长郡中学高一数学期中考试卷

合集下载

湖南省长沙市长郡中学2017-2018学年高一上学期期中考试数学试题 Word版含答案

湖南省长沙市长郡中学2017-2018学年高一上学期期中考试数学试题 Word版含答案

长郡中学2017-2018学年度高一第一学期期中考试数学一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集Z U =,{1012}A =-,,,,2{|}B x x x ==,则U A C B 为( ) A .{12}-, B .{10}-, C .{01}, D .{12},2.已知函数()f x 的图像在R 上是连续不间断的,且()()0f a f b >,则下列说法正确的是( ) A .()f x 在区间()a b ,上一定有零点 B .()f x 在区间()a b ,上不一定有零点 C .()f x 在()a b ,上零点的个数为奇数 D .()f x 在()a b ,上没有零点3.20()π000x x f x x x ⎧>⎪==⎨⎪<⎩,,,,则{[(3)]}f f f -等于( )A .0B .πC .2πD .94.已知集合A B ==R ,x A ∈,y B ∈,f :x y ax b →=+,若4和10的原象分别对应是6和9,则19在f 作用下的象为( )A .18B .30 C.272D .28 5.下列各组中两个函数是同一函数的是( )A.()f x =()g x = B .()f x x =,()g x =C.()1f x =,0()g x x = D .24()2x f x x -=+,()2g x x =-6.函数4()log f x x =与()4x f x =的图像( )A .关于x 轴对称B .关于y 轴对称 C.关于原点对称 D .关于直线y x =对称7.方程lg 20x x +-=一定有解的区间是( )A .(01),B .(12), C.(23), D .(34), 8.方程3log 41x =,则44x x -+为( )A .0B .103 C.3 D .1639.在同一坐标系中,函数y ax a =+与x y a =的图像大致是( )A .B . C.D .10.已知函数()lg(1)f x x =-的值域为(1]-∞,,则函数()f x 的定义域为( ) A .[9)-+∞, B .[0)+∞, C.(91)-, D .[91)-,11.若2{|60}A x x x =+-=,{|10}B x mx =+=,且A B A =,则m 的取值范围为( ) A .1132⎧⎫⎨⎬⎩⎭, B .11032⎧⎫--⎨⎬⎩⎭,, C. 11032⎧⎫-⎨⎬⎩⎭,, D .1132⎧⎫--⎨⎬⎩⎭,12.某化工厂生产一种溶液,按市场需求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,要使产品达到市场要求,则至少应过滤的次数为(已知lg20.3010=,lg30.4771=)A .6B .7 C.8 D .913.若函数()f x 为定义在R 上的奇函数,且在(0)+∞,为减函数,若(2)0f =,则不等式(1)(1)0x f x -->的解集为( )A .(31)--,B .(31)(2)--+∞,, C.(30)(13)-,,D .(11)(13)-,,14.若函数2()|2|f x x a x =+-在(0)+∞,上单调递增,则a 的范围为( ) A .[42]-, B .[40]-, C.[42)-, D .[22]-, 15.对于函数1()1x f x x -=+,设2()[()]f x f f x =,32()[()]f x f f x =,…,1()[()]n n f x f f x +=(n +∈N ,且2n ≥),令集合{}20172|()log ||M x f x x ==-,则集合M 为( ) A .空集 B .一元素集 C.二元素集 D .四元素集二、填空题:本大题共5小题,每题3分,满分15分,把答案填写在题中的横线上16.已知幂函数的图像经过点(28),,则它的解析式是 .17.求值220.53327492()()(0.008)8925---+⨯= .18.已知函数2()48f x x kx =--在[520],上具有单调性,则k 的取值范围是 .19.若函数211()2()1x x y a a =+-(0a >,且1a ≠)在[11]x ∈-,上的最大值为23,则a 的值为 .20.若函数()f x 为定义域D 上的单调函数,且存在区间[]a b D ⊆,(其中a b <),使得当[]x a b ∈,,()f x 的取值范围恰为[]a b ,,则称函数()f x 是D 上的美妙函数,若函数2()g x x m =+是(0)-∞,上的美妙函数,则实数m 的取值范围为 .三、解答题:本大题共5小题,每小题8分,共40分.要求写出必要的文字说明、证明过程或演算步骤.)21. 已知函数()f x 是定义在R 上的偶函数,当0x ≥时,1()2xf x ⎛⎫= ⎪⎝⎭.(1)画出函数()f x 的图像;(2)根据图像写出()f x 的单调区间,并写出函数的值域.22. 已知函数()f x =A ,函数22()lg[(21)]g x x a x a a =-+++的定义域是集合B .(1)求集合A 、B ;(2)若A B A =,求实数a 的取值范围. 23. 对于函数2()21x f x a =-+(a ∈R ). (1)判断函数()f x 的单调性(不需要证明);(2)是否存在实数a 使函数()f x 为奇函数,并说明理由.24. 电信局为了配合客户不同需要,设有A 、B 两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间的关系,如下图所示(实线部分).(注:图中MN CD ∥.)试问:(1)若通话时间为2小时,按方案A 、B 各付话费多少元? (2)方案B 从500分钟以后,每分钟收费多少元? (3)通话时间在什么范围内,方案B 才会比方案A 优惠.25. 对定义在[01],上,并且同时满足以下两个条件的函数()f x 称为G 函数, ①对任意的[01]x ∈,,总有()0f x ≥;②当10x ≥,20x ≥,121x x +≤时,总有1212()()()f x x f x f x ++≥成立. 已知函数2()g x x =与()2x h x b =-是定义在[01],上的函数. (1)试问函数()g x 是否为G 函数?并说明理由;(2)若函数()h x 是G 函数,求实数b 的所有取值组成的集合.长郡中学2017-2018学年度高一第一学期期中考试数学参考答案一、选择题: 1-5:ABCBB 6-10:DBBBD 11.C12.C 【解析】设至少需要过滤n 次,则20.02()0.0013n ⨯≤,即21()320n ≤,所以21lg lg 320n ≤,即1lg1lg 2207.42lg3lg 2lg 3n +=≈-≥,又n N ∈,所以8n ≥,所以至少过滤8次才能使产品达到市场要求. 13.D14.B 【解析】因为当2x ≥时,22()|2|2f x x a x x ax a =+-=+-,对称轴为2ax =-,因为在(2)+∞,上单调递增,所以22ax =-≤①.又当20x >>时,22()|2|2f x x a x x ax a =+-=-+在(02),上单调递增,所以有对称轴02ax =≤②,由①②知40a -≤≤,故选B. 15.B二、填空题:16.3()f x x = 17.1918.(40][160)-∞+∞,,19.4或14【解析】设1xt a ⎛⎫= ⎪⎝⎭,0t >,则221y t t =+-,其图像为开口向上且对称轴为1t =-的抛物线,所以二次函数221y t t =+-在[1)-+∞,上是增函数.①若1a >,则1xt a ⎛⎫= ⎪⎝⎭在[11]-,上单调递减,∴1t a a ⎡⎤∈⎢⎥⎣⎦,,所以t a =时y 取最大值,2max 2123y a a =+-=,∴4a =或6a =-(舍去);②若01a <<,则1xt a ⎛⎫= ⎪⎝⎭在[11]-,上递增,1t a a ⎡⎤∈⎢⎥⎣⎦,,所以1t a =时,y 取得最大值,max 212123y a a =+-=. ∴212240a a +-=,11640a a ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,∴14a =或16a =-(舍去). 综上可得4a =或14a =. 20.314⎛⎫-- ⎪⎝⎭,三、解答题21.【解析】(1)先作出当0x ≥时,1()2xf x ⎛⎫= ⎪⎝⎭的图像,利用偶函数的图像关于y 轴对称,再作出()f x 在(0)x ∈-∞,时的图像.(2)函数()f x 的单调递增区间为(0)-∞,,单调递减区间为[0)+∞,,值域为(01],. 22.【解析】(1){|12}A x x x =->或≤, {|1}B x x a x a =<>+或.(2)由A B A =得A B ⊆,因此112a a >-⎧⎨+⎩≤,所以1a -<≤1,所以实数a 的取值范围是(11]-,. 23.【解析】(1)单调递增.(2)存在1a =,定义法证明(略).24.【解析】由图知(6098)M ,,(500230)N ,,(500168)C ,,MN CD ∥. 设两种方案应付话费与通话时间的函数关系分别为()A f x 、()B f x ,则98060()38060.10A x f x x x ⎧⎪=⎨+>⎪⎩,,,≤≤1680500()318500.10B x f x x x ⎧⎪=⎨+>⎪⎩,,,≤≤ (1)通话2小时两种方案的话费分别为116元、168元. (2)∵333(1)()(500)(1)18180.3101010B B f n f n n n n +->=++--==(元) ∴方案B 从500分钟以后,每分钟收费0.3元. (3)由图知,当060x ≤≤时,()()A B f x f x <, 当500x >时,()()A B f x f x >,∴当60500x <≤时,由()()A B f x f x >,得8803x >, 即当通话时间在8803⎛⎫+∞ ⎪⎝⎭,内时,方案B 较A 优惠.25.【解析】(1)当[01]x ∈,时,总有2()0g x x =≥,满足① 当10x ≥,20x ≥,121x x +≤时,22222121212121212()()2()()g x x x x x x x x x x g x g x +=+=+++=+≥,满足②,所以函数()g x 为G 函数.(2)()2x h x b =-([01]x ∈,)为增函数,()(0)10h x h b =-≥≥, ∴1b ≤.由1212()()()h x x h x h x ++≥,得1212222x x x x b b b +--+-≥. 即111(21)(21)x x b ---≥,因为10x ≥,20x ≥,121x x +≤. 所以110(21)(21)1x x --<≤; ∴1101(21)(21)1x x <---≤.当120x x ==时,11max (1(21)(21))1x x ---=;∴1b ≥. 综合上述:{1}b ∈.。

【全国百强名校】长郡中学高一期中考试试卷-数学(附答案)

【全国百强名校】长郡中学高一期中考试试卷-数学(附答案)

!槡# ##
4%/7B;
" "
'(! /
)(#
*(/
+(!!"
.!-!
*!/!
!"#$%&'(! )*")
!!!0156%#%345&#,!de&*!4%#$$7f2;
'(&!,.
)(!,.
*!$!
+!&!$
!#!<%#;P56S#$ ?'%%#&8# 7ghic4&#$ g8?EFjh567ic
!"#$!%&'"(!/ )!*")"
#/!+,$-.6. 0123 "%#'#'%## ,(#,#$% #'##&',! %$S$+#+#<"%$./m6 ( 7ABCD!
!"#$%&'(!0 )*")
#0!!+,$-.6." 0156%!#"%º¹»¼7#%')%½l%!#,'"%%!#", %!'"%T#*$U%%!#"$$%S%!!"%&!#! !!"%!$"%%!-"7B+ !#"T&6+#+!$U%56%!#"7JKBOJMB!
(!!'!!&!!%!!$!!#!!"!!!
"
'(&!$ )($#
*(&#$ +(&##

湖南省长沙市2024-2025学年高一上学期期中考试 数学含答案

湖南省长沙市2024-2025学年高一上学期期中考试 数学含答案

2024年下学期期中考试试卷高一数学(答案在最后)时量:120分钟分值:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{1,2}A =,{,}B xy x A y A =∈∈,则集合B 中元素的个数为()A.4B.3C.2D.12.设,a b ∈R ,则“a b =”是“22a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.命题“a ∃∈R ,210ax +=有实数解”的否定是()A.a ∀∈R ,210ax +≠有实数解 B.a ∃∈R ,210ax +=无实数解C.a ∀∈R ,210ax +=无实数解D.a ∃∈R ,210ax +≠有实数解4.已知集合{1,2}M =,{1,2,4}N =,给出下列四个对应关系:①1y x=,②1y x =+,③y x =,④2y x =,请由函数定义判断,其中能构成从M 到N 的函数的是()A.①②B.①③C.②④D.③④5.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是()A. B.C. D.6.若0a >,0b >,且4a b +=,则下列不等式恒成立的是()A.02a << B.111a b+≤2≤ D.228a b +≤7.已知定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,则满足()0xf x <的x 的取值范围是()A.(,2)(2,)-∞-+∞B.(0,2)(2,)+∞ C.(2,0)(2,)-+∞ D.(,2)(0,2)-∞-8.若函数2(21)2(0)()(2)1(0)b x b x f x x b x x -+->⎧=⎨-+--≤⎩,为在R 上的单调增函数,则实数b 的取值范围为()A.1,22⎛⎤⎥⎝⎦ B.1,2⎛⎫+∞⎪⎝⎭C.[]1,2 D.[2,)+∞二、多选题:本题共3题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全选对的得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()bf x x x=+,下列说法正确的是()A.若1b =,则函数()f x 的最小值为2B.若1b =,则函数()f x 在(1,)+∞上单调递增C.若1b =-,则函数()f x 的值域为RD.若1b =-,则函数()f x 是奇函数10.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的部分图象如图所示,则()A.0abc >B.0a b +>C.0a b c ++< D.不等式20cx bx a -+>的解集为112x x ⎧⎫⎨⎬⎩⎭-<<11.定义在R 上的函数()f x 满足()()()f x f y f x y +=+,当0x <时,()0f x >.则下列说法正确的是()A.(0)0f = B.()f x 为奇函数C.()f x 在区间[],m n 上有最大值()f n D.()2(21)20f x f x -+->的解集为{31}x x -<<三、填空题,本题共3小题,每小题5分,共15分.12.若36a ≤≤,12b ≤≤,则a b -的范围为________.13.定义在R 上的函数()f x 满足:①()f x 为偶函数;②()f x 在(0,)+∞上单调递减;③(0)1f =,请写出一个满足条件的函数()f x =________.14.对于一个由整数组成的集合A ,A 中所有元素之和称为A 的“小和数”,A 的所有非空子集的“小和数”之和称为A 的“大和数”.已知集合{1,0,1,2,3}B =-,则B 的“小和数”为________,B 的“大和数”为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合{3}A x a x a =≤≤+,集合{1B x x =<-或5}x >,全集R U =.(1)若A B =∅ ,求实数a 的取值范围;(2)若命题“x A ∀∈,x B ∈”是真命题,求实数a 的取值范围.16.(15分)已知幂函数()2()253mf x m m x =-+是定义在R 上的偶函数.(1)求()f x 的解析式;(2)在区间[]1,4上,()2f x kx >-恒成立,求实数k 的取值范围.17.(15分)已知关于x 的不等式(2)[(31)]0mx x m ---≥.(1)当2m =时,求关于x 的不等式的解集;(2)当m ∈R 时,求关于x 的不等式的解集.18.(17分)为促进消费,某电商平台推出阶梯式促销活动:第一档:若一次性购买商品金额不超过300元,则不打折;第二档:若一次性购买商品金额超过300元,不超过500元,则超过300元部分打8折;第三档:若一次性购买商品金额超过500元,则超过300元,不超过500元的部分打8折,超过500元的部分打7折.若某顾客一次性购买商品金额为x 元,实际支付金额为y 元.(1)求y 关于x 的函数解析式;(2)若顾客甲、乙购买商品金额分别为a 、b 元,且a 、b 满足关系式45085b a a =++-320(90)a ≥,为享受最大的折扣力度,甲、乙决定拼单一起支付,并约定折扣省下的钱平均分配.当甲、乙购买商品金额之和最小时,甲、乙实际共需要支付多少钱?并分析折扣省下来的钱平均分配,对两人是否公平,并说明理由.(提示:折扣省下的钱=甲购买商品的金额+乙购买商品的金额-甲乙拼单后实际支付的总额)19.(17分)经过函数性质的学习,我们知道:“函数()y f x =的图象关于原点成中心对称图形”的充要条件是“()y f x =是奇函数”.(1)若()f x 为定义在R 上的奇函数,且当0x <时,2()1f x x =+,求()f x 的解析式;(2)某数学学习小组针对上述结论进行探究,得到一个真命题:“函数()y f x =的图象关于点(,0)a 成中心对称图形”的充要条件是“()y f x a =+为奇函数”.若定义域为R 的函数()g x 的图象关于点(1,0)成中心对称图形,且当1x >时,1()1g x x=-.(i )求()g x 的解析式;(ii )若函数()f x 满足:当定义域为[],a b 时值域也是[],a b ,则称区间[],a b 为函数()f x 的“保值”区间,若函数()tg()(0)h x x t =>在(0,)+∞上存在保值区间,求t 的取值范围.2024年下学期期中考试参考答案高一数学1.B2.A3.C4.D【详解】对于①,1y x =,当2x =时,1N 2y =∉,故①不满足题意;对于②,1y x =+,当1x =-时,110N y =-+=∉,故②不满足题意;对于③,y x =,当1x =时,1y N =∈,当2x =时,2N y =∈,故③满足题意;对于④,2y x =,当1x =时,1y N =∈,当2x =时,4N y =∈,故④满足题意. D.5.A6.C 【详解】因为0a >,0b >,当3a =,1b =时,3ab =,1114133a b +=+=,2210a b +=,所以ABC 选项错误.由基本不等式a b +≥22a b+≤=,选C.7.A 【详解】定义在R 上的奇函数()f x 在(,0)-∞上单调递减,故函数在(0,)+∞上单调递减,且(2)0f =,故(2)(2)0f f -=-=,函数在(2,0)-和(2,)+∞上满足()0f x <,在(,2)-∞-和(0,2)上满足()0f x >.()0xf x <,当0x <时,()0f x >,即(,2)x ∈-∞-;当0x >时,()0f x <,即(2,)x ∈+∞.综上所述:(,2)(2,)x ∈-∞-+∞ .故选A.8.C 【详解】21020221b b b ->⎧⎪-⎪≥⎨⎪-≥-⎪⎩,解得12b ≤≤.∴实数b 的取值范围是[]1,2,故选C.9.BCD 10.ACD11.ABD解:因为函数()f x 满足()()()f x f y f x y +=+,所以(0)(0)(0)f f f +=,即2(0)(0)f f =,则(0)0f =;令y x =-,则()()(0)0f x f x f +-==,故()f x 为奇函数;设12,x x ∈R ,且12x x <,则1122122()()()()f x f x x x f x x f x =-+=-+,即1212())()(0f x f x f x x -=->,所以()f x 在R 上是减函数,所以()f x 在区间[],m n 上有最大值()f m ;由2(21)(2)0f x f x -+->,得2(23)(0)f x x f +->,由()f x 在R 上减函数,得2230x x +-<,即(3)(1)0x x +-<,解得31x -<<,所以2(21)(2)0f x f x -+->的解集为{31}x x -<<,故选ABD.12.[1,5]13.21x -+(答案不唯一)14.5,80【详解】由题意可知,B 的“小和数”为(1)01235-++++=,集合B 中一共有5个元素,则一共有52个子集,对于任意一个子集M ,总能找到一个子集M ,使得M M B = ,且无重复,则M 与M 的“小和数”之和为B 的“小和数”,这样的子集对共有54222=个,其中M B =时,M =∅,考虑非空子集,则子集对有421-对,则B 的“大和数”为4(21)5580-⨯+=.故答案为:5;80.15.【详解】(1)因为3a a <+对任意a ∈R 恒成立,所以A ≠∅,又A B =∅ ,则135a a ≥-⎧⎨+≤⎩,解得12a -≤≤;(2)若x A ∀∈,x B ∈是真命题,则有A B ⊆,则31a +<-或5a >,所以4a <-或5a >.16.【详解】(1)因为2()(253)mf x m m x =-+是幂函数,所以22531m m -+=,解得2m =或12,又函数为偶函数,故2m =,2()f x x =;(2)原题可等价转化为220x kx -+>对[1,4]x ∈恒成立,分离参数得2k x x <+,因为对[1,4]x ∈恒成立,则min 2(k x x<+,当0x >时,2x x +≥=当且仅当2x x=即x =时取得最小值.故k <17.【详解】(1)解:当2m =时,不等式可化为(1)(5)0x x --≥解得1x ≤或5x ≥,所以当2m =时,不等式的解集是{1x x ≤或5}x ≥.(2)①当0m =时,原式可化为2(1)0x -+≥,解得1x ≤-;②当0m <时,原式可化为2((31)]0x x m m ---≤,令231m m =-,解得23m =-或1;1)当23m <-时,231m m -<.故原不等式的解为231m x m -≤≤;2)当23m =-时,解得3x =-;3)当203m -<<时,231m m <-,原不等式的解为231x m m≤≤-;③当0m >时,原式可化为2((31)]0x x m m---≥,1)当01m <<时,231m m >-,2x m∴≥或31x m ≤-;2)当1m =时,不等式为2(2)0x -≥,x ∈R ;3)当1m >时,231m m <-,31x m ∴≥-或2x m≤.综上,当23m <-时,原不等式的解集为231x m x m ⎧⎫⎨⎬⎩⎭-≤≤;当23m =-时,不等式的解集为{}3x x =-;当203m -<<时,解集为231x x m m ⎧⎫⎨⎬⎩⎭≤≤-;当0m =时,解集为{}1x x ≤-;当01m <<时,不等式的解集是{2x x m ≥或31}x m ≤-;当1m =时,不等式的解集为R ;当1m >时,解集是{31x x m ≥-或2}x m≤.18.【详解】(1)由题意,当0300x <≤时,y x =;当300500x <≤时,3000.8(300)0.860y x x =+-=+;当500x <时,3000.8(500300)0.7(500)0.7110y x x =+-+-=+.综上,,03000.860,300500 0.7110,500x x y x x x x <≤⎧⎪=+<≤⎨⎪+<⎩.(2)甲乙购买商品的金额之和为4502320(90)85a b a a a +=++≥-.45045023202(85)3201708585a b a a a a +=++=-+++--490230490550≥=⋅+=(元)当且仅当4502(85)85a a -=-即8515a -=±时,原式取得最小值.此时100a =(或70a =,舍去),550450b a =-=(元)因为550500>,则拼单后实付总金额0.7550110495M =⨯+=(元)故折扣省下来的钱为55049555-=(元).则甲乙拼单后,甲实际支付5510072.52-=(元),乙实际支付55450422.52-=(元)而若甲乙不拼单,因为100300<,故甲实际应付100a '=(元);300450500<<,乙应付0.845060420b '=⨯+=(元).因为420元<422.5元,若按照“折扣省下来的钱平均分配”的方式,则乙实付金额b 比不拼单时的实付金额b '还要高,因此该分配方式不公平.(能够答出“乙购买的商品的金额是甲购买商品的金额的4.5倍,则乙应减的价钱应是甲的4.5倍,故不公平”之类的答案的可酌情给分)答:当甲、乙的购物金额之和最小时,甲、乙实际共需要支付495元.若按“折扣省下来的钱平均分配”的方式拼单,则拼单后乙实付422.5元,比不拼单时的实付420元还要高,因此这种方式对乙不公平.19.【详解】(1)()f x 为定义在R 上的奇函数,当0x >时,0x -<,所以()()f x f x =--()2211x x ⎡⎤=--+=--⎣⎦,又()00f =,所以()221,00,01,0x x f x x x x ⎧+<⎪==⎨⎪-->⎩;(2)(i )因为定义域为R 的函数()g x 的图象关于点()1,0成中心对称图形,所以()1y g x =+为奇函数,所以()()11g x g x +=--,即()()2g x g x =--,1x <时,21x ->,所以()()1121122g x g x x x ⎛⎫=--=--=-+ ⎪--⎝⎭.所以()11,111,12x xg x x x ⎧-≥⎪⎪=⎨⎪-+<⎪-⎩;(ii )()()()11,1tg 011,12t x x h x x t t x x ⎧⎛⎫⋅-≥ ⎪⎪⎪⎝⎭==>⎨⎛⎫⎪⋅-+< ⎪⎪-⎝⎭⎩,a )当()0,1x ∈时,()11()11022h x t t t x x ⎛⎫⎛⎫=⋅-+=⋅--> ⎪ --⎝⎭⎝⎭在()0,1单调递增,当()[,]0,1a b ⊆时,则112112t a a t bb ⎧⎛⎫⋅--= ⎪⎪-⎪⎝⎭⎨⎛⎫⎪⋅--= ⎪⎪-⎝⎭⎩,即方程112t x x ⎛⎫⋅--= ⎪-⎝⎭在()0,1有两个不相等的根,即()220x t x t +--=在()0,1有两个不相等的根,令()()()22,0m x x t x t t =+-->,因为()()0011210m t m t t ⎧=-<⎪⎨=+--=-<⎪⎩,所以()220x t x t +--=不可能在()0,1有两个不相等的根;b )当()1,x ∈+∞时,()()110h x t t x ⎛⎫=⋅-=> ⎪⎝⎭在()1,+∞单调递增,当()[,]1,a b ⊆+∞时,则1111t a a t bb ⎧⎛⎫⋅-= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩,即方程11t x x ⎛⎫⋅-= ⎪⎝⎭在()1,+∞有两个不相等的根,即20x tx t -+=在()1,+∞有两个不相等的根,令()()2,0n x x tx t t =-+>,则有()2110022212n t t t t t n t t t⎧=-+>⎪⎪⎪⎛⎫⎛⎫⎛⎫=-⋅+<⎨ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪>⎪⎩,解得4t >.c )当01a b <<<时,易知()g x 在R 上单调递增,所以()()()tg 0h x x t =>在()0,+∞单调递增,此时11211t a a t bb ⎧⎛⎫⋅--= ⎪⎪-⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩,即()()()()()2222211221111111211112111a a a a a t a a a a a b b b t b b b b ⎧---+-====-+⎪⎪----⎨-+-+⎪===-++⎪---⎩令()()()11,011r a a a a =--+<<-,则易知()r a 在()0,1递减,所以()()00r a r <=即0t <,又1b >时,()112241t b b =-++≥=-,当且仅当()111b b -=-,即2b =时取等,以()()110111241t a a t b b ⎧=-+<⎪⎪-⎨⎪=-++≥⎪-⎩,此时无解;t 的范围是()4,+∞.。

