因式分解分组分解法解析
因式分解分组分解法讲义
把它旳后两项提成一组,并提出 公因式 b .
从而得到
a(m n) b(m n)
这时候因为 a(m n)与 b(m n) 又有公因式(m n)
于是能够继续提出公因式 (m n) 从而得到:(m n)(a b)
把下列各式分解因式:
(1)20(x+y)+x+y 解:原式 =20(x+y)+(x+y)
=21(x+y) (3)5m(a+b)-a-b
(2)p-q+k(p-q) 解:原式=(p-q)+k(p-q)
=(p-q)(1+k) (4)2m-2n-4x(m-n)
解:原式=5m(a+b)-(a+b) 解:原式=2(m-n)-4x(m-n)
分组分解法
分组后能直接提公因式
1.什么叫做因式分解? 把一种多项式化成几种整式旳积旳形式, 这种式子变形叫做把这个多项式因式分解, 也叫做把这个多项式分解因式。
2.回忆我们已经学过那些分解因式旳措施? 提公因式法,
公式法——平方差公式,完全平方公式
我们看下面这个多项式
am an bm bn
例1把a2-ab+ac-bc分解因式 分析:把这个多项式旳四项按前两项与后
两项提成两组,分别提出公因式a与c后, 另一种因式恰好都是a-b,这么就能够提 出公因式a-b 。
解法一:a2-ab+ac-bc =(a2-ab)+(ac-bc) ——分组 =a(a-b)+c(a-b) ——组内提公因式
=(a-b)(a+c) ——提公因式
分组分解法因式分解
1、计算
(1)(x +1) ( x + 2 ) = x2 + ( 1 + 2 )x + 1×2
(2)(x -1) ( x + 2 )= x2 +[(-1) + 2]x + (-1)×2
(3)(x + a) ( x + b )= x2 + ( a + b )x + a b
②交叉相乘,和相加; 竖分常数交叉验,
③检验确定,横写因式. 横写因式不能乱. 符号规律:
当q>0时,a、b同号,且a、b的符号与p的符号相同;
当q<0时,a、b异号,且绝对值较大的因数与p的符 号相同.
例2 分解因式 3x2-10x+3
解:3x 2-10x+3
x
-3
=(x-3)(3x-1) 3x
= (6x 2+x-5) (12x 2+2x-1 )
解1:原式= (mx+my)-(nx+ny) =m(x+y)-n(x+y) =(x+y)(m-n)
①③,②④两组,得(mx-nx)+(my-ny) 解2:原式= (mx-nx)+(my-ny)
=x(m-n)+y(m-n) = (m-n) (x+y)
注 意
(1)分组时小组内能提公因式要保证组与组 之间还有公因式可以提.
=(x+1)(x+2)
分析:(2)二次项系数为1,常数项6=1×6 =(-1)×(-6) =2×3
=(-2) ×(-3),
一次项系数-7 =(-1)+(-6) ≠2+3 ≠(-2) +(-3)
分组分解法因式分解课件
在分组后,需要对每个组内的项式进行因式分解。常用的因式分解技巧包括提公 因式法、十字相乘法、公式法等。根据不同组内项式的特征,选择合适的因式分 解技巧,并灵活运用,以获得最佳的分解结果。
问题三:如何确定分组分解法的正确性?
总结词
确定分组分解法的正确性是确保因式分解结果准确无误的重要步骤。
详细描述
03
原理概述
分组分解法是一种将多项 式分组,然后对每组进行 因式分解的方法。
分组依据
分组依据是多项式的项数 和各项系数的特征,通常 是将系数相近或具有某种 关系的项分为一组。
分解步骤
分组后,对每组进行因式 分解,最后将各组的因式 结果组合起来。
原理应用示例
示例1
将多项式$2x^2 + 3x - 5$分组为$(2x^2 - 5) + 3x$,然后 分别对$2x^2 - 5$和$3x$进行因式分解,得到结果$(2x + 5)(x - 1) + 3x = 2x^2 + x - 5$。
特点
分组分解法适用于多项式的因式 分解,尤其在处理复杂的多项式 时具有高效性和实用性。
分组分解法的应用场景
多项式的因式分解
适用于任何可以分组提取公因式的多 项式,如二次、三次、四次多项式等 。
代数方程的求解
数学竞赛和数学教育
分组分解法是数学竞赛和中学数学教 育中的重要内容,用于提高学生的数 学思维和解题能力。
06 分组分解法的总结与展望
总结
定义
分组分解法是一种将多项式分 组并提取公因式进行因式分解
的方法。
适用范围
适用于具有明显分组特征的多 项式,如三项一组、二项一组 等。
步骤
首先观察多项式的项数和系数 特点,然后选择合适的分组方 式,提取公因式进行因式分解 。
分组分解法因式分解
因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。
这种分解因式的方法叫做分组分解法。
二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b (3)4x2-9y2-24yz-16z2(4)x3-x2-x+1 分析:首先注意前两项的公因式2x和后两项的公因式-3,此题也可以考虑含有y的项分在一组。
解法1:解法2:说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
这也是分组中必须遵循的规律之一。
(2)分析:若将此题按上题中法2分组将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组,即-b2-4b=-b(b+4),那a(a+4)与-b(b+4)再没有公因式可提,不可再分解下去。
可先将a2-b2一组应用平方差公式,再提出因式。
解:(3)若将此题应用(2)题方法分组将4x2-9y2一组应用平方差公式,或者将4x2-16z2一组应用平方差公式后再没有公因式可提,分组失败。
观察题中特点,后三项符合完全平方公式,将此题二、三、四项分组先用完全平方公式,再用平方差公式完成分解。
解:(4)分析:此题按照系数比为1或者为-1,可以有不同的分组方法。
解法1:解法2:原式=例2、分解因式:(1)m2+n2-2mn+n-m分析:此题还是一个五项式,其中m2-2mn +n2是完全平方公式,且与-m+n=-(m-n)之间有公因式可提取,因而可采用三项、二项分组。
因式分解分组分解法
因式分解分组分解法
因式分解分组分解法是一种求多项式的因式分解的方法。
它的基本思路是将多项式中的项按照某种特定的规则进行分组,使得每一组中的项可以合并成一个公因式,从而简化多项式,方便因式分解。
具体来说,我们可以按照以下几种规则进行分组:
1. 按照指数分组:将多项式中所有指数相同的项放在一起,例如:
$$
3x^2+2x^3-5x^2-7x^3=3x^2-5x^2+2x^3-7x^3=-2x^2-5x^3
$$
2. 按照变量分组:将多项式中所有含有相同变量的项放在一起,例如:
$$
2x+3xy-4x-2xy=2x-4x+3xy-2xy=-2x+xy
$$
3. 混合分组:将多项式中按照指数和变量来进行分组,例如: $$
2x^2y+3xy^2-4xy-2x^2=2x^2y-2x^2+3xy^2-4xy=2x^2(y-1)+3xy(y-1 )=(2x^2+3xy)(y-1)
$$
通过以上的分组方法,我们可以将多项式中的项进行合并,得到
公因式,从而进行因式分解。
因式分解分组分解法在解题中应用广泛,是学习代数基础的重要内容之一。
初中中考数学因式分解的九种方法解析
初中中考数学因式分解的九种方法解析初中中考数学因式分解的九种方法解析把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
