage.The over detection voltage(Vbhigh) is VREFOUT.This detection is disregarded during charging.The detection timing is as follows:300msec *4 times = 1.2sec. (foc=3.41kHz)10 The charge completion detection blockThe charge completion mode is taken over in case the charge current in charge mode is less than the detection current.This detection depends on the gained current output.The referential voltage for detection is set by the dividing ratio between resistors connected to ADJ3 pin.This detection is discharged except during charging.The detection timings is as follows:600msec *8 times = 4.8sec. (foc=3.41kHz)SINGLE CHIP BATTERY CHARGER CONTROL IC11.The Adapter Over Current modeThe Unusual mode is taken over in case the current majored in the adapter mode is less thanthe detection current.The referential voltage for the detection is set by the dividing ratio between the resistorsconnected to ADJ0 pin.The detection is disregarded except in adapter mode.Detection timing is as follows:3.0sec *4 times = 12sec. (foc=3.41kHz)12. LED Driving blockThis block controls LED driving pin by each mode.Adapter mode: offNo Battery Connection mode: offCharge mode: During Display Timer counting ~~~on/offAfter Display Timer counting ~~~onOver Discharge mode: on/offTemperature Protection mode: on/offCharge Completion mode: offCharge NG mode: offUnusual mode: off*LED on/off timing is 1/1.5Hz(0.9sec. on/0.6sec. off) respectively.13. The regulated referential power supply blockThe charge of output REFOUT pin voltage depends on inside bandgap voltage as the reference and the gained voltage of the changeable resistance connected to REFOUT pin.This block uses REFOUT output voltage as reference and controls the charge constant voltageand every reference both inside and outside.REFOUT typical voltage : 1/3 of the battery charge constant voltage14. Adapter detection blockThe Adapter connection input switches the mode as follows:OPEN(H) detection : Adapter connectionGND(L)detection : No Adapter connectionThe detection timing is as follows:12msec. * 2times = 24msec(Foc=3.41KHz)15. Adapter mode control blockThe detection of adapter connection changes all modes except unusual mode into adapter mode.The Next mode after adapter mode depends on the previous mode.Previous mode->Next modeNo connection->No connectionCharge->Charge(after initialization)Over discharge->Charge(after initialization)Temperature Protection->Charge(after initialization)Charge Completion->Charge CompletionCharge NG->Charge NG*The detection of No battery connecting during Adapter mode disregards the previous modeand takes over No battery mode.SINGLE CHIP BATTERY CHARGER CONTROL IC16. PC driving blockThe control to the PC pin,for driving Photo Coupler, depends on each control of Adapter constant voltage,Charge constant current and Charge constant voltage. Vcc side : Photo Coupler off, output voltage rising GND side : Photo Coupler on, output voltage falling 17.PC short control blockThe Unusual mode is taken over in case the over current is detected during the Adapter mode.This block is capable of fixing PC output into Vcc side and shutting down the primary power supply current. All input and detection are disregarded in the Unusual mode. Only reset is capable of returning from Unusual mode.18.AC check detection blockAC Power off is recognized and Adapter mode is taken over, in case the PC pin voltage continues more than the following voltage in cert ain period:AC check voltage (Vacchk: Vcc-0.8V)The detection timing is as follows:60 msec. * 16times=960msec.