湖南省长沙市长郡中学2020-2021学年高一上学期期中考试数学试题

湖南省长沙市长郡中学2020-2021学年高一上学期期中考试数学试题

湖南省长沙市长郡中学2020-2021学年高一上学期期中考试数学试题高一期中考试本试卷分第Ⅰ卷﹙选择题﹚和第Ⅱ卷﹙非选择题﹚两部分。

满分150分,考试时间120分钟。

第Ⅰ卷第一部分:听力(共两小节,满分30分)该部分分为第一、第二两节,注意,做题时,请先将答案标在试卷上,该部分录音内容结束后,你将有两分钟的时间将你的答案转涂到客观题答题卡上。

第一节(共5题:每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,井标在试卷的相应位置。

听完每段对话后,你都有 10 秒钟的时间来回答有关小题和阅读下一小题,每段对话仅读一遍。

1. What programs does the woman prefer?A. Talk shows.B. Sports programs.C. Cooking programs.2. What does the woman ask the man to do?A. Have dinner.B. Pick up a gift.C. Look at a piece of jewelry.3. What does the man usually take with him on vacation?A. A suitcase.B. A backpack.C.A sports bag.4. How does Anna feel about chemistry?A. Worried.B. Confident.C. Hopeless.5. Why did the man choose the guitar?A. He needs a cheap instrument.B. He wants to be like his friends.C. He thinks it is cool to play the guitar.第二节(共15题;每小题1.5分,满分22.5分)听下面5段对话或独白。

长郡中学2024年高一上学期期中考试数学试卷+答案

长郡中学2024年高一上学期期中考试数学试卷+答案

长郡中学2024年下学期高一期中考试数学命题人:陈家烦、谭泽阳 审题人:毛水 审核人:陈家烦时量:120分钟 满分:150分得分__________一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1.已知a ∈R ,若集合{}{}1,,1,0,1M a N ==−,则“0a =”是“M N ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.下列命题是全称量词命题且为真命题的是( ) A.22,,0a b a b ∀∈+<R B.菱形的两条对角线相等C.00x x ∃∈=RD.一次函数的图象是直线3.设全集U =R ,集合{}1,2,3,4,5,{38,}AB x x x ==<<∈N ∣,则下图中的阴影部分表示的集合是( )A.{}1,2,3,4,5B.{}3,4C.{}1,2,3D.{}4,5,6,74.若函数()248f x x kx =−−在[]5,8上是单调函数,则实数k 的取值范围是( )A.(),40∞−B.][(),4064,∞∞−∪+ C.[]40,64 D.[)64,∞+ 5.已知关于x 的不等式20ax bx c ++>的解集为1132x x<< ,则不等式20cx bx a ++>的解集为( ) A.1123x x−<<−B.{3x x >∣或2}x <C.{23}xx <<∣ D.{32}x x −<<−∣ 6.已知关于x 的不等式227x x a+− 在区间(),a ∞+上恒成立,则实数a 的最小值为( )A.1B.32C.2D.527.17世纪初,约翰•纳皮尔为了简化计算而发明了对数.对数的发明是数学史上的重大事件,恩格斯曾经把笛卡尔的坐标系、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为17世纪的三大数学发明.我们知道,任何一个正实数N 可以表示成10(110,)n N a a n =×<∈Z 的形式,这便是科学记数法,若两边取常用对数,则有lg lg N n a =+.现给出部分常用对数值(如下表),则可以估计20232的最高位的数值为( ) 真数x2345678910lg x (近似值)0.30103 0.47712 0.60206 0.69897 0.77815 0.84510 0.90309 0.95424 1.000A.6B.7C.8D.98.已知函数()g x 是R 上的奇函数,且当0x <时,()22g x x x =−+,函数()(),0,,0,x x f x g x x = > 若()()22f x f x −>,则实数x 的取值范围是( )A.()2,1−B.()(),21,∞∞−−∪+C.()1,2D.()(),12,∞∞−∪+二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.)9.已知1,0aba =>,且1a ≠,函数()log a y x =−与x yb =的图象可能是( ) A. B.C. D.10.已知函数()()()ln 2ln 8f x x x =−+−,则( ) A.()f x 的定义域为()2,8B.()f x 在定义域内单调递减C.()f x 的最大值为2ln2D.()y f x =的图象关于直线5x =对称11.已知函数()(),f x g x 是定义在R 上的函数,其中()f x 是奇函数,()g x 是偶函数,且()()2f x g x ax x +=−,若对于任意121x x >>,都有()()12122g x g x x x −>−,则实数a 可以为( )A.1B.1−C.2D.3三、填空题(本题共3小题,每小题5分,共15分.)12.若幂函数()f x x α=满足()18162f f⋅=,则()4f 的值为__________. 13.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过最初含量0P 的1%.已知在过滤过程中废气中的污染物含量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为0ektP P −=(0,k P 均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是__________小时.14.已知函数()y f x =的定义域为(),2f x +R 为偶函数,对任意的12,x x ,当122x x < 时,()()12120f x f x x x −>−,则关于t 的不等式()()4224t t f f +<−的解集为__________.(用区间表示)四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)(1)计算130641lg (π2)lg25274++−−;(2)若1122x x −+,求22x x −+的值.16.(本小题满分15分)已知集合{}{}28120,2A xx x Bxa x a =−+>=+∣∣ . (1)若1a =,求()A B ∪R ; (2)若A B ∩=∅,求a 的取值范围. 17.(本小题满分15分)已知函数()249b a xf x ax −−=+是定义在()3,3−上的奇函数,且()215f =−. (1)求,a b 的值;(2)判断函数()f x 在()3,3−上的单调性并加以证明; (3)解不等式()2105f x +− . 18.(本小题满分17分)已知函数()()21log ,2xf x xg x =+=. (1)若()()()()()F x f g x g f x =⋅,求函数()F x 在区间[]2,5上的值域;(2)若()H x =()()11H x H x +−=,并求12320232024202420242024H H H H++++的值;(3)令()()1h x f x =−,则()()()()24G x h x k f x =+−,已知函数()G x 在区间[]1,4上有零点,求实数k 的取值范围. 19.(本小题满分17分)我们把按照确定的顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.如果一个数列的项是有限个,那么称这样的数列为有穷数列.已知有穷数列()12:,,,2n A a a a n .若数列A 中各项都是集合{11}xx −<<∣的元素,则称该数列为Γ数列.对于Γ数列A ,定义如下操作过程T :从A 中任取两项,i j a a ,将1i j i ja a a a ++的值添在A 的最后,然后删除,i j a a ,这样得到一个1n −项的新数列1A (约定:一个数也视作数列).若1A 还是Γ数列,可继续实施操作过程T ,得到的新数列记作2,A ,如此经过k 次操作后得到的新数列记作k A . (1)设Γ数列11:0,,34A ,请写出1A 的所有可能的结果; (2)求证:对于一个n 项的Γ数列A 实施操作过程T ,总共可以实施1n −次; (3)设Γ数列7111711111:,,,,,,,,,137651234567A −−−−,求9A 的可能结果,并说明理由.长郡中学2024年下学期高一期中考试数学参考答案一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)题号 1 2 3 4 5 6 7 8 答案ADCBCBDA7.D 【解析】设2023210n a =×,因为2023lg22023lg220230.30103608.983696080.98369=≈×==+,所以lg a ≈0.98369.由表格可知,910a <<,所以20232的最高位的数值为9.故选D.8.A 【解析】 函数()g x 是R 上的奇函数,且当0x <时,()22g x x x =−+, ∴当0x >时0x −<,则()()22()22g x g x x x x x =−−=−−−−=+, 又()00g =,即()222,0,0,0,2,0,x x x g x x x x x −+<==+>又()()()2,0,,0,,0,2,0,x x x x f x f x g x x x x x =∴= >+>∴当0x 时,()f x x =,则()f x 在(],0∞−上单调递增,当0x >时,()22f x x x =+,则()f x 在()0,∞+上单调递增,()f x 的图象如图所示,∴函数()f x 在区间(),∞∞−+上单调递增,()()222,2f x f x x x −>∴−> ,即()()220,210x x x x +−<∴+−<,()21,2,1x x ∴−<<∴∈−.故选A.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.)题号 9 10 11 答案BCADACD10.AD 【解析】()()()()()ln 2ln 8ln 28f x x x x x =−+−=−− ,定义域为()2,8.令()()28t x x =−−,则ln y t =.因为二次函数()()28t x x =−−的图象的对称轴为直线5x =,又()f x 的定义域为()2,8, 所以()y f x =的图象关于直线5x =对称,且在()2,5上单调递增,在()5,8上单调递减. 当5x =时,t 有最大值,所以()()max ()ln 52ln 852ln3f x =−+−=.故选AD.11.ACD 【解析】根据题意,(()2f xg x ax x +=−,则()()2f xg x ax x −+−=+, 两式相加可得()()()()22f x f x g x g x ax +−++−=, 又因为()f x 是定义在R 上的奇函数,()g x 是定义在R 上的偶函数,所以()2g x ax =,若对于任意121x x >>,都有()()12122g x g x x x −>−,则变形可得()()121222g x g x x x −>−,即()()112222g x x g x x −>−,令()()222h x g x x ax x =−=−,则()h x 在区间()1,∞+上单调递增,若0a =,则()2h x x =−在()1,∞+上单调递减,不满足题意;若0a ≠,则()22h x ax x =−是对称轴为1x a=的二次函数,若()h x 在区间()1,∞+上单调递增,则只需0,11,a a>解得1a ,所以a 的取值范围为[)1,∞+,则a 可以取1,2,3.故选ACD.三、填空题(本题共3小题,每小题5分,共15分.)12.1613.5 【解析】依题意,过滤5小时,污染物数量010%P P =,于是得50010%ekP P −=,解得1ln0.15k =−,排放污染物时,01%P P ,即001e 1%e 1%ln0.1ln0.015klklP P t −− ⇔⇔,解得10,55t t − ,所以排放前至少还需要过滤的时间是5小时.故答案为5.14.(),1∞− 【解析】()2y f x =+为偶函数,其图象关于y 轴对称,()y f x ∴=关于2x =对称, 又当122x x < 时,()()()12120,f x f x f x x x −>∴−在()2,∞+上为增函数,故不等式()()4224ttf f +<−可等价为422242tt+−<−−,即426tt<−, 当26t 时,不等式为426t t <−,即()22260tt −+<,无解, 当26t <时,不等式为462t t <−,即()22260tt +−<,即()()23220tt+−<,解得1t <.故答案为(),1∞−.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.【解析】(1)原式1334lg41lg253−+−4lg10013=−+ 412133=−+=. (2)由题意得21112228x x x x −− +=++=,得16x x −+=,同理()2122236x x x x −−+=++=,故2234x x −+=.16.【解析】(1){}28120{2A xx x x x =−+>=<∣∣或6}x >,当1a =时,{}13,{3Bx x A B x x =∪=∣∣ 或6}x >,(){36}A B x x ∪=<R ∣ .(2)当B =∅时,满足条件A B ∩=∅, 此时有2a a >+,无解,故B ≠∅;由A B ∩=∅得2,2,26,a a a a ++解得24a . 所以a 的取值范围是[]2,4.17.【解析】(1)由题意可知(0)0,0,9242(1),595b a f b a f a − == ∴−−= =− +.得1a b ==,经检验成立. (2)由(1)可知()249xf x x =−+,设1233x x −<<<, 则()()()()()()()()()()2212212112121222222212121249494944999999x x x x x x x x x x f x f x x x x x x x −+++−−−−=−+==++++++, 22122121233,0,90,90,90x x x x x x x x −<<<∴−>−<+>+> , ()()120f x f x ∴−>,即()()12f x f x >, ()f x ∴在()3,3−上单调递减.(3)由题易知()215f −=,又()()()21,115f x f x f +∴+− , 由(2)可知()f x 在()3,3−上单调递减,313,11,x x −<+< ∴ +−解得42x −<− ,∴不等式()2105f x +− 的解集为{42}x x −<−∣ .18.【解析】(1)()()()()()()()()221log log 21log 2212221xx xF x f g x g f x x x x +=⋅=+⋅=+⋅×=+221122222x x x=+=+−,易知当[]2,5x ∈时,函数()F x 为增函数,则函数()F x 的最大值为()560F =,函数()F x 的最小值为()212,F =∴函数()F x 的值域为[]12,60.(2)若()H x =()H x =,()()11H x H x ∴+−=, 设12320232024202420242024H H H H S ++++=, 则20232022202112024202420242024H H H H S++++=, 两式相加得202312023220242024H H S+=,即22023S =,则20232S =, 故1232023202320242024202420242H H H H ++++=. (3)()()()222log 4log 4G x x k x k =+−+−,设2log t x =,当[]1,4x ∈时,[]0,2t ∈,则函数()G x 等价于()()244y p t t k t k ==+−+−,若函数()G x 在区间[]1,4上有零点,则等价于()()244y p t t k t k ==+−+−在[]0,2t ∈上有零点,即()()2440p t t k t k =+−+−=在区间[]0,2上有解,()24410t t k t ∴++−+=在区间[]0,2上有解,1()22(1)21144112111t t t t k t t t t ++++++∴===++++++,设1m t =+,则[]11,3,2m k m m∈∴=++, 又12k m m=++在区间[]1,3上单调递增,∴当1m =时,1124k =++=,当3m =时,1163233k =++=,116423m m ∴++ ,即1643k . ∴实数k 的取值范围是164,3.19.【解析】(1)1A 有如下的三种可能结果:11111117:,;:,;:0,433413A A A . (2)因为,{11}a b x x ∀∈−<<∣,有()()111011a b a babab−−−+−=<++且()()()111011a b a babab+++−−=>++,所以{11}1a b xx ab+∈−<<+∣,即每次操作后新数列仍是Γ数列.又因为每次操作中都是增加一项,删除两项,所以对Γ数列A 每操作一次,项数就减少一项,所以对n 项的Γ数列A 总共可进行1n −次操作(最后只剩下一项). (3)由(2)可知9A 中仅有一项.对于满足,{11}a b xx ∈−<<∣的实数,a b 定义运算:1a ba b ab+∼=+,下面证明这种运算满足交换律和结合律:因为1a b a b ab +∼=+,且1b ab ba+=+,所以b a a b ∼=∼,即该运算满足交换律; 又因为()11111b ca b c a b c abc bc a b c a b c bc ab bc caa bc+++++++∼∼=∼==++++++⋅+, 且()11111a bca b a b c abc ab a b c c a b ab ab bc ca c ab+++++++∼∼=∼==++++++⋅+,所以()()a b c a b c ∼∼=∼∼,即该运算满足结合律. 所以9A 中的项与实施的具体操作过程无关. 选择如下操作过程求9A : 由(1)可知1173413∼=;易知771111110;0;0;0;1313556677−∼=−∼=−∼=−∼= 所以5A 的其中一种结果为7,0,0,0,012; 易知5A 经过4次操作后剩下一项为712. 综上可知:97:12A .。

2020-2021学年湖南省长沙市长郡中学高一(下)期中数学试卷(附答案详解)

2020-2021学年湖南省长沙市长郡中学高一(下)期中数学试卷(附答案详解)