xx小编整理了初中中考数学因式分解的九种方法,希望能帮助到您。
一、运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
二、平方差公式1、式子:a^2-b^2=(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
四、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2 和(a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2=(a+b)^2 和 a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。
2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。
3、当多项式中有公因式时,应该先提出公因式,再用公式分解。
4、完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
5、分解因式,必须分解到每一个多项式因式都不能再分解为止。
五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
因式分解之分组分解法及添拆项法
分组分解法及添拆项法【知识要点】1.分组分解法(1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。
再提公因式,即可达到分解因式的目的,即22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++,这种利用分组来分解因式的方法叫分组分解法。
(2)原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。
(3)有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。
例 把多项式am+bn+an+bm 分解因式。
解法一:原式=(am+an )+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:原式=(am+bm )+(bn+an)=m(a+b)+n(a+b)= (a+b)(m+n)(4)对于四项式,在分解时并不一定“二二”分组,有的需要“一三”分组, 例如:2221xy x y --+,在分组分解时,前三项为一组,最后一项为一组。
2221xy x y --+=2221(2)1()(1)(1)x xy y x y x y x y --+=--=+--+【典型例题】例1 分解因式(1)22x ax y ay --+ (2)432416x x x -+-(3)22244x xy y a -+- (4)27321a b ab a -+-(5)xy y y x x 2)1()1(-++-(6) )()(2222b a cd d c ab +++例2 分组后能直接运用公式的因式分解。
(1)22194m mn n +-+(2)2242x x y y --+例3 添拆项后再分组。
(1)44a +(2)4224a a b b ++(3)51a a ++ (4)1724+-x x(5)22222+++--+y x y x xy y x (6)22412a ax x x -+++例4 已知7,10x y xy +==,求(1)22x y +(2)44x y +的值。
因式分解分组分解法教师版
分组分解法是在提取公因式法、公式法、十字相乘法的基础上学习的最后一种基本的因式分解方法.分组分解法并不是一种独立的因式分解的方法,通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的.我们有目的地将多项式的某些项组成一组,从局部考虑,使每组能够分解,从而达到整个多项式因式分解的目的.如何将多项式am an bm bn+++因式分解?分析:很显然,多项式am an bm bn+++中既没有公因式,也不好用公式法.怎么办呢?由于()am an a m n+=+,()bm bn b m n+=+而:()()()()a m nb m n m n a b+++=++.这样就有:()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.分组分解法知识结构知识精讲内容分析【例1】 因式分解: (1)2a ab ac bc -+-; (2)ax by bx ay --+.【难度】★【答案】(1)()()a c a b +-;(2)()()x y a b +-. 【解析】(1)原式()()()()a a b c a b a c a b =-+-=+-;(2)原式()()()()a x y b x y x y a b =+-+=+-.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【例2】 分解因式:32x bx ax ab +++. 【难度】★【答案】2()()x b x a ++. 【解析】原式2()()x x b a x b =+++2()()x b x a =++.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【例3】 分解因式:32acx bcx adx bd +++. 【难度】★【答案】2()()ax b cx d ++.【解析】原式2()()cx ax b d ax b =+++2()()ax b cx d =++.【点评】考查学生分组分解方法的运用以及提取公因式的能力.例题解析【例4】 分解因式:22abx bxy axy y +--. 【难度】★【答案】()()ax y bx y +-.【解析】原式()()bx ax y y ax y =+-+()()ax y bx y =+-.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【例5】 分解因式:2105ax ay by bx -+-. 【难度】★【答案】(2)(5)a b x y --.【解析】原式2(5)(5)a x y b x y =---(2)(5)a b x y =--.【点评】考查学生分组分解方法的运用以及提取公因式的能力,注意符号的变化.【例6】 因式分解:26694k mn km kn -+-. 【难度】★【答案】(32)(23)k n k m -+.【解析】原式3(23)2(23)k k m n k m =+-+(32)(23)k n k m =-+.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【例7】 分解因式:222332154810ac cx ax c +--. 【难度】★【答案】22(23)(165)c x a c --.【解析】原式222216(23)5(23)a c x c c x =---22(23)(165)c x a c =--.【点评】考查学生分组分解方法的运用以及提取公因式的能力,注意符号的变化.【例8】 分解因式:2222ac bd ad bc +--. 【难度】★★【答案】()()()c d c d a b -+-. 