2019安徽数学中考一轮复习阶段性测试卷(1)有答案-推荐

合集下载

2019安徽数学中考一轮复习阶段性测试卷(1)有答案

2019安徽数学中考一轮复习阶段性测试卷(1)有答案

阶段性测试卷(一)(考查内容:数与式、方程(组)与不等式(组)、函数 时间:45分钟 满分:100分) 一、选择题(每小题4分,共20分) 1.8的相反数的立方根是( C ) A .±2 B .12 C .-2D .-122.下列运算正确的是( D ) A .a 3·a 2=a 6B .a 12÷a 3=a 4C .(m -n )2=m 2-n 2D .(-b 3)2=b 63.在创建文明城市的进程中,合肥市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x 万棵,可列方程是( B )A .30x -3020%x =5B .30x-30+x =5C .3020%x +5=30xD .30+x-30x=54.下列命题为假命题...的是( C ) A .若a =b ,则a -2018=b -2018 B .若a =b ,则a c 2+1=bc 2+1C .若a >b ,则a 2>abD .若a <b ,则a -2c <b -2c5.二次函数y =ax 2+bx +c 的图象如图所示,则反比例函数y =a x与一次函数y =ax +b 在同一坐标系内的大致图象是( C )A B C D 二、填空题(每小题5分,共20分)6.亚洲陆地面积约为4 400万平方千米,则“4 400万”用科学记数法记作__4.4×107__. 7.分解因式(a -b )(a -4b )+ab 的结果是__(a -2b )2__.8.写出不等式组⎩⎪⎨⎪⎧x +x +10,x -5<x -83的所有非负整数解.....__0,1,2,3__. 9.如图的抛物线是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x=-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a +b +c =0;④若点B ⎝ ⎛⎭⎪⎫-52,y 1,C ⎝ ⎛⎭⎪⎫-12,y 2为函数图象上的两点,则y 1<y 2,其中正确结论有__①③④__(填序号).三、解答题(共60分) 10.(8分)计算:(-1)2 018-8+(π-3)0+4cos 45°解:原式=1-22+1+22=2.11.(8分)先化简再计算:x 2-1x 2+x ÷⎝ ⎛⎭⎪⎫x -2x -1x ,其中x 是一元二次方程x 2-2x -2=0的正数根. 解:原式=x +1x -1x x+1÷x 2-2x +1x =x -1x ·x x -12=1x -1.解方程x 2-2x -2=0,解得x 1=1+3>0,x 2=1-3<0,所以原式=11+3-1=33.12.(8分)化简代数式:⎝ ⎛⎭⎪⎫3x x -1-x x +1÷x x 2-1,再从不等式组⎩⎪⎨⎪⎧x -x -①,6x +10>3x +1②的解集中取一个合适的整数值代入,求出代数式的值.解:原式=3xx +1-x x -1x-1x +1·x -1x +1x=3(x +1)-(x -1)=2x +4.解不等式①,得x≤1,解不等式②,得x>-3,故原不等式组的解集为-3<x≤1.∵x≠0,±1,∴x 可取-2.当x =-2时,原式=2×(-2)+4=0.13.(10分)观察下列等式:4-11=3,9-12=4,16-13=5,25-14=6,…. (1)写出第5个等式:__36-15=7__;(2)猜想并写出第n 个等式,请证明你所猜想的等式是正确的.(2)第n 个等式:n +12-1n=n +2.证明:左边=n 2+2n +1-1n =n 2+2n n=n +2=右边,所以猜想n +12-1n=n +2是正确的.14.(12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:(1)计算这5(2)通过对上面表格中的数据进行分析,发现销量y (件)与单价x (元/件)之间存在一次函数关系,求y 关于x 的函数关系式;(不需要写出函数自变量的取值范围)(3)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?解:(1)30×40+34×32+38×24+40×20+42×165=934.4;(2)设所求一次函数关系式为y =kx +b (k≠0),将(30,40),(40,20)代入y =kx +b ,得⎩⎪⎨⎪⎧30k +b =42,40k +b =20,解得⎩⎪⎨⎪⎧k =-2,b =100,∴y =-2x +100;(3)设利润为w 元,根据题意,得w =(x -20)(-2x +100)=-2x 2+140x +2 000=-2(x -35)2+450,则当x =35时,w 取最大值.即当该产品的单价为35元/件时,工厂获得最大利润450元.15.(14分)如图,抛物线y =x 2+bx +c 与直线y =12x -3交于A ,B 两点,其中点A 在y 轴上,点B坐标为(-4,-5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC ⊥x 轴于点C ,交AB 于点D .(1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由. 解:(1)∵直线y =12x -3交于A ,B 两点,其中点A 在y 轴上,∴A (0,-3),∵B (-4,-5),⎩⎪⎨⎪⎧c =-3,16-4b +c =-5.∴⎩⎪⎨⎪⎧b =92,c =-3.∴抛物线解析式为y =x 2+92x -3;(2)存在,设P (m ,m 2+92m -3),(m <0),∴D (m ,12m -3),∴PD =|m 2+4m|.∵PD∥AO ,∴当PD =OA=3时,|m 2+4m|=3.①m 2+4m =3时,∴m 1=-2-7,m 2=-2+7(舍),∴m 2+92m -3=-1-72,∴P ⎝ ⎛⎭⎪⎫-2-7,-1-72; ②当m 2+4m =-3时,∴m 1=-1,m 2=-3.若m 1=-1,∴m 2+92m -3=-132,∴P ⎝⎛⎭⎪⎫-1,-132;若m 2=-3,∴m 2+92m -3=-152,∴P ⎝⎛⎭⎪⎫-3,-152,∴点P 的坐标为⎝ ⎛⎭⎪⎫-2-7,-1-72,⎝⎛⎭⎪⎫-1,-132,⎝ ⎛⎭⎪⎫-3,-152.。

2019年安徽省初中学业水平考试数学阶段检测试卷(一)含答案

2019年安徽省初中学业水平考试数学阶段检测试卷(一)含答案

2019年安徽省初中学业水平考试阶段检测卷一代数综合检测(时间:120分钟,满分:150分)一、选择题(本大题共10小题,每小题4分,满分40分) 每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1.2的倒数是( ) A .-2B.12C .-12D .22.下列实数中的无理数是( ) A .0.7B.12C .πD .-83.温度由-4 ℃上升7 ℃是( ) A. 3 ℃B. -3 ℃C. 11 ℃D. -11 ℃4.一条数学信息在一周内被转发了2 180 000次,将数据2 180 000用科学记数法表示为( ) A .2.18×106B .2.18×105C .21.8×106D .21.8×1055.下列算式中,结果等于a 6的是( ) A .a 3+a 4 B .a 2+a 2+a 2 C .a 2·a 3D .a 2·a 2·a 26.下列分解因式正确的是( ) A .-ma -m =-m (a -1) B .a 2-1=(a -1)2 C .a 2-6a +9=(a -3)2 D .a 2+3a +9=(a +3)27.不等式组⎩⎪⎨⎪⎧2x <6,x +1≥-4的解集是( )A .-5<x ≤3B .-5≤x <3C .x ≥-5D .x <38.已知关于x 的一元二次方程4mx 2-4(m +2)x +m =0有两个不相等的实数根,则m 的值可以是( ) A .2或-1 B .-1 C .2D .不存在9.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,需缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务,设原计划每天铺设x 米,下面所列方程正确的是( )A.720x -720(1+20%)x =2B.720(1-20%)x -720x =2C.720(1+20%)x -720x=2 D.720x +2=720(1+20%)x10.如图,菱形ABCD 的边长是4 cm ,∠B=60°,动点P 以1 cm/s 的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2 cm/s 的速度自B 点出发沿折线BCD 运动至D 点停止.若点P 、Q 同时出发运动了t s ,记△B PQ 的面积为S cm 2,下面图象中能表示S 与t 之间的函数关系的是( )二、填空题(本大题共4小题,每小题8分,满分20分) 11.计算:12×3=________.12.方程组⎩⎪⎨⎪⎧x -y =4,2x +y =-1的解是____________.13.方程12x =1x +1的解是__________.14.如图,正比例函数y =x 的图象与反比例函数y =kx的图象相交于A ,B 两点,且点B 的横坐标为-2.若点E 是反比例函数在第一象限内图象上一点,S △A OE =3,则点E 的坐标为__________________________.三、(本大题共2小题,每小题8分,满分16分)15.计算:π0+2cos 30°+︱2-3︱-(12)-2.16.先化简,再求值:x 2+2x +1x 2-1-xx -1,其中x =2.四、(本大题共2小题,每小题8分,满分16分)17.先化简,再求值:(-x2+3-7x)+(5x-7+2x2),其中x=2+1.18.《九章算术》中有一题:今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价.向牛、马价各几何?译文为:现有二匹马加一头牛的价钱超过一万,超过的部分正好是半匹马的价钱;一匹马加上二头牛的价钱则不到一万,不足部分正好是半头牛的价钱,求一匹马、一头牛各多少钱.请解答上述问题.五、(本大题共2小题,每小题10分,满分20分)19.阅读下列材料解决问题:材料:古希腊著名数学家毕达哥拉斯发现把数1,3,6,10,15,21…这些数量的(石子),都可以排成三角形,则称像这样的数为三角形数.把数1,3,6,10,15,21…换一种方式排列,即1=11+2=31+2+3=61+2+3+4=101+2+3+4+5=15…从上面的排列方式看,把1,3,6,10,15…叫做三角形数“名副其实”.(1)设第一个三角形数a1=1,第二个三角形数为a2=3,第三个三角形数为a3=6,请直接写出第n个三角形数为a n的表达式(其中n为正整数);(2)根据(1)的结论判断66是三角形数吗?若是,请说出66是第几个三角形数?若不是,请说明理由;(3)根据(1)的结论判断所有三角形数的倒数之和T与2的大小关系并说明理由.20.某校为打造书香校园,计划购进甲乙两种规格的书柜放置新购买的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需资金1 020元;若购买甲种书柜4个,乙种书柜3个,共需资金1 440元.(1)甲乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多提供资金4 320元,请设计几种购买方案供这个学校选择.六、(本题满分12分) 21.如图,点M在函数y=3x(x>0)的图象上,过点M分别作x轴和y 轴的平行线交函数y=1x(x>0)的图象于点B、C.(1)若点M坐标为(1,3).①求B、C两点的坐标;②求直线BC的表达式.(2)求△B M C的面积.七、(本题满分12分)22.如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.(1)当l经过点B,求它的表达式,并写出此时l的对称轴及顶点坐标;(2)当线段O A被l只分为两部分,且这两部分的比是1∶4时,求h的值.第22题图八、(本题满分14分)23.为响应某市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18 m,另外三边由36 m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=x m,面积为y m2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160 m2,求x的值;(3)若该单位用8 600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.参考答案1.B 2.C 3.A 4.A 5.D 6.C 7.B 8.C 9.A 10.D11.6 12.⎩⎪⎨⎪⎧x =1,y =-313.x =1 14.(4,1)或(1,4)15.解:原式=-2.16.解: 原式=1x -1.当x =2时,原式=12-1=1.17.解: 原式=x 2-2x -4.当x =2+1时,原式=(2+1)2-2(2+1)-4=-3. 18.解:一匹马的价钱为6 00011,一头牛的价钱是20 00011.19.解:(1)a n =n (n +1)2(n 为正整数);(2)66是三角形数,理由如下:当n (n +1)2=66时,解得:n =11或n =-12(舍去),则66是第11个三角形数;(2)T =11+13+16+115+…+2n (n +1)=21×2+22×3+23×4+24×5+…+2n (n +1)=2(1-12+12-13+13-14+…+1n -1n +1)=2nn +1∵n 为正整数,∴0<n n +1<1,则T <2.20.解:(1)甲种书柜单价为180元,乙种书柜单价为240元, (2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个, 方案二:甲种书柜9个,乙种书柜11个, 方案三:甲种书柜10个,乙种书柜10个.21.解:(1)①点C 坐标为(1,1),点B 坐标为(13,3).②直线BC 的表达式为:y =-3x +4. (2)设点M 坐标为(a ,t),∵点M 在函数y =3x (x >0)的图象上,∴at=3.由(1)知C 点坐标为(a ,1a ),B 点坐标为(1t ,t),∴BM=a -1t =at -1t ,MC =t -1a =at -1a ,∴S △BMC =12·at -1t ·at -1a =23.22.解:(1)把B(2,1)代入y =-(x -h)2+1,得h =2, ∴函数表达式为y =-(x -2)2+1, ∴对称轴为x =2,顶点坐标为B(2,1).(2)把OA 分为1∶4两部分的点为(-1,0)或(-4,0), 把x =-1,y =0代入y =-(x -h)2+1,得h =0或h =-2, 但h =-2时,OA 被分为三部分,不合题意,舍去,同样,把x =-4,y =0代入y =-(x -h)2+1,得h =-5或h =-3(舍去),∴h 的值为0或-5.23.解:(1)∵四边形ABCD 是矩形,垂直于墙的边AB =x , ∴CD=AB =x ,BC =(36-2x), ∴y=x(36-2x),即y =-2x 2+36x ,由矩形的任一边都大于0,⎩⎪⎨⎪⎧36-2x >0,36-2x≤18,解得9≤x<18,∴y 与x 之间的函数关系式为y =-2x 2+36x(9≤x<18). (2)∵矩形空地的面积为160 m 2,即y =160, ∴-2x 2+36x =160,解得x 1=10,x 2=8, ∵9≤x<18,∴x 2=8舍去, 答:x 的值为10.(3)设甲、乙、丙三种植物分别购买了m 棵、n 棵、k 棵,由题意得:⎩⎪⎨⎪⎧m +n +k =400①,14m +16n +28k =8 600②,①×16-②得:m =6k -1 100.②-①×14得:n =1 500-7k , ∵m 、n 、k 分别表示三种植物的数量,∴m、n 、k 为正整数,∴⎩⎪⎨⎪⎧6k -1 100>0,1 500-7k >0,解得5503<k <1 5007,∵k 为正整数,∴k 能取的最大正整数为214,即丙种植物最多可以购买214棵,当k =214时,m =6k -1 100=6×214-1 100=184,n =1 500-7k =1 500-7×214=2,∵y=-2x 2+36x =-2(x -9)2+162,∴当x =9时,y 有最大值,最大值为162,即当垂直于墙的一边长为 9 m 时,矩形空地的面积最大,最大为162 m 2. ∵0.4×184+2+0.4×214=161.2<162, ∴这批植物可以全部栽种到这块空地上.。