2020-2021学年湖南省长沙市长郡中学高一(下)期中数学试卷一、单选题(本大题共12小题,共36.0分) 1. 复数5i−2的共轭复数是( )A. i +2B. i −2C. −2−iD. 2−i2. 当23<m <1时,复数m(3+i)−(2+i)在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知AB ⃗⃗⃗⃗⃗ =a ⃗ +5b ⃗ ,BC ⃗⃗⃗⃗⃗ =−2a ⃗ +8b ⃗ ,CD ⃗⃗⃗⃗⃗ =3a ⃗ −3b ⃗ ,则( )A. A 、B 、D 三点共线B. A 、B 、C 三点共线C. B 、C 、D 三点共线D. A 、C 、D 三点共线4. 已知e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是夹角为60°的两个单位向量,则a ⃗ =2e 1⃗⃗⃗ +e 2⃗⃗⃗ 与b ⃗ =−3e 1⃗⃗⃗ +2e 2⃗⃗⃗ 的夹角是( )A. 30°B. 60°C. 120°D. 150°5. 等边三角形ABC 的边长为1,BC ⃗⃗⃗⃗⃗ =a ⃗ ,CA ⃗⃗⃗⃗⃗ =b ⃗ ,AB ⃗⃗⃗⃗⃗ =c ⃗ ,则a ⃗ ⋅b ⃗ +b ⃗ ⋅c ⃗ +c ⃗ ⋅a ⃗ =( )A. 3B. −3C. 32D. −326. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知asinA −bsinB =4csinC ,cosA =−14,则bc =( )A. 6B. 5C. 4D. 37. 如图,某广场设置了一些石凳供大家休息,这些石凳是由正方体截去八个一样的四面体得到的,如果正方体的棱长是60cm ,那么石凳的体积是( )A. 144000cm 3B. 180000cm 3C. 36000cm 3D. 72000cm 38. 如图,圆锥PO 的底面直径和高均为a ,过PO 的中点O′作平行于底面的截面,以该截面为底面挖去一个圆柱,则剩下几A. 5πa332B. 5πa396C. πa332D. πa3969.一个菱形的边长为4cm,一个内角为60°,将菱形水平放置并且使较长的对角线成横向,则此菱形的直观图的面积为()A. 8√3 cm2B. 4√3 cm2C. 2√6 cm2D. √6 cm210.在正方体ABCD−A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A. √22B. √32C. √52D. √7211.复数z1、z2满足z1=m+(4−m2)i,z2=2cosθ+(λ+3sinθ)i(m,λ,θ∈R),并且z1=z2,则λ的取值范围是()A. [−1,1]B. [−916,1] C. [−916,7] D. [916,1]12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A. 8√6πB. 4√6πC. 2√6πD. √6π二、多选题(本大题共3小题,共9.0分)13.下列关于直线与平面间的位置关系的命题判断正确的是()A. 若空间中四条直线l1、l2、l3、l4,满足l1⊥l2,l2⊥l3、l3⊥l4,则l1、l4的位置关系不确定B. 设l、m、n均为直线,其中m、n在平面α内,则“l⊥α”是“l⊥m且l⊥n”的充分不必要条件C. 直线l1、l2互相平行的一个充分不必要的条件是l1、l2都垂直于同一个平面D. 已知m、n为异面直线,m⊥平面α,n⊥平面β,若直线l满足l⊥m,l⊥n,l⊂α,l⊄β,则α与β相交,且交线平行于l14.下列关于空间角的判断正确的是()A. 如果空间中的两个角的两条边分别对应平行,那么这两个角相等B. 两条平行直线与同一个平面所成的角相等C. 一条直线与两条异面直线中的一条所成角为90°,那么该直线与另一直线所成角D. 如果平面α//平面α1,如果平面β//平面β1,那么平面α与平面β所成的二面角和平面α1与平面β1所成的二面角相等或互补15.如图,透明塑料制成的长方体容器ABCD−A1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜.随着倾斜度的不同,有下面五个命题()A. 有水的部分始终呈棱柱形B. 没有水的部分始终呈棱柱形C. 水面EFGH所在四边形的面积为定值D. 棱A1D1始终与水面所在平面平行E. 当容器倾斜如图(3)所示时,BE⋅BF是定值三、单空题(本大题共5小题,共15.0分)16.已知复数z与(z+2)2−8i均是纯虚数,则z=______ .17.已知2i−3是关于x的方程2x2+px+26=0的一个根,则实数p=______.18.已知a⃗=(4,2),则与a⃗垂直的单位向量的坐标为______.19.已知a、b、c分别是△ABC三个内角A、B、C的对边,边BC上的中线长记为m a,则m a=______(用a、b、c表示结果).20.学生到工厂劳动实践,利用3D打印技术制作模型,如图,该模型为长方体ABCD−A1B1C1D1挖去四棱锥O−EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H 分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用的材料密度为0.9g/cm3,不考虑打印损耗,制作该模型所需原料的质量为g.四、解答题(本大题共5小题,共40.0分)21.已知a,b,c分别为△ABC三个内角A,B,C的对边,acos C+√3asin C−b−c=0.(1)求A;(2)若a=2,△ABC的面积为√3,求b,c.22.如图,矩形ABCD所在平面与半圆弧CD⏜所在平面垂直,M是CD⏜上异于C、D的点.(1)证明:DM⊥平面BMC;(2)在线段AM上是否存在点P,使得MC//平面PBD?说明理由.23. 已知△P 1P 2P 3,向量OP 1⃗⃗⃗⃗⃗⃗⃗ 、OP 2⃗⃗⃗⃗⃗⃗⃗ 、OP 3⃗⃗⃗⃗⃗⃗⃗ 满足条件OP 1⃗⃗⃗⃗⃗⃗⃗ +OP 2⃗⃗⃗⃗⃗⃗⃗ +OP 3⃗⃗⃗⃗⃗⃗⃗ =0⃗ ,|OP 1⃗⃗⃗⃗⃗⃗⃗ |=|OP 2⃗⃗⃗⃗⃗⃗⃗ |=|OP 3⃗⃗⃗⃗⃗⃗⃗ |.求证:△P 1P 2P 3是等边三角形.24. 如图,在四棱锥P −ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P −ABCD 的体积为83,求该四棱锥的侧面积.25. 如图,在四棱锥P—ABCD ,底面ABCD 为平行四边形,△PCD 为等边三角形,平面PAC ⊥平面PCD ,PA ⊥CD ,CD =2,AD =3,(1)设G ,H 分别为PB ,AC 的中点,求证:GH//平面PAD ; (2)求证:PA ⊥平面PCD ;答案和解析1.【答案】B【解析】解:∵复数5i−2=5(−i−2)22−i 2=−2−i ,∴共轭复数是−2+i 故选:B .首先要对所给的复数进行整理,分子和分母同乘以分母的共轭复数,化简到最简形式,把得到的复数虚部变为相反数,得到要求的共轭复数.复数的加减乘除运算是比较简单的问题,在高考时有时会出现,若出现则是要我们一定要得分的题目.2.【答案】D【解析】 【分析】本题是对复数的代数形式最基本的考查. 化简成代数形式,再根据m 的范围确定. 【解答】解:m(3+i)−(2+i)=(3m −2)+(m −1)i , 又∵23< m <1,∴3m −2>0,m −1<0, ∴所对应的点在第四象限, 故选D .3.【答案】A【解析】解:∵AB ⃗⃗⃗⃗⃗ =a ⃗ +5b ⃗ ,BC ⃗⃗⃗⃗⃗ =−2a ⃗ +8b ⃗ ,CD ⃗⃗⃗⃗⃗ =3a ⃗ −3b ⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =a ⃗ +5b ⃗ , ∴AB⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ , ∴AB ⃗⃗⃗⃗⃗ 与BD ⃗⃗⃗⃗⃗⃗ 共线,根据平面向量的线性运算与共线定理,证明AB ⃗⃗⃗⃗⃗ 与BD ⃗⃗⃗⃗⃗⃗ 共线,即可得出结论. 本题考查了平面向量的线性运算与共线定理的应用问题,是基础题目.4.【答案】C【解析】 【分析】本题主要考查两个向量数量积的运算,两个向量数量积的定义,求向量的模的方法,属于中档题.利用两个向量数量积的定义求出e 1⃗⃗⃗ ⋅e 2⃗⃗⃗ ,再求出|a ⃗ |,|b ⃗ |,a ⃗ ⋅b ⃗ 的值,根据cosθ=a⃗ ⋅b ⃗ |a ⃗ |⋅|b⃗ |,求得则a ⃗ =2e 1⃗⃗⃗ +e 2⃗⃗⃗ 与b ⃗ =−3e 1⃗⃗⃗ +2e 2⃗⃗⃗ 的夹角θ的值. 【解答】解:∵已知e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是夹角为60°的两个单位向量,∴e 1⃗⃗⃗ ⋅e 2⃗⃗⃗ =1×1×cos60°=12, 设a ⃗ =2e 1⃗⃗⃗ +e 2⃗⃗⃗ 与b ⃗ =−3e 1⃗⃗⃗ +2e 2⃗⃗⃗ 的夹角为θ,θ∈(0°,180°),∵|a ⃗ |=√(2e 1⃗⃗⃗ +e 2⃗⃗⃗ )2=√4e 1⃗⃗⃗ 2+4e 1⃗⃗⃗ ⋅e 2⃗⃗⃗ +e 2⃗⃗⃗ 2=√7,|b ⃗ |=√(−3e 1⃗⃗⃗ +2e 2⃗⃗⃗ )2=√9e 1⃗⃗⃗ 2−12e 1⃗⃗⃗ ⋅e 2⃗⃗⃗ +4e 2⃗⃗⃗ 2=√7, a ⃗ ⋅b ⃗ =(2e 1⃗⃗⃗ +e 2⃗⃗⃗ )⋅(−3e 1⃗⃗⃗ +2e 2⃗⃗⃗ )=−6e 1⃗⃗⃗ 2+e 1⃗⃗⃗ ⋅e 2⃗⃗⃗ +2e 2⃗⃗⃗ 2=−6+12+2=−72, ∴cosθ=a⃗ ⋅b ⃗ |a ⃗ |⋅|b⃗ |=−72√7⋅√7=−12,∴θ=120°,故选:C .5.【答案】D【解析】解:由题意可得,<a ⃗ ,b ⃗ >=<a ⃗ ,c ⃗ >=<b ⃗ ,c ⃗ >=2π3 ∴a ⃗ ⋅b ⃗ +b ⃗ ⋅c ⃗ +c ⃗ ⋅a ⃗ =1×1×(−12)×3=−32故选D先确定出各向量的夹角,然后根据向量的数量积的定义即可求解本题主要考查了向量的数量积的定义的简单应用,解题的关键是准确确定出向量的夹角【解析】【分析】本题考查了正弦定理、余弦定理,考查了计算能力,属于中档题.利用正弦定理和余弦定理列出方程组,能求出结果.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c,设该三角形外接圆的半径为R,根据正弦定理有:又asinA−bsinB=4csinC,∴a·a2R −b·b2R=4c·c2R,即a2=4c2+b2,又,∴{a2−b2=4c2cosA=b2+c2−a22bc=−14,解得bc=6,故选A.7.【答案】B【解析】解:由题意可知,截去的八个四面体是全等的正三棱锥,体积是8×13×12×30×30×30=36000cm3;正方体的体积为60×60×60=216000cm3;则石凳的体积是216000−36000=180000cm3.故选:B.由已知求得正方体的体积,减去八个正三棱锥的体积得答案.本题考查正方体与三棱锥体积的求法,是基础的计算题.8.【答案】B【解析】解:圆锥SO的底面半径为a2,高为a,则圆柱PO的底面半径是a4,高为a2,∴V SO=13π(a2)2⋅a=a312π,V圆柱=π(a4)2⋅a2=a232π,∴剩下几何体的体积是a3π12−a3π32=5πa396.故选:B.通过圆锥的底面半径和高,分别求出圆柱和圆锥的体积,然后求解即可.本题考查圆柱与圆锥体积的求法,考查计算能力,是基础题.9.【答案】C【解析】解:解法一、菱形ABCD的边长为4cm,内角为60°,画出它的平面直观图,如图四边形A′B′C′D′所示:在菱形ABCD中,BD=4,AC=4√3,在四边形A′B′C′D′中,B′D′=12B′D′=2,AC=A′C′,所以四边形A′B′C′D′的面积为12A′C′⋅B′D′⋅sin45°=12×2×4√3×√22=2√6(cm2).解法二、菱形ABCD的边长为4cm,内角为60°,所以对角线AC=4√3,BD=4,菱形ABCD的面积为S=12×4√3×4=8√3,该菱形的平面直观图面积为S′=2√2=√32√2=2√6(cm2)故选:C.解法一、画出菱形的平面直观图,计算平面直观图的面积即可.解法二、根据原图形与平面直观图的面积比为2√2:1,计算直观图的面积即可.本题考查了平面图形的直观图与原图形面积的计算问题,熟记面积比是快速解题的关键.10.【答案】C【解析】 【分析】本题考查异面直线所成角的正切值的求法,属于基础题. 作出异面直线所成的角,然后求出其正切值即可. 【解答】解:如下图,取DD 1的中点F ,连接EF ,AF ,因为E ,F 为CC 1,DD 1的中点,ABCD −A 1B 1C 1D 1为正方体, 所以EF//CD ,所以∠AEF 为异面直线AE 与CD 所成角或其补角, 由正方体可得EF ⊥平面ADD 1A 1, 所以EF ⊥AF , 设正方体的棱长为1,则EF =1,AF =√1+14=√52,所以tan∠AEF =√52,所以异面直线AE 与CD 所成角的正切值为√52.故选C .11.【答案】C【解析】解:∵z 1=z 2,∴{m =2cosθ4−m 2=λ+3sinθ,化为4sin 2θ=λ+3sinθ, ∴λ=4(sinθ−38)2−916,∵−1≤sinθ≤1,∴当sinθ=38时,λ取得最小值−916;当sinθ=−1时,λ取得最大值7. ∴−916≤λ≤7.∴λ的取值范围是[−916,7]. 故选:C .利用z 1=z 2,可得{m =2cosθ4−m 2=λ+3sinθ,化为λ=4(sinθ−38)2−916,利用−1≤sinθ≤1和二次函数的单调性即可得出.本题考查了复数相等、正弦函数的单调性、二次函数的单调性,属于基础题.12.【答案】D【解析】 【分析】本题考查球的体积的求法,涉及到余弦定理.设∠PAC =θ,PA =PB =PC =2x ,EC =y ,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求出球O 的体积. 【解答】 解:设∠PAC =θ,PA =PB =PC =2x ,EC =y ,因为E ,F 分别是PA ,AB 的中点,所以EF =12PB =x ,AE =x , 在△PAC 中,cosθ=4x 2+4−4x 22×2x×2=12x ,在△EAC 中,cosθ=x 2+4−y 22×2x,整理得x 2−y 2=−2,①因为△ABC 是边长为2的正三角形,所以CF =√3, 又∠CEF =90°,则x 2+y 2=3,②,由①②得x=√2,2所以PA=PB=PC=√2,所以PA2+PB2=4=AB2,即PA⊥PB,同理可得PA⊥PC,PB⊥PC,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为√2+2+2=√6,所以球O的体积为.故选D.13.【答案】ABD【解析】解:对于A:空间中四条直线l1、l2、l3、l4,满足l1⊥l2,l2⊥l3、l3⊥l4,则l1、l4的位置关系不确定,故A正确;对于B:设l、m、n均为直线,其中m、n在平面α内,由“l⊥α”则“l⊥m且l⊥n”,但是当“l⊥m且l⊥n”则“l⊥α”(没有说直线m和n相交)不一定成立,则“l⊥α”是“l⊥m且l⊥n”的充分不必要条件,故B正确;对于C:直线l1、l2互相平行的一个充分必要的条件是l1、l2都垂直于同一个平面,故C 错误;对于D:已知m、n为异面直线,m⊥平面α,n⊥平面β,若直线l满足l⊥m,l⊥n,l⊂α,l⊄β,则α与β相交,且交线平行于l,故D正确;故选:ABD.直接利用线面平行和垂直的判定和性质,法向量,和面面垂直的应用判定A、B、C、D 的结论.本题考查的知识要点:线面平行和垂直的判定和性质,法向量,主要考查学生对基础知识的理解和应用,属于基础题.14.【答案】BD【解析】解:如果空间中的两个角的两条边分别对应平行,那么这两个角相等或互补,所以A不正确;两条平行直线与同一个平面所成的角相等,满足直线与平面所成角的性质,所以B正确;一条直线与两条异面直线中的一条所成角为90°,那么该直线与另一直线所成角的范围是[0°,90°],所以C不正确;如果平面α//平面α1,如果平面β//平面β1,那么平面α与平面β所成的二面角和平面α1与平面β1所成的二面角相等或互补,满足二面角的定义,所以D正确;故选:BD.利用空间角的性质,判断选项的正误即可.本题考查命题的真假的判断,空间角的判断,考查空间心里,转化思想以及逻辑推理能力,是中档题.15.【答案】ABDE【解析】解:∵棱柱特征:有两个面是相互平行且是全等的多边形,其余没相邻两个面的交线也相互平行,而这些面都是平行四边形∴通过棱柱特征,AB正确.∵水面EFGH所在四边形的面积,从图2,图3我们发现,有条边长不变,而另外一条长随倾斜度变化而变化,∴EFGH所在四边形的面积是变化的.C不对∵棱A1D1始终与BC平行,BC与水面始终平行,∴D正确.∵水的体积是不变的,高始终是BC也不变.底面也不会,即BE⋅BF是定值.∴D正确.所以正确的是:ABDE.故选:ABDE.由题意抓住棱柱形的特征进行判断,观察即可得到答案.本题考查了棱柱特征:有两个面是相互平行且是全等的多边形,其余梅相邻两个面的交线也相互平行,而这些面都是平行四边形,同时考查对空间的想象力和图象变形的灵活处理能力.属于中档题.16.【答案】−2i【解析】解:设z=ai,a∈R,∴(z+2)2−8i=(ai+2)2−8i=4+4ai−a2−8i=(4−a2)+(4a−8)i,∵它是纯虚数,∴a=−2故答案为:−2i.两个复数都是纯虚数,可设z ,化简(z +2)2−8i ,可求出z . 本题考查复数的分类,及复数的运算,是基础题.17.【答案】12【解析】解:∵2i −3是关于x 的方程2x 2+px +26=0的一个根,∴由实系数一元二次方程虚根成对原理可得,−2i −3是关于x 的方程2x 2+px +26=0的另一个根,则(2i −3)+(−2i −3)=−p2,得p =12. 故答案为:12.由已知结合实系数一元二次方程虚根成对原理求得方程2x 2+px +26=0的另一个根,再由根与系数的关系求解p 值.本题考查实系数一元二次方程虚根成对原理的应用,是基础题.18.【答案】(√55,−2√55)或(−√55,2√55).【解析】解:设与a⃗ 垂直的单位向量n ⃗ =(x,y). 则{4x +2y =0x 2+y 2=1,解得{x =√55y =−2√55或{x =−√55y =2√55. 故答案为(√55,−2√55)或(−√55,2√55). 设出与a ⃗ 垂直的单位向量的坐标,由题意列方程组{4x +2y =0x 2+y 2=1,求解后即可得到答案.本题考查了数量积判断两个平面向量垂直的关系,考查了单位向量的概念,训练了方程组的解法,是基础题.19.【答案】√c 22+b 22−a 24【解析】解:如图,以B 点为原点,以BC 方向为x 轴正方向建立直角坐标系, 则有B(0,0),C(a,0),BC中点D 坐标为(a2,0),设A 点坐标为(x,y),可得x 2+y 2=c 2,(a −x)2+y 2=b 2,可得:m a 2=|AD|2=(a2−x)2+y 2=x 2+y 2−ax +a 24=c 2+a 24−ax ,由{x 2+y 2=c 2(a −x)2+y 2=b 2,可得ax =c 2+a 2−b 22, 所以m a2=c 2+a 24−c 2+a 2−b 22=c 22+b 22−a 24,可得m a =√c 22+b 22−a 24.故答案为:√c 22+b 22−a 24.以B 点为原点,以BC 方向为x 轴正方向建立直角坐标系,设A 点坐标为(x,y),可得m a 2=|AD|2=c 2+a 24−ax ,由{x 2+y 2=c 2(a −x)2+y 2=b 2,可得ax =c 2+a 2−b 22,从而可求m a 2=c 22+b 22−a 24,即可得解m a 的值.本题主要考查了三角形中的几何计算,考查了数形结合思想和转化思想,属于中档题.20.【答案】118.8【解析】 【分析】本题考查长方体、四棱锥的体积等基础知识,属于拔高题.该模型体积为V ABCD−A 1B 1C 1D 1−V O−EFGH =132(cm 3),再由3D 打印所用原料密度为0.9g/cm 3,不考虑打印损耗,能求出制作该模型所需原料的质量. 【解答】解:该模型为长方体ABCD −A 1B 1C 1D 1,挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm , ∴该模型体积为:V ABCD−A 1B 1C 1D 1−V O−EFGH=6×6×4−13×(4×6−4×12×3×2)×3=144−12=132(cm 3),∵3D 打印所用原料密度为0.9g/cm 3,不考虑打印损耗,∴制作该模型所需原料的质量为:132×0.9=118.8(g).故答案为118.8.21.【答案】解:(1)△ABC中,acosC+√3asinC−b−c=0,利用正弦定理可得sinAcosC+√3sinAsinC=sinB+sinC=sin(A+C)+sinC,化简可得√3sinA−cosA=1,,又0<A<π,故A=π3.(2)若a=2,△ABC的面积为12bc⋅sinA=√34bc=√3,∴bc=4,①由余弦定理得a2=4=b2+c2−2bc⋅cosA=(b+c)2−3bc=(b+c)2−12,∴b+c=4,②结合①②解得b=c=2.【解析】本题考查正弦定理、余弦定理的运用,考查三角形面积的计算,考查学生的计算能力,属于中档题.(1)根据条件,由正弦定理可得sinAcosC+√3sinAsinC=sinB+sinC=sin(A+C)+ sinC,化简求解A即可;(2)若a=2,由△ABC的面积√3,求得bc=4①;再利用余弦定理可得b+c=4②,结合①②求得b和c的值.22.【答案】解:(1)证明:根据题意,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为半圆弧上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,BC⊂平面BMC,CM⊂平面BMC,所以DM⊥平面BMC;(2)当P为AM的中点时,MC//平面PBD.证明如下:连结AC 交BD 于O.因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC//OP.MC ⊄平面PBD ,OP ⊂平面PBD , 所以MC//平面PBD .【解析】(1)通过平面CMD ⊥平面ABCD ,推出BC ⊥平面CMD ,得到BC ⊥DM.证明DM ⊥CM.即可证明DM ⊥平面BMC .(2)连结AC 交BD 于O.说明O 为AC 中点.连结OP ,证明MC//OP.即可说明MC//平面PBD .本题考查直线与平面垂直的判定定理的应用,直线与平面平行的判断定理的应用,考查空间想象能力,逻辑推理能力,是中档题.23.【答案】证明:根据题意,设|OP 1⃗⃗⃗⃗⃗⃗⃗ |=|OP 2⃗⃗⃗⃗⃗⃗⃗ |=|OP 3⃗⃗⃗⃗⃗⃗⃗ |=t , 若OP 1⃗⃗⃗⃗⃗⃗⃗ +OP 2⃗⃗⃗⃗⃗⃗⃗ +OP 3⃗⃗⃗⃗⃗⃗⃗ =0⃗ ,则OP 1⃗⃗⃗⃗⃗⃗⃗ +OP 2⃗⃗⃗⃗⃗⃗⃗ =−OP 3⃗⃗⃗⃗⃗⃗⃗ ,则有(OP 1⃗⃗⃗⃗⃗⃗⃗ +OP 2⃗⃗⃗⃗⃗⃗⃗ )2=(−OP 3⃗⃗⃗⃗⃗⃗⃗ )2,变形可得OP 1⃗⃗⃗⃗⃗⃗⃗ ⋅OP 2⃗⃗⃗⃗⃗⃗⃗ =−t22,则有(OP 1⃗⃗⃗⃗⃗⃗⃗ −OP 2⃗⃗⃗⃗⃗⃗⃗ )2=OP 1⃗⃗⃗⃗⃗⃗⃗ 2+OP 2⃗⃗⃗⃗⃗⃗⃗ 2−2OP 1⃗⃗⃗⃗⃗⃗⃗ ⋅OP 2⃗⃗⃗⃗⃗⃗⃗ =3t2,则|P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ |=√3t , 同理可得:|P 1P 3⃗⃗⃗⃗⃗⃗⃗⃗ |=|P 2P 3⃗⃗⃗⃗⃗⃗⃗⃗ |=√3t ,则有|P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ |=|P 1P 3⃗⃗⃗⃗⃗⃗⃗⃗ |=|P 2P 3⃗⃗⃗⃗⃗⃗⃗⃗ |,即△P 1P 2P 3是等边三角形.【解析】根据题意,设|OP 1⃗⃗⃗⃗⃗⃗⃗ |=|OP 2⃗⃗⃗⃗⃗⃗⃗ |=|OP 3⃗⃗⃗⃗⃗⃗⃗ |=t ,由OP 1⃗⃗⃗⃗⃗⃗⃗ +OP 2⃗⃗⃗⃗⃗⃗⃗ +OP 3⃗⃗⃗⃗⃗⃗⃗ =0⃗ 可得OP 1⃗⃗⃗⃗⃗⃗⃗ +OP 2⃗⃗⃗⃗⃗⃗⃗ =−OP 3⃗⃗⃗⃗⃗⃗⃗ ,变形可得OP 1⃗⃗⃗⃗⃗⃗⃗ ⋅OP 2⃗⃗⃗⃗⃗⃗⃗ =−t22,进而求出(OP 1⃗⃗⃗⃗⃗⃗⃗ −OP 2⃗⃗⃗⃗⃗⃗⃗ )2的值,即可得|P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ |=√3t ,同理可得|P 1P 3⃗⃗⃗⃗⃗⃗⃗⃗|=|P 2P 3⃗⃗⃗⃗⃗⃗⃗⃗ |=√3t ,即可得证明. 本题考查向量数量积的计算,涉及向量模的计算,属于基础题.24.【答案】证明:(1)∠BAP =∠CDP =90°,即AB ⊥PA ,CD ⊥PD ,又AB//CD , ∴AB ⊥PD ,∵PA ∩PD =P ,PA ,PD ⊂平面PAD , ∴AB ⊥平面PAD , ∵AB ⊂平面PAB , ∴平面PAB ⊥平面PAD .解:(2)设PA =PD =AB =DC =a ,取AD 中点O ,连结PO ,由(1)知AB⊥平面PAD,又OP⊂平面PAD,∴AB⊥PO,∵PA=PD,∠APD=90°,∴PO⊥AD,AD=√a2+a2=√2a,PO=√22a,又AB,AD⊂平面ABCD,AB∩AD=A,∴PO⊥平面ABCD,∵四棱锥P−ABCD的体积为83,由AB⊥平面PAD,AD⊂平面PAD,得AB⊥AD,又AB=DC,AB//CD所以四边形ABCD为矩形=13×AB×AD×PO=13×a×√2a×√22a=13a3=83,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2√2,PO=√2,∴PB=PC=√4+4=2√2,由上述可知△PAD,△PAB,△PCD都是直角三角形,△PBC是等腰三角形该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=12×PA×PD+12×PA×AB+12×PD×DC+12×BC×√PB2−(BC2)2=12×2×2+12×2×2+12×2×2+12×2√2×√8−2=6+2√3.【解析】本题考查面面垂直的证明,考查四棱锥的侧面积的求法.(1)推导出AB⊥PA,CD⊥PD,从而AB⊥PD,进而AB⊥平面PAD,由此能证明平面PAB⊥平面PAD.(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,由AB⊥PO,PO⊥AD,得PO⊥底面ABCD,且AD=√2a,PO=√22a,由四棱锥P−ABCD的体积为83,求出a=2,由此能求出该四棱锥的侧面积.25.【答案】证明:(1)如图:证明:连接BD,由题意得AC∩BD=H,BH=DH,又由BG=PG,得GH//PD,∵GH⊄平面PAD,PD⊂平面PAD,∴GH//平面PAD;(2)证明:取棱PC中点N,连接DN,依题意得DN⊥PC,又∵平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,DN⊂平面PCD,∴DN⊥平面PAC,又PA⊂平面PAC,∴DN⊥PA,又PA⊥CD,CD∩DN=D,CD⊂平面PCD,DN⊂平面PCD,∴PA⊥平面PCD;(3)解:连接AN,由(2)中DN⊥平面PAC,知∠DAN是直线AD与平面PAC所成角,∵△PCD是等边三角形,CD=2,且N为PC中点,∴DN=√3,又DN⊥平面PAC,,DN⊥AN,在Rt△AND中,sin∠DAN=DNDA =√33.∴直线AD与平面PAC所成角的正弦值为√33.【解析】本题考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成角等基础知识,考查空间想象能力和运算求解能力,属于拔高题.(1)连接BD,由题意得AC∩BD=H,BH=DH,由BG=PG,得GH//PD,由此能证明GH//平面PAD;(2)取棱PC中点N,连接DN,推导出DN⊥PC,从而DN⊥平面PAC,进而DN⊥PA,再上PA⊥CD,能证明PA⊥平面PCD;(3)连接AN,由DN⊥平面PAC,知∠DAN是直线AD与平面PAC所成角,由此能求出直线AD与平面PAC所成角的正弦值.第21页,共21页。