【解析】原式2222()()a c d b d c =-+- 22()()c d a b =--()()()c d c d a b =-+-.【点评】考查学生分组分解方法以及平方差公式的运用,注意分解要彻底.【例9】 分解因式:221x ax x ax a +++--. 【难度】★★【答案】2(1)(1)a x x ++-.【解析】原式2(1)(1)(1)x a x a a =+++-+2(1)(1)a x x =++-.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【例10】 分解因式:4321x x x ++-. 【难度】★★【答案】322(1)(1)(1)(1)x x x x x ++=+-+. 【解析】原式3(1)(1)x x x =+++ 3(1)(1)x x =++(未学过立方和的分解到这一步就可以)22(1)(1)x x x +-+【点评】考查学生分组分解方法的运用以及提取公因式的能力.【例11】 分解因式:22221a b a b --+. 【难度】★★【答案】(1)(1)(1)(1)a a b b -+-+. 【解析】原式22222(1)(1)(1)(1)(1)(1)(1)(1)a b b a b a a b b =---=--=-+-+【点评】考查学生分组分解方法以及平方差公式的运用,注意分解要彻底.【例12】 分解因式:22222a b a b ab ---. 【难度】★★【答案】()()ab a b ab a b --++. 【解析】原式2222222(2)()()()a b a b ab a b a b ab a b ab a b =-++=-+=--++【点评】考查学生分组分解方法以及乘法公式的运用.【例13】 分解因式:2421193n n m mx x y y +-+. 【难度】★★【答案】2211()(1)33n m n m x y x y +-+.【解析】原式2422222211()93111()()()33311()(1)33n m n m n m n m n m n m n m x y x y x y x y x y x y x y =-++=+-++=+-+ 【点评】考查学生分组分解方法以及平方差公式的运用,注意对字母指数的准确理解.【例14】 分解因式:()()x x z y y z +-+. 【难度】★★【答案】()()x y x y z -++.【解析】原式2222()()()x xz y yz x y z x y x y x y z =+--=-+-=-++.【点评】考查学生分组分解方法以及平方差公式的运用,当不能直接分解时,要利用乘法公式展开后再进行分组.【例15】 分解因式:()()2221ab x x a b +++. 【难度】★★【答案】()()ax b bx a ++.【解析】原式222()()()()abx ab a x b x ax bx a b a bx ax b bx a =+++=+++=++. 【点评】考查学生分组分解方法的运用以及提取公因式的能力,注意先拆再重新分组.【例16】 因式分解:()()2232x x x x ++-+. 【难度】★★★【答案】2(2)(1)(1)x x x x +-+-【解析】原式222222()3()2[()2][()1](2)(1)(1)x x x x x x x x x x x x =+-++=+-+-=+-+-. 【点评】考查学生分组分解方法的运用以及十字相乘方法的运用能力,注意先拆再重新分组.【例17】 已知三个连续奇数的平方和为251,求这三个奇数. 【难度】★★★ 【答案】7、9、11.【解析】设三个连续奇数最小的为21(0)k k +≥且k 为整数,则由题意可得: 222(21)(23)(25)251k k k +++++=,即222441412942025251k k k k k k ++++++++=.整理,得:23180k k +-=,即(6)(3)0k k +-=. ∵0k ≥,∴3k =.∴这三个连续奇数为7、9、11.【点评】如何设三个连续奇数是难点,然后完全平方公式的分解化为一元二次方程即可,再利用因式分解的思路求出方程的解.【例18】 已知:111201*********a xb xc x =+=+=+,,, 求:222a b c ab bc ac ++---的值. 【难度】★★★ 【答案】3.【解析】由222a b c ab bc ac ++---,可得:2222222221(222222)21[()()()]2a b c ab bc ac a b c ab bc ac a b b c a c ++---=++---=-+-+-把已知代入,可得:222a b c ab bc ac ++---=1(141)32⨯++=.【点评】主要利用系数乘以2后得到的三组完全平方公式,此类题目具有一般性.【例19】 已知三条线段长分别为a 、b 、c 其中a b c <<,且满足2222a c b ac +<+.证明:以a 、b 、c 为三边能构成三角形. 【难度】★★★ 【答案】见【解析】.【解析】∵2222a c ac b +-<,即22()a c b -<.∴c a b -<,∴c a b <+,又c 最大, 可得以a 、b 、c 为三边能构成三角形.【点评】考查学生对于构成三角形的条件判定,以及运用因式分解求解不等式的能力.【例20】 求方程x y xy -=的整数解. 【难度】★★★【答案】12120202x x y y ==-⎧⎧⎨⎨==⎩⎩,. 【解析】由方程可得1(1)111y x y xy x y y x y y-=-===-+--,,所以, ∵x 、y 均为整数,∴11y -=±,∴12120202x x y y ==-⎧⎧⎨⎨==⎩⎩,. 【点评】本题综合性较强,主要考查利用因式分解求解方程以及如何去求整数解,注意对方法的总结.【习题1】 因式分解: (1)33ac bc a b +++;(2)1xy x y --+、【难度】★【答案】(1)()(3)a b c ++;(2)(1)(1)x y --. 【解析】(1)原式()3()()(3)c a b a b a b c =+++=++; (2)原式(1)(1)(1)(1)x y y x y =---=--.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【习题2】 分解因式:432x x x x +++. 【难度】★【答案】2(1)(1)x x x ++.【解析】原式32(1)(1)(1)(1)x x x x x x x =+++=++.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【习题3】 分解因式:222a ab ac bc +--. 【难度】★【答案】()(2)a c a b -+.【解析】原式()2()()(2)a a c b a c a c a b =-+-=-+.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【习题4】 分解因式:ax ay bx cy cx by -++-- 【难度】★【答案】()()a b c x y +--.【解析】原式()()()()()a x y b x y c y x a b c x y =-+-+-=+--.【点评】考查学生分组分解方法的运用以及提取公因式的能力,注意符号的变化.随堂检测【习题5】 分解因式:27321x y xy x -+-. 