2019年最新安徽省中考第一次数学模拟试卷含答案解析

2019年最新安徽省中考第一次数学模拟试卷含答案解析

安徽省第一次中考(数学)模拟试卷(含答案)数 学本试题卷分第一部分(选择题)和第二部分(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第一部分(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上. 2.本部分共10小题,每小题3分,共30分.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1. 2-的倒数是)A ( 21-)B (21)C (2 )D (2-2.随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120 000 000人次,将120 000 000用科学记数法表示为)A ( 91021⨯. )B ( 71012⨯ )C ( 910120⨯. )D (81021⨯.3. 下列图形中,既是轴对称图形又是中心对称图形的是)A ( )B ( )C ( )D (4.含︒30角的直角三角板与直线1l 、2l 的位置关系如图1所示,已知21//l l ,A ACD ∠=∠,则1∠=)A (︒70 )B (︒60 )C (︒40 )D (︒305. 下列说法正确的是)A (打开电视,它正在播广告是必然事件)B (要考察一个班级中的学生对建立生物角的看法适合用抽样调查 )C (在抽样调查过程中,样本容量越大,对总体的估计就越准确)D (甲、乙两人射中环数的方差分别为2S 2=甲,4S 2=乙,说明乙的射击成绩比甲稳定6. 若02=-ab a ()0≠b ,则=+ba a)A (0 )B (21)C (0或21)D (1或 27. 图2是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,250.CD AB ==米,51.BD =米,且AB 、CD 与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离 地面的距离是)A (2米 )B (52.米 )C (42.米)D (12.米8. 已知31=+x x ,则下列三个等式:①7122=+xx ,②51=-x x ,③2622-=-x x 中,正确的个数有)A ( 0个)B (1个)C ( 2个)D (3个图1图29. 已知二次函数mx x y 22-=(m 为常数),当21≤≤-x 时,函数值y 的最小值为2-,则m 的值是)A (23)B (2)C (23或2)D (23-或2 10. 如图3,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为()46,, 反比例函数xy 6=的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将BDE ∆沿DE 翻折至DE B '∆处,点B '恰好落在正比例函数kx y =图象上,则k 的值是 )A ( 52-)B (211-)C (51-)D (241-第二部分(非选择题 共120分)注意事项1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤. 4.本部分共16小题,共120分.二、填空题:本大题共6小题,每小题3分,共18分.11.计算:=-23 ____. 12.二元一次方程组2322+=-=+x yx y x 的解是____. 13.如图4,直线b a 、垂直相交于点O ,曲线C 关于点O 成中心对称,点A 的对称点是点'A ,a AB ⊥于点B ,b D A ⊥'于点D .若3=OB ,2=OC , 则阴影部分的面积之和为____.14.点A 、B 、C 在格点图中的位置如图5所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是_____.15. 庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将 事物无限分割的思想,用图形语言表示为图6.1, 按此图分割的方法,可得到一个等式(符号语言):⋅⋅⋅++⋅⋅⋅+++=n 32212121211. 图6.2也是一种无限分割:在ABC ∆中, 90=∠C ,30=∠A ,过点C 作AB CC ⊥1于点1C ,再过点1C 作BC C C ⊥21于点2C ,又过点2C 作AB C C ⊥32于点3C ,如此无限继续下去,则可将利ABC ∆分割成1ACC ∆、21C CC ∆、321C C C ∆、432C C C ∆、…、n n n C C C 12--∆、….假设2=AC ,这些三角形的面积和可以得到一个等式是_________.16.对于函数m n x x y +=,我们定义11--+='m n mx nx y (n m 、为常数). 例如24x x y +=,则x x y 243+='. 已知:()x m x m x y 223131+-+=. (1)若方程0='y 有两个相等实数根,则m 的值为___________; (2)若方程41-='m y 有两个正数根,则m 的取值范围为__________. 三、本大题共3小题,每小题9分,共27分.17. 计算:272017316020-+-+︒sni .18. 求不等式组⎪⎩⎪⎨⎧≥--+<+02251,312x x x x 的所有整数解.19. 如图7, 延长□ABCD 的边AD 到点F ,使DC DF =,延长CB 到点E ,使BA BE =,分别连结点A 、E 和点C 、F . 求证:CF AE =.四、本大题共3小题,每小题10分,共30分.20. 化简:12121222222-÷⎪⎪⎭⎫ ⎝⎛+----+a aa a a a a a a .21. 为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图8所示.请根据图表信息解答下列问题: (1)在表中:=m ,=n ; (2)补全频数分布直方图;FEDCB A(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A 、C 两组学生的概率是多少?并列表或画树状图说明.22. 如图9,在水平地面上有一幢房屋BC 与一棵树DE ,在地面观测点A 处测得屋顶C 与树梢D 的仰角分别是︒45与︒60,︒=∠60CAD ,在屋顶C 处测得︒=∠90DCA .若房屋的高6=BC 米.求树高DE 的长度.五、本大题共2小题,每小题10分,共20分.23、某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:EDCBA律,给出理由,并求出其解析式; (2)按照这种变化规律,若已投入资金5万元.①预计生产成本每件比2016年降低多少万元?②若打算在把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).24.如图10,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且 60=∠ACP ,PD PA =.(1)试判断PD 与⊙O 的位置关系,并说明理由;(2)若点C 是弧AB 的中点,已知4AB =,求CP CE ⋅的值.六、本大题共2小题,第25题12分,第26题13分,共25分.25.在四边形ABCD 中,︒=∠+∠180D B ,对角线AC 平分BAD ∠.(1)如图11.1,若︒=∠120DAB ,且︒=∠90B ,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.A(2)如图11.2,若将(1)中的条件“︒=∠90B ”去掉,(1)中的结论是否成立?请说明理由. (3)如图11.3,若︒=∠90DAB ,探究边AD 、AB 与对角线AC 的数量关系并说明理由.26.如图12.1,抛物线1C :ax x y +=2与2C :bx x y +-=2相交于点O 、C ,1C 与2C 分别交x 轴于点B 、A ,且B 为线段AO 的中点.(1)求ba的值; (2)若AC OC ⊥,求OAC ∆的面积;(3)抛物线2C 的对称轴为l ,顶点为M ,在(2)的条件下:①点P 为抛物线2C 对称轴l 上一动点,当PAC ∆的周长最小时,求点P 的坐标; ②如图12.2,点E 在抛物线2C 上点O 与点M 之间运动,四边形OBCE 的面积是否存在最大值?若存在,求出面积的最大值和点E 的坐标;若不存在,请说明理由.DCBAD CB ADCBA第一次中考(数学)模拟试卷数学参考答案及评分意见第一部分(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分.1. )(A2. )(D3. )(D4. )(B5. )(C6. )(C7. )(B8. )(C9. )(D 10.)(B第二部分(非选择题 共120分)二、填空题:本大题共6小题,每小题3分,共18分.11.91;12.⎩⎨⎧-=-=15y x ;13. 6; 14.553; 15.⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++= n434343431233232;16.(1)21=m ;(2)43≤m 且21≠m . 注:(1)第14题,若给出的是化简后正确的等式,也视为正确; (2)第16题,第(1)问1分,第(2)问2分.三、本大题共3小题,每小题9分,共27分.17.解:原式33113232-+-+⨯=……………………………………(8分) =3-.………………………………(9分)18.解:解不等式①得:1->x ……………………………………(3分)解不等式②得:4≤x ……………………………………(6分)所以,不等式组的解集为41≤<-x ……………………………………(8分) 不等式组的整数解为43210,,,,. ……………………………………(9分)19. 证明:□ABCD 中,CD AB =,BE AB =,DF CD =,∴DF BE =.BC AD =, ∴EC AF =………………(6分)又 AF ∥EC ,∴四边形AECF 是平行四边形. ………………(8分) ∴CF AE =………………………(9分)四、本大题共3小题,每小题10分,共30分.20. 解:原式=()()()()()121111122-÷⎥⎦⎤⎢⎣⎡----++a aa a a a a a a ………………(2分)=12112-÷⎪⎭⎫⎝⎛---a a a a a a………………(4分) =121-÷-a a a a ………………(6分) =aa a a 211-⋅-………………(8分) =21…………………………(10分) 21.解:(1)120=m ,30.n =………………(2分)(2);如图2 ………………(4分) (3)C ;………………(6分) (4)FED CBACB A D B A DC AD C B DC BA………………(9分)∴抽中A ﹑C 两组同学的概率为122=P =61…………(10分) 22.解:如图3,在ABC Rt ∆中,︒=∠45CAB ,m BC 6=, ∴26=∠=CABsin BCAC ()m ;…………………(3分)在ACD Rt ∆中,︒=∠60CAD , ∴212=∠=CADcos ACAD ()m ;…………………(6分)在DEA Rt ∆中,︒=∠60EAD ,()m sin AD DE 662321260=⋅=︒⋅=…………………(9分) 答:树DE 的高为66米.…………………(10分) 五、本大题共2小题,每小题10分,共20分 23.解:(1)设b kx y +=,(b k 、为常数,0≠k )∴⎩⎨⎧+=+=645436k .b k ,解这个方程组得⎩⎨⎧=-=51051.b .k ,∴51051.x .y +-=. 当52.x =时,4756≠=.y .∴一次函数不能表示其变化规律. ……………………………………(2分) 设x k y =,(k 为常数,0≠k ),∴5227.k.=, ∴18=k ,∴xy 18=. EDCBA当3=x 时,6=y ;当4=x 时,54.y =;当54.x =时,4=y ; ∴所求函数为反比例函数xy 18=……………………………………(5分) (2)①当5=x 时,63.y =; 40634..=-(万元)∴比2016年降低40.万元. ……………………………………(7分) ②当23.y =时,6255.x =; 630625056255...≈=-(万元) ∴还需要投入技改资金约630.万元. ……………………………………(9分)答:要把每件产品的成本降低到23.万元,还需投入技改资金约630.万元. …………………(10分)24.解:(1)如图4,PD 是⊙O 的切线.证明如下:……………………………………(1分)连结OP ,60=∠ACP ,∴120=∠AOP , OP OA = ,∴ 30=∠=∠OPA OAP ,PD PA =,∴ 30=∠=∠D PAO , ∴ 90=∠OPD ,∴PD 是⊙O 的切线. ……………………………………(4分) (2)连结BC ,AB 是⊙O 的直径, ∴90=∠ACB ,又C 为弧AB 的中点, ∴45=∠=∠=∠APC ABC CAB ,4=AB ,2245== sin AB AC .APC CAB C C ∠=∠∠=∠, ,∴CAE ∆∽CPA ∆,……………………………………(8分)∴CACECP CA =,∴82222===⋅)(CA CE CP .……………………………………(10分)六、本大题共2小题,第25题12分,第26题13分,共25分 25.解:(1)AB AD AC +=.证明如下:在四边形ABCD 中,︒=∠+∠180B D ,︒=∠90B , ∴ ︒=∠90D . ︒=∠120DAB ,AC 平分DAB ∠,∴ 60=∠=∠BAC DAC ,︒=∠90B ,∴AC AB 21=,同理AC AD 21=.∴AB AD AC +=.……………………………(4分) (2)(1)中的结论成立,理由如下:以C 为顶点,AC 为一边作60=∠ACE ,ACE ∠的另一边交AB 延长线于点E , 60=∠BAC ,∴AEC ∆为等边三角形,∴CE AE AC ==,︒=∠+∠180B D ,︒=∠120DAB ,∴60=∠DCB ,∴BEC DAC ∆≅∆,∴BE AD =,∴AB AD AC +=.……………………………………(8分) (3)AC AB AD 2=+.理由如下:过点C 作AC CE ⊥交AB 的延长线于点E ,︒=∠+∠180B D ,︒=∠90DAB ,∴ 90=DCB ,90=∠ACE ,∴BCE DCA ∠=∠,又AC 平分DAB ∠,∴ 45=∠CAB ,∴45=∠E .∴CE AC =.又︒=∠+∠180B D ,CBE D ∠=∠,ACC∴CBE CDA ∆≅∆,∴BE AD =,∴AE AB AD =+. 在ACE Rt ∆中, 45=∠CAB ,∴AC cos ACAE 245==,∴AC AB AD 2=+. ……………………………………(12分)26.解:(1)ax x y +=2,当0=y 时,02=+ax x ,01=x ,a x -=2,∴()0,a B -bx x y +-=2,当0=y 时,02=+-bx x ,01=x ,b x =2,∴()b ,A 0 ∵B 为OA 的中点,∴a b 2-=.∴21-=b a .……………………………………(2分) (2)解⎪⎩⎪⎨⎧--=+=axx y ax x y 222得:ax x ax x 222--=+ ,0322=+ax x , 01=x ,a x 232-=,当a x 23-=时,243a y =, ∴⎪⎭⎫ ⎝⎛-24323a ,a C . ……………………………(3分) 过C 作x CD ⊥轴于点D ,∴⎪⎭⎫⎝⎛-023,a D . ∵︒=∠90OCA ,∴OCD ∆∽CAD ∆,∴CDODAD CD =, ∴OD AD CD ⋅=2,即⎪⎭⎫ ⎝⎛-⋅-=⎪⎭⎫⎝⎛a a a 23214322,∴01=a (舍去),3322=a (舍去),3323-=a ……………………………(5分) ∴3342=-=a OA ,1432==a CD,∴33221=⋅=∆CD OA S OAC ……………………………………(6分) (3)①x x y C 334:22+-=,对称轴332:2=x l , 点A 关于2l 的对称点为)0,0(O ,)1,3(C ,则P 为直线OC 与2l 的交点,设OA 的解析式为kx y =,∴k 31=,得33=k ,则OA 的解析式为x y 33=,当332=x 时,32=y ,∴),(P 32332. ……………………………………(8分)②设)3320(),334,(2≤≤+-m m m E ,则m m m S OBE 3433)334(3322122+-=+-⋅⨯=∆, 而)0,332(B ,)1,3(C ,设直线BC 的解析式为b kx y +=,由⎪⎩⎪⎨⎧+=+=b k b k 332031,解得2,3-==b k , ∴直线BC 的解析式为23-=x y .分)过点E 作x 轴的平行线交直线BC 于点N ,则233342-=+-x m m , 即=x 33234332++-m m ,∴=EN 3323133332343322++-=-++-m m m m m ,∴336163332313312122++-=++-⋅⋅=∆m m )m m (S EBC∴EBC O BE O BCE S S S ∆∆+=四边形)336163()3433(22++-++-=m m m m 24317)23(2333232322+--=++-=m m m ,……………………………………(11分)3320≤≤m ,∴当23=m 时,24317=最大S ,当23=m 时,4523334)23(2=⋅+-=y ,∴),(E 4523,24317=最大S . ……………………………………(13分)。