2019-2020学年湖南省长沙市长郡中学高一(上)期中数学试卷试题及答案(解析版)

2019-2020学年湖南省长沙市长郡中学高一(上)期中数学试卷试题及答案(解析版)

2019-2020学年湖南省长沙市长郡中学高一(上)期中数学试卷一、选择题:本大题共15个小题,每小题3分,共45分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知{|12}A x x =-<<,2{|20}B x x x =+<,则(A B = )A .(1,0)-B .(0,2)C .(2,0)-D .(2,2)-2.函数()f x =+的定义域为( )A .(3-,0]B .(3-,1]C .(-∞,3)(3--⋃,0]D .(-∞,3)(3--⋃,1]3.若函数(2),1()1,1a x x f x ax x -⎧=⎨+<⎩…,在R 上是增函数,则a 的取值范围为( )A .(,2)-∞B .(0,2)C .1(0,]2D .1[,2)24.下列函数既是偶函数,又在(0,)+∞上为增函数的是( ) A .y x =B .2y x =-C .||y x =D .1y x=5.函数21y x x =-+,[1x ∈-,1]的最大值与最小值之和为( ) A .1.75B .3.75C .4D .56.已知定义在R 上的奇函数()f x 满足(1)(1)f x f x +=-,且当[0x ∈,1]时,()2x f x m =-,则(1)(f -= ) A .1-B .1C .2-D .27.下列不等式成立的是( ) A .231.2 1.2> B .321.2 1.2--< C . 1.2 1.2log 2log 3>D .0.20.2log 2log 3<8.设251()3a =,432b =,21log 3c =,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b <<9.函数25()log (2)f x x x =-的单调递增区间是( ) A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知幂函数()y f x =的图象过点1(2,则f (4)的值为( )A .14B .2C .4D .11611.已知函数()log (1)a f x x =+(其中1)a >,则()0f x <的解集为( ) A .(1,)-+∞B .(1,)+∞C .(0,1)D .(1,0)-12.若()f x 为奇函数,且0x 是()x y f x e =-的一个零点,则0x -一定是下列哪个函数的零点( )A .()1x y f x e =+B .()1x y f x e -=--C .()1x y f x e =-D .()1x y f x e =-+13.若函数()(1)(3)()f x lg x lg x lg a x =-+---只有一个零点,则实数a 的取值范围是( ) A .13a <…或134a =B .1334a <… C .1a …或134a =D .134a >14.若方程222(2)0x x lg a a ---=有一个正根和一个负根,则实数a 的取值范围是( ) A .1a >或12a <-B .112a -<<C .12a >-D .1a <15.函数()g x 的图象如图所示,则方程3(())0g g x =的实数根个数为( )A .3B .6C .9D .12二、填空题:本大题共5个小题.每小题3分,共15分,将答案填在答题纸上. 16.设集合{1A =,2},则满足{1AB =,2,3},{2}AB =的集合B = .17.已知函数(22)32f x x +=+,且f (a )4=,则a = .18.已知3()3f x x x =+,x R ∈,且2(2)()0f a f a -+<,则实数a 的取值范围是 . 19.某纯净水制造厂在净化水的过程中,每增加一次过滤可减少水中杂质36%,若要使水中杂质减少到原来的5%以下,则至少需要过滤 次.(参考数据:20.3010)lg ≈ 20.若规定集合1{M a =,2a ,⋯,*}()n a n N ∈的子集1{i a ,2i a ,}(*)m i a m N ⋯∈为M 的第k 个子集,其中12111222n i i i k ---=++⋯+,则M 的第25个子集是 .三、解答题:本大题共5个小题,共40分.解答应写出文字说明、证明过程或演算步骤.21.计算:(1)5log 2log 2545lg lg ++;(2)已知1122x x-+=,求22165x x x x --+-+-的值. 22.已知2lg a =,3lg b =,试用a ,b 表示12log 5.23.科学家发现某种特别物质的温度y (单位:摄氏度)随时间x (时间:分钟)的变化规律满足关系式:122(04,0)x x y m x m -=+>剟.(1)若2m =,求经过多少分钟,该物质的温度为5摄氏度; (2)如果该物质温度总不低于2摄氏度,求m 的取值范围.24.集合2{(,)|2}A x y y x mx ==++,{(,)|10B x y x y =-+=,02}x 剟.若A B ≠∅,求实数m 的取值范围.25.已知函数()f x ,对于任意的x ,y R ∈,都有()()()f x y f x f y +=+,当0x >时,()0f x <,且1(1)2f =-.(1)求(0)f ,f (3)的值;(2)当810x -剟时,求函数()f x 的最大值和最小值.2019-2020学年湖南省长沙市长郡中学高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知{|12}A x x =-<<,2{|20}B x x x =+<,则(A B = )A .(1,0)-B .(0,2)C .(2,0)-D .(2,2)-【解答】解:{|12}A x x =-<<,{|20}B x x =-<<, 则(1,0)AB =-.故选:A .2.函数()f x =+的定义域为( )A .(3-,0]B .(3-,1]C .(-∞,3)(3--⋃,0]D .(-∞,3)(3--⋃,1]【解答】解:根据题意:12030x x ⎧-⎨+>⎩…,解得:30x -<… ∴定义域为(3-,0]故选:A .3.若函数(2),1()1,1a x x f x ax x -⎧=⎨+<⎩…,在R 上是增函数,则a 的取值范围为( )A .(,2)-∞B .(0,2)C .1(0,]2D .1[,2)2【解答】解:根据题意,函数(2),1()1,1a x x f x ax x -⎧=⎨+<⎩…,在R 上是增函数,则有20012a a a a->⎧⎪>⎨⎪+-⎩…,解可得:102a <…,即a 的取值范围为(0,1]2;故选:C .4.下列函数既是偶函数,又在(0,)+∞上为增函数的是( )A .y x =B .2y x =-C .||y x =D .1y x=【解答】解:根据题意,依次分析选项:对于A ,y x =为正比例函数,不是偶函数,不符合题意;对于B ,2y x =-,为二次函数,是偶函数,在(0,)+∞上为减函数,不符合题意; 对于C ,,0||,0x x y x x x ⎧==⎨-<⎩…,是偶函数,又在(0,)+∞上为增函数,符合题意;对于D ,1y x=,为反比例函数,不是偶函数,不符合题意; 故选:C .5.函数21y x x =-+,[1x ∈-,1]的最大值与最小值之和为( ) A .1.75B .3.75C .4D .5【解答】解:函数21y x x =-+,对称轴为12x =, 13()24min y f ==,(1)3f -=,f (1)1=,故最大值为3,最小值为0.75 所以最大值和最小值的和为3.75, 故选:B .6.已知定义在R 上的奇函数()f x 满足(1)(1)f x f x +=-,且当[0x ∈,1]时,()2x f x m =-,则(1)(f -= ) A .1- B .1C .2-D .2【解答】解:()f x 为奇函数且[0x ∈,1]时()2x f x m =-,(0)10f m ∴=-=, 1m ∴=,f (1)211=-=, (1)f f ∴-=-(1)1=-.故选:A .7.下列不等式成立的是( ) A .231.2 1.2>B .321.2 1.2--<C . 1.2 1.2log 2log 3>D .0.20.2log 2log 3<【解答】解:函数x y a =,1a >时,函数是增函数,231.2 1.2∴>不正确;321.2 1.2--<正确; 函数 1.2log y x =,是增函数, 1.2 1.2log 2log 3∴>不正确; 函数0.2log y x =是减函数,0.20.2log 2log 3∴<不正确; 故选:B .8.设251()3a =,432b =,21log 3c =,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b <<【解答】解:251()(0,1)3a =∈,4321b =>,21log 03c =<,则c a b <<. 故选:D .9.函数25()log (2)f x x x =-的单调递增区间是( ) A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞【解答】解:由220x x ->得2x >或0x <,即函数的定义域为(-∞,0)(2⋃,)+∞, 设22t x x =-,则5log y t =是增函数, 则要求()f x 的单调递增区间, 即求22t x x =-的单调递增区间, 22t x x =-的单调递增区间为(2,)+∞, ()f x ∴的单调递增区间为(2,)+∞,故选:B .10.已知幂函数()y f x =的图象过点1(2,则f (4)的值为( )A .14B .2C .4D .116【解答】解:设幂函数为()f x x α=,()y f x =的图象过点1(2,∴121()222αα--===∴12α=. 12()f x x ∴=,f ∴(4)1242===,故选:B .11.已知函数()log (1)a f x x =+(其中1)a >,则()0f x <的解集为( ) A .(1,)-+∞B .(1,)+∞C .(0,1)D .(1,0)-【解答】解:1a >时,函数()log (1)a f x x =+在定义域上单调递增, ∴不等式()0f x <可化为011x <+<,解得10x -<<,∴所求不等式的解集为(1,0)-.故选:D .12.若()f x 为奇函数,且0x 是()x y f x e =-的一个零点,则0x -一定是下列哪个函数的零点( )A .()1x y f x e =+B .()1x y f x e -=--C .()1x y f x e =-D .()1x y f x e =-+【解答】解:0x 是()x y f x e =-的一个零点,00()0x f x e ∴-=,又()f x 为奇函数,00()()f x f x ∴-=-,00()0x f x e ∴---=,即00()0x f x e -+=, 故000()()10x x x f x e f x ee--+-+==; 故0x -一定是()1x y f x e =+的零点, 故选:A .13.若函数()(1)(3)()f x lg x lg x lg a x =-+---只有一个零点,则实数a 的取值范围是( )A .13a <…或134a =B .1334a <… C .1a …或134a =D .134a >【解答】解:原题等价于{213530x x x a x a<<-++=<,当△0=时,135,42a x ==; 当△0>,即134a <时,令2()53g x x x a =-++,满足(1)0(3)0g g >⎧⎨⎩…,解得13a <….综上,实数a 的取值范围为13a <…或134a =. 故选:A .14.若方程222(2)0x x lg a a ---=有一个正根和一个负根,则实数a 的取值范围是( ) A .1a >或12a <-B .112a -<<C .12a >-D .1a <【解答】解:方程222(2)0x x lg a a ---=有一个正根和一个负根, ∴两根之积2(2)0lg a a --<,故2(2)0lg a a ->,221a a ∴->,求得1a >或12a <-,故选:A .15.函数()g x 的图象如图所示,则方程3(())0g g x =的实数根个数为( )A .3B .6C .9D .12【解答】解:令3t x =,()u g t =,则由3(())0g g x =,有()0g u =, 由图象知有三个根1u ,2u ,3u , 分别令1()u g t =,2()u g t =,3()u g t =, 解出有9个t 符合方程,在令3t x =解出相应x 的根的个数为9个,故选:C .二、填空题:本大题共5个小题.每小题3分,共15分,将答案填在答题纸上. 16.设集合{1A =,2},则满足{1A B =,2,3},{2}AB =的集合B = {2,3} .【解答】解:{1A =,2},{1AB =,2,3},{2}A B =,2B ∴∈,3B ∈,1B ∉, {2B ∴=,3}.故答案为:{2,3}.17.已知函数(22)32f x x +=+,且f (a )4=,则a = 3. 【解答】解:(22)32f x x +=+,令22x t +=,则22t x -=, 232()3222t t f t --∴=+=, f ∴(a )3242a -==, 则103a =. 故答案为:10318.已知3()3f x x x =+,x R ∈,且2(2)()0f a f a -+<,则实数a 的取值范围是 (2,1)- . 【解答】解:因为3()()3()f x x x f x -=--=-,所以是奇函数,且递增, 且2(2)()0f a f a -+<,即22(2)()()f a f a f a -<-=-, 22a a -<-,220a a +-<,所以(2,1)a ∈-, 故答案为:(2,1)-.19.某纯净水制造厂在净化水的过程中,每增加一次过滤可减少水中杂质36%,若要使水中杂质减少到原来的5%以下,则至少需要过滤 7 次.(参考数据:20.3010)lg ≈ 【解答】解:设至少需过滤的次数为n ,则由题意可得0.640.05n …,即0.640.05nlg lg …,0.0552121,301060.642(81)62260.30102lg lg lg n lg lg lg ----∴====--⨯- (706)再由n 为正整数可得n 的最小值为7, 故答案为:7.20.若规定集合1{M a =,2a ,⋯,*}()n a n N ∈的子集1{i a ,2i a ,}(*)m i a m N ⋯∈为M 的第k 个子集,其中12111222n i i i k ---=++⋯+,则M 的第25个子集是 1{a ,4a ,5}a .【解答】解:由题意得,M 的第k 个子集,且12111222n i i i k ---=++⋯+, 又03411415125222222---=++=++, 所以M 的第25个子集是1{a ,4a ,5}a , 故答案为:1{a ,4a ,5}a .三、解答题:本大题共5个小题,共40分.解答应写出文字说明、证明过程或演算步骤. 21.计算:(1)5log 2log 2545lg lg ++;(2)已知1122x x-+=,求22165x x x x --+-+-的值.【解答】解:(1)3144333-==;∴5log 2log 2545lg lg ++;143115log 310022244lg -=++=-++=;(2)1122x x-+=,111222()23x x x x --∴+=+-=;2212()27x x x x --∴+=+-=;∴22167615352x x x x --+--==-+--. 22.已知2lg a =,3lg b =,试用a ,b 表示12log 5. 【解答】解:125121log 5122232lg lg alg lg lg a b--===++.23.科学家发现某种特别物质的温度y (单位:摄氏度)随时间x (时间:分钟)的变化规律满足关系式:122(04,0)x x y m x m -=+>剟.(1)若2m =,求经过多少分钟,该物质的温度为5摄氏度;(2)如果该物质温度总不低于2摄氏度,求m 的取值范围.【解答】解:(1)由题意,当2m =,则12225x x -+=,解得1x =或1x =-; 由0x …,1x ∴=, 故经过1时间,温度为5摄氏度.(2)由题意得1222x x m -+…对一切0x …恒成立, 则 由20x >,得22x m …, 令2x t -=则01t <…,2211()222()22f t t t t =-+=--+, 当12t =时,取得最大值为12. 12m ∴…,故的取值范围为1[2,)+∞. 24.集合2{(,)|2}A x y y x mx ==++,{(,)|10B x y x y =-+=,02}x 剟.若A B ≠∅,求实数m 的取值范围.【解答】解:联立得:221y x mx y x ⎧=++⎨=+⎩, 消去y 得:221x mx x ++=+,即2(1)10x m x +-+=,[0x ∈,2], 由题设知2()(1)1f x x m x =+-+,[0x ∈,2]必有零点,分两种情况考虑:()i 若在[0,2]只有一个零点,则f (2)0<,即32m <-; 或2(1)401022m m ⎧--=⎪⎨-⎪⎩剟,解得:1m =-; ()ii 若在[0,2]有两个零点,则(2)010220f m ⎧⎪-⎪<-<⎨⎪>⎪⎩…,解得:312m -<-…, 由()()i ii 知:1m -….25.已知函数()f x ,对于任意的x ,y R ∈,都有()()()f x y f x f y +=+,当0x >时,()0f x <,且1(1)2f =-. (1)求(0)f ,f (3)的值;(2)当810x -剟时,求函数()f x 的最大值和最小值. 【解答】解:(1)对于任意的x ,y R ∈,都有()()()f x y f x f y +=+, 令0x y ==,则(0)0f =,1(1)2f =-.令1x y ==,则(11)f f +=(1)f +(1),f ∴(2)1=-; (21)f f ∴+=(2)f +(1);即3(3)2f =-. (2)令y x =-,则()()()(0)0f x x f x f x f -=+-==,()()f x f x ∴-=-,()f x ∴为奇函数, 任取1x ,2x R ∈,且12x x <,210x x ->,则21()0f x x -<,212121()()()()()0f x f x f x f x f x x -=+-=-<,21()()f x f x ∴<, 所以()f x 在R 上为减函数,故当810x -剟时,()(8)2(4)4(2)4max f x f f f f =-=-=-=-(2)4=, ()(10)10min f x f f ==(1)5=-.故当810x -剟时,函数()f x 的最大值是4,最小值是5-.。