【难度】★【答案】(7)(3)x y x +-.【解析】原式7(3)(3)(7)(3)x x y x x y x =---=+-.【点评】考查学生分组分解方法的运用以及提取公因式的能力,注意符号的变化.【习题6】 分解因式:2226923ax a xy xy ay -+-. 【难度】★【答案】(3)(23)ax y x ay +-.【解析】原式3(23)(23)(3)(23)ax x ay y x ay ax y x ay =-+-=+-. 【点评】考查学生分组分解方法的运用以及提取公因式的能力.【习题7】 分解因式:222221x y z x z y z --+. 【难度】★【答案】22(1)(1)y z x z --.【解析】原式22222(1)(1)(1)(1)x z y z y z y z x z =---=--. 【点评】考查学生分组分解方法的运用以及提取公因式的能力.【习题8】 分解因式:3254222x x x x x --++-. 【难度】★★【答案】24(2)(1)x x x -+-.【解析】原式2424(2)(2)(2)(2)(1)x x x x x x x x =---+-=-+-.【点评】考查学生分组分解方法的运用以及提取公因式的能力,注意不要漏项.【习题9】 因式分解:2224x xy y ++-. 【难度】★★【答案】(2)(2)x y x y +-++.【解析】原式2()4(2)(2)x y x y x y =+-=+-++. 【点评】考查学生分组分解方法以及乘法公式的运用.【习题10】 分解因式:2293x x y y ---. 【难度】★★【答案】(3)(31)x y x y +--.【解析】原式229(3)(3)(3)(3)(3)(31)x y x y x y x y x y x y x y =--+=+--+=+--. 【点评】考查学生分组分解方法以及乘法公式的运用.【习题11】 228224x y xy ---. 【难度】★★【答案】2(2)(2)x y x y --++.【解析】原式22[4()]2(2)(2)x y x y x y =-+=--++.【点评】考查学生分组分解方法以及乘法公式的运用,第一步先提取公因式很重要.【习题12】 分解因式:226269x xy x y y --++ 【难度】★★【答案】(3)(32)x y x y ---.【解析】原式222(69)2(3)(3)2(3)(3)(32)x xy y x y x y x y x y x y =-+--=---=---【点评】考查学生分组分解方法以及乘法公式的运用.【习题13】 分解因式:2212x x y ---+.【难度】★★【答案】(1)(1)y x y x --++.【解析】原式2222(12)(1)(1)(1)x x y y x y x y x =-+++=-+=--++.【点评】考查学生分组分解方法以及乘法公式的运用.【习题14】 分解因式:222223a ab b a b ++---.【难度】★★【答案】(3)(1)a b a b +-++.【解析】原式2()2()3(3)(1)a b a b a b a b =+-+-=+-++.【点评】考查学生分组分解方法以及乘法公式的运用.【习题15】 分解因式:()()126x x x ---.【难度】★★【答案】2(2)(3)x x +-.【解析】原式3222326(3)2(3)(2)(3)x x x x x x x x =-+-=-+-=+-.【点评】考查学生分组分解方法的运用,注意先拆再重新分组.【习题16】 分解因式:()()()()2222a b a c c d b d +++-+-+.【难度】★★【答案】2()()a d a b c d -+++.【解析】原式2222()()()()()()()()()(2)()(2)()(2222)2()()a b b d a c c d a b b d a b b d a c c d a c c d a d a b d a d a c d a d a b c d a d a b c d =+-+++-+=+--+++++--+++=-+++-++=-+++=-+++【点评】考查学生分组分解方法以及平方差公式的运用,注意先拆再重新分组,分解一定要彻底.【习题17】 已知:22102510x xy y ++-=,化简:3225x x y x ++.【难度】★★【答案】0或22x .【解析】由22102510x xy y ++-=,可得:2(5)10x y +-=,∴51x y +=±.∵32225(51)x x y x x x y ++=++,∴3225x x y x ++的值为0或22x .【点评】本题主要考查利用因式分解求解方程,以及利用整体代入进行求值的思想.【习题18】 把多项式()242211a a a a a +++++分解因式,所得的结果为( ) A .()221a a +-B .()221a a -+C .()221a a ++D .()221a a -- 【难度】★★★【答案】C【解析】()2423242222222222112221(21)221()2()1(1)a a a a a a a a a a a a a a a a a a a a a +++++=+++++=+++++=++++=++【点评】考查学生分组分解方法的运用,注意先拆再重新分组.【习题19】 因式分解:222816x x y y -+-.【难度】★★★【答案】(4)(42)x y x y -+-.【解析】原式2222211816(1)(14)(114)(114)(4)(42)x x y y x y x y x y x y x y =-+-+-=---=-+---+=-+-【点评】考查学生分组分解方法的运用以及如何添项凑完全平方公式.【习题20】 因式分解:22243x y x y -++-.【难度】★★★【答案】(3)(1)x y x y -++-.【解析】原式222221(44)(1)(2)(12)(12)(3)(1)x x y y x y x y x y x y x y =++--+=+--=+-+++-=-++-【点评】考查学生分组分解方法的运用以及如何添项凑完全平方公式.【习题21】 已知:221a b +=,221c d +=,且0ac bd +=,求ab cd +的值.【难度】★★★【答案】0.【解析】由222222222()202ac bd a c abcd b d abcd a c b d +=++==--,得, 代入2222222222222()2ab cd a b abcd c d a b a c b d c d +=++=--+2222222222()()()()a b c d b c b c a d =---=--,再把221a b +=,221c d +=代入,可得:22222222222()()(11)()()b c a d a d a d a d --=--+-=--,∴2222()()ab cd a d +=--,∴2222()()0ab cd a d ++-=,可得0ab cd +=.【点评】本题综合性较强,主要考查学生如何通过代数式等式,利用完全平方公式和因式分解以及非负性求解代数式的值.【作业1】 因式分解:(1)a ax b bx --+;(2)2xy y yz xz --+. 【难度】★【答案】(1)()(1)a b x --;(2)()()x y y z -+.【解析】(1)原式()()()(1)a b x a b a b x =---=--;(2)原式()()()()y x y z y x x y y z =---=-+.