(课标通用)安徽省2019年中考数学总复习学业水平模拟考试试题及参考答案

(课标通用)安徽省2019年中考数学总复习学业水平模拟考试试题及参考答案

2019年安徽省初中学业水平模拟考试数学(考试用时:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(-3)×2的结果是()A.-5B.1C.-6D.6答案C2.计算x8÷x2(x≠0)的结果是()A.x-4B.x4C.x-6D.x6答案D3.下列几何体中,俯视图为三角形的是()答案C4.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8 500 000吨污水排入江河湖海,这个排污量用科学记数法表示为()A.8.5×105B.8.5×106C.85×105D.85×106答案B5.如图,已知平行线a,b,一个直角三角板的直角顶点在直线a上,另一个顶点在直线b上,若∠1=70°,则∠2的大小为()A.15°B.20°C.25°D.30°答案B6.为了解居民用电情况,小陈在小区内随机抽查了30户家庭的月用电量,结果如下表:月用40 50 60 80 90 100电量/度户数 6 7 9 5 2 1则这30户家庭的月用电量的众数和中位数分别是() A.60,60 B.60,50 C.50,60 D.50,70答案A7.计算:的结果是()A. B.C. D.答案B8.某公司第4月份投入1 000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为()A.1 000(1+x)2=1 000+500B.1 000(1+x)2=500C.500(1+x)2=1 000D.1 000(1+2x)=1 000+500答案A9.一直角三角形放置在如图所示的平面直角坐标系中,直角顶点C刚好落在反比例函数y=的图象的一支上,两直角边分别交y、x轴于A、B两点.当CA=CB时,四边形CAOB的面积为()A.4B.8C.2D.答案B10.如图,在四边形ABCD中,AB∥CD,∠A=90°,AB=1,AD=3,DC=5.点S沿A→B→C运动到C点停止,以S 为圆心,SD为半径作弧交射线DC于T点,设S点运动的路径长为x,等腰△DST的面积为y,则y与x 的函数图象应为()〚导学号16734168〛答案A解析分别过点S、B作SE⊥DC于E点,BF⊥DC于F点.∵AB∥CD,∠A=90°∴BF=AD=3,DF=AB=1.在Rt△BCF中,CF=DC-DF=5-1=4,BC==5.当S点在AB上时,0<x≤1;DT=2DE=2AS=2x,y=×DT×SE=×2x×3=3x.当S点在BC上时,1<x≤6,SC=AB+BC-x=6-x.∵SE⊥DC,BF⊥DC.∴△SCE∽△BCF,∴.∴SE=6-x,CE=(6-x).∴DT=2DE=2(DC-CE)=x+.∴y=×DT×SE=x+×(6-x)=-x-2+.故选A.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:x3-4x=.答案x(x+2)(x-2)12.已知关于x的一元二次方程ax2+(a-3)x-3=0有两个实数根,则a的取值为.答案a≠013.如图,AB为☉O的直径,D为的中点,若∠CAD=25°,则∠CAB=.答案40°14.如图,某同学在一张硬纸板的中间画了一条4 cm长的线段AB,过AB的中点O画直线CO,使∠AOC=60°,在直线CO上取一点P,作△PAB并剪下(纸板足够大),当剪下的△PAB为直角三角形时,AP的长为.答案2或2或2解析如图1,当∠APB=90°时,∵AO=BO,∴OP=AB=OA.∵∠AOC=60°,∴△AOP是等边三角形,∴AP=OP=AB=2.如图2,当∠APB=90°时,∵AO=BO,∴OP=AB=OA.∵∠AOC=60°,∴∠BOP=60°,∴△BOP是等边三角形,∴BP=OP=AB=2.∴AP==2.如图3,当∠PAB=90°时.∵∠AOC=60°,∴∠APO=30°,∴OP=2OA=4,∴AP==2.如图4,当∠ABP=90°时,∵∠BOP=∠AOC=60°,OA=OB=AB=2,∴BP=2.在Rt△ABP中,AB==2.故答案为2或2或2.三、(本大题共2小题,每小题8分,满分16分)15.计算:|1-|--3-2cos 30°+(π-3)0.解原式=-1-8-2×+1=-8.16.《孙子算经》是中国传统数学最重要的著作,约成书于四、五世纪.现在传本的《孙子算经》共三卷.卷上叙述算筹记数的纵横相间制度和筹算乘除法则;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法.其中记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”请解答上述问题.解设绳长x尺,则长木为(x-4.5)尺.依题意可得(x-4.5)-x=1.解得x=11,则x-4.5=6.5.答:长木长6.5尺.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求完成下面的问题:(1)以图中的O为位似中心,将△ABC作位似变换且缩小到原来的一半,得到△A'B'C',再把△A'B'C'绕点B'逆时针旋转90°得到△A″B'C″;(2)求点A→A'→A″所经过的路线长.解(1)如图所示:(作出每个图形变换3分)(2)点A→A'→A″所经过的路线长为:2+=2+.18.观察下列关于自然数的等式:(1)32-4×1=4+1(1)(2)52-4×2=16+1 (2)(3)72-4×3=36+1 (3)……根据上述规律解决下列问题:(1)完成第四个等式:()2-4×()=()+1;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.解(1)9,4,64 2分(2)(2n+1)2-4n=(2n)2+1 6分验证:左边=(2n+1)2-4n=4n2+4n+1-4n=4n2+1,左边=右边.8分五、(本大题共2小题,每小题10分,满分20分)19.已知,如图,在铅直高度为200 m的小山上建有一座电视转播塔,某数学兴趣小组为测量电视转播塔的高度,在山脚的点C处测得山顶B的仰角为30°(即∠BCD=300),测得塔顶A的仰角为45°(即∠ACD=45°),请根据以上数据求塔高AB(精确到1 m)(备用数据:≈1.414,≈1.732)解在Rt△BCD中,由tan30°=,得CD=BD=200.3分在Rt△ACD中,由tan45°=,得AD=CD=200, 6分所以AB=AD-BD=200-200=200×1.732-200≈146(m).10分20.如图,AB是☉O的直径,点C在☉O上,过点C的直线与AB的延长线交于点P,∠COB=2∠PCB.(1)求证:PC是☉O的切线;(2)点M是弧AB的中点,CM交AB于点N,若MN·MC=8,求☉O的直径.(1)证明∵OA=OC,∴∠A=∠ACO.∴∠COB=2∠ACO.又∵∠COB=2∠PCB,∴∠ACO=∠PCB.2分∵AB是☉O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°,即OC⊥CP.∵OC是☉O的半径,∴PC是☉O的切线.4分(2)解连接MA、MB.(如图)∵点M是弧AB的中点,∴∠ACM=∠BAM.∵∠AMC=∠AMN,∴△AMC∽△NMA.6分∴.∴AM2=MC·MN.∵MC·MN=8,∴AM=2.8分∵AB是☉O的直径,点M是弧AB的中点,∴∠AMB=90°,AM=BM=2.∴AB==4.10分〚导学号16734169〛六、(本题满分12分)21.为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,合肥市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)请把折线统计图补充完整;(2)求扇形统计图中,网络文明部分对应的圆心角的度数;(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.解(1)该班全部人数:12÷25%=48人.社区服务的人数为48×50%=24,补全折线统计如图所示:(2)网络文明部分对应的圆心角的度数为360°×=45°.(3)分别用A,B,C,D表示“社区服务、助老助残、生态环保、网络文明”四个服务活动,画树状图得:∵共有16种等可能的结果,他们参加同一服务活动的有4种情况,∴他们参加同一服务活动的概率为.七、(本题满分12分)22.某厂家生产一种产品,月初需要一次性投资25 000元,每生产一件产品需增加投入100元.设x(件)是月生产量,y(元)是销售完x件产品所得的总销售额,y与x的关系如图中的图象所示,图象中从点O到点A的部分是抛物线的一部分,且点A是抛物线的顶点,点A后面的部分与x轴平行.(1)求y关于x的函数关系式;(2)设月纯利润为z,求z关于x的函数关系式;(3)当月产量为多少件时,厂家所获利润最大?最大利润为多少元?解(1)y=4分(2)z=y-25000-100x=8分(3)当x>400时,z<-100×400+55000=15000(元);当0≤x≤400时,z=-x2+300x-25000=-(x-300)2+20000.所以,当x=300时,z最大=20000(元).答:当月产量为300台时,利润最大,最大利润为20000元.12分八、(本题满分14分)23.如图,矩形纸片ABCD,P是AB的中点,Q是BC上一动点,△BPQ沿PQ折叠,点B落在点E处,延长QE 交AD于M点,连接PM.(1)求证:△PAM≌△PEM;(2)当DQ⊥PQ时,将△CQD沿DQ折叠,点C落在线段EQ上点F处.①求证:△PAM∽△DCQ;②如果AM=1,sin∠DMF=,求AB的长.解(1)∵四边形ABCD是矩形,∴∠A=∠B=90°,根据折叠的性质可知:PE=PB,∠PEM=∠B=90°;∵P点为AB中点,∴PA=PB=PE.又∵PM=PM,∴△PAM≌△PEM.4分(2)①由(1)知△PAM≌△PEM,∴∠APM=∠EPM.根据折叠的性质可知:∠EPQ=∠BPQ,∴∠APM+∠BPQ=∠EPM+∠EPQ=90°,∵∠APM+∠AMP=90°,∴∠BPQ=∠AMP,∵∠B=90°,DQ⊥PQ,∴∠BPQ+∠PQB=90°,∠BPQ+∠DQC=180°-∠PQD=90°.∴∠BPQ=∠DQC.∴∠AMP=∠DQC.又∵∠A=∠C=90°,∴△AMP∽△CQD.8分②设AP=x,则,BP=AP=EP=x,AB=DC=2x,∵由①知∠BPQ=∠AMP,∠A=∠B=90°,∴△AMP∽△BPQ.∴,即BQ=x2.10分由△AMP∽△CQD得,,即CQ=2.12分AD=BC=BQ+CQ=x2+2.∵在Rt△FDM中,sin∠DMF=,DF=DC=2x,∴,变形得3x2-10x+3=0,解方程得,x1=3,x2=(不合题意,舍去)∴AB=2x=6.14分。

2019年安徽省中考数学试卷含答案解析

2019年安徽省中考数学试卷含答案解析

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前安徽省2019年初中学业水平考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,满分40分。

在每小题给出的四个选项中,只有一项是符合要求的)1.在2-,1-,0,1这四个数中,最小的数是 ( )A .2-B .1-C .0D .1 2.计算3()a a ⋅-的结果是( )A .2aB .2a -C .4 aD .4a - 3.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是( )ABCD4.2019年“五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为( )A .91.6110⨯B .101.6110⨯C .111.6110⨯D .121.6110⨯5.已知点(13)A -,关于x 轴的对称点A '在反比例函数ky x=的图像上,则实数k 的值为( ) A . 3B .13C . 3-D .13-6.在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h )为( )A . 60B .50C . 40D .157.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,12BC =,点D 在边BC 上,点E 在线段AD 上,EF AC ⊥于点F ,EG EF ⊥交AB 于点G ,若EF EG =,则CD 的长为( )A. 3.6B.4C. 4.8D.58.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是( )A .2019年B .2020年C .2021年D .2022年 9.已知三个实数a b c ,,满足20a b c -+=,20a b c ++<,则( )A .200b b ac >-,≤B .2 00b b ac -<,≤C .200b b ac >-,≥D .200b b ac -<,≥10.如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且12AC =,点P 在正方形的边上,则满足9PE PF +=的点P 的个数是( )A. 0B.4C.6D.8毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共4小题,每小题5分,满分20分。

2019年安徽中考数学试卷(详解版)

2019年安徽中考数学试卷(详解版)

1在2计算3一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是().45已知点6在某时段由7如图,在答案解析A.年B.年C.年D.年.据国家统计局数据,年全年国内生产总值为万亿,比年增长.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破万亿的年份是().8B年全年国内生产总值为:(万亿),年全年国内生产总值为:(万亿),∴国内生产总值首次突破万亿的年份是年.故选.答案解析A.,B.,C.,D.,已知三个实数,,满足,,则().9D ∵,,∴,,∴,∴,∴即,.故选.10如图,在正方形11计算12命题13如图,14在平面直角坐标系中,垂直于15解方程16如图,在边长为17为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中观察以下等式:18筒车是我国古代发明的一种水利灌溉工具.如图1920如图,点答案解析证明见解析.(1).(2)∵四边形是平行四边形,∴,,∴,∵,∴,∴,同理得,在和中,∵,∴≌.(1)∵点在平行四边形内部,∴平行四边形,由()知:≌,∴,∴四边形平行四边形,∵平行四边形的面积为,四边形的面积为,∴.(2)六、解答题(共12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸21∴抽到两种产品都是特等品的概率.七、解答题(共12分)答案解析一次函数与二次函数的图象的一个交点坐标为,另一个交点是该二次函数图象的顶点22求,,的值.(1)过点且垂直于轴的直线与二次函数的图象相交于,两点,点为坐标原点,记,求关于的函数解析式,并求的最小值.(2);;.(1).(2)由题意得,,解得,又∵二次函数顶点为,∴,把带入二次函数表达式得,解得.(1)由()得二次函数解析式为,令,得∴,设,两点的坐标分别为,,则,∴,,∴当时,取得最小值.(2)八、解答题(共14分)如图,中,,,为内部一点,且.23∴,,,∵,∴,∴,又∵,∴,∴,∴,即,∴,∵,∴,∴,∴.即:.。

安徽省2019中考数学决胜一轮复习阶段性测试卷 (2)

安徽省2019中考数学决胜一轮复习阶段性测试卷 (2)