2020年湖南省长沙市长郡中学高一(下)期中数学试卷

2020年湖南省长沙市长郡中学高一(下)期中数学试卷

期中数学试卷题号一二三总分得分一、选择题(本大题共15小题,共45.0分)1.下列四条直线,其倾斜角最大的是()A. x+2y+3=0B. 2x-y+1=0C. x+y+1=0D. x+1=02.若一个等腰三角形采用斜二测画法作出其直观图,其直观图面积是原三角形面积的()A. 倍B. 2倍C. 倍D. 倍3.在正方体ABCD-A1B1C1D1中,AD1与BD所成角的大小为()A. 30°B. 45°C. 60°D. 90°4.已知两条直线l,m与两个平面α,β,下列命题正确的是()A. 若l∥α,l⊥m,则m⊥αB. 若l⊥α,l∥β,则α⊥βC. 若l∥α,m∥α,则l∥mD. 若α∥β,m∥α,则m∥β5.圆C1:x2+(y-1)2=1与圆C2:(x+4)2+(y-1)2=4的公切线的条数为()A. 4B. 3C. 2D. 16.一个平面截一球得到直径为6的圆面,球心到这个圆面的距离为4,则这个球的体积为()A. B. C. D.7.两条平行直线3x-4y-3=0和mx-8y+5=0之间的距离是()A. B. C. D.8.方程(a-1)x-y+2a+1=0(a∈R)所表示的直线()A. 恒过定点(-2,3)B. 恒过定点(2,3)C. 恒过点(-2,3)和(2,3)D. 都是平行直线9.在平面直角坐标系xOy中,点A(1,1),点B在圆x2+y2=4上,则的最大值为()A. 3B.C.D. 410.在△ABC中,若a2=b2+c2-bc,bc=4,则△ABC的面积为()A. B. 1 C. D. 211.在△ABC中,内角A、B满足sin2A=sin2B,则△ABC的形状是()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰或直角三角形12.已知方程表示圆,则实数k的取值范围是()A. k>3B. k≤-2C. -2<k<3D. k>3或k<-213.若曲线与直线y=x+b始终有交点,则b的取值范围是()A. B. C. D.14.一个几何体的三视图如图所示,其中三个三角形均是直角三角形,图形给出的数据均是直角边的长度,则该几何体的外接球的体积为()A. 24πB. 6πC. 8πD. π15.如图,设圆C1:(x-5)2+(y+2)2=4,圆C2:(x-7)2+(y+1)2=25,点A、B分别是圆C1,C2上的动点,P为直线y=x上的动点,则|PA|+|PB|的最小值为()A. 5-4B. 5-4C. 3-7D. 3-7二、填空题(本大题共5小题,共15.0分)16.过点P(2,3)且在两坐标轴上的截距相等的直线方程为______.17.若圆锥的表面积为27π,且它的侧面展开图是一个半圆,则这个圆锥的底面圆的直径为______18.设点P(3,2)是圆(x-2)2+(y-1)2=4内部一点,则以P为中点的弦所在的直线方程是______.19.已知长方体ABCD-A1B1C I D1Φ,AB=2AA1=2AD,则直线CB[与平面A1BCD1所成角的正弦值是______20.圆锥底面半径为,高为,点是底面圆周上一点,则一动点从点出发,绕圆锥侧面一圈之后回到点,则绕行的最短距离是_________.三、解答题(本大题共5小题,共40.0分)21.已知直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,求:(1)若l1⊥l2,求m的值;(2)若l1∥l2,求m的值.22.如图,在直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,D是A1B1的中点.(1)求证:平面BC1D⊥平面ABB1A1;(2)若异面直线A1B1和BC1所成的角为60°,求直三棱柱ABC-A1B1C1的体积.23.已知圆过,两点,且圆心在直线上.(1)求圆的方程;(2)若直线过点且被圆截得的线段长为,求的方程.24.在△ABC中,角A,B,C的三条对边分别为a,b,c,b cos C+b sin C=a.(1)求B;(2)点D在边BC上,AB=4,CD=,cos∠ADC=,求AC.25.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)求二面角A﹣DF﹣B的大小.答案和解析1.【答案】A【解析】【分析】本题考查直线斜率与倾斜角的关系,关键是掌握直线的斜率与倾斜角的关系.根据题意,依次分析选项,求出所给直线的斜率,比较其倾斜角的大小,即可得答案.【解答】解:根据题意,依次分析选项:对于A、x+2y+3=0,其斜率k1=-,倾斜角θ1为钝角,对于B、2x-y+1=0,其斜率k2=2,倾斜角θ2为锐角,对于C、x+y+1=0,其斜率k3=-1,倾斜角θ3为135°,对于D、x+1=0,倾斜角θ4为90°,而k1>k3,故θ1>θ3,故选:A.2.【答案】C【解析】解:以等腰三角形的底边所在的直线为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三角形的高变为原来的sin45°=,所以直观图中三角形的面积是原三角形面积的倍.故选:C.以等腰三角形的底边所在的直线为x轴,高所在的直线为y轴,由斜二测画法得出三角形底边长和高的变化情况,即可得出答案.本题考查了斜二测画法中直观图的面积和原来图形面积之间的关系,是基础知识的考查.3.【答案】C【解析】解:连结BC1,则BC1∥AD1,所以BD与BC1所成的角,即是AD1与BD所成角.连结DC1,则三角形BDC1是正三角形,所以∠DBC1=60°,即AD1与BD所成角的大小为60°.故选:C.寻找与AD1平行的直线BC1,则直线BD与BC1所成的角,即是AD1与BD所成角.本题主要考查了空间两异面直线及其所成的角的求法,根据异面直线所成角的定义,寻找平行线是解决本题的关键.4.【答案】B【解析】【分析】此题考查了直线、平面的各种位置关系,难度不大.结合图形易否定A,C;利用线面平行的性质和面面垂直的判定可证B正确,D中还可能m⊂β.【解答】解:如下图可否定A,C;如下图,∵l∥β,l⊂γ,γ∩β=m,∴l∥m,∵l⊥α,∴m⊥α,∵m⊂β,∴β⊥α.故B正确;对于D,α∥β,m∥α,则m∥β或m⊂β,故D错误.故选:B.5.【答案】A【解析】【分析】本题考查了两圆的公切线的条数,属于基础题.先根据圆心距与两圆半径的关系判断出两圆相离,所以有4条公切线.【解答】解:∵|C1C2|==4,r1=1,r2=2,r1+r2=1+2=3,∴|C1C2|>r1+r2,所以圆C1与圆C2相离,有4条公切线.故选:A.6.【答案】C【解析】解:如图,由题意可知,O'A=3,OO'=4,∴R=OA=5,∴=,故选:C.根据题意作出图形,利用直角三角形直接得半径,求体积.此题考查了球体积公式,属容易题.7.【答案】A【解析】【分析】首先求出m的值,然后利用平行线之间的距离公式解答.本题考查了两条平行线的距离;注意x,y的系数要化为相同,才能运用公式.【解答】解:由已知两条平行直线3x-4y-3=0和mx-8y+5=0,所以m=6,所以两条平行线的距离为;故选:A.8.【答案】A【解析】解:∵(a-1)x-y+2a+1=0(a∈R),∴(x+2)a-x-y+1=0,∴,解得:x=-2,y=3.即方程(a-1)x-y+2a+1=0(a∈R)所表示的直线恒过定点(-2,3).故选:A.可将(a-1)x-y+2a+1=0(a∈R)转化为(x+2)a-x-y+1=0,令a的系数为0,-x-y+1=0即可.本题考查恒过定点的直线,方法较灵活,可转化为关于a的函数,令a的系数为0,-x-y+1=0即可,也可以令x、y取两组值,解得交点坐标即为所求,属于中档题.9.【答案】C【解析】解:∵|-|=||≤||+||=2+=2+,当且仅当B在第三象限且A、O、B三点共线时等号成立,故选:C.根据向量减法的三角形法则转化为求||,再根据两边之和大于等于第三边可得最大值.10.【答案】C【解析】【分析】此题考查了余弦定理,以及三角形面积公式,熟练掌握余弦定理是解本题的关键,属于基础题.利用余弦定理表示出cos A,将已知等式变形后代入求出cos A的值,确定出A的度数,再由bc的值,利用三角形面积公式求出三角形ABC面积即可.【解答】解:∵△ABC中,a2=b2+c2-bc,即b2+c2-a2=bc,∴cos A==,∴A=60°,∵bc=4,∴S△ABC=bc sin A=,故选:C.11.【答案】D【解析】解:法1:∵sin2A=sin2B,∴sin2A-sin2B=cos(A+B)sin(A-B)=0,∴cos(A+B)=0或sin(A-B)=0,∴A+B=90°或A=B,则△ABC一定是直角三角形或等腰三角形.法2:∵sin2A=sin2B,且A和B为三角形的内角,∴2A=2B或2A+2B=180°,即A=B或A+B=90°,则△ABC一定是等腰或直角三角形.故选:D.解法1:利用题设等式,根据和差化积公式整理求得cos(A+B)=0或sin(A-B)=0,推断出A+B=90°或A=B,即可判断出三角形的形状.解法2:由两角的正弦值相等及A和B为三角形的内角,得到两角2A和2B相等或互补,即A与B相等或互余,进而确定出三角形的形状.此题考查了三角形形状的判断,涉及的知识有:正弦、余弦函数的图象与性质,积化和差公式,以及等腰三角形的判定,解题的关键是挖掘题设信息,借助三角函数的基本公式和基本性质找到边与边或角与角之间的关系.12.【答案】D【解析】解:∵方程表示圆,∴>0,即2k2-2k-12>0,k2-k-6>0,解得k>3或k<-2.故选:D.由D2+E2-4F>0的关于k的一元二次不等式求解.本题考查圆的一般方程,是基础题.13.【答案】A【解析】解:作出函数y=与y=x+b图象,由图可知:-1故选:A.数形结合:作出两个函数的图象,观察图象可得本题考查了直线与圆的位置关系,属中档题.14.【答案】D【解析】解:根据几何体得三视图转换为几何体为:所以:该几何体的外接球半径(2r)2=12+22+12=6,解得:,所以:V==故选:D.首先把三视图转换为几何体,进一步利用几何体的体积公式的应用求出结果.本题考查的知识要点:三视图和几何体之间的转换,几何体的体积公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.15.【答案】C【解析】【分析】本题考查了圆关于直线的对称的圆的求法,动点的最值问题,考查了点与点的距离公式的运用,是中档题.利用对称的性质,结合两点之间的距离最短,即可求解.【解答】解:依题意可知圆C1的圆心(5,-2),r=2,圆C2的圆心(7,-1),R=5,如图所示:对于直线y=x上的任一点P,由图象可知,要使|PA|+|PB|的得最小值,则问题可转化为求|PC1|+|PC2|-R-r=|PC1|+|PC2|-7的最小值,即可看作直线y=x上一点到两定点距离之和的最小值减去7,由平面几何的知识易知当C1关于直线y=x对称的点为C(-2,5),当C、P、C2共线时,|PC1|+|PC2|的最小值,即直线y=x上一点到两定点距离之和取得最小值为|CC2|=.∴|PA|+|PB|的最小值为.故选:C.16.【答案】x+y-5=0或3x-2y=0【解析】【分析】本题考查了直线方程的求法,属于直线方程中的基础题,应当掌握.分直线的截距不为0和为0两种情况讨论,用待定系数法求直线方程即可.【解答】解:若直线的截距不为0,可设直线方程为,把P(2,3)代入,得,解得a=5,∴直线方程为x+y-5=0;若直线的截距为0,可设直线方程为y=kx,把P(2,3)代入,得3=2k,k=,∴直线方程为3x-2y=0.∴所求直线方程为x+y-5=0或3x-2y=0.故答案为x+y-5=0或3x-2y=0.17.【答案】6【解析】解:设圆锥母线长R,底面圆半径为r,∵侧面展开图是一个半圆,此半圆半径为R,半圆弧长为2πr,∴πR=2πr,∴R=2r,∵表面积是侧面积与底面积的和,∴S表=πR2+πr2,∵R=2r,∴S表=3πr2=27π,解得r=3,∴圆锥的底面直径为2r=6.故答案为:6.设圆锥母线长为R,底面圆半径为r,根据侧面展开图得到R=2r,再求表面积与底面半径和直径.本题考查了圆锥的结构特征与表面积公式计算问题,是基础题.18.【答案】x+y-5=0【解析】解:圆(x-2)2+(y-1)2=4的圆心(2,1),点P(3,2)是圆(x-2)2+(y-1)2=4内部一点,以点P为中点的弦所在的直线的斜率为:-=-1.以点P为中点的弦所在的直线方程为:y-2=-(x-3).即x+y-5=0.故答案为:x+y-5=0.求出圆的圆心与半径,求出所求直线的斜率,然后求解以点P为中点的弦所在的直线方程.本题考查直线与圆的位置关系,直线方程的求法,考查计算能力.19.【答案】【解析】解:以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,设AB=2AA1=2AD=2,则C(0,2,0),B1(1,2,1),A1(1,0,1),C(0,2,0),B(1,2,0),=(1,0,1),=(0,-2,1),=(-1,0,0),设平面A1BCD1的法向量=(x,y,z),则,取y=1,得=(0,1,2),设直线CB[与平面A1BCD1所成角为θ,则sinθ===.∴直线CB[与平面A1BCD1所成角的正弦值为.故答案为:.以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线CB[与平面A1BCD1所成角的正弦值.本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.【答案】3【解析】【分析】利用圆锥的侧面展开图,确定扇形的圆心角,即可求得结论.本题考查旋转体表面上的最短距离,考查学生的计算能力,属于基础题.【解答】解:圆锥的侧面展开图为扇形,其弧长为底面圆的周长,即2π,∵圆锥的母线长为3.扇形的圆心角,∴一动点从点P出发,绕圆锥侧面一圈之后回到点P,则绕行的最短距离是:=3.故答案为:3.21.【答案】解:(1)m=0时,两条直线不垂直,舍去.m≠0时,∵l1⊥l2,∴-×=-1,解得m=.综上可得:m=.(2)由m(m-2)-3=0,解得:m=3或-1.经过验证m=3时两条直线重合,舍去.∴m=-1时,l1∥l2.【解析】本题考查了直线平行与垂直的充要条件、分类讨论方法,考查了推理能力与计算能力,属于基础题.(1)对m分类讨论,利用两条直线相互垂直的充要条件即可得出.(2)由m(m-2)-3=0,解得:m=3或-1.经过验证m=3时两条直线重合,舍去.22.【答案】(1)证明:∵三棱柱ABC-A1B1C1是直三棱柱,∴AA1⊥平面A1B1C1,又C1D平面A1B1C1则AA1⊥C1D,∵A1C1=B1C1,D为A1B1的中点,∴C1D⊥A1B1,又AA1∩A1B1=A1,AA1、A1B1平面AA1B1B,∴C1D⊥平面AA1B1B,而C1D⊂平面BC1D,∴平面BC1D⊥平面ABB1A1;(2)解:连接AC1,∵A1B1∥AB,∴异面直线A1B1和BC1所成的角为,∴,∵AC=BC,∴在直三棱柱ABC-A1B1C1中,AC1=BC1,∴△ABC1为等边三角形,取AB中点O,连接CO,C1O,∵AC=BC=1,∠ACB=90°,,∴,.∴.故直三棱柱ABC-A1B1C1的体积V=.【解析】本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,属于中档题.(1)由三棱柱ABC-A1B1C1是直三棱柱,得AA1⊥平面A1B1C1,则AA1⊥C1D,再由已知得C1D⊥A1B1,利用线面垂直的判定可得C1D⊥平面AA1B1B,从而得到平面BC1D⊥平面ABB1A1;(2)连接AC1,由AC=BC,得AC1=BC1,进一步得到△ABC1为等边三角形,求出三棱柱的高,代入棱柱体积公式求解.23.【答案】解:(1)根据题意,设圆C的圆心为(a,b),半径为r,则圆C方程为(x-a)2+(y-b)2=r2,又由圆C过A(-2,2),B(2,6)两点,且圆心C在直线3x+y=0上,则有,解可得a=-2,b=6,r2=16,则圆C的方程为(x+2)2+(y-6)2=16;(2)根据题意,设直线l与圆C交与MN两点,则|MN|=4,设D是线段MN的中点,则有CD⊥MN,则|MD|=2,|MC|=4.在Rt△ACD中,可得|CD|=2.当直线l的斜率不存在时,此时直线l的方程为x=0,满足题意,当直线l的斜率存在时,设所求直线l的斜率为k,则直线l的方程为:y-5=kx,即kx-y+5=0.由点C到直线MN的距离公式:=2,解可得k=,此时直线l的方程为3x-4y+20=0.故所求直线l的方程为x=0或3x-4y+20=0.【解析】(1)根据题意,设圆C的圆心为(a,b),半径为r,结合题意可得,解出a、b、r的值,将其值代入圆的方程即可得答案;(2)根据题意,分类讨论,斜率存在和斜率不存在两种情况:①当直线l的斜率不存在时,满足题意,②当直线l的斜率存在时,设所求直线l的斜率为k,则直线l的方程为:y-5=kx,由点到直线的距离公式求得k的值,即可得直线的方程,综合2种情况即可得答案.本题考查直线与圆的位置关系,涉及两点间的距离公式,点到直线的距离公式,圆的标准方程,属于中档题.24.【答案】解:(1)由b cos C+b sin C=a,利用正弦定理得:sin B cos C+sin B sin C=sin A,即sin B cos C+sin B sin C=sin B cos C+cos B sin C,得sin B sin C=cos B sin C,又C∈(0,π),所以sin C≠0,所以sin B=cos B,得tan B=,又B∈(0,π),所以B=;(2)如图所示,由cos∠ADC=,∠ADC∈(0,π),所以sin∠ADC==,由因为∠ADB=π-∠ADC,所以sin∠ADB=sin∠ADC=;在△ABD中,由正弦定理得,=,且AB=4,B=,所以AD===;在△ACD中,由余弦定理得,AC2=AD2+DC2-2AD•DC•cos∠ADC=+-2×××=4,解得AC=2.【解析】本题考查了解三角形的应用问题,也考查了三角恒等变换应用问题,是中档题.(1)由题意利用正弦定理与三角恒等变换求出sin B与cos B的关系,得出tan B的值,从而求出B的值;(2)根据互补的两角正弦值相等,得到sin∠ADB=sin∠ADC的值,再利用正弦、余弦定理求得AD、AC的值.25.【答案】解:方法一(Ⅰ)记AC与BD的交点为O,连接OE,∵O、M分别是AC、EF的中点,ACEF是矩形,∴四边形AOEM是平行四边形,∴AM∥OE∵OE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE(Ⅱ)在平面AFD中过A作AS⊥DF于S,连接BS,∵AB⊥AF,AB⊥AD,AD∩AF=A,∴AB⊥平面ADF,∴AS是BS在平面ADF上的射影,由三垂线定理得BS⊥DF∴∠BSA是二面角A-DF-B的平面角在Rt△ASB中,AS==,AB=,∴,∴二面角A-DF-B的大小为60°方法二(Ⅰ)建立如图所示的空间直角坐标系设AC∩BD=N,连接NE,则点N、E的坐标分别是(、(0,0,1),∴=(,又点A、M的坐标分别是()、(∴=(∴=且NE与AM不共线,∴NE∥AM又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDF(Ⅱ)∵AF⊥AB,AB⊥AD,AF∩AD=A,∴AB⊥平面ADF∴为平面DAF的法向量∵=(•=0,∴=(•=0得,∴为平面BDF的法向量∴cos<>=∴的夹角是60°即所求二面角A-DF-B的大小是60°【解析】(Ⅰ)要证AM∥平面BDE,直线证明直线AM平行平面BDE内的直线OE即可,也可以利用空间直角坐标系,求出向量,在平面BDE内求出向量,证明二者共线,说明AM∥平面BDE,(Ⅱ)在平面AFD中过A作AS⊥DF于S,连接BS,说明∠BSA是二面角A-DF-B的平面角,然后求二面角A-DF-B的大小;也可以建立空间直角坐标系,求出,说明是平面DFB的法向量,求出平面DAF的法向量,然后利用数量积求解即可.本题考查直线与平面平行,二面角的知识,考查空间想象能力,逻辑思维能力,是中档题。

