初三数学圆专题综合

合集下载

2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)

2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)

2022-2023学年九年级数学中考复习《圆综合压轴题》解答题专题训练(附答案)1.如图.在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD.以CD为直径作⊙O,分别与AC,BC相交于点M,N.过点N作⊙O的切线交AB于点E.(1)求证:∠BEN=90°.(2)若AB=10,请填空:①迮接OE,ON,当NE=时,四边形OEBN是平行四边形;②连接DM,DN,当AC=时,四边形CMDN为正方形.2.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD =OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求的值.3.如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠P AC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.4.如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.5.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F,连接AD.(1)求证:EF是⊙O的切线.(2)求证:△FBD∽△FDA.(3)若DF=4,BF=2,求⊙O的半径长.6.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,DG=2.5时,求DE的长.7.已知:△ABC内接于⊙O,连接AO并延长交BC于点D,且AD⊥BC于点D.(1)如图1,求证:∠B=∠C;(2)如图2,点E在上,连接AE,CE,∠ACE=∠ACB,求证:∠CAE=2∠ACE;(3)如图3,在(2)的条件下,过点A作AF⊥CE交CE的延长线于点F,若AE=5,AB=13,求AF的长.8.在Rt△ABC中,∠ACB=90°,AC=6,∠B=30°,点M是AB上的动点,以M为圆心,MB为半径作圆交BC于点D,(1)若圆M与AC相切,如图1,求圆的半径;(2)若AM=2MB,连接AD,如图2.①求证:AD与圆M相切;②求阴影部分的面积.9.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)求证:△OAC∽△ECF;(3)若BD=4,BC=8,圆的半径OB=5,求EC的长.10.如图,已知以BC为斜边的Rt△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,过点D作DE∥BC交AB的延长线于点E,连接DB,DC.(1)求证:ED为⊙O的切线;(2)求证:BC2=2ED•FC;(3)若tan∠ABC=2,AD=,求BC的长.11.已知△ABC内接于⊙O,D是弧AC上一点,连接BD、AD,BD交AC于点M,∠BMC =∠BAD.(1)如图1,求证:BD平分∠ABC;(2)如图2,过点D作⊙O的切线,交BA的延长线于点F,求证:DF∥AC;(3)如图3,在(2)的条件下,BC是⊙O的直径,连接DC,AM=1,DC=,求四边形BFDC的面积.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,P为弧AD上一点.(1)如图1,连接AC、PC、P A,求证:∠APC=∠ACD;(2)如图2,连接PB,PB交CD于E,过点P作⊙O的切线交CD的延长线于点F,求证:FE=PF;(3)如图3,在(2)的条件下,连接AE,且∠P AE=∠F,过点A作AG⊥PF,垂足为G,若PG=6,,求BH的长.13.如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.14.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠F AB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).15.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,连接CE,BD是⊙O的切线与OE的延长线相交于点D.(1)求证:∠D=∠AEC;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,,求FH的长.16.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若∠ABE=∠FDE,求EF的值.(3)若AB﹣BO=4,求tan∠AFC的值.17.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF∽GDF;(2)求证:BC是⊙O的切线;(3)若cos∠CAE=,DF=10,求线段GF的长.18.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AC2=4OD•OP;(3)若BC=6,,求AC的长.19.如图,AB是半圆O的直径,AB=10.C是弧AB上一点,连接AC,BC,∠ACB的平分线交AB于点P,过点P分别作PE⊥AC,PF⊥BC,垂足分别为E、F.(1)求证:四边形CEPF是正方形;(2)当sin A=时,求CP的长;(3)设AP的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y 的最大值.20.问题提出(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为.问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.问题解决(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC 区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC =60°.设BD的长为x米,△ADC的面积为y平方米.①求y与x之间的函数关系式;②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.参考答案1.(1)证明:如图,连接ON,DN,∵CD是⊙O的直径,∴∠CND=∠DNB=90°,∵NE是⊙O的切线,∴∠ONE=90°,∴∠BNE=∠OND,∵ON=OD,∴∠ODN=∠OND,∴∠ODN=∠BNE,∵D是斜边AB的中点,∴CD=AD=BD,∴∠B=∠BCD,∵∠BCD+∠ODN=90°,∴∠B+∠BNE=90°,∴∠NEB=90°;(2)解:①∵四边形OEBN是平行四边形,∴BE=ON=,∵E为BD的中点,∴N为BC的中点,∴NE为△BCD的中位线,∴NE∥CD,且NE=CD=.故答案为:;②∵四边形CMDN为正方形,∴∠MCD=∠MDC=45°,∠CMD=90°,∴MC=MD=CD,∵AD=DC,∴M是AC的中点,AC=2MC=CD,∴CD=AB=5,∴AC=5.故答案为:5.2.(1)证明:①∵CD∥AB,∴∠F AB=∠D,∵∠AFB=∠DFC,∴△ABF∽△DCF;②∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵CD∥AB,∴∠DCO=∠AOC=90°,∵OC是半圆的半径,∴CD是⊙O的切线;(2)解:过点F作FH∥AB交OC于H,设圆的半径为2a,∵CD=OB=OA,CD∥AB,∴CE=OE=a,AE=DE,由勾股定理得:AE==a,∴AD=2a,∵△ABF∽△DCF,∴==,∵FH∥AB,∴==,∵FH∥AB,∴==,∴EF=,∵CD是⊙O的切线,∴DC2=DG•DA,即(2a)2=DG•2a,解得:DG=,∴FG=a﹣﹣=,∴==.3.(1)证明:连接OC,∵PF=FC,OC=OB,∴∠PCF=∠CPF,∠OCB=∠OBC,∵PD⊥AB,∴∠PDB=90°,∴∠CPF+∠OBC=90°,∴∠PCF+∠OCB=90°,∴∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)证明:连接BG,∵,∴∠P AC=∠PBG,∵∠PBA=2∠P AC,∴∠PBA=2∠PBG,∵AB为⊙O的直径,∴∠AGB=∠PGB=90°,∴∠APB=∠P AB,∴AB=BP;(3)解:∵AB为⊙O的直径,∴∠ACB=90°,∵AC=4,BC=3,∴AB===5,∴AB=BP=5,∴PC=2,∵∠PDA=∠PCA=90°,P A=P A,∠APB=∠P AB,∴△APC≌△APD(AAS),∴AD=PC=2,PD=AC=4,∠P AC=∠APD,∴AE=PE,设DE=x,AE=PE=4﹣x,在Rt△AED中,AD2+DE2=AE2,即22+x2=(4﹣x)2,解得x=,∴EP=4﹣x=,∵∠PEC=90°﹣∠EPC,∠FCE=90°﹣∠PCF,即∠PEC=∠FCE,∴EF=CF=PF,∴CF=.4.解:(1)直线AF与⊙O相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵∠AOF=∠COF,OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF=,∴∠AOF=30°,∴AE=OA=3,∴AC=2AE=6;(3)∵AC=OA=6,OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,OC=6,∵∠OCP=90°,∴CP=OC=6,∴S△OCP=OC•CP==18,S扇形AOC==6π,∴阴影部分的面积为S△OCP﹣S扇形AOC=18﹣6π.5.(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∵OD是半径,∴EF与⊙O相切.(2)证明:∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵OD⊥DE,∴∠FDB+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠BAD=∠FDB,∵∠F=∠F,∴△FBD∽△FDA;(3)解:设⊙O的半径为r,则AB=2r,∵△FBD∽△FDA,∴,∵DF=4,BF=2,∴,∴r=3.6.解:(1)CG与⊙O相切,理由如下:如图1,连接CO,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∵OC是圆的半径,∴CG与⊙O相切;(2)证明:∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DCE=∠AOD=45°,∴∠EGC=45°,又∵∠OCG=90°,∴△OCG为等腰直角三角形,∴GC=OC,OG=OC,∴OD+DG=OC,即OC+2.5=OC,解得OC=,∵GF=GE=GC=OC,∴DE=GE﹣DG=OC﹣DG=.7.(1)证明:∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC,∴∠B=∠C;(2)证明:连接BE,设∠ACE=α,则∠ACB=3α,∴∠ABC=∠ACB=3α,∵∠ABE=∠ACE=α,∴∠CBE=∠ABC﹣∠ABE=3α﹣α=2α,∴∠CAE=∠CBE=2α=2∠ACE;(3)解:过点E作EG⊥AC于点G,在CG上截取GH=AG,连接EH,∴EH=AE=5,∴∠AHE=∠EAH=2α,∴∠CEH=∠AHE﹣∠ECH=2α﹣α=α=∠ECH,∴CH=EH=5,∵AC=AB=13,∴AH=AC﹣CH=13﹣5=8,∴AG=GH=4,∴CG=4+5=9,在Rt△AEG中,EG===3,在Rt△CEG中,CE===3,∵,∴,∴.8.解:(1)过点M作MN⊥AC于点N,∵圆M与AC相切,∴MN=MB,∵∠ACB=90°,AC=6,∠B=30°,∴AB=12,设MN=MB=R.∴AM=12﹣R,∵∠ACB=90°,MN⊥AC,∴MN∥BC,∴∠B=∠AMB=30°,∴,∴,解得R=24﹣36.(2)①连接DM,由题意可知MB=MD,∴∠B=∠MDB=30°,∴∠AMD=60°,∵AM=2MB,∴AM=2MD,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°,∴△AMD∽△ABC,∴∠ADM=∠ACB=90°,∴AD与圆M相切;②∵AB=12,AM=2MB,∴BM=4,AM=8,∵∠ADM=90°,∴AD==4,∴S阴影部分=4.9.(1)证明:∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF;(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵△OAC∽△ECF,∴,∴EC==.10.(1)证明:如图1,连接OD.∵BC为⊙O的直径,∴∠BAC=90°.∵AD平分∠BAC,∴.∴OD⊥BC,∵DE∥BC,∴OD⊥ED,又∵OD为半径,∴ED为⊙O的切线;(2)证明:由(1)可得△BCD为等腰直角三角形.∵DE∥BC,∴∠E=∠ABC=∠ADC,∠BDE=∠DBC=∠DCB=45°.∴△BED∽△FDC,∴,即BD2=DE•FC,又,∴BC2=2ED•FC;(3)解:如图2,过点D作DG⊥AD,交AC的延长线于点G.∴∠CDG+∠ADC=90°,∠DGC=∠DAG=45°.又∵∠ADB+∠ADC=90°,∴∠ADB=∠GDC,∵DB=DC,∠BAD=∠DGC=45°,∴△ABD≌△GCD(AAS),∴AB=CG.∵∠DAG=45°,∠ADG=90°,∴△ADG为等腰直角三角形,∴AB+AC=AG=AD==3,∵tan∠ABC=2,∴设AB=x,则AC=2x.∴3x=3,∴x=1.即AB=1,AC=2.∴BC===.11.(1)证明:∵∠BMC=∠BAD,又∵∠BMC=∠BAC+∠ABD,∠BAD=∠BAC+∠DAM,∴∠ABD=∠DAC,又∵弧DC=弧DC,∴∠DAC=∠DBC,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)证明:连接OA、OB、OD,OD交AC于点N,∵FD是⊙O的切线,D为切点,OD是⊙O的半径,∴OD⊥FD,∴∠FDO=90°,又∵∠AOD=2∠ABD,∠DOC=2∠DBC,∠ABD=∠CBD,∴∠AOD=∠COD,又∵AO=CO,∴ON⊥AC,∴∠ANO=90°,∴∠ANO=∠FDO,∴AC∥FD;(3)解:连接OD,交AC于N,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∴∠F AC=180°﹣∠BAC=90°,又∵∠ANO=∠FDN=90°,∴四边形ANDF是矩形,∴AF=DN,∠F=90°,又∵ON⊥AC,∴AN=CN,∴设MN=a,则AN=CN=MN+AM=a+1,∴CM=MN+CN=2a+1,在Rt△MDC中,cos∠ACD=,在Rt△NDC中,cos∠ACD=,∴,解得a1=﹣(舍去),a2=1,∴MN=1,CN=a+1=2,∴DN=AF==,又∵MN=AM=1,∠AMB=∠NMD,∠BAM=∠MND=90°,∴△BAM≌△DNM(AAS),∴BA=ND=,∴BF=AB+AF=2,∴AN=FD=a+1=2,∴BD==2,∴S△BFD=,S△DBC=BD•CD==3,∴S四边形BFDC=S△BFD+S△BDC=2.12.(1)证明:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴,∴∠ACD=∠DC,∵,∴∠APC=∠ADC,∴∠APC=∠ACD;(2)证明:连接OP,∵PF是⊙O的切线,∴OP⊥PF,即∠EPF+∠OPE=90°,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠HEB+∠HBE=90°,∵∠PEF=∠HEB,∴∠PEF=∠FPE,∴FE=PF;(3)解:过E作EM⊥PF,垂足为M,∵AG⊥PF,∴∠GAP+∠GP A=90°,∵∠APE=90°,∴∠GP A+∠EPM=90°,∵∠AGP=∠EMP=90°,∴△GP A∽△MEP,∴,∵∠P AE=∠F,∴tan∠P AE=tan∠F,则,∵,∴,∴MF=PG=6,设PM=x,∵PE2﹣PM2=EF2﹣FM2,∴,解得:x1=﹣10,x2=4,即PM=4,∴EM==8,∵,即,∴P A=3,∵CD⊥AB,AB是直径,∴∠BHE=∠APB=90°,∴∠HEB=∠BAP,∵∠MPE=∠HEB,∴tan∠P AB=,即,∴PB=6,∴BE=PB﹣PE=2,∵sin∠HEB=,即,∴BH=4.13.(1)证明:连接OC,如图1,∵AD=CD,∠A=30°,∴∠ACD=30°,∴∠CDB=60°,∵OD=OC,∴∠OCD=60°,∴∠ACO=∠ACD+∠OCD=90°,∵OC是半径,∴直线AC是⊙O的切线;(2)解:∵∠OCD=60°,OC=OD,∴△DCO是等边三角形,∴CD=AD=OD=1,作CH⊥BD于点H,则DH=,如图2,∴CH===,∵AB=AD+BD=3,∴S△ABC==.(3)①当点E运动到与点C关于直径AB对称时,CE⊥AB于点K,如图3,∵BD为⊙O的直径,CK=,∴CE=2CK=,∵CF⊥CE,∴∠ECF=90°,∵∠CDB=∠CEB=60°,∴CF=CE•tan60°==3,②∵点E在上运动过程中,∠CDB=∠CEB=60°,在Rt△ECF中,tan60°=,∴CF=CE,∴当CE最大时,CF取得最大值,∴当CE为直径,即CE=2时,CF最大,最大值为2.14.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠F AC=∠OCA,∴∠F AC=∠OAC,∴CA平分∠F AB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.15.(1)证明:∵BD是⊙O的切线,∴∠OBD=90°,∠ABC+∠DBC=90°,∵BC⊥OD,∴∠D+∠DBC=90°,∴∠ABC=∠D,∵∠AEC=∠ABC,∴∠D=∠AEC;(2)证明:连接AC,如图所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,过O作OG⊥BE于G,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,∴AB=10,∵cos∠BCE=,∴cos∠BAE==,∴AE=8,∴BE===6,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH=,在Rt△BEH中,BH=.∵OG⊥BE,OB=OE,∴BG=3,∴OG===4,∴BF•OE,∴BF=,∴HF=BH﹣BF=.16.解:(1)∵点A(0,8),∴AO=8,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD,∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS),∴AE=AO=8;(2)∵∠ABE=∠FDE,∴AB∥DF,∴△CAB∽△CDF,∴,又∵∠ABE=∠FDE,∠AEB=∠FED∴△DEF∽△BEA,∴,∴EF=2AE=16;(3)设BO=x,则AB=x+4,在Rt△ABO中,由AO2+OB2=AB2得:82+x2=(x+4)2,解得:x=6,∴OB=BE=6,AB=10,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC,∴;设EF=m,则AF=8+m,BF=(8+m),∵在Rt△BEF中,BE2+EF2=BF2,∴62+m2=[(8+m)]2,解得:m=,即EF=,∴tan∠AFC=.17.(1)证明:如图1,∵EF平分∠AED,∴∠AEF=∠FED,∵∠AEF=∠ADF,∴∠FED=∠ADF,∵∠GFD=∠DFE,∴△GFD∽△DFE;(2)证明:如图2,∵AE平分∠BAC,∴∠BAE=∠EAO,∵OA=OE,∴∠EAO=∠OEA,∴∠BAE=∠OEA,∴AB∥OE,∴∠OEC=∠B,∵∠B=90°,∴∠OEC=90°,∵OE为半径,∴BC是⊙O的切线;(3)解:如图3,连接OF、AF,∵AD为直径,∴∠AFD=∠AED=90°,∵EF平分∠AED,∴∠AEF=∠FED=45°,∴∠AFD=∠AEF=45°,∴△AFD为等腰直角三角形,∵DF=10,OA=OD∴AD=DF=×10=20,OF⊥AD,OA=OD=OF=10,∵cos∠CAE=,∴AE=AD•cos∠CAE=20×=10,∵∠AEF=∠ADF,∠AGE=∠FGD,∴△AGE∽△FGD,∴,∴AG=GF,∵AG=AO+OG=10+OG,∴10+OG=GF,∴OG=GF﹣10,在Rt△FOG中,GF2=OF2+OG2,∴GF2=102+(GF﹣10)2,解得:GF=或(不符合题意,舍去),∴线段GF的长为.18.(1)证明:连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△P AO≌△PBO(SAS),∴∠P AO=∠PBO=90°,∵OA为圆的半径,∴直线P A为⊙O的切线;(2)证明:∵∠P AO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OP A+∠AOP=90°,∴∠OAD=∠OP A,∴△OAD∽△OP A,∴,∴OA2=OD•OP,又∵AC=2OA,∴AC2=4OD•OP;(3)解:∵OA=OC,AD=BD,BC=6,∴OD=BC=3,设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3,在Rt△AOD中,由勾股定理,得,(2x﹣3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x﹣3=5,∵AC是⊙O的直径,∴AC=2OA=10.∴AC的长为10.19.(1)证明:∵∠ACB=90°,PE⊥AC,PF⊥BC,∴四边形PECF是矩形,∵CP平分∠ACB,PE⊥AC,PF⊥BC,∴PE=PF,∴四边形CEPF是正方形;(2)解:∵sin A=,AB=10,∴,∴BC=8,∴AC===6,∴tan A=,设PE=CE=m,则AE=6﹣m,∴tan A=,∴m=,∴PC=PE=;(3)解:∵四边形CEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P顺时针旋转90°,得到△A′PF,P A′=P A,如图所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(10﹣x),∴y与x之间的函数关系式为y=﹣+5x,∵y=﹣+5x=﹣,∴x=5时,y有最大值为.20.解:(1)如图①,AD⊥BC,∵△ABC为等边三角形,AB=2,∴∠B=60°,BC=AB=2,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,=sin B=sin60°,∴=,∴AD=,∴△ABC的面积=AB•AD=×2×=,故答案为:;(2)如图②,过点D作DH⊥BC于点H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠BDE=90°,∴∠DEB+∠DBE=90°,∴∠DEB=90°﹣∠DBE=90°﹣45°=45°,∴BD=ED,∵DH⊥BC,∴BH=EH,∴DH=BE=BH=EH,设DH=BH=EH=a,∵∠ABC=90°,∴AB⊥BC,∵DH⊥BC,∴AB∥DH,∴△CDH∽△CAB,∴==,∵AD=1,AC=3,∴CD=3﹣1=2,∴==,∴AB=a,CE=a,∴BC=CE+BE=a+2a=3a,∵AB2+BC2=AC2,∴a2+9a2=9,∴a2=1,∴S阴影=S△ABC﹣S△BDE=AB•BC﹣BE•DH=×a•3a﹣×2a•a=a2﹣a2=a2=1;(3)①设AC与BD相交于点E,连接OB,OA,OC,过点O作OH⊥AB于点H,∵∠ADB=∠BDC=60°,∴AB=BC,∠BAC=∠BDC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AB=AC=BC,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),同理△ABO≌△CBO(SSS),∴S△ABO=S△ACO=S△CBO,∴S△ABC=3S△ABO,∵∠AOB=2∠ACB,∴∠AOB=120°,在Rt△OAH和Rt△OBH中,,∴Rt△OAH≌Rt△OBH(HL),∴∠AOH=∠BOH,AH=BH,在Rt△OAH中,OA=4,∠AOH=∠AOB=60°,∴cos∠AOH=cos60°==,sin∠AOH=sin60°==,∴OH=OA=2,AH=OA=2,∴AB=2AH=4,∴S△ABC=3S△ABO=3××4×2=12,∵∠ABE=∠DBA,∠BAE=∠BDA=60°,∴△ABE∽△DBA,∴===,即S△DBA=S△ABE,∵∠CBE=∠DBC,∠BCE=∠BDC=60°,∴△CBE∽△DBC,∴===,即S△DBC=S△CBE,∴S四边形ABCD=S△DBA+S△DBC=S△ABE+S△CBE,=(S△ABE+S△CBE)=S△ABC=×12=x2,∴S△ADC=S四边形ABCD﹣S△ABC=x2﹣12,即y=x2﹣12;∵BD的长度大于AB,小于等于直径,∴4<x≤8,∴y与x之间的函数关系式为y=x2﹣12(4<x≤8);②由①知,y与x之间的函数关系式为y=x2﹣12,则对称轴为y轴,∵>0,∴x>0时,y随x的增大而增大,∵4<x<8,∴当x=8时,y有最大值,即当BD为⊙O的直径时,y取最大值,即y=×82﹣12=4,∴花卉区域△ADC面积的最大值是4.。