阶段性测试卷(二)(考查内容:三角形、四边形、圆时间:45分钟满分:100分)一、选择题(每小题5分,共40分)1.(改编题)如图,AB∥CD,CE交AB于点F.∠A=20°,∠E=30°,则∠C的度数为( A)A.50°B.55°C.60°D.65°2.(2018·蜀山区二模)如图,平行四边形ABCD中,∠ABC的角平分线交边CD于点E,∠A=130°,则∠BEC的度数是( B)A.20°B.25°C.30°D.50°3.(2018·宿州月考)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( D)A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形4.(改编题)正方形ABCD的边长为2,对角线相交于点O,点O又是长方形MNPO的一个顶点,且OM=4,OP=2,长方形绕O点转动的过程中,长方形与正方形重叠部分的面积等于( D)A.6 B.4C.2 D.15.(2018·衢州)如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm6.(2018·明光市二模)如图,AB 与⊙O 相切于点B ,OA =2,∠OAB =30°,弦BC ∥OA ,则劣弧BC ︵的长是( B )A .π2B .π3C .π4D .π67.(2018·河南)如图,已知▱AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( A )A .(5-1,2)B .(5,2)C .(3-5,2)D .(5-2,2)8.(改编题)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,过点B 作⊙O 的切线,交AC 的延长线于点F .已知3AE =BE =6,则CF 的长是( C )A.12 3 B.16 3C.12 D.16二、填空题(每小题5分,共15分)9.(改编题)如图,已知矩形ABCD的对角线AC的长为10 cm,连接各边中点E,F,G,H得四边形EFGH,则四边形EFGH的周长为__20__cm.10.(2018·青岛模拟)如图,在△ABC中,D,E分别是AB,AC的中点,F是线段DE上一点,连接AF,BF,若AB=16,EF=1,∠AFB=90°,则BC的长为__18__.11.(原创题)如图,PA,PB是⊙O的切线,A,B为切点,AC为⊙O的直径,BD⊥AC.下列结论:①∠P+2∠D=180°;②∠BOC=∠BAD;③∠DBO=∠ABP;④∠ABP=∠ABD.其中正确结论有__①②④__(只填序号).三、解答题(共40分)12.(10分)(2018·朝阳区二模)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵DE=CD,∴AB綊DE,∴四边形ABDE是平行四边形;(2)解:∵AD =DE =4,∴AD =AB =4,∴▱ABCD 是菱形,∴AB =BC ,AC ⊥BD ,BO =12BD ,∠ABO =12∠ABC ,又∵∠ABC =60°,∴∠ABO =30°,在Rt △ABO 中,AO =AB ·sin ∠ABO =2,BO =AB ·cos ∠ABO=23,∴BD =43,∵四边形ABDE 是平行四边形,∴AE ∥BD ,AE =BD =43,又∵AC ⊥BD ,∴AC ⊥AE ,在Rt △AOE 中,OE =AE 2+AO 2=213.13.(15分)(2018·霍邱县二模)已知:如图,四边形ABCD 是⊙O 的内接四边形,直径DG 交边AB 于点E ,AB ,DC 的延长线相交于点F .连接AC ,若∠ACD =∠BAD .(1)求证:DG ⊥AB ;(2)若AB =6,tan ∠FCB =3,求⊙O 半径.(1)证明:连接AG ,∵∠ACD 与AGD 是同弦所对圆周角,∴∠ACD =∠AGD ,∵∠ACD =∠BAD ,∴∠BAD =∠AGD ,∵DG 为⊙O 的直径,A 为圆周上一点,∴∠DAG =90°,∴∠BAD +∠BAG =90°,∴∠AGD+∠BAG =90°,∴∠AEG =90°,即DG ⊥AB ;(2)解:∵四边形ABCD 是⊙O 的内接四边形,∴∠FCB =∠BAD ,∵tan ∠FCB =3,∴tan ∠BAD =DEAE=3,连接OA ,由垂径定理得AE =12AB =3,∴DE =9,在Rt △OEA 中,OE 2+AE 2=OA 2,设⊙O 半径为r ,则有(9-r )2+32=r 2,解得,r =5,∴⊙O 半径为5.14.(15分)(2018·安徽四模)如图,⊙O 的直径AD 长为6,AB 是弦,∠DAB =30°,CD ∥AB ,且CD = 3.(1)求∠C 的度数;(2)求证:BC 是⊙O 的切线.(1)解:如图,连接BD ,∵AD 为圆O 的直径,∴∠ABD =90°,∴BD =12AD =3,∵CD ∥AB ,∠ABD=90°,∴∠CDB =∠ABD =90°,在Rt △CDB 中,tan C =BD CD=33=3,∴∠C =60°; (2)证明:连接OB ,∵BD =3,AD =6,∴∠A =30°,∵OA =OB ,∴∠OBA =∠A =30°,∵CD ∥AB ,∠C =60°,∴∠ABC =180°-∠C =120°,∴∠OBC =∠ABC -∠ABO =120°-30°=90°,∴OB ⊥BC ,∴BC为圆O的切线.。

2019届安徽省中考第一次模试考数学试卷【含答案及解析】

2019届安徽省中考第一次模试考数学试卷【含答案及解析】

2019届安徽省中考第一次模试考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 下面的数中,比0小的是()A. B. C. D. -20162. 如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学计数法表示为()A. B. C. D.3. 计算的结果是()A. B. C. - D.4. 下图中的几何体的左视图是()A. B. C. D.5. 不等式组的解集是()A. B. C. D. 无解6. 寒假结束了,开学后小明对本校七年级部分同学寒假阅读总时间(结果保留整10小时)进行了抽样调查,所得数据整理后制作成如图所示的频数分布直方图。

观察这个频数分布直方图,给出如下结论,正确的是()A. 小明调查了100名同学B. 所得数据的众数是40小时C. 所得数据的中位数是30小时D. 全区有七年级学生6000名,寒假阅读总时间在20小时(含20小时)以上的约有5000名7. 如图,在△ABC中,从A点向∠ACB的角平分线作垂线,垂足为D,E是AB的中点,已知AC=4,BC=6,则DE的长为()A. 1B.C.D. 28. 已知⊙O的半径为,弦AB=2,以AB为底边,在圆内画⊙O的内接等腰△ABC,则底边AB边上的高CD长为()A. B. C. 或 D. 或9. 某企业积极相应政府号召,今年提出如下目标,和去年相比,在产品的出厂价增加10%的前提下,将产品成本降低20%,使产品利润率(利润率=×100%)较去年翻一番.则今年该企业产品利润率为()A. 40%B. 80%C. 120%D. 160%10. 如图,菱形ABCD的边长为4,∠A=30°,点P从起点D出发,沿DC、CB向终点B匀速运动.设点P所走过的路程为,△ADP的面积为,则关于的函数图象是()A. B. C. D.二、填空题11. __________。

2019年安徽省中考数学试卷(含答案解析)

2019年安徽省中考数学试卷(含答案解析)

2019年安徽省中考数学试卷一、选择题(本大题共10小题,共40.0分)1.在−2,−1,0,1这四个数中,最小的数是()A. −2B. −1C. 0D. 12.计算a3⋅(−a)的结果是()A. a2 B. −a2C. a4D. −a43.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.4.2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A. 1.61×109 B. 1.61×1010 C. 1.61×1011 D. 1.61×10125.已知点A(1,−3)关于x轴的对称点A′在反比例函数y=kx的图象上,则实数k的值为()A. 3B. 13C. −3 D. −136.在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/ℎ)为()A. 60B. 50C. 40D. 157.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF=EG,则CD的长为()A. 3.6B. 4C. 4.8D. 58.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A. 2019年B. 2020年C. 2021年D. 2022年9.已知三个实数a,b,c满足a−2b+c=0,a+2b+c<0,则()A. b>0,b2−ac≤0B. b<0,b2−ac≤0C. b>0,b2−ac≥0D. b<0,b2−ac≥010.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A. 0B. 4C. 6D. 8二、填空题(本大题共4小题,共20.0分)11.计算√18÷√2的结果是______.12.命题“如果a+b=0,那么a,b互为相反数”的逆命题为______.13.如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为________.14.在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x−a+1和y=x2−2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a 的取值范围是______.三、解答题(本大题共9小题,共90.0分)15.解方程:(x−1)2=4.16.如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)17.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?18.观察以下等式:第1个等式:21=11+11,第2个等式:23=12+16,第3个等式:25=13+115,第4个等式:27=14+128,第5个等式:29=15+145,……按照以上规律,解决下列问题:(1)写出第6个等式:______;(2)写出你猜想的第n个等式:______(用含n的等式表示),并证明.19.筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O 为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)20.如图,点E在▱ABCD内部,AF//BE,DF//CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求S的值.T21.为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸(cm)8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.22.一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.23.如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为ℎ1,ℎ2,ℎ3,求证ℎ12=ℎ2⋅ℎ3.答案和解析1.【答案】A【解析】【分析】此题主要考查了有理数大小比较的方法,属于基础题.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得−2<−1<0<1,∴在−2,−1,0,1这四个数中,最小的数是−2.故选:A.2.【答案】D【解析】【分析】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3⋅(−a)=−a3⋅a=−a4.故选:D.3.【答案】C【解析】【分析】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选:C.4.【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.把161亿化为16100000000再用科学记数法表示,注意0的个数.【解答】解:根据题意161亿=16100000000,用科学记数法表示为1.61×1010 .故选:B.5.【答案】A【解析】【试题解析】【分析】(k为常数,k≠0)的图本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.中先根据关于x轴对称的点的坐标特征确定A′的坐标为(1,3),然后把A′的坐标代入y=kx 即可得到k的值.【解答】解:点A(1,−3)关于x轴的对称点A′的坐标为(1,3),把A′(1,3)代入y=k得k=1×3=3.x故选:A.6.【答案】C【解析】【分析】本题主要考查众数,熟练掌握众数的定义是解题的关键.根据众数的定义求解可得.【解答】解:由条形图知,车速40km/ℎ的车辆有15辆,为最多,所以众数为40.故选C.7.【答案】B【解析】【分析】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH//EG交AB于点H,则△AEG∽△ADH,∴AEAD =EGDH,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF//CD,∴△AEF∽△ADC,∴AEAD =EFCD,∴EGDH =EFCD,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12−x,∵EF⊥AC,EF⊥EG,DH//EG,∴EG//AC//DH,∴△BDH∽△BCA,∴DHAC =BDBC,即x6=12−x12,解得,x=4,∴CD=4,故选:B.8.【答案】B【解析】【分析】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故选:B.9.【答案】D【解析】【试题解析】【分析】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2−ac的正负情况.根据a−2b+c=0,a+2b+c<0,可以得到b与a、c的关系,从而可以判断b的正负和b2−ac的正负情况,本题得以解决.【解答】解:∵a−2b+c=0,a+2b+c<0,∴a+c=2b,b=a+c2,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2−ac=(a+c2)2−ac=a2+2ac+c24−ac=a2−2ac+c24=(a−c2)2≥0,即b<0,b2−ac≥0,故选:D.10.【答案】D【解析】【分析】本题考查了正方形的性质,最短路径问题,在BC上找到点H,使点H到点E和点F的距离之和最小是本题的关键.作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H,可得点H到点E和点F的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称,∴CF=CM=4,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=√EC2+CM2=4√5,则在线段BC存在点H到点E和点F的距离之和最小为4√5<9,在点H右侧,当点P与点C重合时,则PE+PF=12,∴点P在CH上时,4√5<PE+PF≤12,在点H左侧,当点P与点B重合时,BF=√FN2+BN2=2√10,∵AB=BC,CF=AE,∠BAE=∠BCF,∴△ABE≌△CBF(SAS),∴BE=BF=2√10,∴PE+PF=4√10,∴点P在BH上时,4√5<PE+PF<4√10,∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.11.【答案】3【解析】【分析】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.根据二次根式的性质把√18化简,再根据二次根式的性质计算即可.【解答】解:√18÷√2=3√2÷√2=3.故答案为:3.12.【答案】如果a,b互为相反数,那么a+b=0【解析】【分析】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;故答案为:如果a,b互为相反数,那么a+b=0.13.【答案】√2【解析】【试题解析】【分析】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,等边三角形的判定,正确的作出辅助线是解题的关键.连接CO,OB,则∠COB=2∠CAB=60°,得到△BOC是等边三角形,求得BC=2,根据等腰直角三角形的性质即可得到结论.【解答】解:连接CO,OB,则∠COB=2∠CAB=60°,∵OC=OB,∴△BOC是等边三角形,∵⊙O的半径为2,∴BC=2,∵CD⊥AB,∠CBA=45°,∴CD=√2BC=√2,2故答案为:√2.14.【答案】a>1或a<−1【解析】【分析】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为不等式的解是解题的关键.对a进行分类讨论,再根据图象判断即可求解.【解答】解:∵平移直线l,可以使P,Q都在x轴的下方,令y=x−a+1<0,∴x<a−1,令y=x2−2ax<0,当a>0时,要使x<a−1与0<x<2a有解,a−1>0,则a>1;当a<0时,要使x<a−1与2a<x<0有解,a−1>2a,则a<−1;∴a>1或a<−1;故答案为a>1或a<−1;15.【答案】解:两边直接开平方得:x−1=±2,∴x−1=2或x−1=−2,解得:x1=3,x2=−1.【解析】利用直接开平方法,方程两边直接开平方即可.此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.【答案】解:(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求(答案不唯一).【解析】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.(1)直接利用平移的性质得出C,D点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.17.【答案】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x−2)米,由题意,得2x+(x+x−2)=26,解得x=7,所以乙工程队每天掘进5米,146−267+5=10(天)答:甲乙两个工程队还需联合工作10天.【解析】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.设甲工程队每天掘进x米,则乙工程队每天掘进(x−2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.18.【答案】(1)211=16+166;(2)22n−1=1n+1n(2n−1).【解析】解:(1)第6个等式为:211=16+166,故答案为:211=16+166;(2)22n−1=1n+1n(2n−1)证明:∵右边=1n+1n(2n−1)=2n−1+1n(2n−1)=22n−1=左边.∴等式成立,故答案为:22n−1=1n+1n(2n−1).【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律22n−1=1n+1n(2n−1),再利用分式的混合运算法则验证即可.本题主要考查数字的变化规律,解题的关键是根据已知等式得出22n−1=1n+1n(2n−1)的规律,并熟练加以运用.19.【答案】解:连接CO并延长,与AB交于点D,∵CD⊥AB,∴AD=BD=12AB=3(米),在Rt△AOD中,∠OAB=41.3°,∴cos41.3°=ADOA ,即OA=3cos41.3∘=30.75=4(米),tan41.3°=ODAD,即OD=AD⋅tan41.3°=3×0.88=2.64(米),则CD=CO+OD=4+2.64=6.64(米).【解析】此题考查了解直角三角形的应用,垂径定理,熟练掌握各自的性质是解本题的关键.连接CO并延长,与AB交于点D,由CD与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用锐角三角函数定义求出OA,进而求出OD,由CO+OD 求出CD的长即可.20.【答案】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴∠ABC+∠BAD=180°,∵AF//BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵{∠CBE=∠DAF BC=AD∠BCE=∠ADF,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=12S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF =S△ADF+S△AED=S△BEC+S△AED=12S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴ST =S12S=2.【解析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=12S▱ABCD,可得结论.此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.21.【答案】解:(1)不合格.因为15×80%=12,不合格的有15−12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴8.98+a2=9,解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.∴抽到两种产品都是特等品的概率P=49.【解析】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.(1)由15×80%=12,不合格的有15−12=3个,给出的数据只有①②两个不合格可得答案;(2)(i)由8.98+a2=9可得答案;(ii)由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得.22.【答案】解:(1)由题意得,k+4=2,解得k=−2,又∵二次函数顶点为(0,4),∴c=4,把(1,2)带入二次函数表达式得a+c=2,解得a=−2,(2)由(1)得二次函数解析式为y=−2x2+4,令y=m,得2x2+m−4=0∴x=±√4−m2,设B,C两点的坐标分别为(x1,m)(x2,m),则|x1|+|x2|=2√4−m2,∴W=OA2+BC2=m2+4×4−m2=m2−2m+8=(m−1)2+7,∴当m=1时,W取得最小值7.【解析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=−2x2+4,令y=m,得2x2+m−4=0,可求x的值,再利用根与系数的关系式,即可求解.此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.23.【答案】解:(1)证明:∵∠ACB=90°,AC=BC,∴∠ABC=45°=∠PBA+∠PBC,又∠APB=135°,∴∠PAB+∠PBA=45°,∴∠PBC=∠PAB,又∵∠APB=∠BPC=135°,∴△PAB∽△PBC;(2)证明:∵△PAB∽△PBC,∴PAPB =PBPC=ABBC,在Rt△ABC中,AC=BC,∴ABBC=√2,∴PB=√2PC,PA=√2PB,∴PA=2PC;(3)如图,过点P作PD⊥BC于D,PE⊥AC于E,PF⊥AB于点F,∴PF=ℎ1,PD=ℎ2,PE=ℎ3,∵∠CPB+∠APB=135°+135°=270°,∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°,∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴PEDP =APPC=2,即ℎ3ℎ2=2,∴ℎ3=2ℎ2,∵△PAB∽△PBC,∴ℎ1ℎ2=ABBC=√2,∴ℎ1=√2ℎ2∴ℎ12=2ℎ22=2ℎ2⋅ℎ2=ℎ2ℎ3,即:ℎ12=ℎ2⋅ℎ3.【解析】(1)利用等式的性质判断出∠PBC=∠PAB,即可得出结论;(2)由(1)的结论得出PAPB =PBPC=ABBC,进而由ABBC=√2即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出PEDP =APPC=2,即ℎ3=2ℎ2,再由△PAB∽△PBC,判断出ℎ1=√2ℎ2,即可得出结论.此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质.。