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【作业2】 分解因式:4333x x y xz yz +++.【难度】★【答案】33()()x z x y ++.【解析】原式3333()()()()x x y z x y x z x y =+++=++.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【作业3】 分解因式:325153x x x --+.【难度】★【答案】2(51)(3)x x --.【解析】原式225(3)(3)(51)(3)x x x x x =---=--.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【作业4】 分解因式:251539a m am abm bm -+-.【难度】★【答案】(53)(3)m a b a +-.【解析】原式5(3)3(3)(53)(3)am a bm a m a b a =-+-=+-.【点评】考查学生分组分解方法的运用以及提取公因式的能力.课后作业【作业5】 分解因式:54321x x x x x +++++.【难度】★★【答案】42(1)(1)x x x +++.【解析】原式4242(1)(1)(1)(1)(1)x x x x x x x x =+++++=+++.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【作业6】 分解因式:22ax bx bx ax a b -+-+-.【难度】★★【答案】2()(1)a b x x --+.【解析】原式22()()()()(1)x a b x b a a b a b x x =-+-+-=--+.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【作业7】 分解因式:21ax x a ++-.【难度】★★【答案】(1)(1)x ax a +-+.【解析】原式2(1)(1)(1)(1)a x x x ax a =-++=+-+.【点评】考查学生分组分解方法的运用以及提取公因式的能力.【作业8】 分解因式:()22112a b b b --+-.【难度】★★【答案】2(1)(1)a b --.【解析】原式222(1)(1)(1)(1)a b b a b =---=--.【点评】考查学生分组分解方法的运用以及运用乘法公式的能力.【作业9】 分解因式:3223a a b ab b --+.【难度】★★★【答案】2()()a b a b -+.【解析】原式22()()a a b b a b =---()()()a b a b a b =-+- 2()()a b a b =-+.【点评】考查学生分组分解方法的运用以及运用乘法公式的能力,注意分解要彻底.【作业10】 已知2246130a b a b +--+=,求a b +的值.【难度】★★★【答案】5.【解析】由22224613044690a b a b a a b b +--+=-++-+=,得, 即22(2)(3)0a b -+-=,∴23a b ==,. ∴5a b +=.【点评】考查学生分组分解方法的运用以及如何添项凑完全平方公式.。
分组分解因式的八种技巧
• 解:原式= (a3 +2a)+(a 2 +2) =a(a 2 +2)+(a 2 +2) =(a 2 +2)(a+1)
二 看次数,利分解
• 例题2 分解因式:x2 +2xy+y2 -3x-3y-4
• 分析:把次数相同的项分别结合利于分解
七 先展开,再分组
• 例题 7 分解因式:(ax+by)2 +(bx-ay)2
• 分析:多项式只有“两项”,且中间为“+”,若把括号展开 后再分组,问题迎刃而解。
• 解: (ax+by)2 +(bx-ay)2 =a2 x2 +2abxy+b2 y2 +b2 x2 -2abxy+a2 y2 =(a2x2 +b2x2 )+(a2y2 +b2y2 ) =(a2 +b2 )x2 +(a2 +b2 ) y2 =(a2 +b2 )(x2 +y2 )
四 选“主元”,巧分组
• 例题4 分解因式: 2x2 -5xy+2y2 +7x-5y+3 • 分析:以“x”为主元重新分组。 • 解:2x2 -5xy+2y2 +7x-5y+3
=2x2 +(7-5y)x+(2y2 -5y+3) =2x2 +(7-5y)x+(y-1)(2y-3)
=(2x-y+1)(x-2y+3)
分组分解因式的八种技巧分组分解法是因式分解的重要方法之一唯有正确分组才能顺利获解下面分别举例介绍分组分解的八种技巧分析
因式分解分组分解法(1)
因式分解
练习3:
mx + mx2 - n - nx
解原式 = mx(x + 1) - n(x + 1)
= (x + 1)(mx - n)
因式分解
练习3:
mx + mx2 - n - nx
解原式 = mx(x + 1) - n(x + 1)
= (x + 1)(mx - n)
解原式 = (mx - n) + x(mx - n)
解原式 = (6xy + 3x2) - (4yz + 2xz) = 3x(2y + x) - 2z(2y + x) = (2y + x)(3x - 2z)
因式分解
分析
在用分组分解法因式分解时,要注意分 组不能使一个多项式变为乘积形式,分 组的目的是分好的各组能提取各自的公 因式同时使各组提取公因式后剩下的多 项式又是各组的公因式,可以再提取, 从而使问题得到解决,上述规律可以通
因式分解
复习
(1)6a3-8a2-4a
(2)
8 27
x3y2-
94xy3
解原式=2a(3a2-4a-2)
解原式=94 xy2(
2x2-y) 3
(3) -x3y3-x2y2+xy
(4) -12a2m+1bm+2+20am+1b2m+4
解原式=-xy(x2y2+xy-1) 解原式=-4am+1bm+2(3am5bm+2)
因式分解
练习6: m3 + 4m4 - 5 - 20m
解原式 = (m3 - 5) + 4m(m3 - 5) = (m3 - 5)(1 + 4m)
因式分解(分组分解法)
=(2ax-bx)+(5by-10ay)
=a(a+c)-b(a+c)
=(2ax-bx)+(-10ay +5by)
= (a+c)(a-b)
=x(2a-b)-5y(2a-b)
= (2a-b)(x-5y)
分组规律: 在有公因式的前提下,按对应项系数成
比例分组,或按对应项的次数成比例分组。
解: 2ax-10ay+5by-bx
=(2ax-10ay)+(5by-bx)
=(2ax-10ay)+(-bx +5by)
=2a(x-5y)-b(x- 5y)
=(x-5y)(2a-b)
例1,例3种还有没有其他分组的方法;如果有, 因式分解的结果是不是一样。
例1解(2):a2-ab+ac-bc 例2解(2): 2ax-10ay+5by-bx
先提公因式;
2. 如果各项没有公因式,那么可以尝试运用 公式来分解;
3.如果用上述方法不能分解,那么可以尝试 用分组来分解;
4.分解因式,必须进行到每一个多项式都不 能再分解为止. 口诀: 一提 二套 三分 四彻底
教学重点:掌握分组分解法的 分组规律和步骤。 主要内容:
学习分组分解法的概念,用分组分解法分 组之后,可以用提公因式的多项式进行因式分 解。
例2把多项式 a2-2ab+b2-c2 分解因式.