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。

2023年九年级中考数学高频考点专题训练 圆的综合题(含解析)

2023年九年级中考数学高频考点专题训练 圆的综合题(含解析)

2023年中考数学高频考点专题训练--圆的综合题1.已知:△ABC内接于△O,直径AM平分△BAC.(1)如图1,求证AB=AC;(2)如图2,弦FG分别交AB、AC于点D、E,AE=BD,当△ADE+△DEC=90°时,连接CD,直径AM分别交DE、CD、BC于N、H、R,若CD△AB,求证:△NDC=△ACB;(3)在(2)的条件下,若DE长为√2,求△ACH的面积.2.在平面直角坐标系xOy中,对于点P,Q和图形G,给出如下定义:若图形G上存在一点C,使△PQC=90°,则称点Q为点P关于图形G的一个“直角联络点”,称Rt△PCQ为其对应的“联络三角形”.如图为点P关于图形G的一个“直角联络点”及其对应的“联络三角形”的示例.(1)已知点A(4,0),B(4,4)①在点Q1(2,2),Q2(4,﹣1)中,点O关于点A的“直角联络点”是;②点E的坐标为(2,m),若点E是点O关于线段AB的“直角联络点”,直接写出m的取值范围;(2)△T的圆心为(t,0),半径为√10,直线y=﹣x+2与x,y轴分别交于H,K两点,若在△T上存在一点P,使得点P关于△T的一个“直角联络点”在线段HK 上,且其对应的“联络三角形”是底边长为2的等腰三角形,直接写出t的取值范围.3.对于平面直角坐标系xOy中的点P和△C,给出如下定义:若△C上存在一个点M,使得PM = MC,则称点P为△C的“等径点”.已知点D (12,13),E(0,2√3),F (−2,0).(1)当△O的半径为1时,①在点D,E,F中,△O的“等径点”是;②作直线EF,若直线EF上的点T(m,n)是△O的“等径点”,求m的取值范围.(2)过点E作EG△EF交x轴于点G,若△EFG上的所有点都是某个圆的“等径点”,求这个圆的半径r的取值范围.4.问题背景:如图①,在四边形ADBC中,△ACB=△ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE 是等腰直角三角形,所以CE= √2CD,从而得出结论:AC+BC= √2CD.简单应用:(1)在图①中,若AC= √2,BC=2 √2,则CD=.(2)如图③,AB是△O的直径,点C、D在△上,AD̂= BD̂,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,△ACB=△ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD 的长(用含m,n的代数式表示)(4)如图⑤,△ACB=90°,AC=BC,点P为AB的中点,若点E满足AE= 1 3AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是.5.如图,等边三角形ABC中,AB= 2√3,AH△BC于点H,过点B作BD△AB交线段AH的延长线于点D,连结CD. 点E为线段AD上一点(不与点A,D重合),过点E作EF△AB交BC于点F,以EF为直径作△O. 设AE的长为x.(1)求线段CD的长度.(2)当点E在线段AH上时,用含x的代数式表示EF的长度.(3)当△O与四边形ABDC的一边所在直线相切时,求所有满足条件的x的值. 6.如图1,⊙O是ΔABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,AB=8,AD=6,求AC的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC 之间的数量关系并证明.7.问题探究(1)如图1,在△ABC中,BC=8,D为BC上一点,AD=6,则△ABC面积的最大值是。