(完整版)2019年安徽中考数学模拟试题及答案,推荐文档

(完整版)2019年安徽中考数学模拟试题及答案,推荐文档

.2019 年安徽中考数学模拟试题及答案一、仔细选一选(本题有 10 个小题,每小题 3 分,共 30 分)下面每小题给出的四个选项中,只有一个是正确的, 注意可以用多种不同的方法来选取正确答案. 1.(3 分)(2008•淄博)的相反数是( )A .﹣3B 3C D...2.(3 分)(2001•安徽)下列运算正确的( )A a 2 2B . . a 33C. ﹣a 2=|﹣2 a | D a 3=|a 3|=(﹣a )=(﹣a )3.(3 分)(2013•上城区一模)对于一组统计数据:3,7,6,2,9,3,下列说法错误的是( )A 众数是 3B ..极差是 7 C .平均数是 5 D .中位数是 44.(3 分)(2013•温州模拟)选择用反证法证明“已知:在△ABC 中,∠C=90°.求证:∠A ,∠B 中至少有一个角不大于 45°.”时,应先假设( ) A ∠A >45°,∠B >45° B ..∠A ≥45°,∠B ≥45° C .∠A <45°,∠B <45° D .∠A ≤45°,∠B ≤45°5.(3 分)(2014•沙湾区模拟)如图是一个由 7 个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A 主视图和俯视图B ..俯视图C .俯视图和左视图 D .主视图6.(3 分)(2013•上城区一模)已知 m=1+,n=1﹣,则代数式 的值为( )A 9B ..±3 C 3 D 5 ..7.(3 分)(2013•上城区一模)如图,在四边形 ABCD 中,E 、F 分别是 AB 、AD 的中点,若 EF=4,BC=10,CD=6,则 sinC 等于( )A B C D ....8.(3 分)(2011•金华)如图,在平面直角坐标系中,过格点 A ,B ,C 作一圆弧,点 B 与下列格点的连线中,能够与该圆弧相切的是()A 点(0,3)B ..点(2,3) C.点(5,1) D.点(6,1)9.(3 分)(2013•上城区一模)在平面直角坐标系中,经过二、三、四象限的直线l 过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1)都在直线l 上,则下列判断正确的是()B.b>﹣2 C.c<﹣3D d=﹣2.A a=﹣3.10.(3 分)(2014•江阴市二模)点A,B 的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB 上运动时,形状保持不变,且与x 轴交于C,D 两点(C 在D 的左侧),给出下列结论:①c<3;②当x<﹣3 时,y 随x 的增大而增大;③若点D 的横坐标最大值为5,则点C 的横坐标最小值为﹣5;④当四边形ACDB 为平行四边形时,.其中正确的是()A ②④B ②③C ①③④D ①②④....二、认真填一填(本题有6 个小题,每小题4 分,共24 分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4 分)(2013•上城区一模)如图,△ABC 中,,若△AEF 的面积为1,则四边形EBCF 的面积为.12.(4 分)(2013•上城区一模)在一个口袋中有三个完全相同的小球,把它们分别标上数字﹣1,0,2,随机地摸出一个小球记录数字然后放回,再随机地摸出一个小球记录数字.则两次的数字和是正数的概率为.13.(4 分)(2013•上城区一模)已知x=﹣1 是一元二次方程ax2+bx﹣10=0 的一个解,且a≠﹣b,则的值为.14.(4 分)(2014•沙湾区模拟)某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活用电实行阶梯制价格(见表):“一户一表”用电量不超过a 千瓦时超过a 千瓦时的部分单价(元/千瓦时)0.5 0.6a= .15.(4 分)(2012•南通)无论a 取什么实数,点P(a﹣1,2a﹣3)都在直线l 上.Q(m,n)是直线l 上的点,则(2m﹣n+3)2的值等于.16.(4 分)(2013•上城区一模)如图,▱ABCD 中,AC⊥AB.AB=6cm,BC=10cm,E 是CD 上的点,DE=2CE.点P 从D 点出发,以1cm/s 的速度沿DA→AB→BC 运动至C 点停止.则当△EDP 为等腰三角形时,运动时间为s.三、全面答一答(本题有8 个小题,共66 分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.(6 分)(2014•沙湾区模拟)阅读材料,解答问题:观察下列方程:①;② ;③;…;(1)按此规律写出关于x 的第4 个方程为,第n 个方程为;(2)直接写出第n 个方程的解,并检验此解是否正确.18.(8 分)(2005•淮安)如图,在平面直角坐标系中,∠AOB=60°,点B 坐标为(2,0),线段OA 的长为6.将△AOB 绕点O 逆时针旋转60°后,点A 落在点C 处,点B 落在点D 处.(1)请在图中画出△COD;(2)求点A 旋转过程中所经过的路程(精确到0.1);(3)求直线BC 的解析式.19.(8 分)(2010•济宁)如图,AD 为△ABC 外接圆的直径,AD⊥BC,垂足为点F,∠ABC 的平分线交AD 于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.20.(10 分)(2013•上城区一模)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50 名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球”项目的有人;(2)请将条形统计图补充完整;(3)若该校有男生400 人,女生450 人,请估计该校喜欢“羽毛球”项目的学生总人数.21.(10 分)(2013•上城区一模)在直角梯形ABCD 中,AB∥CD,∠ABC=90°,∠A=60°,AB=2CD,E,F 分别为AB,AD 的中点,连结EF,EC,BF,CF.(1)求证△CBE➴△CFE;(2)若CD=a,求四边形BCFE 的面积.22.(12 分)(2014•沙湾区模拟)如图,已知tan∠EOF=2,点C 在射线OF 上,OC=12.点M 是∠EOF 内一点,MC⊥OF 于点C,MC=4.在射线CF 上取一点A,连结AM 并延长交射线OE 于点B,作BD⊥OF 于点D.(1)当AC 的长度为多少时,△AMC 和△BOD 相似;(2)当点M 恰好是线段AB 中点时,试判断△AOB 的形状,并说明理由;(3)连结BC.当S△AMC=S△BOC 时,求AC 的长.23.(12 分)(2013•上城区一模)如图,已知一次函数y=kx+b 的图象与x 轴相交于点A,与反比例函数的图象相交于B(﹣1,5),C(,d)两点.(1)求k,b 的值;(2)设点P(m,n)是一次函数y=kx+b 的图象上的动点.①当点P 在线段AB(不与A,B 重合)上运动时,过点P 作x 轴的平行线与函数的图象相交于点D,求出△PAD 面积的最大值.②若在两个实数m 与n 之间(不包括m 和n)有且只有一个整数,直接写出实数m 的取值范围..2019 年安徽中考数学模拟试题及答案参考答案与试题解析一、仔细选一选(本题有 10 个小题,每小题 3 分,共 30 分)下面每小题给出的四个选项中,只有一个是正确的, 注意可以用多种不同的方法来选取正确答案. 1.(3 分)(2008•淄博)的相反数是( )A . ﹣3B 3C D ...考点: 相反数.分析: 求一个数的相反数,即在这个数的前面加负号. 解答: 解:根据相反数的定义,得的相反数是.故选 D .点评: 本题考查的是相反数的求法.2.(3 分)(2001•安徽)下列运算正确的( )A a 2 2B ..a 33 C. ﹣a 2=|﹣2 a | D a 3=|a 3|=(﹣a )=(﹣a )考点: 幂的乘方与积的乘方;绝对值. 专题: 计算题.分析: 相反数的平方相等,相反数的立方互为相反数,负数的绝对值等于它的相反数,a 3 的符号与它本身相同. 解答: 解:A 、相反数的平方相等,故本选项正确;B 、相反数的立方互为相反数,a 3=﹣(﹣a )3,故本选项错误;C 、负数的绝对值等于它的相反数,﹣a 2=﹣|﹣a 2|,故本选项错误;D 、a 3 的符号与它本身相同,正负情况不能确定,而|a 3|是非负数,故本选项错误. 故选 A .点评: 幂运算时,指数的奇偶,直接影响结果的符号.3.(3 分)(2013•上城区一模)对于一组统计数据:3,7,6,2,9,3,下列说法错误的是( )A 众数是 3B ..极差是 7 C .平均数是 5 D .中位数是 4考点: 极差;算术平均数;中位数;众数.分析: 根据众数、极差、平均数及中位数的定义,结合数据进行判断即可. 解答: 解:A 、众数为 3,说法正确,故本选项错误;B 、极差=9﹣2=7,说法正确,故本选项错误;C 、平均数==5,说法正确,故本选项错误;D 、中位数为 4.5,说法错误,故本选项正确.故选 D .点评:本题考查了极差、中位数、众数及平均数的知识,属于基础题,注意掌握各部分的定义是关键.4.(3 分)(2013•温州模拟)选择用反证法证明“已知:在△ABC 中,∠C=90°.求证:∠A,∠B 中至少有一个角不大于45°.”时,应先假设()A ∠A>45°,∠B>45°B ..∠A≥45°,∠B≥45° C.∠A<45°,∠B<45° D.∠A≤45°,∠B≤45°考点:反证法.分析:用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.解答:解:用反证法证明命题“∠A,∠B 中至少有一个角不大于45°”时,应先假设∠A>45°,∠B>45°.故选:A.点评:此题主要考查了反证法,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口.5.(3 分)(2014•沙湾区模拟)如图是一个由7 个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A 主视图和俯视图B ..俯视图 C.俯视图和左视图 D.主视图考点:简单组合体的三视图;轴对称图形;中心对称图形.分析:首先把此几何体的三视图画出来,然后根据轴对称图形和中心对称图形的定义矩形判断即可.解答:解:该几何体的主视图为既不是轴对称图形又不是中心对称图形;该几何体的左视图为是轴对称图形不是中心对称图形;该几何体的俯视图为既是轴对称图形又是中心对称图形;故选B.点评:此题主要考查了三视图的几何知识,考查了学生的空间思维想象能力.6.(3 分)(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A 9B ..±3C 3D 5..考点: 二次根式的化简求值. 专题: 计算题. 分析:解答:原式变形为,由已知易得 m+n=2,mn=(1+)(1﹣可. 解:m+n=2,mn=(1+)(1﹣ )=﹣1, )= 1,然后整体代入计算即原式====3.故选 C .点评: 本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想 代入计算.7.(3 分)(2013•上城区一模)如图,在四边形 ABCD 中,E 、F 分别是 AB 、AD 的中点,若 EF=4,BC=10,CD=6,则 sinC 等于()A B C D ....考点: 三角形中位线定理;勾股定理的逆定理;锐角三角函数的定义. 专题: 压轴题.分析:连接 BD ,根据中位线的性质得出 EF ∥BD ,且等于BD ,进而利用勾股定理的逆定理得出△BDC 是直角三角形,求解即可.解答: 解:连接 BD ,∵E 、F 分别是 AB 、AD 的中点,∴EF ∥BD ,且等于 BD , ∴BD=8,∵BD=8,BC=10,CD=6, ∴△BDC 是直角三角形, ∴sinC===,故选 D .点评: 此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC 是直角三角形是解题关键.8.(3 分)(2011•金华)如图,在平面直角坐标系中,过格点 A ,B ,C 作一圆弧,点 B 与下列格点的连线中,能够与该圆弧相切的是( )A 点(0,3) B..点(2,3) C.点(5,1) D.点(6,1)考点:切线的性质;坐标与图形性质;勾股定理;垂径定理.专题:压轴题;网格型.分析:根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F 点的位置即可.解答:解:连接AC,作AC 的垂直平分线BO′,交格点于点O′,则点O′就是所在圆的圆心,∵过格点A,B,C 作一圆弧,∴三点组成的圆的圆心为:O(2,0),∵只有∠OBD+∠EBF=90°时,BF 与圆相切,∴当△BO′D➴△FBE 时,∴EF=BD=2,F 点的坐标为:(5,1),∴点B 与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选:C.点评:此题主要考查了切线的性质以及垂径定理和坐标与图形的性质,得出△BOD➴△FBE 时,EF=BD=2,即得出 F 点的坐标是解决问题的关键.9.(3 分)(2013•上城区一模)在平面直角坐标系中,经过二、三、四象限的直线l 过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1)都在直线l 上,则下列判断正确的是()B.b>﹣2C.c<﹣3D d=﹣2.A a=﹣3.考点:一次函数图象上点的坐标特征.专题:存在型.分析:设一次函数的解析式为y=kx+b(k≠0),根据直线l 过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1)得出斜率k 的表达式,再根据经过二、三、四象限判断出k 的符号,由此即可得出结论.解答:解:设一次函数的解析式为y=kx+b(k≠0),∵直线l 过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1),∴斜率k====,即k=a+2===,∵l 经过二、三、四象限,∴k<0,∴a<﹣2,b<﹣2,c<﹣3,d<﹣3.故选C.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.10.(3 分)(2014•江阴市二模)点A,B 的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB 上运动时,形状保持不变,且与x 轴交于C,D 两点(C 在D 的左侧),给出下列结论:①c<3;②当x<﹣3 时,y 随x 的增大而增大;③若点D 的横坐标最大值为5,则点C 的横坐标最小值为﹣5;④当四边形ACDB 为平行四边形时,.其中正确的是()A ②④B ②③C ①③④D ①②④....考点:二次函数综合题.专题:代数几何综合题.分析:根据顶点在线段AB 上抛物线与y 轴的交点坐标为(0,c)可以判断出c 的取值范围,得到①错误;根据二次函数的增减性判断出②正确;先确定x=1 时,点D 的横坐标取得最大值,然后根据二次函数的对称性求出此时点C 的横坐标,即可判断③错误;令y=0,利用根与系数的关系与顶点的纵坐标求出CD 的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a 的值,判断出④ 正确.解答:解:∵点A,B 的坐标分别为(﹣2,3)和(1,3),∴线段AB 与y 轴的交点坐标为(0,3),又∵抛物线的顶点在线段AB 上运动,抛物线与y 轴的交点坐标为(0,c),∴c≤3,(顶点在y 轴上时取“=”),故①错误;∵抛物线的顶点在线段AB 上运动,∴当x<﹣2 时,y 随x 的增大而增大,因此,当x<﹣3 时,y 随x 的增大而增大,故②正确;若点D 的横坐标最大值为5,则此时对称轴为直线x=1,根据二次函数的对称性,点 C 的横坐标最小值为﹣2﹣4=﹣6,故③错误;根据顶点坐标公式,=3,令y=0,则ax2+bx+c=0,CD2=(﹣)2﹣4× ,=根据顶点坐标公式,=3,∴=﹣12,∴CD2= ×(﹣12)= ,∵四边形ACDB 为平行四边形,∴CD=AB=1﹣(﹣2)=3,∴=32=9,解得a=﹣,故④正确;综上所述,正确的结论有②④.