高一数学下学期期中试题含解析 32

高一数学下学期期中试题含解析 32

长郡中学2021-2021学年高一下学期期中考试数学试题一、选择题〔本大题一一共15小题,每一小题3分,一共45分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的〕1.以下四条直线,其倾斜角最大的是〔〕A. B. C. D.【答案】B【解析】【分析】根据题意,依次分析选项,求出所给直线的斜率,比拟其倾斜角的大小,即可得答案.【详解】根据题意,依次分析选项:对于A、2x﹣y+1=0,其斜率k1=2,倾斜角θ1为锐角,对于B、x+2y+3=0,其斜率k2,倾斜角θ2为钝角,对于C、x+y+1=0,其斜率k3=﹣1,倾斜角θ3为135°,对于D、x+1=0,倾斜角θ4为90°,而k2>k3,故θ2>θ3,应选:B.【点睛】此题考察直线斜率与倾斜角的关系,关键是掌握直线的斜率与倾斜角的关系.的正三角形采用斜二测画法作出其直观图,那么其直观图的面积是原来正三角形面积的〔〕A. 倍B. 倍C. 倍D. 倍【答案】A【解析】【分析】由中正△ABC的边长为a,可得正△ABC的面积,进而根据斜二测画法的规那么求得△ABC的直观图的面积,作比可得答案.【详解】∵△ABC的边长为a,故正△ABC的面积S,∵采用斜二测画法后,底边长为a,而高为a,∴面积S′,∴S′S,应选:A.【点睛】此题考察的知识点是斜二测法画直观图,其中纯熟掌握斜二测画法的规那么是解答的关键,属于根底题.中,异面直线与所成角为〔〕A. B. C. D.【答案】C【解析】【分析】由∥可知异面直线AD1,BD所成的角为∠DB,在等边三角形中易得结果.【详解】解:∵∥,∴异面直线AD1,BD所成的角为∠DB,∵△DB为等边三角形,∴∠DB=60°.∴异面直线与所成角为60°应选:C.【点睛】此题考察两异面直线所成角的求法,是根底题,解题时要注意空间思维才能的培养.与两个不同平面,以下命题正确的选项是〔〕A. 假设,那么B. 假设,那么C. 假设,那么D. 假设,那么【答案】B【解析】【分析】在A中,可能也可能;在B中,由线面垂直的性质定理得;在C中,可能l⊥m,也可能;在D中,可能也可能【详解】由l,m为两条不同的直线,α,β为两个不同的平面,知:在A中,假设,那么可能也可能,故A错误;在B中,假设,那么由线面垂直的性质定理得故B正确;在C中,假设,那么可能l⊥m,也可能,故C错误;在D中,假设,那么可能,也可能,故D错误.应选:B.【点睛】此题考察命题真假的判断,考察空间中线线、线面、面面间的位置关系等根底知识,考察推理论证才能、空间想象才能,是中档题.的公切线的条数为 ( )A. 4B. 3C. 2D. 1【答案】A【解析】【分析】先根据圆心距与两圆半径的关系判断出两圆相离,所以有4条公切线.【详解】∴|C1C2|>r1+r2,所以圆C1与圆C2相离,有4条公切线.应选:A.【点睛】此题考察了两圆的公切线的条数,属中档题.6.一个平面截一球得到直径为6的圆面,球心到这个圆面的间隔为4,那么这个球的体积为〔〕A. B. C. D.【答案】C【解析】【分析】根据题意作出图形,利用直角三角形直接得半径,求体积.【详解】如图,由题意可知,圆面的直径为6,那么O′A=3,又OO′=4,∴R=OA=5,∴,应选:C.【点睛】此题考察了球的体积公式及垂径定理的应用,属于根底题.和之间的间隔是〔〕A. B. C. D.【答案】A【解析】试题分析:由题意可得,两直线平行,得m=6,所以可化成,因此两直线的间隔为=,综合应选A考点:两平行线间的间隔公式;所表示的直线〔〕A. 恒过定点B. 恒过定点C. 恒过点和点D. 都是平行直线【解析】【分析】方程〔a﹣1〕x﹣y+2a+1=0化为:a〔x+2〕﹣x﹣y+1=0,令,解出即可得出.【详解】方程〔a﹣1〕x﹣y+2a+1=0化为:a〔x+2〕﹣x﹣y+1=0,令,解得x=﹣2,y=3.所表示的直线恒过点〔﹣2,3〕.应选:B.【点睛】此题考察了直线系方程的解法,考察了推理才能与计算才能,属于根底题.中,点,点在圆上,那么的最大值为〔〕A. 3B.C.D. 4【答案】C【解析】【分析】根据向量减法的三角形法那么转化为求||,再根据两边之和大于等于第三边可得最大值.【详解】∵||=||≤|OB|+|OA|=22,应选:C.【点睛】此题考察了考察了向量减法的运算法那么,向量在几何中的应用问题,属于中档题.10.在△ABC中,假设a2=b2+c2-bc,bc=4,那么△ABC的面积为〔〕A. B. 1 C. D. 2【答案】C试题分析:由结合余弦定理,可得,那么.故答案选C.考点:余弦定理,同角间根本关系式,三角形面积公式.的三内角分别为,满足,那么的形状为〔〕A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰或者直角三角形【答案】D【解析】【分析】根据三角形内角范围得到,再结合三角函数正弦图像得到结果.【详解】在△ABC中,内角A、B满足,,根据正弦函数的图像的性质得到或者故三角形是等腰三角形或者者直角三角形.故答案为:D.【点睛】这个题目考察了三角函数的性质以及三角形内角和性质,属于根底题.表示圆,那么实数k的取值范围是〔〕A. B. C. D. 或者【解析】【分析】由方程表示一个圆得到k2﹣k﹣6>0,求出解集即可得到k的取值范围.【详解】方程表示圆,那么有,即k2﹣k﹣6>0,即〔k﹣3〕〔k+2〕>0可化为或者,解得k>3或者k<﹣2,应选:D.【点睛】此题考察了圆的一般方程,掌握二元二次方程为圆时的条件,会求一元二次不等式的解集,是一道综合题.与直线始终有公一共点,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】【分析】作出两个函数的图象,观察图象,利用直线与圆相切可得b的一个临界值,进而求得结论. 【详解】∵y表示在x轴上方的局部〔包括x轴上的点〕,作出函数y与y=x+b图象,由图可知:当直线与圆相切时,,即得,结合图像可知,又当直线过〔1,0〕时,b=-1,假设曲线与直线始终有公一共点,那么﹣1.应选:A.【点睛】此题考察了直线与圆的位置关系,考察了数形结合思想,属于中档题.14.一个几何体的三视图如下图,其中三个三角形均是直角三角形,图形给出的数据均是直角边的长度,那么该几何体的外接球的体积为〔〕A. B. C. D.【答案】D【解析】【分析】由三视图可知,几何体为三棱锥,且一边垂直于底面,将该三棱锥补成棱长为2、1、1的长方体,再根据长方体性质求外接球的半径即可.【详解】由三视图可知,几何体为三棱锥,且底面为直角三角形(形状与俯视图一样),侧棱垂直于底面,将该三棱锥补成棱长为2、1、1的长方体,其外接球的直径为2R.那么该几何体的外接球的体积为V.应选:D.【点睛】此题考察的知识点是由三视图求体积,解决此题的关键是得到该几何体的形状.属于中档题.圆.点分别是圆上的动点,为直线上的动点,那么的最小值为〔〕A. B. C. D.【答案】C【解析】【分析】利用对称的性质,结合两点之间的间隔最短,即可求解.【详解】依题意可知圆C1的圆心〔5,﹣2〕,r=2,圆C2的圆心〔7,﹣1〕,R=5,如下图:对于直线y=x上的任一点P,由图象可知,要使|PA|+|PB|的得最小值,那么问题可转化为求|PC1|+|PC2|﹣R﹣r=|PC1|+|PC2|﹣7的最小值,即可看作直线y=x上一点到两定点间隔之和的最小值减去7,又C1关于直线y=x对称的点为C1′〔﹣2,5〕,由平面几何的知识易知当C1′与P、C2一共线时,|PC1|+|PC2|获得最小值,即直线y=x上一点到两定点间隔之和获得最小值为|C1′C2|∴|PA|+|PB|的最小值为=﹣7.应选:C.【点睛】此题考察了圆关于直线的对称的圆的求法,动点的最值问题,考察了点与点的间隔公式的运用,是中档题.二、填空题〔本大题一一共5小题,每一小题3分,一共15分.〕且在两坐标轴上截距相等的直线方程为________________【答案】或者【解析】【分析】当直线过原点时,求出斜率,斜截式写出直线方程,并化为一般式.当直线不过原点时,设直线的方程为,把P代入直线的方程,求出m值,可得直线方程.【详解】当直线过原点时,斜率等于,故直线的方程为y x,即3x-2y=0;当直线不过原点时,设直线的方程为,把P〔2,3〕代入直线的方程得m=5,故求得的直线方程为x+y﹣5=0,综上,满足条件的直线方程为3x-2y=0或者x+y﹣5=0.故答案为3x-2y=0或者x+y﹣5=0..【点睛】此题考察直线方程的方法,待定系数法求直线的方程是一种常用的方法,注意考虑截距为0的情况.,且它的侧面展开图是一个半圆,那么这个圆锥的底面圆的直径为___________【答案】6【解析】【分析】利用圆锥的外表积公式即可求出圆锥的底面半径.【详解】设圆锥的底面半径为r,母线长为l,∵圆锥的侧面展开图是一个半圆,∴2πr=πl,∴l=2r,∵圆锥的外表积为πr2+πrl=πr2+2πr2=27π,∴r2=9,即r,2r=6,故答案为:.【点睛】此题主要考察圆锥的外表积公式以及应用,利用条件建立母线和半径之间的关系是解决此题的关键,考察学生的运算才能.是圆内部一点,那么过点最短的弦所在的直线方程是___________ 【答案】【解析】【分析】先求出圆心和半径,由于点P在圆内,故当弦所在的直线和线段CP垂直时,弦长最短.求得弦所在直线的斜率,用点斜式求弦所在的直线的方程.【详解】圆〔x﹣2〕2+〔y﹣1〕2=4,表示以C〔2,1〕为圆心,半径等于的圆,所以点P在圆内,故当弦所在的直线和线段CP垂直时,弦长最短.此时弦CP所在直线的斜率为:1,故过P的最短弦所在的直线方程为y﹣2=﹣〔x﹣3〕,即x+y﹣5=0.故答案为:x+y﹣5=0.【点睛】此题主要考察直线和圆相交的性质,点与圆的位置关系,用点斜式求直线的方程.判断当弦所在的直线和线段CP垂直时,弦长最短,是解题的关键,属于中档题.中,,那么直线与平面所成角的正弦值是________________【答案】【解析】【分析】过C1作C1H D1C,又C1H,那么C1H面那么∠C1BH即为直线BC1与平面A1BCD1所成角,在直角三角形C1HB中,可得结果.【详解】∵长方体ABCD﹣A1B1C1D1中,AB=2,AD=AA1=1,∴BC1,过C1作C1H D1C,又面DCC1D1那么C1H,那么C1H面连接HB,那么∠C1BH即为直线BC1与平面A1BCD1所成角,又C1H==,∴sin∠C1BH.故答案为.【点睛】此题考察直线与平面所成角的正弦值的作法及求法,考察了线面垂直的断定,属于中档题.1,高为,点P是底面圆周上一点,那么一动点从点P出发,绕圆锥侧面一圈之后回到点P,那么绕行的最短间隔是___.【答案】【解析】【分析】把圆锥侧面展开成一个扇形,那么对应的弧长是底面的周长,对应的弦是最短间隔,即CP 的长是蚂蚁爬行的最短路程,求出CD长,根据垂径定理求出PC=2CD,即可得出答案.【详解】把圆锥侧面展开成一个扇形,那么对应的弧长是底面的周长,对应的弦是最短间隔,即CP的长是蚂蚁爬行的最短路程,过A作AD⊥PC于D,弧PC的长是2π⋅1=2π,那么侧面展开图的圆心角是,∴∠DAC=,∵AC=3,∴,所以.即蚂蚁爬行的最短路程是.故答案为:.【点睛】考察了平面展开﹣最短途径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.此题就是把圆锥的侧面展开成扇形,“化曲面为平面〞,用勾股定理解决.三、解答题〔本大题一一共5小题,每一小题8分,一共40分,解容许写出文字说明,证明过程或者演算步骤.〕,.(1)假设,求的值;(2)假设,求的值.【答案】〔1〕;〔2〕【解析】【分析】〔1〕利用两条直线垂直的条件,结合两条直线的方程可得1×〔m﹣2〕+m×3=0,由此求得m的值.〔2〕利用两直线平行的条件,结合两条直线的方程可得,由此求得得m的值.【详解】〔1〕∵直线l1:x+my+6=0,l2:〔m﹣2〕x+3y+2m=0,由l1⊥l2 ,可得1×〔m﹣2〕+m×3=0,解得.〔2〕由题意可知m不等于0,由l1∥l2 可得,解得m=﹣1.【点睛】此题主要考察两直线平行、垂直的条件,属于根底题.22.如图,在直三棱柱中,,,是的中点.〔1〕求证:平面平面;〔2〕假设异面直线与所成角为,求直三棱柱的体积.【答案】〔1〕见证明;〔2〕【解析】【分析】〔1〕由中的几何体为直三棱柱,,是的中点,结合直三棱柱的几何特征以及等腰三角形三线合一的性质,易得平面,〔2〕根据异面直线所成角的定义,以及角的大小,求得,利用柱体的体积公式求得结果.【详解】〔1〕证明:由,得,而平面平面,平面平面,平面.又平面,平面平面.〔2〕解:连接,由知是异面直线与所成角,,易知是正三角形,依题意得,,三棱柱的体积为.【点睛】该题考察的是有关立体几何的问题,涉及到的知识点有面面垂直的断定,异面直线所成的角,柱体的体积公式,属于简单题目.过,两点,且圆心在直线上.(1)求圆的方程;(2)假设直线过点且被圆截得的线段长为,求的方程.【答案】〔1〕;〔2〕或者【解析】【分析】〔1〕根据题意,设圆C的圆心为〔a,b〕,半径为r,结合题意可得关于a、b、r的方程组,解出a、b、r的值,将其值代入圆的方程即可得答案;〔2〕根据题意,分斜率存在和斜率不存在两种情况:①当直线l的斜率不存在时,满足题意,②当直线l的斜率存在时,设所求直线l的斜率为k,由点到直线的间隔公式求得k的值,即可得直线的方程,综合即可得答案.【详解】〔Ⅰ〕根据题意,设圆C的圆心为〔a,b〕,半径为r,那么圆C方程为〔x﹣a〕2+〔y﹣b〕2=r2,又由圆C过A〔﹣2,2〕,B〔2,6〕两点,且圆心C在直线3x+y=0上,那么有,解可得a=﹣2,b=6,r2=16,那么圆C的方程为〔x+2〕2+〔y﹣6〕2=16;〔2〕根据题意,设直线l与圆C交与MN两点,那么|MN|=4,设D是线段MN的中点,那么有CD⊥MN,那么|MD|=2,|MC|=4.在Rt△ACD中,可得|CD|=2.当直线l的斜率不存在时,此时直线l的方程为x=0,满足题意,当直线l的斜率存在时,设所求直线l的斜率为k,那么直线l的方程为:y﹣5=kx,即kx﹣y+5=0.由点C到直线MN的间隔公式:2,解可得k,此时直线l的方程为3x﹣4y+20=0.故所求直线l的方程为x=0或者3x﹣4y+20=0.【点睛】此题考察直线与圆的位置关系,涉及两点间的间隔公式,点到直线的间隔公式,圆的HY方程,属于中档题.中,角的三条对边分别为,.(1)求;(2)点在边上,,,,求.【答案】〔1〕;〔2〕2【解析】【分析】〔1〕由题意利用正弦定理与三角恒等变换求出sin B与cos B的关系,得出tan B的值,从而求出B的值;〔2〕根据互补的两角正弦值相等,得到sin∠ADB=sin∠ADC的值,再利用正弦、余弦定理求得AD、AC的值.【详解】〔1〕由b cos C b sin C=a,利用正弦定理得:sin B cos C sin B sin C=sin A,即sin B cos C sin B sin C=sin B cos C+cos B sin C,得sin B sin C=cos B sin C,又C∈〔0,π〕,所以sin C≠0,所以sin B=cos B,得tan B,又B∈〔0,π〕,所以B;〔2〕如下图,由cos∠ADC,∠ADC∈〔0,π〕,所以sin∠ADC,由因为∠ADB=π﹣∠ADC,所以sin∠ADB=sin∠ADC;在△ABD中,由正弦定理得,,且AB=4,B,所以AD;在△ACD中,由余弦定理得,AC2=AD2+DC2﹣2AD•DC•cos∠ADC24,解得AC=2.【点睛】此题考察理解三角形的应用问题,涉及正余弦定理的应用,也考察了三角恒等变换应用问题,是中档题.25.如图,正方形和矩形所在的平面互相垂直,,,是线段的中点.(1)求证:平面;(2)求二面角的大小.【答案】〔Ⅰ〕见解析〔Ⅱ〕【解析】试题分析:〔1〕证明线面平行常用方法:一是利用线面平行的断定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;〔2)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(3〕空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,施行几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中断定定理与性质定理条件要完备.试题解析:〔I〕记与的交点为,连接,∵、分别是的中点,是矩形∴四边形是平行四边形,∴∥,∵平面平面,∴∥平面6分〔Ⅱ〕在平面中过作于,连接,∵∴平面,∴是在平面上的射影,由三垂线定理点得∴是二面角的平面角,在中,,∴二面角的大小为8分另解:以为原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系,那么,,,,,,设与交于点,那么〔I〕易得:,那么∥,由面,故∥面;〔Ⅱ〕取面的一个法向量为,面的一个法向量为,那么,故二面角的大小为.考点:证明线面平行及求二面角励志赠言经典语录精选句;挥动**,放飞梦想。

湖南省长沙市长郡中学2020学年高一数学下学期期中试题

湖南省长沙市长郡中学2020学年高一数学下学期期中试题

湖南省长沙市长郡中学2020学年高一数学下学期期中试题一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四条直线,其倾斜角最大的是A. 2x-y+l=0B. x+2y+3=0C.. x+y+l= 0D. x+l = 0★2.一个边长为a的正三角形采用斜二测画法作出其直观图,则其直观图的面积是原来正三角形面积的★3.正方体中,异面直线与BD所成角的大小是4.已知两条不同直线l、m与两个不同平面下列命题正确的是A.若则B.若则C.若,则D.若则5.圆与圆的公切线的条数为6.一个平面截一球得到直径为6的圆面,球心到这个圆面的距离为4,则这个球的体积为7.两条平行直线3x-4y-3=0和mx-8y+5=0之间的距离是8.方程所表示的直线A.恒过定点(2,3)B.恒过定点(-2,3)C.恒过点(-2,3)和点(2,3)D.都是平行直线9.在平面直角坐标系xOy中,点A(1,1),点B在圆上,则的最大值为10.在△ABC中,若则△ABC的面积为11.若△ABC的三内角分别为A、B、C,满足sin2A=sin2B,则△ABC的形状为A.等腰三角形B.直角三角形C.等边三角形D.等腰或直角三角形12.已知方程表示圆,则实数k的取值范围是13.若曲线与直线y=x+b始终有公共点,则实数b的取值范围是14. 一个几何体的三视图如图所示,其中三个三角形均是直角三角形,图形给出的数据均是直角边的长度,则该几何体的外接球的体积为15.设圆圆点A、B分别是圆上的动点,P为直线y=x上的动点,则的最小值为二、填空题(本大题共5小题,每小题3分,共15分.)★16.过点P(2,3)且在两坐标轴上截距相等的直线方程为________________17.若圆锥的表面积为27π,且它的侧面展开图是一个半圆,则这个圆锥的底面圆的直径为________________18.设点P(3,2)是圆内部一点,则过点P最短的弦所在的直线方程是________________19.已知长方体,则直线与平面所成角的正弦值是________________20.圆锥底面半径为1,高为点P是底面圆周上一点,则一动点从点P出发,绕圆锥侧面一圈之后回到点P,则绕行的最短距离是________________三、解答题(本大题共5小题,每小题8分,共40分,解答应写出文字说明,证明过程或演算步骤.)21.(本题满分8分)已知直线(1)若求m的值;(2)若求m的值.22.(本题满分8分)如图,在直三棱柱(侧棱和底面垂直),D是的中点.,(1)求证:平面平面(2)若异面直线和所成的角为,求直三棱柱的体积.23.(本题满分8分)已知圆C过A(-2,2),B(2,6)两点,且圆心C在直线3x+y=0上.(1)求圆C的方程;(2)若直线l过点P(0,5)且被圆C截得的线段长为,求l的方程.24.(本题满分8分)在△ABC中,角A、B、C的三条对边分别为(1)求B;(2)点D在边BC上,AB=4 ,求AC.25.(本题满分8分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= AF=1,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)求二面角A-DF-B的大小.。

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知a∈R,若集合M={1,a},N={−1,0,1},则“a=0”是“M⊆N”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.下列命题是全称量词命题且为真命题的是A. ∀a,b∈R,a2+b2<0B. 菱形的两条对角线相等C. ∃x0∈R,x20=x0D. 一次函数的图象是直线3.设全集U=R,集合A={1,2,3,4,5},B={x|3<x<8,x∈N},则下图中的阴影部分表示的集合是A. {1,2,3,4,5}B. {3,4}C. {1,2,3}D. {4,5,6,7}4.若函数f(x)=4x2−kx−8在[5,8]上是单调函数,则实数k的取值范围是A. (−∞,40)B. (−∞,40]∪[64,+∞)C. [40,64]D. [64,+∞)5.已知关于x的不等式ax2+bx+c>0的解集为{x|13<x<12},则不等式cx2+bx+a>0的解集为A. {x|−12<x<−13}B. {x|x>3或x<2}C. {x|2<x<3}D. {x|−3<x<−2}6.已知关于x的不等式2x+2x−a≥7在区间(a,+∞)上恒成立,则实数a的最小值为A. 1B. 32C. 2 D. 527.17世纪初,约翰·纳皮尔为了简化计算而发明了对数.对数的发明是数学史上的重大事件,恩格斯曾经把笛卡尔的坐标系、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为17世纪的三大数学发明.我们知道,任何一个正实数N可以表示成N=a×10n(1≤a<10,n∈Z)的形式,这便是科学记数法,若两边取常用对数,则有lg N=n+lg a.现给出部分常用对数值(如下表),则可以估计22023的最高位的数值为真数x2345678910lg x(近0.301030.477120.602060.698970.778150.845100.903090.95424 1.000似值)A. 6B. 7C. 8D. 98.已知函数g(x)是R上的奇函数,且当x<0时,g(x)=−x2+2x,函数f(x)={x,x≤0,g(x),x>0,若f(2−x2 )>f(x),则实数x的取值范围是A. (−2,1)B. (−∞,−2)∪(1,+∞)C. (1,2)D. (−∞,1)∪(2,+∞)二、多选题:本题共3小题,共18分。

【解析】湖南省长沙市长郡中学2019-2020学年高一上学期期中考试数学试题

【解析】湖南省长沙市长郡中学2019-2020学年高一上学期期中考试数学试题
A. B. C. D.
【答案】D
【分பைடு நூலகம்】
因为已知a的取值范围,直接根据根据对数函数的单调性和定点解出不等式即可。
【详解】因为 ,
所以 在 单调递增,
所以
所以 ,解得
故选D。
【点睛】在比较大小或解不等式时,灵活运用函数的单调性以及常数和对指数之间的转化。
12.若 为奇函数,且 是 的一个零点,则 一定是下列哪个函数的零点 ( )
5.函数 的最大值与最小值之和 ( )
A.1.75B.3.75C.4D.5
【答案】B
【分析】
先求出函数的对称轴,判断其在 上的单调性,根据单调性求出最值,即可得出结果。
【详解】解:函数 的对称轴为 ,其在 上单调递减,在 上单调递增,

故选:B
【点睛】本题考查二次函数在给定区间上的单调性及最值,是基础题。
8.设 , , ,则( )
A. B. C. D.
【答案】D
因为 , , ,故 ,所以选D.
9.函数 的单调递增区间是( )
A. B. C. D.
【答案】B
【分析】
先求出函数的定义域,然后将复合函数分解为内、外函数,分别讨论内外函数的单调性,进而根据复合函数单调性“同增异减”的原则,得到函数y=log3(x2-2x)的单调递增区间
3.若函数f(x)= 在R上是增函数,则a的取值范围为( )
A.(﹣∞,2)B.(0,2)C.(0, ]D.[ ,2)
【答案】C
【分析】
函数f(x)= 在R上是增函数,等价于当 时, 是增函数,当 时, 是增函数;另外还要满足 在分界点 处,左边的函数值小于等于右边的函数值,即 ,通过解不等式组,可确定 的取值范围.