初三数学圆的总复习

初三数学圆的总复习
内切
两个圆有且仅有一个公共点,且该点在两个圆的内部时,称 这两个圆内切。
圆与圆的相交
相交
两个圆有两个不同的公共点时,称这两个圆相交。此时两个公共点连成的线段叫 做两圆的公共弦。
特殊相交
当两个圆的半径相等且相交于两点时,这两点连成的线段既是两圆的公共弦也是 两圆的直径。
05 圆的综合应用
圆的面积与周长计算
01
02
03
圆的面积公式
$S = pi r^{2}$,其中 $r$ 是圆的半径。这个公 式用于计算圆的面积。
圆的周长公式
$C = 2pi r$ 或 $C = pi d$,其中 $r$ 是圆的半径, $d$ 是圆的直径。这两个 公式用于计算圆的周长。
扇形面积公式
$S_{扇形} = frac{npi r^{2}}{360}$,其中 $n$ 是扇形的圆心角,$r$ 是 圆的半径。这个公式用于 计算扇形的面积。
线的性质。
圆的拓展应用问题
圆锥曲线问题
圆锥曲线包括椭圆、双曲线和抛物线。在解决这类问题时,需要掌握圆锥曲线的定义、标 准方程和性质等知识点。
极坐标与参数方程问题
极坐标是一种用距离和角度来描述平面上点的方法,参数方程则是用参数来描述曲线上点 的坐标的方法。在解决这类问题时,需要掌握极坐标与直角坐标的互化以及参数方程与普 通方程的互化等知识点。
通过一般方程,可以计算出圆心坐标$left( frac{D}{2},-frac{E}{2} right)$和半径 $r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
方程变形
通过配方等方法,可以将一般方程转化为标准方 程。
圆的图形与方程的关系
图形与方程对应
01

中考数学——圆的综合的综合压轴题专题复习含详细答案

中考数学——圆的综合的综合压轴题专题复习含详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,AB 为O 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O 的切线,理由见解析;(2)证明见解析.【解析】【分析】 (1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE ∽即可解决问题.【详解】()1解:结论:DE 是O 的切线.理由:连接OD .CDB ADE ∠=∠,ADC EDB ∴∠=∠,//CD AB ,CDA DAB ∴∠=∠,OA OD =,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠, AB 是直径,90ADB ∴∠=,90ADB ODE ∴∠=∠=,DE OD ∴⊥,DE ∴是O 的切线.()2//CD AB,ADC DAB∴∠=∠,CDB DBE∠=∠,AC BD∴=,AC BD∴=,DCB DAB∠=∠,EDB DAB∠=∠,EDB DCB∴∠=∠,CDB∴∽DBE,CD DBBD BE∴=,2BD CD BE∴=⋅,2AC CD BE∴=⋅.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.2.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(22【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD﹣OC=2.∵AD=22OD OA-=22.又∵△CED∽△ACD,∴AD CDCD DE=,∴DE=2CDAD=2,∴AE=AD﹣DE=22﹣2=2.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.3.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,23),则以AB为边的“坐标菱形”的最小内角为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1【解析】分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,∴OA=2,OB.在Rt△AOB中,由勾股定理得:AB,∴∠ABO=30°.∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;(2)如图2.∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.∵⊙O,且△OQ'D是等腰直角三角形,∴OD OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.∵⊙O,且△OQ'D是等腰直角三角形,∴OD'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.4.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.【答案】10cm【解析】分析:先过圆心O作半径CO⊥AB,交AB于点D设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.详解:解:过点O作OC⊥AB于D,交⊙O于C,连接OB,∵OC⊥AB∴BD=12AB=12×16=8cm由题意可知,CD=4cm∴设半径为xcm,则OD=(x﹣4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2(x﹣4)2+82=x2解得:x=10.答:这个圆形截面的半径为10cm.点睛:此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.5.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA 的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF:(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD的长度.【答案】(1)证明见解析;(2) 证明见解析;(3)2【解析】分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.∴△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,∵G是AD的中点,∴DG=AG,∴BF=EF;(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°,由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,又∵OA=OB,∴∠ABO=∠BAO,∵BE是圆O的切线,∴∠EBO=90°,∴∠FBA+∠ABO=90°,∴∠FAB+∠BAO=90°,即∠FAO=90°,∴PA⊥OA,∴PA是圆O的切线;(3)过点F作FH⊥AD于点H,∵BD⊥AD,FH⊥AD,∴FH∥BC,由(2),知∠FBA =∠BAF ,∴BF =AF .∵BF =FG ,∴AF =FG ,∴△AFG 是等腰三角形.∵FH ⊥AD ,∴AH =GH ,∵DG =AG ,∴DG =2HG . 即12HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°,∴四边形BDHF 是矩形,∴BD =FH ,∵FH ∥BC∴△HFG ∽△DCG , ∴12FH HG CD DG ==, 即12BD CD =,∴ 2.15≈, ∵O 的半径长为,∴BC,∴BD =13BC =. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.6.如图1,延长⊙O 的直径AB 至点C ,使得BC=12AB ,点P 是⊙O 上半部分的一个动点(点P 不与A 、B 重合),连结OP ,CP .(1)∠C 的最大度数为 ;(2)当⊙O 的半径为3时,△OPC 的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO 交⊙O 于点D ,连结DB ,当CP=DB 时,求证:CP 是⊙O 的切线.【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析.【解析】试题分析:(1)当PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得;(2)由△OPC的边OC是定值,得到当OC边上的高为最大值时,△OPC的面积最大,当PO⊥OC时,取得最大值,即此时OC边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB,根据等腰三角形的性质得到∠A=∠C,得到CO=OB+OB=AB,推出△APB≌△CPO,根据全等三角形的性质得到∠CPO=∠APB,根据圆周角定理得到∠APB=90°,即可得到结论.试题解析:(1)当PC与⊙O相切时,∠OCP最大.如图1,所示:∵sin∠OCP=OPOC =24=12,∴∠OCP=30°∴∠OCP的最大度数为30°,故答案为:30°;(2)有最大值,理由:∵△OPC的边OC是定值,∴当OC边上的高为最大值时,△OPC的面积最大,而点P在⊙O上半圆上运动,当PO⊥OC时,取得最大值,即此时OC边上的高最大,也就是高为半径长,∴最大值S△OPC=12OC•OP=12×6×3=9;(3)连结AP,BP,如图2,在△OAP与△OBD中,OA ODAOP BODOP OB=⎧⎪∠=∠⎨⎪=⎩,∴△OAP≌△OBD,∴AP=DB,∵PC=DB,∴AP=PC,∵PA=PC,∴∠A=∠C,∵BC=12AB=OB,∴CO=OB+OB=AB,在△APB和△CPO中,AP CPA CAB CO=⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△CPO,∴∠CPO=∠APB,∵AB为直径,∴∠APB=90°,∴∠CPO=90°,∴PC切⊙O于点P,即CP是⊙O的切线.7.已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =.(1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=2523812n n;(3) n 9559155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论;(2)解Rt △POH ,得到Rt 3m OH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =中,=,,∴2OH =.∵AB =6,∴3OC =.由勾股定理得: 5CH =∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=. (3)△1POO 成为等腰三角形可分以下几种情况:① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n -=,解得9n :=. 即圆心距等于O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.ii )11O P OO =22233m m n m -+-()() n =, 解得:23m n =,即23n 23812n n -=,解得9155n := ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=. ∵1POO ∠是钝角,∴只能是m n =,即28132n n n -=,解得955n := 综上所述:n 9559155点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.8.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)【答案】(1)证明见解析 (2)233π- 【解析】【分析】 (1)连接OD ,只要证明OD ∥AC 即可解决问题;(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题.【详解】(1)连接OD .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∴BC 是⊙O 的切线.(2)连接OE ,OE 交AD 于K .∵AE DE =,∴OE ⊥AD .∵∠OAK =∠EAK ,AK =AK ,∠AKO =∠AKE =90°,∴△AKO ≌△AKE ,∴AO =AE =OE ,∴△AOE是等边三角形,∴∠AOE =60°,∴S 阴=S 扇形OAE ﹣S △AOE 26023360π⋅⋅=-⨯22233π=-. 【点睛】本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.9.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高.(2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.(结果保留 )【答案】(1)OE的长为32;(2)阴影部分的面积为3 2π【解析】(1)OE=32(2)S=32π。