【分析】观察多项式,前 三项符合完全平方公式.
例3把2ax-10ay+5by-bx分解因式 分析:把这个多项式的四项按前两项与后两项分成
两组,并使两组的项都按x的降幂排列,然后从两
组分别提出公因式2a与-b,这时,另一个因式正好
初中数学因式分解-分组分解法
3 分组分解整式ax by bx ay --+的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解.3.1 三步曲我们用上面的整式来说明如何分组分解.例1 分解因式:ax by bx ay --+.解 ax by bx ay --+=()()ax bx ay by -+- [分为两组]=()()x a b y a b -+- [“提”]=()()x y a b +- [再“提”]一般地,分组分解大致分为三步:1.将原式的项适当分组;2.对每一组进行适当分组;3.将经过处理后的每一组当作一项,再采用“提”或“代”进行分解.一位高明的棋手,在下棋时,决不会只看一步,同样,在进行分组时,不仅要看到第二步,而且要看到三步.一个整式的项有许多种分组的方法,初学者往往需要经过尝试才能找到适当的分组方法,但是只要努力实践,多加练习,就会成为有经验,多加练习,就会成为有经验的“行家”.3.2 殊途同归分组的方法并不是唯一的,对于上面的整式ax by bx ay --+,也可以采用下面的做法: ax by bx ay --+=()()ax ay ax by +-+=()()a x y b x y +-+=()()x y a b +-.两种做法的效果是一样的,殊途同归!可以说,一种是按照x 与y 来分组(含x 的项在一组,含y 的项在另一组);另一种是按a 与b 来分组.例2 分解因式:221x ax x ax a +++--.解法一 按字母x 的幂来分组.221x ax x ax a +++--=()()()221x ax x ax a +++-+=()()()2111x a x a a +++-+=()()211a x x ++-解法二 按字母a 的幂来分组.221x ax x ax a +++--=()()221ax ax a x x +-++-=()()2211a x x x x +-++-=()()211a x x ++-.3.3 平均分配在例2中,原式的6项是平均分配的,或都要分成三组,每组两项;或者分成两组,每组三项.如果分组的目的是使第二步与第三步都有公因式可提,那么就必须平均分配. 例3 分解因式:3254222x x x x x --++-.解 6项可以分成三组,每组两项.我们把幂次相近的项放在一起,即3254222x x x x x --++-=()()()5432222x x x x x -+---=()()()42222x x x x x x -+---=()()4221x x x -+-.本例也可以将6项分为两组,每组三项,即将系数为1的放在一组,系数为-2的放在另一组,详细过程请读者自己完成.例4 分解因式:2222ac bd ad bc +--.解 2222ac bd ad bc +--整式ax by bx ay --+的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解.3.4瞄准公式如果在第二步或第三步中需要应用乘法公式,那么各组中的项数不一定相等,应当根据公式的特点来确定。
因式分解常用的六种方法详解
一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。
例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。
常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。
因式分解——分组分解法
因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。
这种分解因式的方法叫做分组分解法。
二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的。
我们有目的地将多项式的某些项组成一组,从局部考虑,使每组能够分解,从而达到整个多项式因式分解的目的,至于如何恰当地分组,需要具体问题具体分析,但分组时要有预见性,要统筹思考,减少盲目性,分组的好坏直接影响到因式分解能否顺利进行。
通过适当的练习,不断总结规律,便能掌握分组的技巧。
三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b(3)4x2-9y2-24yz-16z2 (4)x3-x2-x+1分析:首先注意到前两项的公因式2x和后两项的公因式-3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解。
此题也可以考虑含有y的项分在一组。
如下面法(二)解法。
解(一)2x2+2xy-3x-3y=(2x2+2xy)-(3x+3y)=2x(x+y)-3(x+y)=(x+y) (2x-3)解(二)2x2+2xy-3x-3y=(2x2-3x)+(2xy-3y)=x(2x-3)+y(2x-3)=(2x-3)(x+y)说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
这也是分组中必须遵循的规律之一。
分组分解法因式分解经典例题
分组分解法因式分解经典例题《分组分解法因式分解经典例题》一、引言在代数学中,因式分解是一个非常重要的概念,它在解方程、化简分式等问题中有着广泛的应用。
而分组分解法是因式分解中的一种常见方法,它通过合理地分组,将原式中的各项进行适当的组合,从而达到因式分解的目的。
本文将通过经典的例题来介绍分组分解法的应用和技巧,希望能帮助读者更好地理解和掌握这一方法。
二、基本概念分组分解法是指在进行因式分解时,通过巧妙地对原式中的各项进行分组,并进行适当的变形,最终达到可以进行公因式提取的目的。
其基本思想是将原式中的各项进行合理的组合,使得每一组的相加或相乘具有公因式或特定形式。