(Foc=3.41KHz)19. Timer Block(1) Waiting timer after battery connectionThis block pauses for following period from the battery connection detection to starting charge ,so that every input is decided.Waiting time : approximately 3.2 sec(Foc=3.41KHz)(2) Display TimerCounting the following time after starting to charge switches display from on/off to on.Display timer : 30 minutes (Foc=3.41 KHz)In trickle charge mode,this timer pauses to count. This timer resets counting to initialize before charge restarting,in case the charge as counting or pausing stops because of the charge to the adapter mode or the temperature protection mode.Example of Display Timer<1>In case charging starts in quick mode,Charging|Quick Counting 30min on/offCharge CompletionCounting EndCharging|on/off Charge Completion Counting end Mode Change<2> In case quick mode starts ,then trickle mode is taken over after counting is end,Charge Completion Charging|Quick Counting of f on/off<3> In case charging starts in trickle mode,SINGLE CHIP BATTERY CHARGER CONTROL ICCharging |Quick Counting Mode Change Trickle of Mode Change Quick Counting(remaining time)Counting End Charge Completion on/off on/off Charging |Trickle of fMode Change Counting EndCharge Completionon/off Quick Counting 30minon/offCharge CompletionCharging |on/off Quick Counting Charge Completion Charging |on/off Quick Counting of <4> In case it returns quick mode after charging starts in trickle mode,<5> In case quick mode starts, then trickle mode is taken over and then quick mode restarts,<6> In case quick mode starts,and then charging completes before counter is end,<7> In case trickle mode starts,and then charging completes before counter is end,(3) Charge TimerCharge NG mode is taken over after counting the following time after charge starts.Charge timer : 1800 min.(Foc=3.41KHz)Stop of the display timer makes the charge timer stop because the display timer sources clock to charge timer as following figure.(In trickle mode,counting is pausing)This timer resets counting to initialize before charge restarting,in case the charge ascounting or pausing stops because of the change to the adapter mode or the temperature protection mode.20. Control by temperature during charging<1> Variety of controla . Charge current switch by battery temperature.The battery temperature majored before or during charge switches the charge current to quick or trickle.b . Unusual temperature detectionThe unusual temperature detection (overheat or super cooling) makes charging stop and move Temperature protection mode.c . No battery unplugging detectionNo battery plugging detection during charging makes charging stop and move no battery connection mode.|Trickle Pause Initializing reset| |Source ClockSWDisplay Timer Charge TimerSINGLE CHIP BATTERY CHARGER CONTROL IC<2> Each control detailsEach temperature controls have hysteresis.a . Function after the initialization Immediately battery connectionless than -2°C : Temperature Protection mode(low temperature) -2°C to 13°C : Trickle Charge mode(low temperature) 13°C to 55°C : Quick Charge mode55°C to 60°C : Trickle Charge mode(High temperature)more than 60°C : Temperature Protection mode(high temperature)b. Function after the Temperature Protection mode(low temperature) more than -2°C : Trickle Charge mode(low temperature) *Charging starts after the initialization.c.Function after Trickle Charge mode(low temperature) less than -5°C : Temperature Protection mode more than 13°C : Quick Charge moded.Function after Quick Charge modeless than 10°C : Trickle Charge mode(low temperature) more than 55°C : Trickle Charge mode(high temperature)e.Function after Trickle Charge mode(high temperature) less than 50°C : Quick Charge modemore than 60°C : Trickle Charge mode(high temperature)f.Function after Temperature Protection mode(high temperature) less than 55°C : Trickle Charge mode(high temperature) *Charging starts after the initialization.g.Function after all modeless than -28°C : no battery connection mode<3>Control Diagram<4> Thermistor Resistance in each threshold level-28°C : 100K Ω -5°C : 33.9K Ω -2°C : 29.7K Ω 10°C : 18.0K Ω 13°C : 15.9K Ω 50°C : 4.2K Ω 55°C : 3.5K Ω 60°C : 3.0K Ω*Resistance for dividing with thermistor is 10K ΩProtectionQuick TrickleSINGLE CHIP BATTERY CHARGER CONTROL ICFlow chart(1)Totalporesetadapter ResetCharge from initializationAll timer reset Over voltageOver dischargeLED on/offWait TimerQuick charge Wait Timer CountingResetACoffAdapter mode No Battery Connectionmode NG modewaiting modeTrickle charge AC offReturn from Adapter modeNo Battery Connection modeAdapter modeTemperature Protection modeporesetAC power connectionResetAC offL.T. 3.2s.ov er 3.2s"H""L"DCJK connectingNoY esDCJK no connectingNoY esVB<4.0VVB ≥4.0VY esNoDCJK connectingY esNoDCJK no connectingRising :T<-2°C or T>60°C Falling :T<-5°C or T>55°CRising :13°C<T<55°C Falling :10°C<T<50°CRising :-2°C<T<13°C or 55°C<T<60°C Falling :-5°C<T<10°C or 50°C<T<55°C"H""L"NoY esAC power connectionBattery ConnectionTemperature CheckSTART Return fromTemperature protection waiting modeRising :-2°C<T<60°C Falling :-5°C<T<55°CTemperature CheckBattery ConnectionAdapterSINGLE CHIP BATTERY CHARGER CONTROL ICQuick ChargeLED until 30minutes on/off over 30 minutes on(L)SW on("L")VCC Vchg PC "L"CCOFF "H"CLOCK work WAIT TIMER work Desplay/Charge Timer work Charge Current adj1ADPCHGSW"L"(2)Quick chargeporesetAC power ConnectionAdapter ConnectionCharging CompletionAdapter modeAC offResetBattery ConnectionTemperatureTemperature Protection mode No Battery Connection modeTrickle Charge mode 30hr. timer30min. timerLED on/off LED onTimer CountsCharge NG modeCharging CompletionmodeL.T. 30hrov er 30hr"H""L"DCJK connectingNoY esDCJK no connectingNoY esL.T. 30minov er 30minY esSTARTRising :-2°C<T<13°C or 55°C<T<60°C Falling :-5°C<T<10°C or 50°C<T<55°CRising :-2°C<T<60°C Falling :-5°C<T<55°CSINGLE CHIP BATTERY CHARGER CONTROL ICTrick le ChargeLED on/off on("L")*SW on("L")VCC Vchg PC"L"CCOFF"H"CLOCKwork WAIT Timerwork Desplay/Charge Timer stop Charge Current adj2ADPCHGSW"L"*In case trickle mode is taken after 30min. in quick mode, LED continues "on".(3)Trickle ChargeSTARTporesetAC power ConnectionAdapter ConnectionAdapter modeACoffResetTemperature Protection mode Quick ChargemodeLED on/offCharge CompletionmodeNo Battery Connection mode30minTimerLED onTimer Stop"H""L"DCJK connectingNoY esDCJK no connectingNoY esY esov er 30minL.T. 30minporesetAC power ConnectionAdapter ConnectionBattery ConnectionNo Battery Connection modeAdapter modeACoffReset"H""L"DCJKConnectingNoY esDCJKno connectingNoY es(4)Charge Completion modeCharge Completion LED off("H")SWoff("H")VCC Vadapt PC "L"CCOFF "L"CLOCKwork Wait TimerReset Display/Charge Timer Reset ADPCHGSW"H"STARTRising :T<-2°C or T>60°C Falling :T<-5°C or T>55°C Rising :13°C<T<55°C Falling :10°C<T<50°CCharge CompletionTemperatureBattery ConnectionSINGLE CHIP BATTERY CHARGER CONTROL IC(5)Charge NG mode(6)Adapter modeNG LED off("H")SW off("H")VCC Vadapt PC "L"CCOFF "L"CLOCKwork Wait TimerReset Display/Charge Timer Reset ADPCHGSW"H"Adapter LED off("H")SW off("H")VCC Vadapt PC "L"CCOFF "L"CLOCK work Wait TimerReset Display/Charge Timer Reset ADPCHGSW"H"poresetAC power ConnectionAdapter ConnectionBattery ConnectionNo Battery Connection modeAdapter modeAC offReset"H""L"DCJKConnectingNoY esDCJKno connectingNoY esSTARTNG * Next mode depends on