故选A.点评:本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系平行四边形的对边平行且相等的性质,①要注意顶点在y 轴上的情况.二、认真填一填(本题有6 个小题,每小题4 分,共24 分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4 分)(2013•上城区一模)如图,△ABC 中,,若△AEF 的面积为1,则四边形EBCF 的面积为8 .考点:相似三角形的判定与性质.分析:求出= = ,根据∠A=∠A 推出△AEF∽△ABC,得出= = ,求出△ABC 的面积是9,即可求出四边形EBCF 的面积.解答:解:∵,∴==,∵∠A=∠A,∴△AEF∽△ABC,∴= =,∵△AEF 的面积为1,∴△ABC 的面积是9,∴四边形EBCF 的面积是9﹣1=8,故答案为:8.点评:本题考查了相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方.12.(4 分)(2013•上城区一模)在一个口袋中有三个完全相同的小球,把它们分别标上数字﹣1,0,2,随机地摸出一个小球记录数字然后放回,再随机地摸出一个小球记录数字.则两次的数字和是正数的概率为.考点:列表法与树状图法.专题:图表型.分析:画出树状图,然后根据概率公式列式计算即可得解.解答:解:根据题意,画出树状图如下:一共有9 种情况,和是正数的有5 种,所以,P(和是正数)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比,要注意0 既不是正数也不是负数,这也是本题最容易出错的地方.13.(4 分)(2013•上城区一模)已知x=﹣1 是一元二次方程ax2+bx﹣10=0 的一个解,且a≠﹣b,则的值为5.考点:一元二次方程的解.分析:方程的解是使方程左右两边成立的未知数的值.同时注意根据分式的基本性质化简分式.解答:解:∵x=﹣1 是一元二次方程ax2+bx﹣10=0 的一个解,∴a﹣b﹣10=0,∴a﹣b=10.∵a≠﹣b,∴a+b≠0,∴= = = =5,点评:故答案是:5.本题考查了一元二次方程的定义,得到a﹣b 的值,首先把所求的分式进行化简,并且本题利用了整体代入思想.14.(4 分)(2014•沙湾区模拟)某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活用电实行阶梯制价格(见表):“一户一表”用电量不超过a 千瓦时超过a 千瓦时的部分单价(元/千瓦时)0.5 0.6a= 150 .考点:一元一次方程的应用.分析:根据题意可得等量关系:不超过a 千瓦时的电费+超过a 千瓦时的电费=105 元,根据等量关系列出方程,解出a 的值即可.解答:解:由题意得:0.5a+0.6(200﹣a)=105,解得:a=150,故答案为:150.点评:此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.15.(4 分)(2012•南通)无论a 取什么实数,点P(a﹣1,2a﹣3)都在直线l 上.Q(m,n)是直线l 上的点,则(2m﹣n+3)2的值等于 16 .考点:一次函数图象上点的坐标特征.专题:压轴题;探究型.分析:先令a=0,则P(﹣1,﹣3);再令a=1,则P(0,﹣1),由于a 不论为何值此点均在直线l 上,设此直线的解解答:析式为y=kx+b(k≠0),把两点代入即可得出其解析式,再把Q(m,n)代入即可得出2m﹣n 的值,进而可得出结论.解:∵令a=0,则P(﹣1,﹣3);再令a=1,则P(0,﹣1),由于a 不论为何值此点均在直线l 上,∴设此直线的解析式为y=kx+b(k≠0),∴,解得,∴此直线的解析式为:y=2x﹣1,∵Q(m,n)是直线l 上的点,∴2m﹣1=n,即2m﹣n=1,∴原式=(1+3)2=16.故答案为:16.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此函数的解析式.16.(4 分)(2013•上城区一模)如图,▱ABCD 中,AC⊥AB.AB=6cm,BC=10cm,E 是CD 上的点,DE=2CE.点P 从D 点出发,以1cm/s 的速度沿DA→AB→BC 运动至C 点停止.则当△EDP 为等腰三角形时,运动时间为或4 或4.8 或(27.2﹣s.)考点:平行四边形的性质;等腰三角形的性质;勾股定理.专题:动点型.分析:先求出DE、CE 的长,再分①点P 在AD 上时,PD=DE,列式求解即可;PD=PE 时,根据等腰三角形三线合一的性质,过点P 作PF⊥CD 于F,根据AC⊥AB 可得AC⊥CD,然后求出△ACD 和△PFD 相似,根据相似三角形对应边成比例列式求出PD,从而得解;②点P 在BC 上时,利用勾股定理求出AC 的长,过点A 作AF⊥BC 于F,过点E 作EG⊥BC 的延长线于G,根据三角形的面积求出AF 的长,再利用勾股定理列式求出BF 的长,然后求出△ABF 和△ECG 相似,根据相似三角形对应边成比例列式求出EG、CG,利用勾股定理列式求出PG,然后求出CP,再求出点P 运动的路程,然后求出时间即可.解答:解:在▱ABCD 中,∵AB=6cm,∴CD=AB=6cm,∵DE=2CE,∴DE=4cm,CE=2cm,①点P 在AD 上时,若PD=DE,则t=4,若PD=PE,如图1,过点P 作PF⊥CD 于F,∵AC⊥AB,∴AC⊥CD,∴△ACD∽△PFD,∴=,即=,解得PD=,若EP=ED=4,通过相似和三角形的三线合一可以解出当PD=4.8 时候,△EPD 是以EP 和ED 为等腰的一个等腰三角形.则t=4.8.②点P 在BC 上时PE=DE=4,∵AC⊥AB,AB=6cm,BC=10cm,∴AC===8,过点A 作AF⊥BC 于F,过点E 作EG⊥BC 的延长线于G,S△ABC= ×6×8=×10AF,解得AF=4.8,.根据勾股定理,BF===3.6,∵平行四边形 ABCD 的边 AB ∥CD ,∴∠B=∠ECG ,又∵∠AFB=∠EGC=90°,∴△ABF ∽△ECG ,∴ = =, 即==, 解得 EG=1.6,CG=1.2,根据勾股定理,PG===, ∴PC=PG ﹣CG= ﹣1.2,点 P 运动的路程为 10+6+10﹣(﹣1.2)=27.2﹣, ∵点 P 的速度为 1cm/s ,∴点 P 运动的时间为秒或 4 秒或 27.2﹣秒. 故答案为:或 4 或 4.8 或 27.2﹣点评: 本题考查了平行四边形的性质,等腰三角形的性质,勾股定理的应用,相似三角形的判定与性质,综合题难点在于要分情况讨论.三、全面答一答(本题有 8 个小题,共 66 分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.(6 分)(2014•沙湾区模拟)阅读材料,解答问题:观察下列方程:① ; ② ; ③;…; (1) 按此规律写出关于 x 的第 4 个方程为 x+=9 ,第 n 个方程为 x+=2n+1 ; (2) 直接写出第 n 个方程的解,并检验此解是否正确.考点: 分式方程的解. 专题: 规律型.分析: (1)观察一系列等式左边分子为连续两个整数的积,右边为从 3 开始的连续奇数,即可写出第 4 个方程及第 n 个方程;(2)归纳总结即可得到第 n 个方程的解为 n 与 n+1,代入检验即可. 解答: 解:(1)x+ =x+ =9,x+ =2n+1;(2)x+=2n+1,观察得:x1=n,x2=n+1,将x=n 代入方程左边得:n+n+1=2n+1;右边为2n+1,左边=右边,即x=n 是方程的解;将n+1 代入方程左边得:n+1+n=2n+1;右边为2n+1,左边=右边,即x=n+1 是方程的解,则经检验都为原分式方程的解.故答案为:x+=9;x+ =2n+1.点评:此题考查了分式方程的解,属于规律型试题,弄清题中的规律是解本题的关键.18.(8 分)(2005•淮安)如图,在平面直角坐标系中,∠AOB=60°,点B 坐标为(2,0),线段OA 的长为6.将△AOB 绕点O 逆时针旋转60°后,点A 落在点C 处,点B 落在点D 处.(1)请在图中画出△COD;(2)求点A 旋转过程中所经过的路程(精确到0.1);(3)求直线BC 的解析式.考点:弧长的计算;待定系数法求一次函数解析式;作图-旋转变换.分析:(1)将OA、OB 分别旋转60 度,(2)点A 旋转过程中所经过的路程既是点A 划过的弧长,(3)求出点C 作标,用待定系数法解答.解答:解:(1)见图(2 分)(2)旋转时以OA 为半径,60 度角为圆心角,则=2π≈6.3;(5 分)(3)过C 作CE⊥x 轴于E,则OE=3,CE=3,∴C(﹣3,3),(7 分)设直线BC 的解析式为y=kx+b,则;∴解得:(9 分)∴解析式为y=﹣x+ .(10 分)点评:本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键,然后才是依据图形计算.19.(8 分)(2010•济宁)如图,AD 为△ABC 外接圆的直径,AD⊥BC,垂足为点F,∠ABC 的平分线交AD 于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.考点:确定圆的条件;圆心角、弧、弦的关系.专题:证明题;探究型.分析:(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD 再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C 三点在以D 为圆心,以DB 为半径的圆上.解答:(1)证明:∵AD 为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C 三点在以D 为圆心,以DB 为半径的圆上.理由:由(1)知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∠4=∠5,∵BE 是∠ABC 的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C 三点在以D 为圆心,以DB 为半径的圆上.(7 分)点评:本题主要考查等弧对等弦,及确定一个圆的条件.20.(10 分)(2013•上城区一模)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50 名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有10 人,男生最喜欢“乒乓球”项目的有 20 人;(2)请将条形统计图补充完整;(3)若该校有男生400 人,女生450 人,请估计该校喜欢“羽毛球”项目的学生总人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)总数减去喜欢跳绳、乒乓球、羽毛球、其他的人数,即可得出喜欢“踢毽子”项目的人数,先求出男生喜欢乒乓球的人数所占的百分比,继而可得出男生最喜欢“乒乓球”项目的人数;(2)由(1)的答案可补全统计图;(3)根据男生、女生喜欢乒乓球人数所占的百分比,即可得出计该校喜欢“羽毛球”项目的学生总人数.解答:解:(1)女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10 人,男生最喜欢“乒乓球”项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=20 人;(2)补充条形统计图如右图:.(3)400×28%+450× =193,答:该校喜欢“羽毛球”项目的学生总人数为193 人.点评:本题考查了扇形统计图及条形统计图的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10 分)(2013•上城区一模)在直角梯形ABCD 中,AB∥CD,∠ABC=90°,∠A=60°,AB=2CD,E,F 分别为AB,AD 的中点,连结EF,EC,BF,CF.(1)求证△CBE➴△CFE;(2)若CD=a,求四边形BCFE 的面积.考点:直角梯形;全等三角形的判定与性质.分析:连接DE,求出CD=BE,得出矩形BEDC,推出∠DEB=90°,根据直角三角形斜边上中线性质得出FE=AF,得出等边三角形EFA,求出EF=AE=BE,∠EFA=60°,求出∠DFC=30°,求出∠CFE=90°,根据HL 证出直角三角形全等即可;(2)根据勾股定理求出DE,BC,求出△CBE 面积,即可求出答案.解答:(1)证明:连接DE,∵E 为AB 的中点,∴AB=2AE=2BE,∵AB=2DC,∴CD=BE,∵CD∥AB,∠CBA=90°,∴四边形CBED 是矩形,∵F 为AD 中点,∠DEA=90°,∴EF=AF,∵∠A=60°,∴△AEF 是正三角形,∴AE=EF=AF,∠EFA=60°,∵AE=BE,DF=AF∴BE=EF=AF,CD=DF,∴∠CFE=90°=∠CBE,∵CD∥AB,∴∠CDF=180°﹣∠A=120°,∴∠DFC=30°,∴∠CFE=90°=∠CBE,∵ 在Rt△CBE 和Rt△CFE 中∴Rt△CBE➴Rt△CFE(HL);(2)解:∵CD=a,∴AE=BE=a,∵∠A=60°,∴,∴,∴S 四边形BCFE=2S△BCE=a2.点评:本题考查了梯形性质,矩形的性质和判定,等边三角形的性质和判定,平行线的性质,三角形的内角和定理,等腰三角形的性质,勾股定理等知识点的应用,主要考查学生综合运用性质进行推理的能力,题目综合性比较强,难度偏大.22.(12 分)(2014•沙湾区模拟)如图,已知tan∠EOF=2,点C 在射线OF 上,OC=12.点M 是∠EOF 内一点,MC⊥OF 于点C,MC=4.在射线CF 上取一点A,连结AM 并延长交射线OE 于点B,作BD⊥OF 于点D.(1)当AC 的长度为多少时,△AMC 和△BOD 相似;(2)当点M 恰好是线段AB 中点时,试判断△AOB 的形状,并说明理由;(3)连结BC.当S△AMC=S△BOC 时,求AC 的长.考点:相似三角形的判定与性质.分析:(1)由于∠MCA=∠BDO=Rt∠,所以△AMC 和△BOD 相似时分两种情况:①△AMC∽△BOD;②△ AMC∽△OBD.则两种情况都可以根据相似三角形对应边的比相等及tan∠EOF=2 列出关于AC 的方程,解方程即可求出AC 的长度;(2)先由MC∥BD,得出△AMC∽△ABD,根据相似三角形对应边的比相等及三角形中位线的性质求出BD=2MC=8,OD=4,CD=8,AC=CD=8,再利用SAS 证明△AMC➴△BOD,得到∠CAM=∠DBO,根据平行线的性质及三角形内角和定理求出∠ABO=90°,进而得出△ABO 为直角三角形;(3)设OD=a,根据tan∠EOF=2 得出BD=2a,由三角形的面积公式求出S△AMC=2AC,S△BOC=12a,根据S△AMC=S△BOC,得到AC=6a.由△AMC∽△ABD,根据相似三角形对应边的比相等列出关于a 的方程,解方程求出a 的值,进而得出AC 的长.解答:解:(1)∵∠MCA=∠BDO=Rt∠,∴△AMC 和△BOD 中,C 与D 是对应点,∴△AMC 和△BOD 相似时分两种情况:①当△AMC∽△BOD 时,=tan∠EOF=2,∵MC=4,∴=2,解得AC=8;②当△AMC∽△OBD 时,=tan∠EOF=2,∵MC=4,∴=2,解得AC=2.故当AC 的长度为2 或8 时,△AMC 和△BOD 相似;(2)△ABO 为直角三角形.理由如下:∵MC∥BD,∴△AMC∽△ABD,∴,∠AMC=∠ABD,∵M 为AB 中点,∴C 为AD 中点,BD=2MC=8.∵tan∠EOF=2,∴OD=4,∴CD=OC﹣OD=8,∴AC=CD=8.在△AMC 与△BOD 中,,∴△AMC➴△BOD(SAS),∴∠CAM=∠DBO,∴∠ABO=∠ABD+∠DBO=∠AMC+∠CAM=90°,∴△ABO 为直角三角形;(3)连结BC,设OD=a,则BD=2a.∵S△AMC=S△BOC,S△AMC= •AC•MC=2AC,S△BOC= •OC•BD=12a,∴2AC=12a,∴AC=6a.∵△AMC∽△ABD,∴,即,解得a1=3,a2=﹣(舍去),∴AC=6×3=18.。