中考数学圆的综合(大题培优 易错 难题)及详细答案

中考数学圆的综合(大题培优 易错 难题)及详细答案

中考数学圆的综合(大题培优易错难题)及详细答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为AB,P是半径OB上一动点,Q是AB上的一动点,连接PQ.发现:∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图2,若P是OB中点,且QP⊥OB于点P,求BQ的长;(2)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积;探究:如图4,将扇形OAB沿PQ折叠,使折叠后的弧QB′恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.【答案】发现: 90°,102;思考:(1)103π=;(2)25π−1002+100;(3)点O到折痕PQ的距离为30.【解析】分析:发现:先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;(2)先在Rt△B'OP中,OP2+(102−10)2=(10-OP)2,解得OP=102−10,最后用面积的和差即可得出结论.探究:先找点O关于PQ的对称点O′,连接OO′、O′B、O′C、O′P,证明四边形OCO′B是矩形,由勾股定理求O′B,从而求出OO′的长,则OM=12OO′=30.详解:发现:∵P是半径OB上一动点,Q是AB上的一动点,∴当PQ取最大时,点Q与点A重合,点P与点B重合,此时,∠POQ=90°,PQ=22OA OB+=102;思考:(1)如图,连接OQ,∵点P 是OB 的中点,∴OP=12OB=12OQ . ∵QP ⊥OB ,∴∠OPQ=90° 在Rt △OPQ 中,cos ∠QOP=12OP OQ =, ∴∠QOP=60°,∴l BQ =6010101803ππ⨯=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =102,在Rt △B'OP 中,OP 2+(102−10)2=(10-OP )2解得OP=102−10,S 阴影=S 扇形AOB -2S △AOP =290101210(10210)3602π⨯-⨯⨯⨯- =25π−1002+100;探究:如图2,找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,则OM=O′M ,OO′⊥PQ ,O′P=OP=3,点O′是B Q '所在圆的圆心,∴O′C=OB=10,∵折叠后的弧QB′恰好与半径OA 相切于C 点,∴O′C ⊥AO ,∴O′C ∥OB ,∴四边形OCO′B 是矩形,在Rt △O′BP 中,226425-=在Rt △OBO′K ,2210(25)=230-,∴OM=12OO ′=12×23030 即O 到折痕PQ 30点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=180n R π(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.3.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=65时,试探究△APM与△PCN是否相似,并说明理由.【答案】(1)半径为35;(2)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P与边AC相切,∴BD就是⊙P的半径,在Rt△ABD中,tanA= 1BD2AD ,设BD=x,则AD=2x,∴x2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(65)2解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中,MH=()22356-=3,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5,∴935535AM MP ==,355PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.4.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F .(1)求证:OE ∥BD ;(2)当⊙O 的半径为5,2sin 5DBA ∠=时,求EF 的长.【答案】(1)证明见解析;(2)EF 的长为212 【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明;(2)根据锐角三角函数和相似三角形的性质,直接求解即可.试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠.∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD .(2)由(1)可得sin ∠C = ∠DBA= 25,在Rt △OBE 中, sin ∠C =25BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒∵E C ∠=∠,∴△CBD ∽△EBO .∴BD CD BO EO= ∴252EO =. ∵OE ∥BD ,CO =OD ,∴CF =FB .∴122OF BD ==. ∴212EF OE OF =-=5.如图,AB 是⊙O 的直径,PA 是⊙O 的切线,点C 在⊙O 上,CB ∥PO .(1)判断PC 与⊙O 的位置关系,并说明理由;(2)若AB=6,CB=4,求PC 的长.【答案】(1)PC是⊙O的切线,理由见解析;(2)35 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.6.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.7.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.8.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 5311,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=3m,可得AN=11m,利用直角AGM,AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴∠AEG=∠AGE,∴AE=AG,∴EM=MG=1EG=1,2∴∠EAG=∠ECD=2α,∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,∵tan∠BAC53,∴设NG=3,可得AN=11m,AG22-14m,AG AM∵∠ACG=60°,∴CN=5m,AM3,MG22-m=1,AG AM∴m =12, ∴CE=CD =CG ﹣EG =10m ﹣2=3, ∴AE =22AM EM +=221+43()=7.9.问题发现.(1)如图①,Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 是AB 边上任意一点,则CD 的最小值为______.(2)如图②,矩形ABCD 中,AB =3,BC =4,点M 、点N 分别在BD 、BC 上,求CM+MN 的最小值.(3)如图③,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是BC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG 、CG ,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF 的长度.若不存在,请说明理由.【答案】(1) 125CD =;(2) CM MN +的最小值为9625.(3) 152【解析】试题分析:(1)根据两种不同方法求面积公式求解;(2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,求C N '的长即可;(3) 连接AC ,则ADCACGAGCD S SS=+四,321GB EB AB AE ==-=-=,则点G 的轨迹为以E 为圆心,1为半径的一段弧.过E 作AC 的垂线,与⊙E 交于点G ,垂足为M ,由AEM ACB ∽求得GM 的值,再由ACDACGAGCD S SS=+四边形 求解即可.试题解析:(1)从C 到AB 距离最小即为过C 作AB 的垂线,垂足为D ,22ABCCD AB AC BCS ⋅⋅==,∴341255AC BC CD AB ⋅⨯===,(2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,且与BD 交于M ,则CM MN +的最小值为C N '的长, 设CC '与BD 交于H ,则CH BD ⊥, ∴BMC BCD ∽,且125CH =, ∴C CB BDC ∠=∠',245CC '=, ∴C NC BCD '∽,∴244965525CC BC C N BD ⨯⋅==='', 即CM MN +的最小值为9625.(3)连接AC ,则ADCACGAGCD S SS=+四,321GB EB AB AE ==-=-=,∴点G 的轨迹为以E 为圆心,1为半径的一段弧. 过E 作AC 的垂线,与⊙E 交于点G ,垂足为M , ∵AEM ACB ∽, ∴EM AEBC AC=, ∴24855AE BC EM AC ⋅⨯===, ∴83155GM EM EG =-=-=,∴ACDACGAGCD S SS=+四边形,113345225=⨯⨯+⨯⨯,152=. 【点睛】本题考查圆的综合题、最短问题、勾股定理、面积法、两点之间线段最短等知识,解题的关键是利用轴对称解决最值问题,灵活运用两点之间线段最短解决问题.10.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作AC 、CB 、BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l 为对称轴的交点.(1)如图2,将这个图形的顶点A 与线段MN 作无滑动的滚动,当它滚动一周后点A 与端点N 重合,则线段MN 的长为 ;(2)如图3,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE =2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B 与⊙O 的圆心O 重合,⊙O 的半径为3,将它沿⊙O 的圆周作无滑动的滚动,当它第n 次回到起始位置时,点I 所经过的路径长为 (请用含n 的式子表示)【答案】(1)3π;(2)27π;(3)3. 【解析】试题分析:(1)先求出AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,AC BC AB ==,∴AC BC l l ==AB l =603180π⨯=π,∴线段MN 的长为AC BC AB l l l ++=3π.故答案为3π;(2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;(3)如图2,连接BI并延长交AC于D.∵I是△ABC的重心也是内心,∴∠DAI=30°,AD=12AC=32,∴OI=AI=3230ADcos DAI cos∠=︒=3,∴当它第1次回到起始位置时,点I所经过的路径是以O为圆心,OI为半径的圆周,∴当它第n次回到起始位置时,点I所经过的路径长为n•2π•3=23nπ.故答案为23nπ.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出AC的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I第一次回到起点时,I的路径,是一道中等难度的题目.11.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,3∴0 tan30ODPD=,解得OD=1,∴22PO PD OD+,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.12.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【答案】(1)详见解析;(2)详见解析; 【解析】 【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论. 【详解】()1证明:OD BC ⊥,BD CD ∴=,CBD DCB ∴∠=∠,90DFE EDF ∠+∠=, 90EDF DFE ∴∠=-∠,OD OA =, ()111809022ODA AOD AOD ∴∠=-∠=-∠,190902DFE AOD ∴-∠=-∠,12DEF AOD ∴∠=∠,DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠;()2解:OD BC ⊥,BE CE ∴=,BD CD =,BD CD ∴=, OA OD =,ADO OAD ∴∠=∠, PA 切O 于点A ,90PAO ∴∠=,90OAD DAP ∴∠+∠=,PFA DFE ∠=∠, 90PFA ADO ∴∠+∠=,PAF PFA ∴∠=∠, PA PF ∴=. 【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.13.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高. (2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析. 【解析】 【分析】(1)连接AC 交圆于一点F ,连接PF 交AB 于点E,连接CE 即为所求. (2)连接OF 交BC 于Q ,连接PQ 即为所求. 【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.如图,在中,,以为直径作,交边于点,交边于点,过点作的切线,交的延长线于点,交于点.(1)求证:;(2)若,,求的半径.【答案】(1)证明见解析;(2)4.【解析】试题分析:(1)连接AD,根据等腰三角形三线合一即可证明.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD,由△FOD∽△FAE,得列出方程即可解决问题.试题解析:(1)连接AD,∵AB是直径,∴∠ADB=90°,∵AB=AC,AD⊥BC,∴BD=DC.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD、∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△FOD∽△FAE,∴,∴,整理得R2﹣R﹣12=0,∴R=4或(﹣3舍弃).∴⊙O的半径为4.考点:切线的性质、等腰三角形的性质等知识.15.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.。