the prev ious mode and the input during Adapter mode.poresetACPower ConnectionAdapter ConnectionOver CurrentResetAC offReturn *Unusual modeBattery ConnectionPrevious modeResetResetCompletion "H""L"DCJK ConnectingNoY esDCJK No-connectingY esNoNoYesNGNoCompletionotherY esSTARTBattery ConnectionPrevious modeSINGLE CHIP BATTERY CHARGER CONTROL IC(7) Unusual mode(8) AC off(9)Temperature Protection modeUnusual LEDoff("H")SW off("H")VCC Vadapt PC"H"CCOFF "L"CLOCK work Wait TimerReset Display/Charge Timer Reset ADPCHGSW"H"AC off LED off("H")SW off("H")VCC Vadapt PC"H"CCOFF "L"CLOCK stop Wait TimerReset Display/Charge Timer Reset ADPCHGSW"H"Temperature Protection LED on/off SW off("H")VCC Vadapt PC "L"CCOFF "L"CLOCK work Wait TimerReset Display/Charge Timer Reset ADPCHGSW"H"Reset"H""L"STARTporesetporesetAC Power ConnectionReset"H""L"Y esNoSTARTNo Battery Connection mode Adapter modeAC offResetLED on/offCharge From the start"H""L"DCJKConnectingNoY esDCJKno connectingNoY esSTARTRising :T<-2°C or T>60°C Falling :T<-5°C or T>55°CRising :-2°C<T<60°C Falling :-5°C<T<55°CporesetAC Power ConnectionAdapter ConnectionBattery ConnectionTemperatureCheckSINGLE CHIP BATTERY CHARGER CONTROL IC(10) Waiting mode(Discharge)Waiting LED on/off SW off("H")VCC Vadapt PC "L"CCOFF "L"CLOCK work Wait TimerReset Display/Charge Timer Reset ADPCHGSW"H"No Battery Connection modeAdapter modeAC offResetLED on/offCharge From the first"H""L"DCJKConnectingNoY esDCJKno ConnectingNoY esOKDischarge VB<4.0vVB ≥4.0vSTARTporesetAC Power ConnectionAdapter ConnectionBattery ConnectionBattery VoltageSINGLE CHIP BATTERY CHARGER CONTROL ICM62241FP Mode ListM62241FP Battery temperature and function relationships*------LED on/off until 30minutes , LED on after 30minutes**------LED is on in case trickle mode is taken over after 30 minutes of quick charge Stop------In case detector is reset or Input is fixeddisregard(work)------In case detection is discharged except that the function is working.SINGLE CHIP BATTERY CHARGER CONTROL ICEQUIVALENT CIRCUITcapacitor :FUnit resistance:Ω。
Festo CPX-AP-A-PN-M12 产品说明书
优先启动 (Fast Start-Up) 优先启动 (Fast Start-Up) 功能用于确保快速启动 CPX-AP-A 自动化系统。
使用优先启动 (Fast Start-Up) 功能时,Crossover 识别功能 (Auto-MDI/MDI-X) 须已禁用。
可在 Festo 的技术支持网页上找到设备说明文件 è /sp。
识别 & 维护 (I&M) Identification & Maintenance (I&M) 功能可用作为接口的电子铭牌,不受制造商限制且通过网 络统一获取设备相关的信息。 PROFIenergy 本产品支持能源管理协议 PROFIenergy。因此,可以有针对性地关闭不必要的负载设备,从而降 低能源消耗。 Crossover 识别功能 (Auto-MDI/MDI-X) 本产品支持 Crossover 识别功能 (Auto-MDI/MDI-X),因此可选择使用插接线或者交叉线。
3 其他信息. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 产品概况. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Festo — CPX-AP-A-PN-M12 — 2022-07
3
安全
1 关于本文件
1.1 适用文件
有关产品的所有可用文件 è /sp。
文件名
内容
自动化系统 CPX-AP-A 操作说明书 表格 1: 适用文件
M63022FP资料
max. 13.2 13.2 13.2 7 0.8 1.0 0.4 120
Unit V V V V A A A kHz
MITSUBISHI SEMICONDUCTOR (LSI)
M63022FP
SPINDLE MOTOR AND 5CH ACTUATOR DRIVER
TYPICAL CHARACTERISTICS
PIN CONFIGURATION (TOP VIEW)
SL1IN SL2IN VM2 RSL2 SL2+ SL2GND RSL1 SL1+ 1 2 3 4 5 6 7 8 9 42 OSC 41 MU1 40 LOIN+ 39 VM3 38 BRS 37 LO36 LO+ 35 FO34 FO+ 33 GND 32 TO+ 31 TO30 5VCC 29 GND 28 TOIN 27 FOIN 26 SPIN 25 REF 24 FG 23 HB 22 VM1
ABSOLUTE MAXIMUM RATINGS (Ta=25C, unless otherwise noted)
Symbol 5VCC VM1 VM2 VM3 IoA IoB IoC Vin Pt Kq Tj Topr Tstg Parameter 5V power supply Motor power supply 1 Motor power supply 2 Motor power supply 3 Motor Output Current A Motor Output Current B Motor Output Current C Maximum input voltage of terminals Power dissipation Thermal derating Junction temperature Operating temperature Storage temperature Conditions Focus and Tracking power supply Spindle power supply Slide power supply Loading power supply