2019安徽数学中考一轮复习阶段性测试卷(2)有答案

2019安徽数学中考一轮复习阶段性测试卷(2)有答案

阶段性测试卷(二)(考查内容:三角形、四边形、圆时间:45分钟满分:100分)一、选择题(每小题5分,共40分)1.(改编题)如图,AB∥CD,CE交AB于点F.∠A=20°,∠E=30°,则∠C的度数为( A)A.50° B.55°C.60° D.65°2.(2018·蜀山区二模)如图,平行四边形ABCD中,∠ABC的角平分线交边CD于点E,∠A=130°,则∠BEC的度数是( B)A.20° B.25°C.30° D.50°3.(2018·宿州月考)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( D)A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形4.(改编题)正方形ABCD的边长为2,对角线相交于点O,点O又是长方形MNPO的一个顶点,且OM =4,OP=2,长方形绕O点转动的过程中,长方形与正方形重叠部分的面积等于( D)A.6 B.4C.2 D.15.(2018·衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm6.(2018·明光市二模)如图,AB 与⊙O 相切于点B ,OA =2,∠OAB =30°,弦BC ∥OA ,则劣弧BC ︵的长是( B )A .π2B .π3C .π4D .π67.(2018·河南)如图,已知▱AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( A )A .(5-1,2)B .(5,2)C .(3-5,2)D .(5-2,2)8.(改编题)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,过点B 作⊙O 的切线,交AC 的延长线于点F .已知3AE =BE =6,则CF 的长是( C )A .12 3B .16 3C .12D .16二、填空题(每小题5分,共15分)9.(改编题)如图,已知矩形ABCD 的对角线AC 的长为10 cm ,连接各边中点E ,F ,G ,H 得四边形EFGH ,则四边形EFGH 的周长为__20__cm.10.(2018·青岛模拟)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F 是线段DE 上一点,连接AF ,BF ,若AB =16,EF =1,∠AFB =90°,则BC 的长为__18__.11.(原创题)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,AC 为⊙O 的直径,BD ⊥AC .下列结论:①∠P +2∠D =180°;②∠BOC =∠BAD ;③∠DBO =∠ABP ;④∠ABP =∠ABD .其中正确结论有__①②④__(只填序号).三、解答题(共40分)12.(10分)(2018·朝阳区二模)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE =CD ,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若∠ABC =60°,且AD =DE =4,求OE 的长.(1)证明:∵四边形ABCD 是平行四边形,∴AB∥CD ,AB =CD ,∵DE =CD ,∴AB 綊DE ,∴四边形ABDE 是平行四边形;(2)解:∵AD =DE =4,∴AD =AB =4,∴▱ABCD 是菱形,∴AB =BC ,AC ⊥BD ,BO =12BD ,∠ABO =12∠ABC ,又∵∠ABC =60°,∴∠ABO =30°,在Rt△ABO 中,AO =AB·sin ∠ABO =2,BO =AB·cos ∠ABO =23,∴BD =43,∵四边形ABDE 是平行四边形,∴AE∥BD ,AE =BD =43,又∵AC ⊥BD ,∴AC ⊥AE ,在Rt △AOE 中,OE =AE 2+AO 2=213.13.(15分)(2018·霍邱县二模)已知:如图,四边形ABCD 是⊙O 的内接四边形,直径DG 交边AB 于点E ,AB ,DC 的延长线相交于点F .连接AC ,若∠ACD =∠BAD .(1)求证:DG ⊥AB ;(2)若AB =6,tan ∠FCB =3,求⊙O 半径.(1)证明:连接AG ,∵∠ACD 与AGD 是同弦所对圆周角,∴∠ACD =∠AGD ,∵∠ACD =∠BAD ,∴∠BAD =∠AGD ,∵DG 为⊙O 的直径,A 为圆周上一点,∴∠DAG =90°,∴∠BAD +∠BAG =90°,∴∠AGD +∠BAG =90°,∴∠AEG =90°,即DG ⊥AB ;(2)解:∵四边形ABCD 是⊙O 的内接四边形,∴∠FCB =∠BAD ,∵tan ∠FCB =3,∴tan ∠BAD =DE AE=3,连接OA ,由垂径定理得AE =12AB =3,∴DE =9,在Rt △OEA 中,OE 2+AE 2=OA 2,设⊙O 半径为r ,则有(9-r )2+32=r 2,解得,r =5,∴⊙O 半径为5.14.(15分)(2018·安徽四模)如图,⊙O 的直径AD 长为6,AB 是弦,∠DAB =30°,CD ∥AB ,且CD = 3.(1)求∠C 的度数;(2)求证:BC 是⊙O 的切线.(1)解:如图,连接BD ,∵AD 为圆O 的直径,∴∠ABD =90°,∴BD =12AD =3,∵CD∥AB ,∠ABD =90°,∴∠CDB =∠ABD =90°,在Rt△CDB 中,tan C =BD CD=33=3,∴∠C =60°;(2)证明:连接OB ,∵BD =3,AD =6,∴∠A =30°,∵OA =OB ,∴∠OBA =∠A =30°,∵CD∥AB ,∠C =60°,∴∠ABC =180°-∠C =120°,∴∠OBC =∠ABC -∠ABO =120°-30°=90°,∴OB ⊥BC ,∴BC 为圆O 的切线.。

【推荐】2019年安徽省中考数学试卷及答案

【推荐】2019年安徽省中考数学试卷及答案

2019年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2B.﹣1C.0D.12.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a43.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×10125.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60B.50C.40D.157.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6B.4C.4.8D.58.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥010.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.8二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T ,求的值.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b尺寸(cm)按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C 两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2B.﹣1C.0D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<1,∴在﹣2,﹣1,0,1这四个数中,最小的数是﹣2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.3.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:根据题意161亿用科学记数法表示为1.61×1010 .故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为(1,3),然后把A′的坐标代入y=中即可得到k的值.【解答】解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=得k=1×3=3.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A.60B.50C.40D.15【分析】根据中位数的定义求解可得.【解答】解:由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选:C.【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.7.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6B.4C.4.8D.5【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EF A=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.【点评】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.8.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年,故选:B.【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【分析】根据a﹣2b+c=0,a+2b+c<0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况,本题得以解决.【解答】解:∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b=,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac==﹣ac==≥0,即b<0,b2﹣ac≥0,故选:D.【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2﹣ac的正负情况.10.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.8【分析】作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H,可得点H到点E和点F的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴EM==4则在线段BC存在点H到点E和点F的距离之和最小为4<9在点H右侧,当点P与点C重合时,则PE+PF=12∴点P在CH上时,4<PE+PF≤12在点H左侧,当点P与点B重合时,BF==2∵AB=BC,CF=AE,∠BAE=∠BCF∴△ABE≌△CBF(SAS)∴BE=BF=2∴PE+PF=4∴点P在BH上时,4<PE+PF<4∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.【点评】本题考查了正方形的性质,最短路径问题,在BC上找到点N使点N到点E和点F的距离之和最小是本题的关键.二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为如果a,b互为相反数,那么a+b=0.【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;故答案为:如果a,b互为相反数,那么a+b=0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.【分析】连接CO并延长交⊙O于E,连接BE,于是得到∠E=∠A=30°,∠EBC=90°,解直角三角形即可得到结论.【解答】解:连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=CE=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是a >1或a<﹣1.【分析】由y=x﹣a+1与x轴的交点为(a﹣1,0),可知当P,Q都在x轴的下方时,直线l与x轴的交点要在(a﹣1,0)的左侧,即可求解;【解答】解:y=x﹣a+1与x轴的交点为(a﹣1,0),∵平移直线l,可以使P,Q都在x轴的下方,∴当x=a﹣1时,y=(1﹣a)2﹣2a(a﹣1)<0,∴a2﹣1>0,∴a>1或a<﹣1;故答案为a>1或a<﹣1;【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为当x=1﹣a时,二次函数y<0是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:(x﹣1)2=4.【分析】利用直接开平方法,方程两边直接开平方即可.【解答】解:两边直接开平方得:x﹣1=±2,∴x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1.【点评】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【分析】(1)直接利用平移的性质得出C,D点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.【解答】解:(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.18.(8分)观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)【分析】连接CO并延长,与AB交于点D,由CD与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用锐角三角函数定义求出OA,进而求出OD,由CO+OD求出CD的长即可.【解答】解:连接CO并延长,与AB交于点D,∵CD⊥AB,∴AD=BD=AB=3(米),在Rt△AOD中,∠OAB=41.3°,∴cos41.3°=,即OA===4(米),tan41.3°=,即OD=AD•tan41.3°=3×0.88=2.64(米),则CD=CO+OD=4+2.64=6.64(米).【点评】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.20.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED =S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b尺寸(cm)按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.【分析】(1)由15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格可得答案;(2)(i )由可得答案;(ii)由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)不合格.因为15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴,解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.∴抽到两种产品都是特等品的概率P=.【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C 两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.【分析】(1)由交点为(1,2),代入y=kx+4,可求得k,由y=ax2+c可知,二次函数的顶点在y轴上,即x=0,则可求得顶点的坐标,从而可求c值,最后可求a的值(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0,可求x的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k+4=2,解得k=﹣2,又∵二次函数顶点为(0,4),∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=﹣2(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0∴,设B,C两点的坐标分别为(x1,m)(x2,m),则,∴W=OA2+BC2=∴当m=1时,W取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可.八、(本题满分14分)23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.【分析】(1)利用等式的性质判断出∠PBC=∠P AB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△P AB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB又∵∠APB=∠BPC=135°,∴△P AB∽△PBC(2)∵△P AB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴P A=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△P AB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD 是解本题的关键.。