中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)1.如图,:AB 是O 的直径:BC 是O 弦,OD CB ⊥于点E ,交BC 于点D .(1)请写出三个不同类型的正确结论(2)连结CD ,设BCD α∠= ABC β∠= 试找出α与β之间的一种关系式并给予证明.2.如图,,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D 交CA 的延长线于点E .(1)求证点D 为线段BC 的中点.(2)若63BC = 3AE = 求O 的半径及阴影部分的面积.3.如图,AB 为O 的直径 点C 在O 上 延长BC 至点D 使DC CB =.延长DA 与O 的另一个交点为E 连结AC CE ,.(1)求证D E ∠=∠(2)若42AB BC AC =-=, 求CE 的长.4.请仅用无刻度的直尺完成下列作图 不写作法 保留作图痕迹(1)如图1, ABC 与ADE 是圆内接三角形 AB AD = AE AC = 画出圆的一条直径.(2)如图2 , AB CD 是圆的两条弦 AB CD =且不相互平行 画出圆的一条直径. 5.如图,AB 是O 的直径 点D 在AB 的延长线上 点C 在O 上 ,30CA CD CDA =∠=︒.(1)求证CD 是O 的切线(2)若O 的半径为6 求点A 到CD 所在直线的距离.6.如图, 点C 在以AB 为直径的O 上 过C 作O 的切线交AB 的延长线于E AD CE ⊥于D 连接AC .(1)求证ACD ABC ∠=∠(2)若3tan 4CAD ∠= 8AD = 求O 直径AB 的长.7.如图, 已知以Rt ABC 的直角边AC 为直径作O 交斜边AB 于点E 连接EO 并延长交BC 的延长线于点D 连接AD 点F 为BC 的中点 连接EF .(1)求证EF 是O 的切线(2)若O 的半径为6 8CD = 求AB 的长.8.如图, AB 是半圆O 的直径 D 为半圆O 上的点(不与A B 重合) 连接AD 点C 为BD 的中点 过点C 作CF AD ⊥ 交AD 的延长线于点F 连接BF AC 交于点E .(1)求证FC 是半圆O 的切线(2)若3AF = 23AC = 求半圆O 的半径及AE 的长.9.如图, AB 为O 的直径 C 为BA 延长线上一点 CD 是O 的切线 D 为切点 OF AD ⊥于点E 交CD 于点F .(1)求证ADC AOF ∠=∠ (2)若53OC OB = 24BD = 求EF 的长. 10.如图,所示 AB 是O 的直径 点D 在AB 上 点C 在O 上 AD AC =CD 的延长线交O 于点E .(1)在CD 的延长线上取一点F 使BF BC = 求证BF 是O 的切线 (2)若2AB = 2CE 求图中阴影部分的面积.11.如图, ABC 内接于O AB 为O 的直径 D 为BA 延长线上一点 连接CD 过O 作OF BC ∥交AC 于点E 交CD 于点F ACD AOF ∠=∠.(1)求证CD 为圆O 的切线 (2)若1sin 4D =10BC = 求EF 的长. 12.如图, 四边形ABCD 是O 的内接四边形 AD CD = 70BAC ∠=︒ 50∠=°ACB .(1)求ABD ∠的度数 (2)求BAD ∠的度数.13.如图, 四边形ABCD 是O 的内接四边形 且对角线BD 为O 的直径 过点A 作AE CD ⊥ 与CD 的延长线交于点E 且DA 平分BDE ∠.(1)求证AE 是O 的切线(2)若O 的半径为5 6CD = 求DA 的长.14.如图, 在正方形ABCD 中有一点P 连接AP BP 旋转APB △到CEB 的位置.(1)若正方形的边长是8 4BP =.求阴影部分面积 (2)若4BP = 7AP = 135APB ∠=︒ 求PC 的长.15.如图, AB 是O 的直径 OD 垂直于弦AC 于点E 且交O 于点D F 是BA 延长线上一点 若CDB BFD ∠=∠.(1)求证 FD 是O 的一条切线(2)若15AB = 9BC = 求DF 的长. 16.如图,O 是ABC ∆的外接圆 AE 切O 于点A AE 与直径BD 的延长线相交于点E .(1)如图,① 若70C ∠=︒ 求E ∠的大小 (2)如图,① 若AE AB = 求E ∠的大小.17.已知 如图, 直线MN 交O 于A B 两点 AC 是直径 AD 平分CAM ∠交O 于D 过D 作DE MN ⊥于E .(1)求证DE 是O 的切线(2)若8cm DE = 4cm AE = 求O 的半径.18.已知四边形ABCD 内接于O C 是DBA 的中点 FC AC ⊥于C 与O 及AD 的延长线分别交于点,E F 且DE BC =.(1)求证~CBA FDC(2)如果9,4AC AB == 求tan ACB ∠的值.参考答案与解析1.(1)见解析(2)关系式为2=90αβ+︒ 证明见解析【分析】(1)AB 是O 的直径 BC 是弦 OD BC ⊥于E 本题满足垂径定理. (2)连接,CD DB 根据四边形ACDB 为圆内接四边形 可以得到290αβ+=︒. 【解析】(1)解不同类型的正确结论有 ①BE CE = ①BD CD = ①90BED ∠=︒ ①BOD A ∠=∠ ①AC OD ∥ ①AC BC ⊥ ①222OE BE OB += ①ABC S BC OE =⋅△ ①BOD 是等腰三角形 ①BOE BAC △∽△等等. (2)如图, 连接,CD DBα与β之间的关系式为290αβ+=︒证明AB 为圆O 的直径90A ABC ∴∠+∠=︒①又四边形ACDB 为圆内接四边形180A CDB ∠∠∴+=︒①∴①-①得90CDB ABC ∠∠-=︒①18021802CDB BCD α∠=︒-∠=︒- 即180290αβ︒--=︒ ①2=90αβ+︒.【点评】本题考查了圆的一些基本性质 且有一定的开放性 垂径定理 圆内接四边形的性质掌握圆的相关知识. 2.(1)见解析 (2)半径为3 39π324S =阴【分析】(1)连结AD 可得90ADB ∠=︒ 已知AB AC = 根据等腰三角形三线合一的性质即可得证点D 为线段BC 的中点(2)根据已知条件可证ABC DEC ∽△△ 得到ED ECAB BC= 22BD AB EC =⋅ 且EDC △是等腰三角形 进而得到ED DC BD == 设AB x = 则(()22333x x =+ 解方程即可求得O 的半径连接OE 可证AOE △是等边三角形 再根据AOEAOE S S S =-阴扇形即可求出阴影部分的面积【解析】(1)连结AD①AB 为O 的直径 ①90ADB ∠=︒ ①AB AC = ①BD CD =即点D 为线段BC 的中点. (2)①B E ∠=∠ C C ∠=∠ ①ABC DEC ∽△△ ①ED ECAB BC= ①AB AC = ①B C ∠=∠ ①C E ∠=∠ ①ED DC BD == ①22BD AB EC =⋅ 设AB x = 则 (()22333x x =+解得19x =-(舍去) 26x = ①O 的半径为3 连接OE ①60AOE =︒∠ ①AOE △是等边三角形 ①AE 33①AOEAOE S S S=-阴扇形260313333602π⨯⨯=-⨯ 39π324=【点评】本题主要考查等腰三角形的性质 相似三角形的判定和性质 不规则图形面积的计算 熟练掌握相关知识点是解题的关键. 3.(1)见解析 (2)CE 的长为17【分析】(1)由AB 为O 的直径得90ACB ∠=︒ 通过证明()ACD ACB ≌SAS 得到D B ∠=∠ 又由B E ∠=∠ 从而得到D E ∠=∠(2)设BC x = 则2AC x =- 在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+= 解一元二次方程得到BC 的长 由(1)知D E ∠=∠ 从而得到CD CE = 又由DC CB = 得到17CE CB ==【解析】(1)证明AB 为O 的直径90ACB ∴∠=︒180ACD ACB ∠+∠=︒90ACD ∴∠=︒在ACD 和ACB △中AC AC ACD ACB DC BC =⎧⎪∠=∠⎨⎪=⎩()ACD ACB ∴≌SASD B ∴∠=∠ BE ∠=∠D E ∴∠=∠(2)解设BC x =2BC AC -=∴2AC x =-在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+=解得117x = 217x = 17BC ∴=由(1)得D E ∠=∠ CD CE ∴= DC CB =17CE CB ∴==∴ CE 的长为17【点评】本题主要考查了圆周角定理 三角形全等的判定与性质 等腰三角形的性质 勾股定理解直角三角形 熟练掌握圆周角定理 三角形全等的判定与性质 等腰三角形的性质是解题的关键. 4.(1)见解析 (2)见解析【分析】(1)设BC DE 交于点G 连接AG 交圆于点F 即可作答(2)连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N 即可作答.【解析】(1)如图, 设BC DE 交于点G 连接AG 并延长 交圆于点F线段AF 即为所求证明如图, BC AE 交于点Q DE AC 交于点P 连接DB 交AF 于点H①AB AD = AE AC = ①C E ∠=∠ ADE ABC =∠∠ ①DAE BAC ∠=∠①DAE BAC ≌ ①BC DE = ①DAE BAC ∠=∠ ①BAE DAC ∠=∠①AB AD = ADE ABC =∠∠ ①DAP BAQ ≌ ①AQ AP = ①AE AC = ①QE PC =①QGE PGC ∠=∠ C E ∠=∠ ①QGE PGC ≌ ①QG PG =①AG AG = AQ AP = ①QAG PAG ≌ ①QAG PAG ∠=∠ ①BAE DAC ∠=∠ ①BAG DAG ∠=∠ ①AH AH = AB AD = ①BAH DAH ≌①BH DH = 90AHB AHD ∠=∠=° ①AF 垂直平分弦DB ①AF 是圆的直径(2)如图, 连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N线段MN 即为所求. 证明方法同(1).【点评】本题主要考查了垂径定理 圆周角定理以及全等三角形的判定与性质等知识 掌握圆周角定理以及垂径定理是解答本题的关键. 5.(1)见解析 (2)9【分析】(1)已知点C 在O 上 先连接OC 由已知CA CD = 30CDA ∠=︒ 得30CAO ∠=︒ 30ACO ∠=︒ 所以得到60COD ∠=︒ 根据三角形内角和定理得90DCO ∠=︒ 即能判断直线CD 与O 的位置关系.(2)要求点A 到CD 所在直线的距离 先作AE CD ⊥ 垂足为E 由30CDA ∠=︒ 得12AE AD = 在Rt OCD △中 半径6OD = 所以212OD OC == 18AD OA OD =+= 从而求出AE .【解析】(1)①ACD 是等腰三角形 30D ∠=︒①30CAD CDA ∠=∠=︒.连接OC①AO CO =①AOC 是等腰三角形①30CAO ACO ∠=∠=︒①60COD ∠=︒在COD △中 又①30CDO ∠=︒①90DCO ∠=︒①CD 是O 的切线 即直线CD 与O 相切.(2)过点A 作AE CD ⊥ 垂足为E .在Rt OCD △中 ①30CDO ∠=︒①212OD OC ==61218AD AO OD =+=+=在Rt ADE △中①30EDA ∠=︒①点A 到CD 边的距离为92AD AE ==. 【点评】此题考查的知识点是切线的判定与性质 解题的关键是运用直角三角形的性质及30°角所对直角边的性质.6.(1)见解析 (2)252AB =.【分析】(1)连接OC 由DE 为O 的切线 得到OC DE ⊥ 再由AD CE ⊥ 得到AD OC ∥ 得到OCA CAD ∠=∠ 根据OA OC = 利用等边对等角得到OCA CAB ∠=∠ 等量代换得到CAD CAB ∠=∠ 由AB 为O 的直径 可知90ACB ∠=︒ 最后根据等角的余角相等可得结论 (2)在Rt CAD △中 利用锐角三角函数定义求出CD 的长 根据勾股定理求出AD 的长 由(1)易证ADC ACB 得到AD AC AC AB= 即可求出AB 的长. 【解析】(1)解连接OC由题意可知DE 与O 的相切于COC DE ∴⊥AD CE ⊥AD OC ∴∥OCA CAD ∴∠=∠OA OC =OCA CAB ∴∠=∠CAD CAB ∴∠=∠ AB 为O 的直径90ACB ∴∠=︒90CAD ACD CAB ABC ∴∠+∠=∠+∠=︒ACD ABC ∴∠=∠(2)在Rt CAD △中3tan 4CDCAD AD ∠== 8AD =364CD AD ∴==22226810AC CD AD ∴+=+=由(1)可知CAD CAB ∠=∠90D ACB ∠=∠=︒ADC ACB ∴ADACAC AB ∴=81010AB∴= 252AB ∴=【点评】此题考查了切线的性质 以及解直角三角形 熟练掌握切线的判定与性质是解本题的关键. 7.(1)证明见解析 (2)125AB =【分析】(1)连接FO 可根据三角形中位线的性质可判断OF AB ∥ 然后根据直径所对的圆周角是直角 可得CE AE ⊥ 进而知OF CE ⊥ 然后根据垂径定理可得FEC FCE ∠=∠OEC OCE ∠=∠ 再通过Rt ABC 可知90OEC FEC ∠+∠=︒ 因此可证EF 为O 的切线(2)根据题意可先在Rt OCD △中求出OD 然后在Rt EFD 中求出FC 最终在Rt ABC 中求解AB 即可.【解析】(1)证连接FO 则由题意OF 为Rt ABC 的中位线①OF AB ∥①AC 是O 的直径①CE AE ⊥①OF AB ∥①OF CE ⊥①由垂径定理知 OF 所在直线垂直平分CE①FC FE = OE OC =①FEC FCE ∠=∠ OEC OCE ∠=∠①90ACB ∠=︒即90OCE FCE ∠+∠=︒①90OEC FEC ∠+∠=︒即90FEO ∠=︒①EF 是O 的切线(2)解①O 的半径为6 8CD = 90ACB ∠=︒①OCD 为直角三角形 6OC OE == 8CD = ①2210OD OC CD += 10616ED OD OE =+=+=由(1)知 EFD △为直角三角形 且FC FE =①设FC FE x == 则8FD FC CD x =+=+①由勾股定理 222EF ED FD +=即()222168x x +=+ 解得12x =即12FC FE ==①点F 为BC 的中点①224BC FC ==①212AC OC ==①在Rt ABC 中 22125AB BC AC +①125AB =【点评】本题考查切线的证明 圆的基本性质 以及勾股定理解三角形等 掌握切线的证明方法 熟练运用圆中的基本性质是解题关键.8.(1)见解析(2)半径为2 123AE =【分析】(1)根据点C 为弧BD 的中点 得出FAC CAB ∠∠= 然后得出FAC ACO ∠∠= 根据平行线的性质得出CF OC ⊥ 进而即可求解(2)连接BC 设OC 与BF 相交于点P 证明AFC ACB ∽ 得出4AB = 证明BOP BAF ∽得出1322OP AF == 进而证明ECP EAF ∽ 根据相似三角形的性质列出比例式 进而即可求解. 【解析】(1)证明连接OC 如图,点C 为弧BD 的中点∴CD CB =FAC CAB ∠∠∴=又OA OC =CAB ACO ∠∠∴=FAC ACO ∠∠∴=∴OC AF ∥又CF AD ⊥CF OC ∴⊥FC ∴是半圆O 的切线.(2)解连接BC 如图,AB 是半圆O 的直径90ACB ∠∴=︒90AFC ACB ∠∠∴==︒又FAC CAB ∠∠=AFC ACB ∴∽ ∴AFACAC AB = 23234AB ∴=∴半圆O 的半径为2.设OC 与BF 相交于点POC AF ∥BOP BAF ∴∽ ∴12OPOB AF AB == ∴1322OP AF == ∴12PC OC OP =-=OC AF ∥ECP EAF ∴∽ ∴EC PCAE AF = 即123AC AEAE -= 2316AE-=∴123AE = 【点评】本题考查了切线的性质与判定 相似三角形的性质与判定 掌握切线的判定以及相似三角形的性质与判定是解题的关键.9.(1)见解析(2)3【分析】(1)连接DO 根据CD 是O 的切线 OF AD ⊥ 证明ADC DOF ∠∠= 利用等腰三角形三线合一性质 证明ADC AOF ∠∠=.(2) 利用平行线分线段成比例定理 计算OE 证明CFO CDB △∽△ 计算OF两线段作差即可求解.【解析】(1)如图, 连接DO CD 是O 的切线OD DF ∴⊥90ADC ADO ∠∠∴+=︒OF AD ⊥ OA OD =90DOF ADO ∠∠∴+=︒ DOF AOF ∠∠=ADC DOF ∠∠∴=ADC AOF ∠∠∴=.(2)如图, 连接DO CD 是O 的切线OD DF ∴⊥90CDO ∠∴=︒53OC OB =设5(0)CO k k => 则3DO OB AO k ===4CD k ∴=538CB CO OB k k k ∴=+=+= AB 是O 的直径 24BD =AD DB ∴⊥OF AD ⊥∴OF BD ∥ ∴AO AE OB ED = CFO CDB △∽△ ∴OF CO BD CB= AE ED ∴=5524538OF k k k ==+ ∴1122OE BD == 15OF = 3EF OF OE ∴=-=.【点评】本题考查了切线的性质 等腰三角形的三线合一性质 平行线分线段成比例定理 相似三角形的性质与判定 熟练掌握切线的性质 相似三角形的性质与判定是解题的关键.10.(1)证明过程见解析 (2)142π-【分析】(1)AB 是O 的直径 AC AD = BF BC = 可求出90FBD ∠=︒ AB BF ⊥ 由此即可求证(2)如图,所示(见解析)连接,CO EO 可得1OC OE == 可证222CO O CE += 90COE ∠=︒ 根据扇形面积的计算方法即可求解.【解析】(1)证明①AB 是O 的直径①90ACB ∠=︒①90ACD BCD ∠+∠=︒①AC AD =①ACD ADC ∠=∠①ADC BDF ∠=∠①ACD BDF ∠=∠①BC BF =①BCD F ∠=∠①90BDF F ∠+∠=︒①180()90FBD FDB F ∠=︒-∠+∠=︒①AB BF ⊥ 且OB 是O 的半径①BF 是O 的切线.(2)解如图,所示 连接,CO EO①2AB =①1OC OE == ①2CE ①222CO EO += 2222CE == ①222CO O CE +=①90COE ∠=︒ ①29011111360242ππS ⨯=-⨯⨯=-阴影 ①图中阴影部分的面积为142π-. 【点评】本题主要考查圆的基础知识 掌握圆的切线的证明方法 扇形面积的计算方法是解题的关键.11.(1)见解析(2)3【分析】(1)连接CO 根据OF BC ∥可得B AOF ∠=∠ 根据直径所对的圆周角为直角可得90B CAB ∠+∠=︒ 再根据AO CO =得出CAB ACO ∠=∠ 最后证明90ACD ACO ∠+∠=︒即可 (2)根据中位线定理得出152OE BC == 证明DBC DOF ∽ 根据相似三角形对应边成比例 即可求解.【解析】(1)证明连接CO①OF BC ∥①B AOF ∠=∠①AB 为O 的直径①90ACB ∠=︒ 则90B CAB ∠+∠=︒①90AOF CAB ∠+∠=︒①AO CO =①CAB ACO ∠=∠①ACD AOF ∠=∠①90ACD ACO ∠+∠=︒ 即OC CD ⊥①CD 为圆O 的切线(2)①AB 为O 的直径①点O 为AB 中点①OF BC ∥①OE 为ABC 中位线 ①152OE BC == ①1sin 4D = OC CD ⊥ ①4OD OC = 则5BD OD OB OC =+=①OF BC ∥①DBC DOF ∽ ①OF OF BC BD = 即4510OC OF OC = 解得8OF =①853EF OF OE =-=-=.【点评】本题主要考查了切线的判定和性质 圆周角定理 相似三角形的判定和性质以及解直角三角形 解题的关键是掌握切线的判定和性质以及相似三角形的判定和性质.12.(1)30︒(2)100︒【分析】(1)根据三角形内角和定理可得60ABC ∠=︒ 再由AD CD = 可得ABD CBD ∠=∠ 即可求解(2)根据圆周角定理可得30ABD ACD ∠∠==︒ 从而得到80BCD ∠=︒ 再由圆内接四边形的性质 即可求解.【解析】(1)解①70,50BAC ACB ∠=︒∠=︒①18060ABC BAC ACB ∠=︒-∠-∠=︒①AD CD = ①1302ABD CBD ABC ∠=∠=∠=︒ (2)解由圆周角定理得30ABD ACD ∠∠==︒①80BCD ACB ACD ∠=∠+∠=︒①四边形ABCD 是O 的内接四边形①180100BAD BCD ∠=︒-∠=︒.【点评】本题主要考查了圆内接四边形的性质 圆周角定理等知识 熟练掌握圆内接四边形的性质 圆周角定理是解题的关键.13.(1)见解析(2)AD 的长是25【分析】(1)连接OA 根据已知条件证明OA AE ⊥即可解决问题(2)作OF CD ⊥ 则四边形OAEF 是矩形 且132DF CD ==由此可求得DE 的长 在Rt OFD △中 勾股定理求出OF 即AE 的长 在Rt AED △中利用勾股定理求DA . 【解析】(1)证明如图, 连接OA①AE CD ⊥①90DAE ADE ∠+∠=︒.①DA 平分BDE ∠①ADE ADO ∠=∠又①OA OD =①OAD ADO ∠=∠①90DAE OAD ∠+∠=︒①OA AE ⊥①AE 是O 的切线(2)解过点O 作OF CD ⊥于F .①90OAE AEF OFE ∠︒=∠=∠=①四边形OAEF 是矩形①5EF OA AE OF ===,.①OF CD ⊥ ①132DF FC CD ===①532DE EF DF =-=-=在Rt OFD △中 2222534OF OD DF --=①4AE OF ==在Rt AED △中 22224225AD AE DE ++=①AD 的长是25【点评】本题考查了切线的判定与性质 垂径定理 圆周角定理 勾股定理 解决本题的关键是掌握切线的判定与性质.14.(1)12π(2)9【分析】(1) 根据题意 CEB APB ABC PBE S S S S S =+--阴影扇形扇形 根据公式计算即可.(2) 连接PE 根据题意 45,135,90PEB CEP PEC ∠=︒∠=︒∠=︒ 根据勾股定理计算即可.【解析】(1)如图, ①正方形ABCD 旋转APB △到CEB 的位置①APB CEB ≌ 90ABC PBE ∠=∠=︒ =CEB APB S S ①CEB APB ABC PBE S S S S S =+--阴影扇形扇形①ABC PBE S S S =-阴影扇形扇形①48BP AB ==, ①9064901612360360S πππ︒⨯⨯︒⨯⨯=-=︒︒阴影. (2)连接PE根据题意 45,135PEB APB CEP ∠=︒∠=∠=︒ AP CE =①90PEC ∠=︒①4BP = 7AP =①2227,4432CE PE ==+=①222273281PC CE PE =+=+=解得9PC =.【点评】本题考查了正方形的性质 旋转的性质 阴影面积的计算 扇形面积公式 勾股定理 熟练掌握旋转的性质 阴影面积的计算 扇形面积公式 勾股定理是解题的关键.15.(1)证明见解析(2)10DF =【分析】(1)因为CDB CAB ∠=∠ CDB BFD ∠=∠ 所以CAB BFD ∠=∠ 即可得出FD ①AC 可得得出OD FD ⊥ 进而得出结论(2)利用勾股定理先求解AC 再利用垂径定理得出AE 的长 可得OE 的长 证明AEO FDO ∽ 再利用相似三角形的判定与性质得出DF 的长.【解析】(1)①CDB CAB ∠=∠ CDB BFD ∠=∠①CAB BFD ∠=∠①FD AC ∥①OD 垂直于弦AC 于点E①OD FD ⊥①FD 是O 的一条切线(2)①AB 为O 的直径①90ACB ∠=︒①15AB = 9BC = ①2215912AC -= 7.5AO OB OD ===①DO AC ⊥①6AE CE == ①227.56 4.5OE -①AC FD ∥①AEO FDO ∽ ①AE EO FD DO = ①4.567.5FD= 解得10DF =.经检验符合题意.【点评】本题主要考查了相似三角形的判定与性质 垂径定理 圆周角定理 切线的判定 以及平行线的判定 掌握相似三角形的判定与性质 垂径定理 圆周角定理以及平行线的判定是解题的关键.16.(1)50︒(2)30︒【分析】(1)连接OA 先由切线的性质得OAE ∠的度数 求出2142AOB C ∠=∠=︒ 进而得AOE ∠ 则可求出答案(2)连接OA 根据等腰三角形的性质及切线的性质列方程求解即可.【解析】(1)连接OA .如图,①AE 切O 于点AOA AE ∴⊥90OAE ∴∠=︒70C ∠=︒2270140AOB C ∴∠=∠=⨯︒=︒又180AOB AOE ∠+∠=︒40AOE ∴∠=︒90AOE E ∠+∠=︒904050E ∴∠=︒-︒=︒.(2)连接OA 如图,①设E x ∠=.AB AE =ABE E x ∴∠=∠=OA OB =OAB ABO x ∴∠=∠=2AOE ABO BAO x ∴∠=∠+∠=. AE 是O 的切线OA AE ∴⊥ 即90OAE ∠=︒在OAE ∆中 90AOE E ∠+∠=︒即290x x +=︒解得30x =︒30E ∴∠=︒.【点评】本题主要考查了切线的性质 等腰三角形的性质 圆周角的性质 三角形内角和的性质 用方程思想解决几何问题 关键是熟悉掌握这些性质.17.(1)见解析(2)10cm【分析】(1)连接OD 根据平行线的判定与性质可得90ODE DEM ∠=∠=︒ 又点D 在O 上 即可证得DE 是O 的切线(2)首先根据勾股定理可得AD 的长 再由ACD ADE ∽ 根据相似三角形的性质列出比例式 代入数据即可求得圆的半径.【解析】(1)证明如图,连接ODOA OD =OAD ODA ∠=∠∴ AD 平分CAM ∠OAD DAE ∴∠=∠ODA DAE ∴∠=∠DO MN ∴∥DE MN ⊥90ODE DEM ∴∠=∠=︒ 即OD DE ⊥ 又点D 在O 上 OD 为O 的半径DE ∴是O 的切线(2)解90AED ∠=︒ 8cm DE = 4cm AE =22228445AD DE AE ∴++如图,连接CDAC 是直径90ADC AED ∴∠=∠=︒CAD DAE ∠=∠ACD ADE ∴△∽△AD AC AE AD ∴= 4545=解得20AC =O ∴的半径为10cm .【点评】本题考查圆了切线的判定;等边对等角 平行线的判定与性质 圆周角定理 勾股定理 相似三角形的判定和性质等知识 在圆中学会正确添加辅助线是解决问题的关键.18.(1)见解析 (2)49【分析】(1)欲证~CBA FDC ,只要证明两个角对应相等就可以.可以转化为证明DE BC =就可以 (2)由~CBA FDC 可得814CF = ACB F ∠=∠ 进而即可得到答案. 【解析】(1)证明①四边形ABCD 内接于O①CBA CDF ∠=∠.①DE BC =①BCA DCE ∠=∠.①~CBA FDC(2)解①C 是DBA 的中点①9CD AC ==①~CBA FDC 4AB = ①AB AC CD CF = 即499CF= ①814CF = ①~CBA FDC ①94tan tan 8194AC ACB F CF ∠=∠===.【点评】本题考查的是圆的综合题;涉及弧、弦的关系;等腰三角形的性质;相似三角形的判定与性质;锐角三角函数;掌握相似三角形的判定和性质是解答此题的关键.。