湖南省长沙市长郡中学2021-2022学年高一下学期期中数学试题

湖南省长沙市长郡中学2021-2022学年高一下学期期中数学试题

长郡中学2021—2022学年度高一第二学期期中考试数学2022.4时量:120分钟满分:100分得分_____________一、选择题(共8道小题,每小题3分,共24分.)1.已知平面向量()2,4a = ,()3,2b m =-+,a b ∥ ,则m =A.-2B.-8C.6D.42.复数z 满足()()4i 13i 10z -+=(i 为虚数单位),则z 的共轭复数z 的虚部为A.5i.B.5C.-iD.-13.已知()3,4a = ,(),1b t = ,()a b a -⊥ ,则b =A.2B.52C.1D.324.如图为正八边形ABCDEFGH ,其中O 为正八边形的中心,则CE FG -=A.BEB.EOC.ADD.OH5.设α为平面,点M α∉,则下列结论正确的是A.过点M 有且只有一条直线与α平行 B.过点M 没有直线与α平行C.过点M 有且只有一个平面与α平行 D.过点M 有无数个平面与α平行6.在ABC △中,322b =,23c =,2C B =.则cos B =A.13B.23C.33D.637.若复数2i12ia -+在复平面内所对应的点位于第四象限,则实数a 的取值范围是A.()(),41,-∞-⋃+∞ B.()1,+∞ C.(),4-∞- D.()4,1-8.如图,在正四棱台1111ABCD A B C D -中,4AB =,112A B =,若半径为r 的球O 与该正四棱台的各个面均相切,该球的表面积S =A.4πB.6πC.8πD.10π二、选择题(共4小题,每小题4分,共16分.在每小题给出的选项中,有多项符合要求.全部选对的得4分,部分选对的得2分,有选错的得0分.)9.已知复数1z ,2z ,则下列结论正确的是A.若120z z +=,则12z z = B.若21z z =,则12z z =C.1212z z z z = D.若12i i z z +=+,则12z z =10.设α,β为两个平面,则αβ∥的充分条件可以是A.β内的所有直线都与α平行 B.β内有三条直线与α平行C.α和β平行于同一条直线 D.α和β都平行于同一平面γ11.青花瓷(blueandwhiteporcelain ),又称白地青花瓷,常简称青花,是中国瓷器的主流品种之一,属釉下彩瓷.原始青花瓷于唐宋已见端倪,成熟的青花瓷则出现在元代景德镇的湖田窑.图一是一个由波涛纹和葡萄纹构成的正六边形青花瓷盘,已知图二中正六边形的边长为2,圆O 的圆心为正六边形的中心,半径为1,若点M 在正六边形的边上运动,动点A ,B 在圆O 上运动且关于圆心O 对称,则MA MB ⋅的取值可以是A.32B.2C.52D.312.如图,正方体1111ABCD A B C D -中,点E ,F ,G ,H ,I 分别为棱AB ,CD ,BC ,11A D ,AD 的中点,则下列结论正确的是A.11A E D F ∥B.1A E HF ∥C.EG ∥平面1D IFD.1A E ∥平面11D FGB 三、填空题(共4道小题,每小题3分,共12分)13.在ABC △中,2b =,3c =,tan A =,则a =__________.14.长方体1111ABCD A B C D -的外接球的表面积为25π,AB =,AD =,则长方体1111ABCD A B C D -的体积为__________.15.已知平行四边形ABCD 中,2AB AD AB AD ==⋅=,点E 为边BC 的中点,则AE AC ⋅ 的值为__________.16.如图,正四面体ABCD 的体积为3,E 、F 、G 、H 分别是棱AD 、BD 、BC 、AC 的中点,则EF =_________,多面体AB EFGH -的外接球的体积为__________.(注:第1空1分,第2空2分)四、解答题(本题共6小题,共48分,解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分8分)如图,四边形ABCD 中,2AB =,AD =BC =5CD =,sin 5A =,A 为锐角.(1)求BD ;(2)求四边形ABCD 的面积.18.(本小题满分8分)已知向量a ,b 满足a = 2b = ,2a b -=.(1)求a 与b的夹角;(2)若)()()b a mb m -⊥+∈R,求m 的值.19.(本小题满分8分)已知复数()i ,z a b a b =+∈R ,满足24i z z =-+.(1)求z ;(2)求()()221i 43i z-+.20.(本小题满分8分)如图,在三棱柱111ABC A B C -中,点P 是棱11A B 的中点,Q ,R ,E 分别是CP ,AC ,11A C 的中点.(1)求证:RQ ∥平面11ABB A ;(2)求证:平面REP ∥平面11BCC B .21.(本小题满分8分)(1)如图,OP ,OQ 不共线,R 是直线PQ 上的动点,证明:存在实数λ,μ,使得OR OP OQ λμ=+,并且1λμ+=.(2)用向量法证明下列结论:三角形的三条中线交于一点.22.(本小题满分8分)如图,圆锥的顶点为P ,底面圆心为O ,点B 、C 、D 在底面圆周上,OD BC ∥,3OB =,4PO BC ==,M 为线段OD 上一点,2OM MD =,A 为PC 的中点.(1)证明:AM ∥平面POB ;(2)求四棱锥A OBCM -.长郡中学2021—2022学年度高一第二学期期中考试数学参考答案一、选择题(共8道小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求)题号12345678答案BDBACDDC1.B 【解析】依题意()2,4a = ,()3,2b m =-+,a b ∥ .所以()2234m ⨯+=-⨯,8m =-,故选B.2.D 【解析】由题设,104i 13i 4i 1i 13iz =+=-+=++,则1i z =-,所以z 的虛部为-1.故选D.3.B 【解析】()3,3a b t -=- ,()()33430a ab t ⋅-=-+⨯= ,解得7t =,b == .故选B.4.A 【解析】因为FG CB = ,所以CE FG CE CB BE -=-=,故选A.5.C 【解析】因为点M α∉,所以过点M有无数条直线与α平行,有且只有一个平面与α平行,故选C.6.D 【解析】在ABC △中,由正弦定理:sin sin b c B C =,得322sin sin 2B B =,322sin 2sin cos B B B=,故cos 3B =.故选D.7.D 【解析】()()()()22i 12i 2i 24i i 2i 224i 12i 12i 12i 555a a a a a a-----+---===+++-.由题意得220,540,5aa -⎧>⎪⎪⎨--⎪<⎪⎩解得41a -<<.故选D.8.C 【解析】如图,作该正棱台的轴截面,其中E ,F ,M ,N 分别是AB ,CD ,11C D ,11A B 的中点,H ,K 是MN ,EF 的中点,G 是内切球的球心,H ,K 是内切球和上、下底面的切点,Q 是内切球和侧面11CDD C 的切点,内切球的半径为r,由题意,1HM =,2KF =,HG KG QG r ===,易得1MQ HM ==,2FQ FK ==,3MF =,2221MG r =+,2222FG r =+,且90MGF ∠=︒,所以222MG FG MF +=,即22149r r +++=,解得r =248S r ππ==.故选C.二、选择题(共4小题,每小题4分,共16分.在每小题给出的选项中,有多项符合要求.全部选对的得4分,部分选对的得2分,有选错的得0分.)题号9101112答案ABCADBCDACD9.ABC 【解析】对于A ,若120z z +=,则12z z =-,故122z z z ==,所以A 正确;对于B ,若21z z =,则12z z =,所以B 正确;对于C ,11z z =,22z z =,故121212z z z z z z ==,所以C 正确;对于D ,当11z =-,21z =时,等式仍然成立,所以D 错误.故选ABC.10.AD 【解析】对于A ,当β内的所有直线都与α平行时,则αβ∥,所以A 正确;对于B ,α与β相交时,β内的和交线平行的直线都与平面α平行,所以B 不正确;对于C ,平行于同一条直线的两个平面可能相交,也可能平行,所以C 不正确;对于D ,如果α和β都平行于同一平面γ,则αβ∥.所以D 正确.故选AD.11.BCD 【解析】如图,0OA OB +=,()()MA MB MO OA MO OB⋅=+⋅+ ()22211MO MO OA MO OB OA OB MO MO OA OB MO =+⋅+⋅+⋅=+⋅+-=- .根据图形可知,当点M 位于正六边形各边的中点时,MO,此时212MO -= ,当点M 位于正六边形的顶点时,MO有最大值为2,此时213MO -= ,所以23MA MB ≤⋅≤ .故选BCD.12.ACD 【解析】连接FE ,因为E ,F 为AB ,CD 的中点,故FE 平行且等于AD .由题意知AD 平行且等于11A D ,故FE 平行且等于11A D ,所以11FEA D 为平行四边形,所以11A E D F∥.故A 正确;显然1A E 与HF 为相交直线,故B 错误;因为EG IF ∥,同时IF 在平面1D IF 内,且EG 不在平面1D IF 内,故C 正确;因为11A E D F∥,同时1D F 在平面11D FGB 内,且1A E 不在平面11D FGB 内,故D 正确.故选ACD.三、填空题(共4道小题,每小题3分,共12分)在ABC △中,tan 0A =>,22sin cos sin cos 1,AA A A ⎧=⎪⎨⎪+=⎩,21cos 16A =,A 为锐角,cos 0A >,1cos 4A =,由余弦定理2222cos 10a b c bc A =+-=,a =.14.【解析】因为长方体1111ABCD A B C D -的外接球的表面积为25π,设球的半径为R ,由题意2425R ππ=,52R =,25R =,长方体1111ABCD A B C D -的外接球的一条直径为15AC ==.因为AB =,AD =5=,14AA =,则长方体1111ABCD A B C D -的体积为1AB AD AA ⨯⨯=.15.9【解析】因为平行四边形ABCD 中,2AB AD AB AD ==⋅=,所以四边形ABCD 为边长为2的菱形,且60BAD ∠=︒,()2222212AC AB AD AB AD AB AD =+=++⋅=,AC =如图所示,作EF AC ⊥于F ,34AF AC = ,AE AF FE =+,()23||94AE AC AF FE AC AF AC AF AC AC ⋅=+⋅=⋅=⋅==.16.1,43π(第一空1分,第2空2分)【解析】如图,将正四面体ABCD 嵌入到正方体中,则正四面体ABCD 的体积为正方体体积的13,设正方体的边长为a,则3a =,a =2AB =,EF 是ABD △的中位线,所以112EF AB ==.设AB 的中点为O ,连接OE ,OF ,OG ,OH ,因为112OEOF OG OH OA OB AB =======,所以多面体AB EFGH -的外接球的球心为O ,半径为1,外接球的体积为34433R ππ=.四、解答题(本题共6小题,共48分,解答应写出文字说明、证明过程或演算步骤.)17.【解析】(1)连接BD ,因为sin 5A =,A 为锐角,所以cos 5A =,在ABD △中,由余弦定理得,2222cos 5BD AB AD AB AD A =+-⨯⨯=,所以BD =.(2)在CBD △中,因为22225BD BC CD +==,所以CBD △为直角三角形,90CBD ∠=︒,ABD △的面积为1sin 22ABD S AB AD A =⨯⨯=△,BCD △的面积为152BCD S BD BC =⨯=△,所以四边形ABCD 的面积257ABD BCD S S =+=+=△△.18.【解析】(1)∵2a b -= ,∴224426a b a b +-⋅=,∴21642cos ,26a b +-⨯= ,∴2cos ,2a b =-.∵[],0,a b π∈ ,∴3,4a b π= ,∴a 与b 的夹角为34π.(2)∵)()()b a mb m -⊥+∈R,∴)()0b a mb -⋅+= )2210mb a b -+-⋅=,)4210m ---=,解得2m =.19.【解析】(1)因为复数()i ,z a b a b =+∈R ,又因为24i z z =-+24i i a b =-+-,2,40,a b =+--=⎪⎩解得3,4,a b =⎧⎨=-⎩所以34i z =-.(2)()()()()()()()222143243243433434i i i i i i i zii-+-+-++==--()()()234432438634i i i i i-+==+=+-.20.【解析】(1)证明:如图,连接AP ,在APC △中,∵R ,Q 分别是AC ,PC 的中点,∴RQ AP ∥.又AP ⊂平面11,ABB A ,RQ Ú平面11ABB A ,(注:表示直线的两个字母都包含在表示平面的几个字母之中,则可以不书写直线在平面内,否则必须书写.但直线不在平面内必须书写,不书写该步骤不给分.)∴RQ ∥平面11ABB A .(2)如图,在111A B C △中,∵E ,P 分别是11A C ,11A B 的中点,∴11PE B C ∥.又11B C ⊂平面11BB C C ,PE ⊄平面11BB C C (注:此处“11B C ⊂平面11BB C C ”可以不书写),∴PE ∥平面11BB C C .在平行四边形11AA C C 中,∵R ,E 分别是AC ,11A C 的中点,∴1RE CC ∥.又1CC ⊂平面11BB C C ,RE ⊄平面11BB C C ,∴RE ∥平面11BB C C .又RE EP E ⋂=,∴平面REP ∥平面11BCC B .21.【解析】(1)因为R 是直线PQ 上的动点,所以不妨设PR tPQ =(t 为实数),则()OR OP t OQ OP-=- ,()1OR t OP tOQ =-+,令1t λ=-,t μ=,则有OR OP OQ λμ=+,并且1λμ+=.所以存在实数λ,μ,使得OR OP OQ λμ=+,并且1λμ+=.(2)如图,ABC △中,D 、E 、F 分别是边BC 、CA 、AB 的中点,求证:AD 、BE 、CF 交于一点.(注:此处对定理的已知和求证必须说明(符号化),不书写该步骤不给分.)证明:不妨设BE 、CF 交于一点G ,连接AG ,因为D 、E 、F 分别是边BC 、CA 、AB 的中点,所以12AE AC = ,12AF AB = ,()12AD AB AC=+,根据(1)的结论得,11在ABE △中,2AG AB AE AB AC μλμλ=+=+ ,1λμ+=,λ,μ为实数.在ACF △中,2y AG x AC y AF x AC AB =+=+ ,1x y +=,x ,y 为实数.所以,2,21,1,y x x y λμλμ⎧=⎪⎪⎪=⎨⎪+=⎪⎪+=⎩21,21,x x λλ+=⎧⎨+=⎩解得1,32.3x y λμ⎧==⎪⎪⎨⎪==⎪⎩所以()13AG AB AC =+ ,即23AG AD = ,AG AD ∥ ,A 、G 、D 三点共线,所以AD 、BE 、CF 交于一点.22.【解析】(1)如图,由已知得223OM OD ==.取BP 的中点T ,连接OT ,TA ,由A 为PC 中点知TA BC ∥,122TA BC ==.又OD BC ∥,故TA OM ∥,四边形OMAT 为平行四边形,所以AM OT ∥.因为OT ⊂平面POB ,AM ⊂/平面POB ,所以AM ∥平面POB .(2)因为A 为PC 的中点,所以A 到平面OBCM 的距离为122PO =.取BC 的中点E ,连接OE ,OC .由3OB OC ==得OE BC ⊥,OE ==.由OM BC ∥得四边形OBCM 为梯形,故() 1422OBCM S =⨯+=梯形.所以四棱锥A OBCM -的体积 132A OBCM OBCM PO V S -=⨯⨯=梯形.。

湖南省长沙市长郡中学2020-2021学年高一上学期期中数学试题

湖南省长沙市长郡中学2020-2021学年高一上学期期中数学试题
x −1
20 . 已 知 函 数
f
(
x)
=
x
+
4 x
,
0
x
4,
−x2 +10x − 20, x 4,
若 存 在 0 x1 x2 x3 x4 , 使 得
f ( x1 ) = f ( x2 ) = f ( x3 ) = f ( )x4 ,则 x1x2x3x4 的取值范围是______.
四、解答题
8.D
【解析】f ( x) 为奇函数,故 f (−1) = 1,又 f ( x) 在 (−, +) 上单调递减,所以 −1 x − 2 1,即1 x 3 ,
则满足 −1 f ( x − 2) 1 的 x 的取值范围为1,3 .
9.A
【解析】当 a 0 ,b 0 时, a + b 2 ab ,则当 a + b 2 时,有 2 ab a + b 2 ,解得 ab 1,充分
24.已知 a R ,函数 f ( x) = x2 − 2ax + 5 . (1)若 a 1,且函数 f ( x) 的定义域和值域均为1, a ,求实数 a 的值;
(2)若不等式
x
x2

f
( x)
1对
x
1 3
,
1 2
恒成立,求实数 a
的取值范围.
25.我们知道,函数 y = f ( x) 的图像关于坐标原点成中心对称的充要条件是函数 y y = f ( x) 为奇函数,有 同 学 发 现 可 以 将 其 推 广 为 : 函 数 y = f ( x) 的 图 像 关 于 点 P (a,b) 成 中 心 对 称 的 充 要 条 件 是 函 数 y = f ( x + a) − b 为奇函数. (1)求函数 f ( x) = x3 − 3x2 图像的对称中心; ( 2 ) 请 利 用 函 数 f ( x) = x3 − 3x2 的 对 称 性 求 f (−2018) + f (−2017) + + f (0) + f (1) + f (2) + + f (2019) + f (2020) 的值. (3)类比上述推广结论,写出“函数 y = f ( x) 的图像关于 x 轴成轴对称的充要条件是函数 y = f ( x) 为偶

长沙市长郡中学数学高一下期中经典测试(培优练)

长沙市长郡中学数学高一下期中经典测试(培优练)

一、选择题1.(0分)[ID :12414]已知正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,则该四棱锥的体积的最大值为( ) A .643B .32C .54D .642.(0分)[ID :12404]已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集。