安徽省2019中考数学决胜一轮 复习阶段性测试卷 - 副本

安徽省2019中考数学决胜一轮 复习阶段性测试卷 - 副本

阶段性测试卷(三)(考查内容:图形与变换、统计与概率时间:45分钟满分:100分)一、选择题(每小题6分,共42分)1.(2018·广州)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( B)A B C D2.(2018·淮南期末)下列图形中不是轴对称图形的是( A)A B C D3.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是( B)A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率4.如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C 重合,连接AC′交A′C于D,则△C′DC的面积为( C)A.10 B.8C.6 D.45.(2018·南陵县模拟)如图,正方形ABCD是一块绿化带,阴影部分EOFB,GHMN都是正方形的花圃,其中EOFB的顶点O是正方形中心.一只自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟落在花圃上的概率为( C )A .1732B .12C .1736D .17386.(原创题)如图,△ABC 中,AD 是∠BAC 内的一条射线,BE ⊥AD ,且△CHM 可由△BEM 旋转而得,延长CH 交AD 于F ,则下列结论错误的是( D )A .BM =CMB .FM =12EHC .CF ⊥ADD .FM ⊥BC7.(改编题)如图,△ABC ,AB =12,AC =15,D 为AB 上一点,且AD =23AB ,在AC 上取一点E ,使以A ,D ,E 为顶点的三角形与ABC 相似,则AE 等于( C )A .325B .10C .325或10D .532或10 二、填空题(每小题6分,共18分)8.(2018·金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是__6.9%__.9.(改编题)已知,如图在△ABC 中,DE ∥BC ,AD DB =13,则DEBC=__1∶4__.10.(改编题)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值为__245__.三、解答题(共40分)11.(10分)(2018·青岛)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4,5,6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.解:不公平.理由如下: 方法1:画树状图如下:由树状图可知,共9种等可能的结果,其中和为偶数有5种结果,奇数有4种结果,∴P (小明获胜)=59,P (小亮获胜)=49,∴不公平.方法2:列表如下:4 5 6 4 8 9 10 5 9 10 11 6101112由表格可知,共9奇数有4种结果,∴P (小明获胜)=59,P (小亮获胜)=49,∴不公平.12.(14分)(2018·安徽模拟)如图在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 、直线l 和格点O .(1)画出△ABC 关于直线l 成轴对称的△A 0B 0C 0; (2)画出将△A 0B 0C 0向上平移1个单位得到的△A 1B 1C 1;(3)以格点O 为位似中心,将△A 1B 1C 1作位似变换,将其放大到原来的两倍,得到△A 2B 2C 2. 解:(1)如图所示:△A 0B 0C 0,即为所求; (2)如图所示:△A 1B 1C 1,即为所求; (3)如图所示:△A 2B 2C 2,即为所求.13.(16分)(2018·安庆一模)在等腰直角△ABC 中,∠ACB =90°,AC =BC ,点P 在斜边AB 上(AP >BP ).作AQ ⊥AB ,且AQ =BP ,连结CQ (如图1).(1)求证:△ACQ ≌△BCP ;(2)延长QA 至点R ,使得∠RCP =45°,RC 与AB 交于点H ,如图2. ①求证:CQ 2=QA ·QR ;②判断三条线段AH ,HP ,PB 的长度满足的数量关系,并说明理由.(1)证明:∵∠ACB =90°,AC =BC ,∴∠CAB =∠B =45°,又∵AQ ⊥AB ,∴∠QAC =∠CAB=45°=∠B ,在△ACQ 和△BCP 中,⎩⎪⎨⎪⎧AQ =BP ,∠CAQ =∠B ,AC =BC ,∴△ACQ≌△BCP (SAS );(2)解:①由(1)知△ACQ≌△BCP,则∠QCA=∠PCB,∵∠RCP=45°,∴∠ACR+∠PCB =45°,∴∠ACR+∠QCA=45°,即∠QCR=45°=∠QAC,又∠Q为公共角,∴△CQR∽△AQC,∴AQCQ=CQRQ,∴CQ2=QA·QR;②AH2+PB2=HP2.理由:如图,连接QH,由(1)(2)题知:∠QCH=∠PCH=45°,CQ=CP,又∵CH是△QCH和△PCH的公共边,∴△QCH≌△PCH(SAS),∴HQ =HP,∵在Rt△QAH中,QA2+AH2=HQ2,又由(1)知:QA=PB,∴AH2+PB2=HP2.。

2019年安徽中考数学试卷及答案(word文档良心出品)

2019年安徽中考数学试卷及答案(word文档良心出品)

2019年安徽省初中学业水平考试数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1、在—2,—1,0,1这四个数中,最小的数是()A、—2B、—1 C.、0 D、12、计算a3·(—a)的结果是()A、a2B、—a2C、a4D、—a43、一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()4、2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学计数法表示为()A、1.61×109B、1.61×1010C、1.61×1011D、1.61×10125、已知点A(1,—3)关于x轴的对称点A/在反比例函数kyx的图像上,则实数k的值为()A、3B、13C、—3D、-136、在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A、60B、50C、40D、157、如图,在R t△ABC中,∠ACB=900,AC=6,BC=12,点D在边BC上,点E在线段AD上,E F⊥AC于点F,EG⊥EF交AB于G,若EF=EG,则CD的长为()A、3.6B、4C、4.8D、58、据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6﹪,假设国内生产总值增长率保持不变,则国内生产总值首次突破100万亿的年份为()A、2019年B、2020年C、2021年D、2022年9、已知三个实数a,b,c满足a-2b+c=0,a+2b+c<0,则()A、b>0,b2-a c≤0B、b<0,b2-a c≤0C、b>0,b2-a c≥0D、b<0,b2-a c≥010、如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P正方形的边上,则满足PE+PF=9的点P个数是()A、0B、4C、6D、8二、填空题(本大题共4小题,每小题5分,满分20分)的结果是.11、计算18212、命题“如果a+b=0,那么a,b互为相反数”的逆命题为.13、如图,△ABC内接于⊙O,∠CAB=30O,∠CBA=45O,CD⊥AB于点D,若⊙O的半径为2,则CD的长为 .14、在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x-a+1和y=x2-2ax的图像交于P,Q两点,若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15、解方程(x—1)2=4.16、如图,在边长为1的单位长度的小正方形组的12×12风格中,给出了以格点(风格线的交点)为端点的线段AB。

2019-2020年初三第一次阶段性测试数学试卷及答案

2019-2020年初三第一次阶段性测试数学试卷及答案

2019-2020年初三第一次阶段性测试数学试卷及答案一、填空题:(本大题每题2分,共20分,把答案填写在题中横线上)1、┃π-14.3┃=_____________;若a <0,则3322a a a a +++=____________.2、当a __________时,42-a 无意义;22--x x有意义的条件是_____________. 3、已知一个样本1,2,3,x ,5,它的平均数是3,则这个样本的极差是___________;方差是____________.4、某校九年级上学期期末统一考试后,甲、乙两班的数学成绩(单位:分)的统计情况如下表所示:从各统计指标(平均分、中位数、众数、方差)综合来看,你认为______班的成绩较好。

5、若关于x 的方程22)2()1(2+=--b x a x 有两个相等的实根,则=a ________;=b ________.6、已知菱形ABCD 中对角线AC 、BD 相交于点O ,添加条件______________或_____________可使菱形ABCD 成为正方形.7、已知点C 为线段AB 的黄金分割点,且AC=1㎝,则线段AB 的长为____________________.8、如图,E 为□ABCD 中AD 边上的一点,将△ABE 沿BE 折叠使得点A 刚好落在BC 边上的F 点处,若AB 为4,ED 为3,则□ABCD 的周长为_________.9、已知:如图,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE=15°, 则∠BOE=_______°.第8题图 第9题图 第10题图10、如图,折叠直角梯形纸片的上底AD ,点D 落在底边BC 上点F 处,已知DC=8㎝,FC = 4㎝,则EC 长 ㎝.二、选择题:(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 11、下列各式中与327x --是同类二次根式的是【 】.A 、327x B 、273x - C 、2391x -- D 、3x12、在下列各式的化简中,化简正确的有【 】. ①3a =a a ;②5x x -x x =4x x ;③6a2b a =ab ab 23 ;④24+61=86 A 、1个 B 、2个 C 、3个 D 、4个 13、下面是李刚同学在一次测验中解答的填空题,其中答对的是【 】. A 、若x 2=4,则x =2B 、方程x (2x -1)=2x -1的解为x =1C 、若x 2+2x +k =0的一个根为1,则3-=kD 、若分式1232-+-x x x 的值为零,则x =1,214、若关于x 的方程06)(22=+--x k x x 无实根,则k 可取的最小整数为【 】. A 、5- B 、4- C 、3- D 、2-15、甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后填入下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);(3)甲班成绩比乙班成绩波动大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段性测试卷(一)
(考查内容:数与式、方程(组)与不等式(组)、函数 时间:45分钟 满分:100分)
一、选择题(每小题4分,共20分) 1.8的相反数的立方根是( C ) A .±2 B .1
2
C .-2
D .-12
2.下列运算正确的是( D ) A .a 3·a 2=a 6 B .a 12÷a 3=a 4 C .(m -n )2=m 2-n 2
D .(-b 3)2=b 6 3.在创建文明城市的进程中,合肥市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x 万棵,可列方程是( B )
A .30x -3020%x =5
B .30x -30
(1+20%)x =5
C .
3020%x +5=30
x
D .30(1+20%)x -30
x
=5
4.下列命题为假命题...的是( C ) A .若a =b ,则a -2018=b -2018 B .若a =b ,则a c 2+1=b
c 2+1
C .若a >b ,则a 2>ab
D .若a <b ,则a -2c <b -2c
5.二次函数y =ax 2+bx +c 的图象如图所示,则反比例函数y =a
x 与一次函数y =ax +b 在同一坐标系内
的大致图象是( C )
A B C D
二、填空题(每小题5分,共20分)
6.亚洲陆地面积约为4 400万平方千米,则“4 400万”用科学记数法记作__4.4×107__. 7.分解因式(a -b )(a -4b )+ab 的结果是__(a -2b )2__.
8.写出不等式组⎩
⎪⎨⎪

4(x +1)≤7x +10,x -5<x -83的所有非负整数解.....__0,1,2,3__. 9.如图的抛物线是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a +b +c =0;④若点B ⎝⎛⎭⎫-52,y 1,C ⎝⎛⎭⎫-1
2,y 2为函数图象上的两点,则y 1<y 2,其中正确结论有__①③④__(填序号).
三、解答题(共60分)
10.(8分)计算:(-1)2 018-8+(π-3)0+4cos 45° 解:原式=1-22+1+22=2.
11.(8分)先化简再计算:x 2-1x 2+x ÷⎝⎛⎭⎫
x -2x -1x ,其中x 是一元二次方程x 2-2x -2=0的正数根.
解:原式=(x +1)(x -1)x (x +1)÷x 2-2x +1x =x -1x ·x (x -1)2=1
x -1.解方程x 2-2x -2=0,解得x 1=1+3>0,x 2=1-3<0,所以原式=11+3-1=33
.
12.(8分)化简代数式:⎝⎛⎭⎫3x x -1-x x +1÷x
x 2-1,再从不等式组⎩
⎪⎨⎪⎧
x -2(x -1)≥1①,6x +10>3x +1②的解集中取一个合适
的整数值代入,求出代数式的值.
解:原式=3x (x +1)-x (x -1)(x -1)(x +1)·(x -1)(x +1)
x =3(x +1)-(x -1)=2x +4.解不等式①,得x ≤1,解不等式
②,得x>-3,故原不等式组的解集为-3<x ≤1.∵x ≠0,±1,∴x 可取-2.当x =-2时,原式=2×(-2)+4=0.
13.(10分)观察下列等式:
4-11=3,9-12=4,16-13=5,25-1
4=6,…. (1)写出第5个等式:__36-15
=7__;
(2)猜想并写出第n 个等式,请证明你所猜想的等式是正确的.
(2)第n 个等式:(n +1)2-1n =n +2.证明:左边=n 2+2n +1-1n =n 2+2n
n =n +2=右边,所以猜想
(n +1)2-1
n
=n +2是正确的.
14.(12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:
单价(元/件) 30 34 38 40 42 销量(件)
40
32
24
20
16
(1)计算这5(2)通过对上面表格中的数据进行分析,发现销量y (件)与单价x (元/件)之间存在一次函数关系,求y 关于x 的函数关系式;(不需要写出函数自变量的取值范围)
(3)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?
解:(1)30×40+34×32+38×24+40×20+42×16
5
=934.4;
(2)设所求一次函数关系式为y =kx +b (k ≠0),将(30,40),(40,20)代入y =kx +b ,得⎩⎨⎧
30k +b =42,
40k +b =20,解
得⎩
⎨⎧
k =-2,b =100,∴y =-2x +100;
(3)设利润为w 元,根据题意,得w =(x -20)(-2x +100)=-2x 2+140x +2 000=-2(x -35)2+450,则当x =35时,w 取最大值.即当该产品的单价为35元/件时,工厂获得最大利润450元.
15.(14分)如图,抛物线y =x 2+bx +c 与直线y =1
2x -3交于A ,B 两点,其中点A 在y 轴上,点B 坐
标为(-4,-5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC ⊥x 轴于点C ,交AB 于点D .
(1)求抛物线的解析式;
(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由. 解:(1)∵直线y =1
2x -3交于A ,B 两点,其中点A 在y 轴上,∴A (0,-3),∵B (-4,-5),
⎩⎨⎧
c =-3,16-4b +c =-5.∴⎩
⎪⎨⎪⎧
b =92,
c =-3.∴抛物线解析式为y =x 2+9
2x -3; (2)存在,设P (m ,m 2+92m -3),(m <0),∴D (m ,1
2m -3),∴PD =|m 2+4m|.∵PD ∥AO ,∴当PD =
OA =3时,|m 2+4m|=3.
①m 2+4m =3时,∴m 1=-2-7,m 2=-2+7(舍),∴m 2+92m -3=-1-7
2

∴P ⎝⎛⎭
⎫-2-7,-1-
72; ②当m 2+4m =-3时,∴m 1=-1,m 2=-3.若m 1=-1,∴m 2+92m -3=-13
2,∴P ⎝⎛⎭⎫-1,-132;若m 2=-3,∴m 2+92m -3=-152,∴P ⎝⎛⎭⎫-3,-152,∴点P 的坐标为⎝
⎛⎭⎫-2-7,-1-7
2,⎝⎛⎭⎫-1,-132,⎝
⎛⎭⎫-3,-152.。

相关文档
最新文档