这样一来,就可以利用公因式提取的方法,将原式进行因式分解。
下面通过具体的例题来说明分组分解法的应用。
三、分组分解法例题例题:将二次三项式$x^2+5x+6$进行因式分解。
解析:首先我们根据分组分解的思想,对原式中的$x^2+5x+6$进行分组,即进行合理的拆分和组合。
我们可以将5x拆分为2x+3x,于是原式可以重写为$x^2+2x+3x+6$。
然后我们对前两项进行因式分解,将$x^2+2x$可以提取出公因式$x(x+2)$,对后两项进行因式分解,将$3x+6$可以提取出公因式$3(x+2)$。
这样一来,我们可以得到原式的因式分解形式为$(x+2)(x+3)$。
通过这个例题,我们可以看到分组分解法对于因式分解的应用是非常有效的。
四、总结回顾通过上面的例题,我们可以总结出分组分解法的基本步骤和技巧:1. 将原式中的各项进行合理的拆分和组合,使得每一组的相加或相乘具有公因式或特定形式。
2. 进行适当的变形,将原式化简并提取公因式。
3. 最终将原式进行因式分解,得到最终的结果。
对于分组分解法的掌握,需要多做练习,熟练掌握基本的技巧和方法。
通过不断的练习和思考,我们可以更好地理解和掌握这一方法,从而在代数学的学习和解题中能够灵活应用。
五、个人观点在学习因式分解的过程中,我发现分组分解法是一种非常实用和灵活的方法。
用分组分解法进行因式分解
用分组分解法进行因式分解1.分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy2.分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+例4、分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。
使用这种方法的关键在于分组适当,而在分组时,必须有预见性。
因式分解的分组分解方法
因式分解的分组分解方法因式分解的分组分解方法简介因式分解是一项基础而重要的数学技巧,用于将一个多项式拆解成更简单的乘法形式。
在因式分解中,分组分解方法是一种常用的策略。
本文将详细介绍这种方法以及其各种变体。
方法一:二项式公式•对于形如ax2+bx+c的二次多项式,我们可以使用二项式公式来进行分组分解。
•具体步骤如下:1.将二次项的系数a提取出来:ax2+bx+c=a(x2+bax)+c2.将x2+bax进行配方得到一个完全平方的二次多项式:x2+ba x=(x+b2a)2−b24a23.将两个部分相乘:a(x+b2a )2−a b24a2+c4.将最后一项与前一项合并为一个常数项:a(x+b2a )2 +(c−b24a)方法二:分组分解•对于形如ax3+bx2+cx+d的三次多项式,我们可以使用分组分解的方法。
•具体步骤如下:1.将多项式分为两组,每组包含两项:ax3+bx2和cx+d2.将每一组的公因式提取出来:ax3+bx2=x2(ax+b)和cx+d=x(c+dx)3.将两组的公因式相乘:x2(ax+b)(c+dx)4.最后将得到的乘积进行化简和合并方法三:巧妙的分组•在某些情况下,我们可以使用巧妙的分组方法进行因式分解,例如对于差平方的形式。
•具体步骤如下:1.将多项式写成两个相加或相减的平方形式:a2−b2=(a+b)(a−b)2.将多项式看作一个整体,拆分成两个括号的乘积3.对每个括号继续进行分解,直到无法再进行因式分解为止方法四:特殊因式分解•在某些特殊的情况下,我们可以直接应用特殊因式分解公式来进行分解,例如平方差、立方差等。
•具体公式和方法可以参考相关的数学课本和教材。
结论因式分解的分组分解方法是解决多项式因式分解问题的一种重要策略。
通过不同的分组方式和技巧,可以将复杂的多项式拆解成更简单的乘法形式,便于进一步的计算和推导。
熟练掌握各种分组分解方法,对于数学学习和问题解决都具有重要意义。
因式分解——分组分解法
北京四中撰稿:史卫红编审:谷丹责编:赵云洁因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。
这种分解因式的方法叫做分组分解法。
二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的。
我们有目的地将多项式的某些项组成一组,从局部考虑,使每组能够分解,从而达到整个多项式因式分解的目的,至于如何恰当地分组,需要具体问题具体分析,但分组时要有预见性,要统筹思考,减少盲目性,分组的好坏直接影响到因式分解能否顺利进行。
通过适当的练习,不断总结规律,便能掌握分组的技巧。
三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b(3)4x2-9y2-24yz-16z2 (4)x3-x2-x+1分析:首先注意到前两项的公因式2x和后两项的公因式-3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解。
此题也可以考虑含有y的项分在一组。
如下面法(二)解法。
解(一)2x2+2xy-3x-3y=(2x2+2xy)-(3x+3y)=2x(x+y)-3(x+y)=(x+y) (2x-3)解(二)2x2+2xy-3x-3y=(2x2-3x)+(2xy-3y)=x(2x-3)+y(2x-3)=(2x-3)(x+y)说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
初中数学因式分解-十字相乘与分组分解法(含解析)