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°, ∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB , ∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D , ∴OA ⊥AC ,OD ⊥CD , 在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC,∴Rt△OAC≌Rt△ODC(HL),∴AC=DC;(2)证明:由(1)知,△OAC≌△ODC,∴∠AOC=∠DOC,∴∠AOD=2∠AOC,∵∠AOD=2∠OBD,∴∠AOC=∠OBD,∴BD∥CM;(3)解:∵BD∥CM,∴∠BDM=∠M,∠DOC=∠ODB,∠AOC=∠B,∵OD=OB=OM,∴∠ODM=∠OMD,∠ODB=∠B=∠DOC,∵∠DOC=2∠DMO,∴∠DOC=2∠BDM,∴∠B=2∠BDM,如解图,作OE平分∠AOC,交AC于点E,作EF⊥OC于点F,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OE AE =EF , ∴Rt △EAO ≌Rt △EFO (HL), ∴OA =OF ,∠AOE =12∠AOC ,∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM , ∴∠AOE =∠BDM , 设AE =EF =y , ∵sin B =45,∴在Rt △AOC 中,sin ∠AOC =AC OC =45,∴设AC =4x ,OC =5x ,则OA =3x ,在Rt △EFC 中,EC 2=EF 2+CF 2, ∵EC =4x -y ,CF =5x -3x =2x , ∴(4x -y )2=y 2+(2x )2, 解得y =32x ,∴在Rt △OAE 中,OE =OA 2+AE 2=(3x )2+(32x )2=352x ,∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x=255.3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E . (1)求证:∠1=∠BCE ; (2)求证:BE 是⊙O 的切线; (3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵, ∴AB =BD在△ABF 与△DBE 中, ⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE , ∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ; (2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB , ∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°, 又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS), ∴CE =CF =1.由(1)可知:AF =DE =1+3=4, ∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°, ∵BD 平分∠ABC , ∴∠DBC =36°, ∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA ,∴AE DE =EF EA, ∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC , ∴AG 垂直平分BC , ∴AG 过圆心O , ∵AD ∥BC , ∴AD ⊥AG , ∴AD 是⊙O 的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F .(1)求证:∠CED =45°;(2)求证:AE =BD ;(3)求AO OF的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°, 又∵CE ⊥DC ,∴∠DCE =90°,∴∠CED =180°-90°-45°=45°;(2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°, 而∠CED =∠CAE +∠ACE =45°,∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°,∴CE =CD ,又∵CD ︵=BD ︵,∴CD =BD ,∴AE =CE =CD =BD ,∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又∵AB 是直径,则∠ADB =90°,∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2x x=1+ 2. 6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE 于E 点,连接AE 、DE ,AE 交CD 于点F .(1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE∠PAD =∠BOE ,∴△APD ∽△OBE ,∴PD BE =AP OB ,∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形.(3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FG FC的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD .∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FC FG =AB OB=2, ∴FG FC =12. 8. 如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC ⊥OB 交⊙O 于点C ,作直径CD 过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度.第8题图(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE ∽△CPB ,∴BC PC =CE CB, ∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34, ∴CE CP =34, 设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°,∴∠ABC =∠BAD =90°,∴BC ∥AD ,∴∠BCA =∠CAD ,又∵AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD;(2)证明:∵AE为⊙O的切线且O为圆心,∴OA⊥AE,即CA⊥AE,∴∠EAB+∠BAC=90°,而∠BAC+∠BCA=90°,∴∠EAB=∠BCA,而∠EBA=∠ABC,∴△EBA∽△ABC,∴EBAB=BABC,∴AB2=BE·BC,由(1)知AB=CD,∴CD2=BE·BC;(3)解:由(2)知CD2=BE·BC,即CD 2=92BC ①, ∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③, 将③代入①得,CD =332. 10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图 (1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。