其中正确的是( ) A .(1)(2)(3) B .(1)(4)C .(1)(2)(4)D .(2)(4)3.(0分)[ID :12399]设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦4.(0分)[ID :12383]直线(2)4y k x =-+与曲线0x =有两个不同的交点,则实数k 的取值范围是( ) A .53(,]124B .51(,]122C .13(,]24D .1[,)2+∞5.(0分)[ID :12378]已知平面//α平面β,直线m α,直线n β,点A m ∈,点B n ∈,记点A 、B 之间的距离为a ,点A 到直线n 的距离为b ,直线m 和n 的距离为c ,则 A .b a c ≤≤ B .a c b ≤≤C . c a b ≤≤D .c b a ≤≤6.(0分)[ID :12348]已知圆O :2224110x y x y ++--=,过点()1,0M 作两条相互垂直的弦AC 和BD ,那么四边形ABCD 的面积最大值为( ) A .42B .24C .212D .67.(0分)[ID :12342]从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则切线长的最小值( )A .B .5C D .48.(0分)[ID :12330]椭圆22221(0)x y a b a b+=>>的左右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为( )A .12B 1C .2D .129.(0分)[ID :12371]若方程124kx k =-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫⎪⎝⎭C .53,124⎛⎫⎪⎝⎭ D .53,12410.(0分)[ID :12365]如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A .3πB .3π C .4πD .3π 11.(0分)[ID :12418]如图,正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立D .不存在点G ,使平面EFG ⊥平面ABD 成立12.(0分)[ID :12419]陀螺是汉族民间最早的娱乐工具之一,也称陀罗,北方叫做“打老牛”.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成.如图画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为( )A .107 3πB.32453π+C.16323π+D.32333π+13.(0分)[ID:12332]长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为()A.72πB.56πC.14πD.64π14.(0分)[ID:12334]如图,在三棱柱111ABC A B C-中,1CC⊥平面ABC,ABC是等腰三角形,BA BC=,123AC CC==,,D是AC的中点,点F在侧棱1A上,若要使1C F⊥平面BDF,则1AFFA的值为( )A.1B.12或2C2或2D.13或315.(0分)[ID:12370]如图1,ABC∆是以B为直角顶点的等腰直角三角形,T为线段AC的中点,G是BC的中点,ABE∆与BCF∆分别是以AB、BC为底边的等边三角形,现将ABE∆与BCF∆分别沿AB与BC向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为()图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ; (3)平面//EAB 平面FGT ;(4)直线//BC 直线AE . A .1个B .2个C .3个D .4个二、填空题16.(0分)[ID :12490]已知圆锥的底面半径为10,高为30,在它的所有内接圆柱中,侧面积的最大值是_____.17.(0分)[ID :12512]一个直三棱柱的每条棱长都是3,且每个顶点都在球O 的表面上,则球O 的表面积为________18.(0分)[ID :12486]以(3,2)a =-方向向量的直线平分圆2220x y y =++,直线l 的方程为________.19.(0分)[ID :12485]三棱锥P ABC -中,5PA PB ==,2AC BC ==,AC BC ⊥,3PC =,则该三棱锥的外接球面积为________.20.(0分)[ID :12465]将正方形ABCD 沿对角线BD 折成直二面角A BD C --,①AB 与平面BCD 所成角的大小为60 ②ACD ∆是等边三角形 ③AB 与CD 所成的角为60 ④AC BD ⊥⑤二面角B AC D --为120︒ 则上面结论正确的为_______.21.(0分)[ID :12445]正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上.若163PABCDV ,则球O 的体积是______. 22.(0分)[ID :12441]如上图所示,在正方体1111ABCD A B C D -中,,M N 分别是棱1AB CC 、的中点,1MB P ∆的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题:A .平面1MB P 1ND ⊥; B .平面1MB P ⊥平面11ND A ;C .∆1MB P 在底面ABCD 上的射影图形的面积为定值;D .∆1MB P 在侧面11D C CD 上的射影图形是三角形.其中正确命题的序号是__________. 23.(0分)[ID :12504]在棱长为1的正方体1111ABCD A B C D -中,M 是1BB 的中点,直线1D M 与平面ABCD 交于点N ,则线段AN 的长度为________24.(0分)[ID :12472]已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为________.25.(0分)[ID :12482]已知圆225x y +=和点()1,2A ,则过点A 的圆的切线方程为______三、解答题26.(0分)[ID :12587]如图,在棱长均为4的三棱柱111ABC A B C -中,1,D D 分别是BC 和11B C 的中点.(1)求证:11//A D 平面1AB D(2)若平面ABC ⊥平面111,60BCC B B BC ∠=︒,求三棱锥1B ABC -的体积. 27.(0分)[ID :12576]已知圆C 过点()1,1A ,()3,1B -,圆心C 在直线250x y --=上,P 是直线34100x y -+=上任意一点. (1)求圆C 的方程;(2)过点P 向圆C 引两条切线,切点分别为M ,N ,求四边形PMCN 的面积的最小值.28.(0分)[ID :12571]如图所示,四棱锥B AEDC -中,平面AEDC ⊥平面ABC ,F 为BC 的中点,P 为BD 的中点,且AE ∥DC ,90ACD BAC ∠=∠=︒,2DC AC AB AE ===.(Ⅰ)证明:平面BDE ⊥平面BCD ; (Ⅱ)若2DC =,求三棱锥E BDF -的体积. 29.(0分)[ID :12546]已知圆22:20M x y x a +-+= (1)若8a =-,过点(4,5)P 作圆M 的切线,求该切线的方程;(2)当圆22:(1)(23)4N x y ++-=与圆M 相外切时,从点(2,8)Q -射出一道光线,经过y 轴反射,照到圆M 上的一点R ,求光线从点Q 经反射后走到点R 所走过路线的最小值.30.(0分)[ID :12617]如图,1AA 、1BB 为圆柱1OO 的母线(母线与底面垂直),BC 是底面圆O 的直径,D 、E 分别是1AA 、1CB 的中点,DE ⊥平面1CBB .(1)证明:AC ⊥平面11AA B B ; (2)证明://DE 平面ABC .【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.A2.C3.B4.B5.D6.B7.A8.B9.D10.A11.C12.D13.C14.B15.C二、填空题16.;【解析】【分析】设内接圆柱的底面半径为r高为h得到将侧面积表示为底面半径的函数用配方法求二次函数的最大值【详解】设内接圆柱的底面半径为r高为h侧面积为S则时侧面积故答案为:【点睛】本题考查了圆锥内17.【解析】【分析】设此直三棱柱两底面的中心分别为则球心为线段的中点利用勾股定理求出球的半径由此能求出球的表面积【详解】∵一个直三棱柱的每条棱长都是且每个顶点都在球的球面上∴设此直三棱柱两底面的中心分别18.【解析】【分析】由为方向向量设直线的方程为:若要求直线平分圆则圆心在要求的直线上故得解【详解】根据题意要求的直线的方向向量为:设直线的方程为:圆即圆心为若要求直线平分圆则圆心在要求的直线上则有:则直19.【解析】【分析】由已知数据得两两垂直因此三棱锥外接球直径的平方等于这三条棱长的平方和【详解】∵∴∴又以作长方体则长方体的外接球就是三棱锥的外接球设外接球半径为则球表面积为故答案为:【点睛】本题考查球20.②③④【解析】【分析】作出此直二面角的图象由图形中所给的位置关系对命题逐一判断即可得出正确结论【详解】作出如图的图象E是BD的中点易得∠AED=90°即为此直二面角的平面角对于命题①AB与平面BCD21.【解析】【分析】正四棱锥底面的四个顶点在球的同一个大圆上则棱锥的高等于球的半径由此可由棱锥体积求得球的半径从而得球体积【详解】∵正四棱锥底面的四个顶点在球的同一个大圆上∴球心是正方形对角线交点是棱锥22.【解析】由正方体的几何性质对4个命题进行判断对于A当动点P与点重合时以等腰三角形与不垂直所以不能得出平面A为假命题;对于B易证所以平面所以平面⊥平面故B为真命题;对于C在底面上的射影图形的面积为定值23.【解析】【分析】在平面中与的交点即为求出长即可求解【详解】连在正方体中所以四边形为矩形相交其交点为平面的交点是的中点为的中位线为中点正方体各棱长为1故答案为:【点睛】本题考查空间线面位置关系确定直线24.28【解析】【分析】由题意结合棱台的体积公式求解棱台的体积即可【详解】由棱台的体积公式可得棱台的体积:故答案为:28【点睛】本题主要考查棱台的体积公式及其应用意在考查学生的转化能力和计算求解能力25.【解析】【分析】先由题得到点A在圆上再设出切线方程为利用直线和圆相切得到k的值即得过点A的圆的切线方程【详解】因为所以点在圆上设切线方程为即kx-y-k+2=0因为直线和圆相切所以所以切线方程为所以三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】 【分析】设底面ABCD 的边长为a ,四棱锥的高为h ,可得22122a h h =-,得出四棱锥的体积关于h 的函数()V h ,求出V 的极大值点,即可得到四棱锥的体积的最大值. 【详解】正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,设底面ABCD 的边长为a ,四棱锥的高为h ,设正四棱锥的底面ABCD 的中心为1O . 则2a OA =,1PO ⊥ 平面ABCD . 则22211OO O A OA +=,即()2222332a h ⎛⎫+-= ⎪ ⎪⎝⎭,可得22122a h h =-. 则该四棱锥的体积为()221112233V a h h h h =⨯=- 令()()2122f h h hh =-,则()2246f h h h'=-当04h <<时,()0f h '>,f h 单调递增. 当4h >时,()0f h '<,f h 单调递减.所以当4h =时,该四棱锥的体积有最大值,最大值为:()216412424433⨯⨯-⨯⨯= . 故选:A【点睛】本题考查了四棱锥与球的组合体,求椎体的体积,关键是利用了导数求体积的最值.属于中档题.2.C解析:C 【解析】 【分析】根据题意,对每一个选项进行逐一判定,不正确的只需举出反例,正确的作出证明,即可得到答案. 【详解】如图(1)所示,在平面内不可能由符合题的点;如图(2),直线,a b 到已知平面的距离相等且所在平面与已知平面垂直,则已知平面为符合题意的点;如图(3),直线,a b 所在平面与已知平面平行,则符合题意的点为一条直线, 综上可知(1)(2)(4)是正确的,故选C.【点睛】本题主要考查了空间中直线与平面之间的位置关系,其中熟记空间中点、线、面的位置关系是解答此类问题的关键,着重考查了空间想象能力,以及推理与论证能力,属于基础题.3.B解析:B 【解析】 【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QOOPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO ,即满足2PO ,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的. 【详解】由分析可得:22200PO x y =+又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO故22220000103634PO x y y y ==+-+ 解得0825y ,0605x 即0x 的取值范围是6[0,]5,故选:B .【点睛】解题的关键是充分利用几何知识,判断出2PO ,从而得到不等式求出参数的取值范围. 4.B解析:B【解析】【分析】利用数形结合,作出图象,计算得直线1l 与直线2l 的斜率,即可得到结论.【详解】 曲线可化简为()22(1)40x y x +-=≤,如图所示:直线()1:24l y k x =-+23221kk -=+,解得512k =, 直线()2:24l y k x =-+,此直线与曲线有两个交点,此时有12k =. 所以,过点()2,4的直线与该半圆有两个交点,数形结合,解得51122k <≤. 故选:B.【点睛】本题考查了直线与圆相交的性质,涉及的知识有:恒过定点的直线方程,点到直线的距离公式,以及直线斜率的求法,利用了数形结合的思想,其中抓住两个关键点是解本题的关键.5.D解析:D【解析】【分析】根据平面与平面平行的判断性质,判断c 最小,再根据点到直线距离和点到直线上任意点距离判断a 最大.【详解】由于平面//α平面β,直线m 和n 又分别是两平面的直线,则c 即是平面之间的最短距离. 而由于两直线不一定在同一平面内,则b 一定大于或等于c ,判断a 和b 时,因为B 是上n 任意一点,则a 大于或等于b .故选D.【点睛】本题主要考查面面平行的性质以及空间距离的性质,考查了空间想象能力,意在考查灵活应用所学知识解答问题的能力,属于中档题.6.B解析:B【解析】【分析】设圆心到AC ,BD 的距离为1d ,2d ,则222128d d MO +==,12S AC BD =⋅=,利用均值不等式得到最值. 【详解】 2224110x y x y ++--=,即()()221216x y ++-=,圆心为()1,2O -,半径4r =. ()1,0M 在圆内,设圆心到AC ,BD 的距离为1d ,2d ,则222128d d MO +==.1122S AC BD =⋅=⨯=2212161624d d ≤-+-=,当22121616d d -=-,即122d d ==时等号成立.故选:B .【点睛】本题考查了圆内四边形面积的最值,意在考查学生的计算计算能力和转化能力.7.A解析:A【解析】【分析】设切线长为d ,则2222(2)51(2)24d m m =++-=++再利用二次函数的图像和性质求函数的最小值得解.【详解】设切线长为d ,则2222(2)51(2)24d m m =++-=++, min d ∴=故选:A.【点睛】本题主要考查圆的切线问题,考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力. 8.B解析:B【解析】【分析】根据椭圆的定义可知12||||2PF PF a +=,又1PF 恰好与圆2F 相切于点P ,可知2||PF c =且12PF PF ⊥,即可列出方程求椭圆的离心率.【详解】由1PF 恰好与圆2F 相切于点P ,可知2||PF c =,且 12PF PF ⊥,又12||||2PF PF a +=,可知1||2PF a c =-,在12Rt PF F ∆中,222(2)4a c c c -+=,即2222a ac c -=所以2220,(0,1)e e e +-=∈,解得1e ==, 故选:B【点睛】本题主要考查了椭圆的定义,椭圆的简单几何性质,圆的切线的性质,属于中档题. 9.D解析:D【解析】【分析】由题意可得,曲线22(1)4(1)x y y +-=与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围.【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <,直线与半圆有两个交点,AD 221k =+,解得512AD k =, 4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦. 故选:D【点睛】本题考查直线与圆的位置关系,属于中档题.10.A解析:A【解析】【分析】设BC 的中点是E ,连接DE ,由四面体A′­BCD 的特征可知,DE 即为球体的半径.【详解】设BC 的中点是E ,连接DE ,A′E,因为AB =AD =1,BD 2由勾股定理得:BA⊥AD又因为BD⊥CD,即三角形BCD 为直角三角形所以DE 为球体的半径32DE = 2343S ππ== 故选A【点睛】 求解球体的表面积、体积的问题,其实质是求球体的半径,解题的关键是构造关于球体半径R 的方程式,构造常用的方法是构造直角三角形,再利用勾股定理建立关于半径R 的方程.11.C【解析】【分析】利用空间中线线、线面、面面间的位置关系对选项进行一一验证,即可得答案.【详解】正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是直线BD 的动点,在A 中,不存在点G ,使PG EF ⊥成立,故A 错误;在B 中,不存在点G ,使FG EP ⊥成立,故B 错误;在C 中,不存在点G ,使平面EFG ⊥平面ACD 成立,故C 正确;在D 中,存在点G ,使平面EFG ⊥平面ABD 成立,故D 错误.故选:C.【点睛】本题考查命题真假的判断、考查空间中线线、线面、面面间的位置关系,考查转化与化归思想,考查空间想象能力.12.D解析:D【解析】【分析】由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成.根据柱体、锥体的体积计算公式即得该陀螺模型的体积.【详解】由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成. 所以该陀螺模型的体积222113242333233333V πππ=⨯⨯+⨯⨯+⨯⨯⨯=+. 故选:D .【点睛】本题考查三视图,考查学生的空间想象能力,属于基础题. 13.C【解析】【分析】由题意首先求得长方体的棱长,然后求解其外接球的表面积即可.【详解】设长方体的棱长分别为,,a b c ,则236ab bc ac =⎧⎪=⎨⎪=⎩,所以()236abc =,于是213a b c =⎧⎪=⎨⎪=⎩,设球的半径为R ,则2222414R a b c =++=,所以这个球面的表面积为24R π=14π. 本题选择C 选项.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.14.B解析:B【解析】【分析】易证1BD C F ⊥,故要使1C F ⊥平面BDF ,只需1C F DF ⊥,然后转化到平面11AAC C 中,根据勾股定理计算,即可得结果.【详解】1CC ⊥平面ABC ,BD ⊂平面ABC ,所以1BD CC ⊥,又BA BC =,D 为AC 中点,所以BD AC ⊥,又1AC CC C =,所以BD ⊥平面11AAC C ,1C F 平面11AAC C ,所以1C F BD ⊥,因为DF BD D =,故要使1C F 平面BDF ,只需1C F DF ⊥,在四边形11AAC C 中,1231AC CC AD CD ====,,, 设AF x =,则13FA x =-,由22211C D DF C F =+得()()2219143x x ⎡⎤+=+++-⎣⎦, 即2320x x -+=,解得1x =或2x =, 所以112AF FA =或者12AF FA =, 故选:B.【点睛】本题考查了棱柱的结构特征,考查了空间中直线与平面的垂直的性质,勾股定理,考查空间想象能力和推理能力,属于中档题.15.C解析:C【解析】【分析】(1)翻折时使得平面ABE ⊥平面ABC ,由面面垂直的性质定理得出BC ⊥平面ABE ,从而使得(1)有可能;(2)翻折时使得点E 、F 两点重合,利用勾股定理可证得此时AE CE ⊥,即AE FC ⊥;(3)翻折时使得平面ABE 和平面BCF 同时与平面ABC 垂直,利用面面垂直的性质定理、直线与平面平行的判定定理以及面面平行的判定定理可证明出平面//EAB 平面FGT ;(4)利用反证法,可推出//BC AE 不成立.【详解】(1)翻折时,若平面ABE ⊥平面ABC ,由于ABC ∆是以B 为直角顶点的等腰直角三角形,则BC AB ⊥,又平面ABE 平面ABC AB =,BC ⊂平面ABC ,BC ∴⊥平面ABE ,AE ⊂平面ABC ,此时AE BC ⊥;(2)设AB BC a ==,则2AC a =,且有AE CF a ==,翻折时,若点E 、F 重合,则AE CE a ==,222AE CE AC ∴+=,此时,AE CE ⊥,即AE FC ⊥;(3)如下图所示:翻折时,若平面ABE 和平面BCF 同时与平面ABC 垂直,取AB 的中点D ,连接DE 、FG 、GT 、FT .ABE ∆是等边三角形,且D 为AB 的中点,DE AB ⊥∴.平面ABE ⊥平面ABC ,平面ABE 平面ABC AB =,DE ⊂平面ABE .DE ∴⊥平面ABC ,同理可证FG ⊥平面ABC ,//DE FG ∴,DE ⊄平面FGT ,FG ⊂平面FGT ,//DE ∴平面FGT . G 、T 分别为BC 、AC 的中点,//AB GT ∴,AB ⊄平面FGT ,GT ⊂平面FGT ,//AB ∴平面FGT .DE AB D =,∴平面//EAB 平面FGT ;(4)假设AE 与BC 可能平行,BC AB ⊥,则AE AB ⊥,事实上60BAE ∠=, 即AE 与AB 不垂直,假设不成立,因此,AE 与BC 不可能平行.因此,可能正确命题的个数为3.故选:C.【点睛】本题考查的是线面位置关系的判定,判断时要熟悉线面、面面平行与垂直的判定、性质定理,考查推理能力,属于中等题.二、填空题16.;【解析】【分析】设内接圆柱的底面半径为r 高为h 得到将侧面积表示为底面半径的函数用配方法求二次函数的最大值【详解】设内接圆柱的底面半径为r 高为h 侧面积为S 则时侧面积故答案为:【点睛】本题考查了圆锥内解析:150π;【解析】【分析】设内接圆柱的底面半径为r ,高为h ,得到303h r =-,将侧面积表示为底面半径的函数,用配方法求二次函数的最大值.【详解】设内接圆柱的底面半径为r ,高为h ,侧面积为S ,则303033010h r h r -=∴=-22660S rh r r πππ∴==-+226(10)6(5)150r r r πππ=--=--+5r ∴=时,侧面积max 150S π=故答案为:150π【点睛】本题考查了圆锥内接圆柱的问题,考查了学生空间想象,转化与划归,数学运算的能力,属于中档题.17.【解析】【分析】设此直三棱柱两底面的中心分别为则球心为线段的中点利用勾股定理求出球的半径由此能求出球的表面积【详解】∵一个直三棱柱的每条棱长都是且每个顶点都在球的球面上∴设此直三棱柱两底面的中心分别 解析:21π【解析】【分析】设此直三棱柱两底面的中心分别为12,O O ,则球心O 为线段12O O 的中点,利用勾股定理求出球O 的半径2R ,由此能求出球O 的表面积.【详解】∵一个直三棱柱的每条棱长都是3,且每个顶点都在球O 的球面上,∴设此直三棱柱两底面的中心分别为12,O O ,则球心O 为线段12O O 的中点,设球O 的半径为R ,则222323213234R ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭ ∴球O 的表面积2S 4R 21ππ== .故答案为:21π.【点睛】本题考查球的表面积的求法,空间思维能力,考查转化化归思想、数形结合思想、属于中档题.18.【解析】【分析】由为方向向量设直线的方程为:若要求直线平分圆则圆心在要求的直线上故得解【详解】根据题意要求的直线的方向向量为:设直线的方程为:圆即圆心为若要求直线平分圆则圆心在要求的直线上则有:则直 解析:2 330x y ++=【解析】【分析】由(3,2)a =-为方向向量,设直线的方程为:230x y m ++=,若要求直线平分圆,则圆心在要求的直线上,故得解.【详解】根据题意,要求的直线的方向向量为:(3,2)a =-,设直线的方程为:230x y m ++=圆2220x y y =++,即22(1)1x y ++=,圆心为(0,1)-, 若要求直线平分圆,则圆心在要求的直线上,则有:303m m -+=∴=则直线l 的方程为:2 330x y ++=【点睛】本题考查了直线的方向向量以及求与已知直线平行的直线方程,考查了学生概念理解,数学运算的能力,属于基础题.19.【解析】【分析】由已知数据得两两垂直因此三棱锥外接球直径的平方等于这三条棱长的平方和【详解】∵∴∴又以作长方体则长方体的外接球就是三棱锥的外接球设外接球半径为则球表面积为故答案为:【点睛】本题考查球 解析:7π【解析】【分析】由已知数据得,,CA CB CP 两两垂直,因此三棱锥外接球直径的平方等于这三条棱长的平方和.【详解】∵5PA PB ==,2AC BC ==,3PC =,∴222222,PC CB PB PC CA PA +=+=,∴,PC CB PC CA ⊥⊥,又CA CB ⊥, 以,,CA CB CP 作长方体,则长方体的外接球就是三棱锥P ABC -的外接球.设外接球半径为R ,则2222(2)7R CA CB CP =++=,7R =, 球表面积为22744()7.2S R πππ==⨯= 故答案为:7π. 【点睛】本题考查球的表面积,解题关键是确定,,CA CB CP 两两垂直,以,,CA CB CP 作长方体,则长方体的外接球就是三棱锥P ABC -的外接球.20.②③④【解析】【分析】作出此直二面角的图象由图形中所给的位置关系对命题逐一判断即可得出正确结论【详解】作出如图的图象E 是BD 的中点易得∠AED=90°即为此直二面角的平面角对于命题①AB 与平面BCD解析:②③④ 【解析】 【分析】作出此直二面角的图象,由图形中所给的位置关系对命题逐一判断,即可得出正确结论. 【详解】作出如图的图象,E 是BD 的中点,易得∠AED =90°即为此直二面角的平面角 对于命题①AB 与平面BCD 所成的线面角的平面角是∠ABE =45°,故AB 与平面BCD 成60°的角不正确;对于命题②,在等腰直角三角形AEC 中AC 等于正方形的边长,故△ACD 是等边三角形,此命题正确;对于命题③可取AD 中点F ,AC 的中点H ,连接EF ,EH ,FH ,则EF ,FH 是中位线,故∠EFH 或其补角为异面直线AB 与CD 所成角,又EF,FH 其长度为正方形边长的一半,而EH 是直角三角形AEC 的中线,其长度是AC 的一半即正方形边长的一半,故△EFH 是等边三角形,由此AB 与CD 所成的角为60°,此命题正确;对于命题④,BD ⊥面AEC ,故AC ⊥BD ,此命题正确;对于命题⑤,连接BH ,HD,则BH ⊥AC, DH ⊥AC,则∠BHD 为二面角B AC D --的平面角,又BH=DH=3AC,BD=2,AC cos ∠BHD=-1,3故二面角B AC D --不是120︒综上知②③④是正确的 故答案为②③④ 【点睛】本题考查与二面角有关立体几何中线线之间的角的求法,线面之间的角的求法,以及线线之间位置关系的证明方法.综合性较强,对空间立体感要求较高.21.【解析】【分析】正四棱锥底面的四个顶点在球的同一个大圆上则棱锥的高等于球的半径由此可由棱锥体积求得球的半径从而得球体积【详解】∵正四棱锥底面的四个顶点在球的同一个大圆上∴球心是正方形对角线交点是棱锥解析:323π【解析】 【分析】正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,则棱锥的高等于球的半径,由此可由棱锥体积求得球的半径,从而得球体积. 【详解】∵正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,∴球心O 是正方形ABCD 对角线交点,PO 是棱锥的高,设球半径为R ,则2AB R =,22(2)2ABCD S R R ==,211162333P ABCD ABCD V S PO R R -==⨯⨯=,2R =, ∴3344322333V R πππ==⨯=球. 故答案为:323π.【点睛】本题考查球的体积,考查正四棱锥与半球的截接问题.解题关键是确定球半径与正四棱锥中的线段长之间的关系.22.【解析】由正方体的几何性质对4个命题进行判断对于A 当动点P 与点重合时以等腰三角形与不垂直所以不能得出平面A 为假命题;对于B 易证所以平面所以平面⊥平面故B 为真命题;对于C 在底面上的射影图形的面积为定值 解析:BC【解析】由正方体的几何性质对4个命题进行判断,对于A ,当动点P 与点1D 重合时,MNP ∆以等腰三角形,PM 与1ND 不垂直,所以不能得出平面11MB P ND ⊥,A 为假命题;对于B ,易证11111ND MB MB A D ⊥⊥,,所以1MB ⊥平面11ND A ,所以平面1MB P ⊥平面11ND A ,故B 为真命题;对于C ,∆ 1MB P 在底面ABCD 上的射影图形的面积为定值,因为1MB P ∆在底面ABCD 的射影是三角形,底边是MB ,点P 在底面的射影在CD 上,到MB 的距离不变,若正方体棱长为a 时,则射影面积为214a 为定值,所以C 为真命题;对于D ,当P 点与点1C 重合时,则点1B 与点P 的投影重合,此时∆ 1MB P 在侧面11D C CD 上的射影图形是线段,不是三角形,故D 是假命题。

湖南省长沙市长郡中学2023-2024学年高一上学期期中数学试题

湖南省长沙市长郡中学2023-2024学年高一上学期期中数学试题

湖南省长沙市长郡中学2023-2024学年高一上学期期中数学
试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
A .{}1
B .{0,12.命题“0x ∃<,使得22x +>A .0x ∀<,22x x +>
C .0x ∀<,22x x +≤3.函数()221
x
f x x =
-的图象大致为(A ..
C ..
4.如图,把直截面半径为25cm 的圆柱形木头锯成直截面为矩形的木料,如果矩形的一边长为x (单位:cm ),面积为则把y 表示为x 的函数的解析式为
A .[]5,0-,[]2,5二、多选题
三、填空题
四、双空题
五、计算题
六、问答题
七、证明题
八、应用题
九、问答题
21.我们知道,函数()y f x =的图象是关于坐标原点的中心对称图形的充要条件是函数
()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象是关于点()
,P a b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号! 温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号!
温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号! 温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号!
温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号! 温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号!
温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号! 温馨提示;需要更多精彩内容请微信搜索要更多精彩内容请微信搜索”名校名师教育“公众号! 温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号!
温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号! 温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号!
温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号! 温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号!
温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号! 温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号!
温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号! 温馨提示;需要更多精彩内容请微信搜索”名校名师教育“公众号!
相关文档
最新文档