初中数学因式分解-十字相乘与分组分解考试要求:知识点汇总:一、十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解二、分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.例题精讲:一、十字相乘【例 1】分解因式:⑴256x x ++ ⑵256x x -+⑶276x x ++ ⑷276x x -+【解析】 ⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --【巩固】 分解因式:268x x ++【解析】268(2)(4)x x x x ++=++【巩固】 分解因式:278x x +-【解析】278(8)(1)x x x x +-=+-【例 2】分解因式:2376a a --【解析】 2376(32)(3)a a a a --=+-【巩固】 分解因式:2383x x --【解析】 2383(31)(3)x x x x --=+-【巩固】 分解因式:25129x x +-【解析】 25129(3)(53)x x x x +-=+-【巩固】 分解因式:42730x x +-【解析】 4222730(3)(10)x x x x +-=-+【巩固】 分解因式:2273320x x --【解析】 2273320(94)(35)x x x x --=+-【例 3】分解因式:212x x +-【解析】 221212(3)(4)x x x x x x +-=-++=+-+【巩固】 分解因式:2612x x -+-【解析】 22612(612)(23)(34)x x x x x x -+-=-+-=-+-【例 4】分解因式:2214425x y xy +-【解析】 2214425(16)(9)x y xy x y x y +-=--【巩固】 分解因式:22672x xy y -+【解析】 22672(2)(32)x xy y x y x y -+=--【巩固】 分解因式:22121115x xy y --【解析】 22121115(35)(43)x xy y x y x y --=-+【例 5】分解因式:⑴2()4()12x y x y +-+-;⑵2212()11()()2()x y x y x y x y +++-+-【解析】 ⑴把x y +看作一个整体,利用十字相乘法分解即可.2()4()12(2)(6)x y x y x y x y +-+-=+++-⑵将,x y x y +-看作整体,则原式[][]4()()3()2()(53)(5)x y x y x y x y x y x y =++-++-=++.【巩固】 分解因式:257(1)6(1)a a ++-+【解析】[][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+【巩固】 分解因式:2(2)8(2)12a b a b ---+【解析】[][]2(2)8(2)12(2)2(2)6(22)(26)a b a b a b a b a b a b ---+=----=----【例 6】分解因式:1a b c ab ac bc abc +++++++【解析】 把a 视为未知数,其它视为参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组分别提出公因式2a与-b,这时,另一个因式正好
都是x-5y,这样全式就可以提出公因式x-5y。
解: 2ax-10ay+5by-bx
=(2ax-10ay)+(5by-bx)
=(2ax-10ay)+(-bx +5by)
=2a(x-5y)-b(x- 5y)
=(x-5y)(2a-b)
教学重点:掌握分组分解法的 分组规律和步骤。 主要内容:
学习分组分解法的概念,用分组分解法分 组之后,可以用提公因式的多项式进行因式分 解。
教科书 P36 1 2
分析:把这个多项式的四项按前两项与后两项分 成两组,分别提出公因式a与c后,另一个因式正 好都是a-b,这样就可以提出公因式a-b 。
解:a2-ab+ac-bc =(a2-ab)+(ac-bc) ——分组 =a(a-b)+c(a-b) ——组内提公因式
=(a-b)(a+c) ——提公因式
例2把2ax-10ay+5by-bx分解因式 分析:把这个多项式的四项按前两项与后两项分成
=21(x+y)
(2)p-q+k(p-q) 解:=(p-q)+k(p-q)
=(p-q)(1+k)
(3)5m(a+b)-a-b 解:=5m(a+b)-(a+b)
=(a+b)(5m-1)
(4)2m-2n-4x(m-n) 解:=2(m-n)-4x(m-n)
=(m-n)(2-4x)
(5)ax+2by+cx-2ay-bx-2cy 解: =(2by-2ay-2cy)+(ax+cx-bx)
=am+an+bm+b
乘 法
n
定义:
am+an+bm+bn 因
=a(m+n)+b(m+n)
式 分
=(a+b)(m+n)
解
这种把多项式分成几组来分解因式的方法叫分组 分解法 注意:如果把一个多项式的项分组并提出公因式后, 它们的另一个因式正好相同,那么这个多项式就可 以用分组分解法来分解因式。
例1把a2-ab+ac-bc分解因式
例1,例2种还有没有其他分组的方法;如果 有,因式分解的结果是不是一样。
例1解(2):a2-ab+ac-bc 例2解(2): 2ax-10ay+5by-bx
=(a2+ac)-(ab+bc)
=(2ax-bx)+(5by-10ay)
=a(a+c)-b(a+c)
=(2ax-bx)+(-10ay +5by)
= (a+c)(a-b)
=x(2a-b)-5y(2a-b)
= (2a-b)(x-5y)
分组规律: 在有公因式的前提下,按对应项系数成
比例分组,或按对应项的次数成比例分组。
分解步骤: (1)分组; (2)在各组内提公因式; (3)在各组之间进行因式分解 (4)直至完全分解
把下列各式分解因式:
(1)20(x+y)+x+y 解:=20(x+y)+(x+y)
=-2y(a-b+c)+x(a-b+c) =(a-b+c)(-2y+x) (6) x2-x2y+xy2-x+y-y2 解: =(x2-y2)-(x2y-xy2)-(x-y) =(x-y)(x+y)-xy(x-y)-(x-y) =(x-y)(x+y-xy-1) =(x-y)[(x-xy)+(y-1)] =(x-y)[x(1-y)-(1-y)] =(x-y)(1-y)(x-1)
分组分解法
(一)分组后能直接提公因式
1.什么叫做因式分解? 把一个多项式化成几个整式的积的形式, 这种式子变形叫做把这个多项式因式分解, 也叫做把这个多项式分解因式。 2.回想我们已经学过那些分解因式的方法?
提供因式法,公式法——平方差公式,完 全平方公式
(a+b)(m+n) 整
=a(m+n)+b(m+n) 式