初三数学 圆的综合的专项 培优 易错 难题练习题含详细答案

初三数学 圆的综合的专项 培优 易错 难题练习题含详细答案

初三数学 圆的综合的专项 培优 易错 难题练习题含详细答案一、圆的综合1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°.【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,⊙O 交BC 于点D ,交CA 的延长线于点E .过点D 作DF ⊥AC ,垂足为F .(1)求证:DF为⊙O的切线;(2)若AB=4,∠C=30°,求劣弧BE的长.【答案】(1)证明见解析(2)4 3π【解析】分析:(1)连接AD、OD,根据直径所对的圆周角为直角,可得∠ADB=90°,然后根据等腰三角形的性质求出BD=CD,再根据中位线的性质求出OD⊥DF,进而根据切线的判定证明即可;(2)连接OE,根据三角形的外角求出∠BAE的度数,然后根据圆周角定理求出∠BOE的度数,根据弧长公式求解即可.详解:(1)连接AD、OD.∵AB是直径,∴∠ADB=90°.∵AB=AC,∴BD=CD,又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF即∠ODF=90°.∴DF为⊙O的切线;(2)连接OE.∵AB=AC,∴∠B=∠C=30°,∴∠BAE=60°,∵∠BOE=2∠BAE,∴∠BOE=120°,∴=·4π=π.点睛:本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、圆周角定理,灵活添加辅助线是解题关键.3.已知AB,CD都是O的直径,连接DB,过点C的切线交DB的延长线于点E.()1如图1,求证:AOD2E180∠∠+=;()2如图2,过点A作AF EC⊥交EC的延长线于点F,过点D作DG AB⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O 外取一点H ,连接CH 、DH 分别交O 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)837+【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=,D E 90∠∠∴+=,2D 2E 180∠∠∴+=,AOD COB ∠∠=,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=.()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR 和ODG 中,A AOD ∠∠=,ARO OGD 90∠∠==,OA DO =,AOR ∴≌ODG ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===,AF//OC//BT ∴,OA OB =,CT CF 3m ∴==,ET m ∴=, CD 为直径,CBD CND 90CBE ∠∠∠∴===,E 90EBT CBT ∠∠∠∴=-=,tan E tan CBT ∠∠∴=,BT CT ET BT∴=,BT 3m m BT∴=,BT ∴=负根已经舍弃),tan E ∠∴== E 60∠∴=,CWD HDE H ∠∠∠=+,HDE HCE ∠∠=,H E 60∠∠∴==,MON 2HCN 60∠∠∴==,OM ON =,OMN ∴是等边三角形,MN ON ∴=,QM OB OM ==,MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=,MQO P 180H 120∠∠∠+=-=, PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN 中,CN 48==,在Rt CHN 中,CN 48tan H HN HN∠===HN ∴=在Rt KNH 中,1KH HN 2==NK 24==,在Rt NMK 中,MK 7===,HM HK MK 7∴=+=.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.4.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A 作出直径BC 所在射线的垂线.【答案】画图见解析.【解析】【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线.【详解】解:画图如下:【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线.5.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).38313 24313n【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为32 ∴a1.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭ .∵h2,∴1=2-1)2+14a 22,解得a 2=13. (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2, 即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭.∵h a n ,∴1=14a n 2+212n ⎛⎫- ⎪ ⎪⎝⎭,解得a n6.如图,△ABC 内接于⊙O ,弦AD ⊥BC 垂足为H ,∠ABC =2∠CAD .(1)如图1,求证:AB =BC ;(2)如图2,过点B 作BM ⊥CD 垂足为M ,BM 交⊙O 于E,连接AE 、HM ,求证:AE ∥HM;(3)如图3,在(2)的条件下,连接BD 交AE 于N ,AE 与BC 交于点F ,若NH =AD =11,求线段AB 的长.【答案】(1)证明见解析;(2)证明见解析;(3)AB的长为10.【解析】分析:(1)根据题意,设∠CAD=a,然后根据直角三角形的两锐角互余的关系,推导出∠BAC=∠ACB,再根据等角对等边得证结论;(2)延长AD、BM交于点N,连接ED.根据圆周角定理得出∠N=∠DEN=∠BAN,进而根据等角对等边,得到DE=DN,BA=BN,再根据等腰三角形和直角三角形的性质,求得MH∥AE;(3)连接CE,根据(2)的结论,由三角形全等的判定与性质证得HF=HC,然后结合勾股定理求出AC2-AH2=CD2-DH2,解得CD=5,CH=4,AH=8,最后根据锐角三角函数的性质得到AB.详解:(1)证明:设∠CAD=a,则∠ABC=2a,∠C=90°-a,∠BAD=90°-2a,∴∠BAC=90°-2a+a=90°-a∴∠BAC=∠ACB.∴AB=BC(2)证明:延长AD、BM交于点N,连接ED.∵∠DEN=∠DAB,∠N=∠BCD,∠BCD=∠BAN∴∠N=∠DEN=∠BAN∴DE=DN,BA=BN又∵BH⊥AN,DM⊥EN∴EM=NM,HN=HA,∴MH∥AE(3)连接CE.∠BDA=∠BCA,∠BDM=∠BAC,由(1)知∠BCA=∠BAC∴∠BDA=∠BDM,∴△BDM≌△BDH,∴DH=MH,∠MBD=∠HBD,∴BD⊥MH又∵MH∥AE,∴BD⊥EF,∴△FNB≌△ENB,同理可证△AFH ≌△ACH,∴HF=HC,又∵FN=NE∴NH ∥EC,EC=2NH,又∵NH=25,∴EC=45∠EAC=2∠AEC=2a=∠ABC,可证弧AC=弧EC,∴AC=EC=45设HD=x ,AH=11-x ,∵∠ADC=2∠CAD,翻折△CHD 至△CHG,可证CG=CD=AGAH=CD+DH,CD=AH-DH=11-x-x=11-2x又∵AC 2-AH 2=CD 2-DH 2,∴(45)2-(11-x)2=(11-2x)2-x 2∴x 1=3,x 2=272(舍去)∴CD=5,CH=4,AH=8. 又∵tan2AH CH a BH DH==,∴BH=6 ∴AB=22226810BM AH +=+= 点睛:此题主要考查了圆的综合,结合圆周角定理,勾股定理,全等三角形的判定与性质,解直角三角形的性质,综合性比较强,灵活添加辅助线,构造方程求解是解题关键.7.如图,在RtΔABC 中,∠ABC=90°,AB=CB ,以AB 为直径的⊙O 交AC 于点D ,点E 是AB 边上一点(点E 不与点A 、B 重合),DE 的延长线交⊙O 于点G ,DF ⊥DG ,且交BC 于点F.(1)求证:AE=BF ;(2)连接EF ,求证:∠FEB=∠GDA ;(3)连接GF,若AE=2,EB=4,求ΔGFD 的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可.详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°.∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12AC,∠CBD=∠C=45°,∴∠A=∠FBD.∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,A FBDAD BDEDA FDB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED≌△BFD(ASA),∴AE=BF;(2)连接EF,BG.∵△AED≌△BFD,∴DE=DF.∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°.∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF,∴∠FEB=∠GBA.∵∠GBA=∠GDA,∴∠FEB=∠GDA;(3)∵AE=BF,AE=2,∴BF=2.在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2.∵EB=4,BF=2,∴EF∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=DE EF.∵EF=∴DE=2.∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴GEAE=EBED,即GE•ED=AE•EB,∴10•GE =8,即GE =4105,则GD =GE +ED =9105. ∴1191011092252S GD DF GD DE =⨯⨯=⨯⨯=⨯⨯=.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.8.解决问题:() 1如图①,半径为4的O 外有一点P ,且7PO =,点A 在O 上,则PA 的最大值和最小值分别是______和______.()2如图②,扇形AOB 的半径为4,45AOB ∠=,P 为弧AB 上一点,分别在OA 边找点E ,在OB 边上找一点F ,使得PEF 周长的最小,请在图②中确定点E 、F 的位置并直接写出PEF 周长的最小值;拓展应用()3如图③,正方形ABCD 的边长为42;E 是CD 上一点(不与D 、C 重合),CF BE ⊥于F ,P 在BE 上,且PF CF =,M 、N 分别是AB 、AC 上动点,求PMN 周长的最小值.【答案】(1)11,3;(2)图见解析,PEF 周长最小值为423)41042.【解析】【分析】()1根据圆外一点P 到这个圆上所有点的距离中,最远是和最近的点是过圆心和该点的直线与圆的交点,容易求出最大值与最小值分别为11和3;()2作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求,此时PEF 周长最小,然后根据等腰直角三角形求解即可;()3类似()2题作对称点,PMN 周长最小12PP =,然后由三角形相似和勾股定理求解. 【详解】解:()1如图①,圆外一点P 到这个圆上所有点的距离中,最大距离是和最小距离都在过圆心的直线OP 上,此直线与圆有两个交点,圆外一点与这两个交点的距离个分别最大距离和最小距离. PA ∴的最大值227411PA PO OA ==+=+=,PA 的最小值11743PA PO OA ==-=-=,故答案为11和3;()2如图②,以O 为圆心,OA 为半径,画弧AB 和弧BD ,作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求.连接1OP 、2OP 、OP 、PE 、PF ,由对称知识可知,1AOP AOP ∠∠=,2BOP BOP ∠∠=,1PE PE =,2PF P F = ∴1245AOP BOP AOP BOP AOB ∠∠∠∠∠+=+==,12454590POP ∠=+=,12POP ∴为等腰直角三角形,121PP ∴==PEF 周长1212PE PF EF PE P F EF PP =++=++=,此时PEF 周长最小.故答案为;()3作点P 关于直线AB 的对称1P ,连接1AP 、1BP ,作点P 关于直线AC 的对称2P , 连接1P 、2P ,与AB 、AC 分别交于点M 、N .如图③由对称知识可知,1PM PM =,2PN P N =,PMN 周长1212PM PN MN PM P N MN PP =++=++=,此时,PMN 周长最小12PP =.由对称性可知,1BAP BAP ∠∠=,2EAP EAP ∠∠=,12APAP AP ==, ∴1245BAP EAP BAP EAP BAC ∠∠∠∠∠+=+==12454590P AP ∠=+=,12P AP ∴为等腰直角三角形,PMN ∴周长最小值12PP =,当AP 最短时,周长最小.连接DF .CF BE ⊥,且PF CF =,45PCF ∠∴=,2PC CF = 45ACD ∠=, PCF ACD ∠∠∴=,PCA FCD ∠∠=,又2AC CD=, ∴在APC 与DFC 中,AC PC CD CF=,PCA FCD ∠∠= C AP ∴∽DFC ,2AP AC DF CD∴==, ∴2AP DF =90BFC ∠=,取AB 中点O .∴点F 在以BC 为直径的圆上运动,当D 、F 、O 三点在同一直线上时,DF 最短. 2222(22)(42)2221022DF DO FO OC CD OC =-=+-=+-=-, AP ∴最小值为2AP DF =∴此时,PMN 周长最小值()12222222102241042PP AP DF ==⋅=⋅-=-.【点睛】本题考查圆以及正方形的性质,运用圆的对称性和正方形的对称性是解答本题的关键.9.在平面直角坐标系中,已知点A (2,0),点B (0,),点O (0,0).△AOB 绕着O 顺时针旋转,得△A'OB',点A 、B 旋转后的对应点为A',B',记旋转角为α.(Ⅰ)如图1,A'B'恰好经过点A时,求此时旋转角α的度数,并求出点B'的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,求证:AA'⊥BB';(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).【答案】(Ⅰ)α=60°,B'(3,);(Ⅱ)见解析;(Ⅲ)点P纵坐标的最小值为﹣2.【解析】【分析】(Ⅰ)作辅助线,先根据点A(2,0),点B(0,),确定∠ABO=30°,证明△AOA'是等边三角形,得旋转角α=60°,证明△COB'是30°的直角三角形,可得B'的坐标;(Ⅱ)依据旋转的性质可得∠BOB'=∠AOA'=α,OB=OB',OA=OA',即可得出∠OBB'=∠OA'A =(180°﹣α),再根据∠BOA'=90°+α,四边形OBPA'的内角和为360°,即可得到∠BPA'=90°,即AA'⊥BB';(Ⅲ)作AB的中点M(1,),连接MP,依据点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,即可得到当PM∥y轴时,点P纵坐标的最小值为﹣2.【详解】解:(Ⅰ)如图1,过B'作B'C⊥x轴于C,∵OA=2,OB=2,∠AOB=90°,∴∠ABO=30°,∠BAO=60°,由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°,∵OB=OB'=2,∠COB'=90°﹣60°=30°,∴B'C=OB’=,∴OC=3,∴B'(3,),(Ⅱ)证明:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为-2.理由是:如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,除去点(2,2),∴当PM⊥x轴时,点P纵坐标的最小值为﹣2.【点睛】本题属于几何变换综合题,主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和以及圆周角定理的综合运用,解决问题的关键是判断点P的轨迹为以点M为圆心,以MP 为半径的圆.10.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,∴0 tan30ODPD=,解得OD=1,∴PO,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.11.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1) 试判断BE与FH的数量关系,并说明理由;(2) 求证:∠ACF=90°;(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.图1 图2【答案】(1)BE="FH" ;理由见解析(2)证明见解析(3)=2π【解析】试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长试题解析:(1)BE=FH.理由如下:∵四边形ABCD是正方形∴∠B=90°,∵FH⊥BC ∴∠FHE=90°又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF∴△ABE≌△EHF(SAS)∴BE=FH(2)∵△ABE≌△EHF∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"∴CH=FH∴∠FCH=45°,∴∠FCM=45°∵AC是正方形对角线,∴∠ACD=45°∴∠ACF=∠FCM +∠ACD =90°(3)∵AE=EF,∴△AEF是等腰直角三角形△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°过E作EN⊥AC于点NRt△ENC中,EC=4,∠ECA=45°,∴EN=NC=Rt△ENA中,EN =又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)∴∠EAC=30°∴AE=Rt△AFE中,AE== EF,∴AF=8AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°=2π·4·(90°÷360°)=2π考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数BC ,∠B=45°,点D在边BC上,联结AD,以点A 12.如图,已知△ABC,AB=2,3为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;BD CD的值;(2)如果E是DF的中点,求:(3)联结CF,如果四边形ADCF是梯形,求BD的长.【答案】(1) 2442y x x (0≤x≤3); (2) 45; (3) BD 的长是1或1+52. 【解析】【分析】 (1)过点A 作AH ⊥BC ,垂足为点H .构造直角三角形,利用解直角三角形和勾股定理求得AD 的长度.联结DF ,点D 、F 之间的距离y 即为DF 的长度,在Rt △ADF 中,利用锐角三角形函数的定义求得DF 的长度,易得函数关系式.(2)由勾股定理求得:AC=22AH DH +.设DF 与AE 相交于点Q ,通过解Rt △DCQ 和Rt △AHC 推知12DQ CQ =.故设DQ=k ,CQ=2k ,AQ=DQ=k ,所以再次利用勾股定理推知DC 的长度,结合图形求得线段BD 的长度,易得答案.(3)如果四边形ADCF 是梯形,则需要分类讨论:①当AF ∥DC 、②当AD ∥FC .根据相似三角形的判定与性质,结合图形解答.【详解】(1)过点A 作AH ⊥BC ,垂足为点H .∵∠B =45°,AB 2∴·cos 1BH AH AB B ===.∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴22222AD AH DH x x =+=-+. 联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒.在Rt △ADF 中,90DAF ∠=︒,∴2442cos AD DF x x ADF ==-+∠ ∴2442y x x =-+.()03x ≤≤ ;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF .∵BC=3,∴312HC =-=.∴225AC AH HC +=.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQ DCQ CQ ∠=. 在Rt △AHC 中,90AHC ∠=︒,1tan 2AH ACH HC ∠==.∵DCQ ACH ∠=∠,∴12DQ CQ =. 设,2DQ k CQ k ==,AQ DQ k ==,∵3k =k =,∴53DC ==. ∵43BD BC DC =-=,∴4:5BD CD =. (3)如果四边形ADCF 是梯形 则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合. ∴1BD =.②当AD ∥FC 时,45ADF CFD ∠=∠=︒.∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠.∴ABD ∆∽DFC ∆.∴AB AD DF DC =. ∵DF =,DC BC BD =-.∴2AD BC BD =-.即23x =-,整理得 210x x --=,解得 12x ±=(负数舍去).综上所述,如果四边形ADCF 是梯形,BD 的长是1 【点睛】此题属于圆的综合题,涉及了平行四边形的性质、相似三角形的判定与性质、三角函数值以及勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.13.如图,AB 是O 的直径,DF 切O 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交BD 的延长线于点C .(1)求证:ABC C ∠∠=;(2)设CA 的延长线交O 于E BF ,交O 于G ,若DG 的度数等于60,试简要说明点D 和点E 关于直线AB 对称的理由.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;(2)连接OG,OD,AD,由BF∥OD,GD=60°,可求证BG=GD AD==60°,由平行线的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.【详解】(1)连接OD,∵DF为⊙O的切线,∴OD⊥DF.∵BF⊥DF,AC∥BF,∴OD∥AC∥BF.∴∠ODB=∠C.∵OB=OD,∴∠ABD=∠ODB.∴∠ABC=∠C.(2)连接OG,OD,AD,DE,DE交AB于H,∵BF∥OD,∴∠OBG=∠AOD,∠OGB=∠DOG,∴GD AD==BG.∵GD=60°,∴BG=GD AD==60°,∴∠ABC=∠C=∠E=30°,∵OD//CE∴∠ODE=∠E=30°.在△ODH中,∠ODE=30°,∠AOD=60°,∴∠OHD=90°,∴AB⊥DE.∴点D和点E关于直线AB对称.【点睛】本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.14.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=3,cosA=25,求出⊙O的半径和BE的长;(3)连接CG,在(2)的条件下,求CGEF的值.【答案】(1)见解析;(2)2,65(3)CG:EF=4:7【解析】试题分析:(1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出直线EF是⊙O的切线;(2)先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根据余弦函数的定义得到cos∠FOD==,设⊙O的半径为R,解方程=,求出R=,那么AB=2OD=,解Rt△AEF,根据余弦函数的定义得到cosA==,求出AE=,然后由BE=AB﹣AE即可求解.试题解析:(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;(2)解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD==,设⊙O的半径为R,则=,解得R=,∴AB=2OD=.在Rt△AEF中,∵∠AEF=90°,∴cosA===,∴AE=,∴BE=AB﹣AE=﹣=2.【点睛】本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点.要证某线是圆的切线,已知此线过圆上某点,连结圆心与这点(即为半径),再证垂直即可.15.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.(结果保留π)【答案】(1)OE的长为32;(2)阴影部分的面积为3 2π【解析】(1)OE=32(2)S=32π。

(完整版)初三数学圆知识点复习专题经典

(完整版)初三数学圆知识点复习专题经典
∴ PA2 PC PB
A
D
E
O
C
B
线长是这点到割
( 4 )割线定理 :从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线段长的积相等
(如上图) 。
即:在⊙ O 中,∵ PB 、 PE 是割线
∴PC PB PD PE
例 1. 如图 1,正方形 ABCD的边长为 1,以 BC为直径。在正方形内作半圆 于 E,求 DE: AE的值。
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称 1
推 3 定理,即上述四个结论中, 只要知道其中的 1 个相等,则可以推出其它的 3 个结论,
即:① AOB DOE ;② AB DE ; ③ OC OF ;④ 弧 BA 弧 BD
O A
C
E F D
∴C D
推论 2 :半圆或直径所对的圆周角是直角;圆周角是直角所对的弧
C
是半圆,所对的弦是直径。
即:在⊙ O 中,∵ AB 是直径
或∵ C 90
B
A
O
∴ C 90
∴AB 是直径
推论 3 :若三角形一边上的中线等于这边的一半,那么这个三角形是
C
直角三角形。
即:在△ ABC 中,∵ OC OA OB
B
A
推论 1:( 1 )平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2 )弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3 )平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结

2023年春九年级数学中考复习《圆综合压轴解答题》专题提升训练(附答案)

2023年春九年级数学中考复习《圆综合压轴解答题》专题提升训练(附答案)

2023年春九年级数学中考复习《圆综合压轴解答题》专题提升训练(附答案)1.如图,已知四边形ACBD内接于⊙O,AB是⊙O的直径,AB=10,点D是半圆的中点,连接CD,点I是CD上一点,且DI=DB.(1)求证:点I是△ABC的内心;(2)若BC=6,求△BIC的面积;(3)随着点C的变化,点I的位置也发生改变,请探求CI长度的取值范围.2.如图,在△ABC中,AB=4,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作⊙O的切线DH交AC于点H,且DH⊥AC,连接DE与AB交于点G.(1)求证:AB=AC;(2)填空:①当BD=时,四边形EODA为菱形;②若∠EGA=∠EAG,则GO 的长为.3.如图,AB是⊙O的直径,点D在⊙O上,连接AD并延长至点C,连接BC交⊙O于点E,AB=BC=10,AC=12,过点D作DF⊥BC于点F.(1)求证:直线DF是⊙O的切线;(2)连接DE,设△CDE的面积为S1,四边形ADEB的面积为S2,求的值;(3)点P在上,且的长为,点Q为线段BD上一动点,连接PQ,求的最小值.4.(1)如图①,在△ABC中,∠BAC=90°,AB=4,AC=3,若AD平分∠BAC交CB于点D,那么点D到AC的距离为;(2)如图②,四边形ABCD内接于⊙O,AC为直径,点B是半圆AC的三等分点(弧AB<弧BC),连接BD,若BD平分∠ABC,且BD=8,求四边形ABCD的面积.(3)如图③,有一块半径为1的⊙O,若⊙O的内接四边形ABCD满足∠ABC=60°,AB=AD,且AD+DC=2,求AB的长.5.如图1,△ABC内接于⊙O,弦AE交BC于点D,连接BO,且∠ABO=∠DAC.(1)求证:AE⊥BC;(2)如图2,点F在弧AC上,连接CF、BF,BF交AE于点M,若∠ACF=∠OBC,求证:MD=ED;(3)如图3,在(2)的条件下,∠BFC=3∠EAC,若BM=,AM=3时,求弦CF 的长.6.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连接BO并延长交边AC于点D.(1)如图1,求证:∠BAC=2∠ABD;(2)如图2,过点B作BH⊥AC于点H,延长BH交⊙O于点G,连接OC,CG,OC 交BG于点F,求证:BF=2HG;(3)如图3,在(2)的条件下,若AD=2,CD=3,求线段BF的长.7.如图,等边△ABC内接于⊙O,点D是弧AC上一点,连接BD交AC于E.(1)如图1,求证∠ADB=∠CDB;(2)如图2,点F为线段BD上一点,连接CF,若∠BCF=2∠ABD时,求证:BF=DE+AD;(3)在(2)的条件下,作∠BCF的平分线交⊙O于M,在CM上取点R,连接AR交CF于点T,若TR=1,MR=5,∠CAT=3∠ACD,求AT的长.8.如图,在△ABC中,∠C=90°,AC=BC=2.(1)若点D、E、F分别在AB,AC,BC边上(如图1),连接DE,DF,EF,且∠EDF =90°,DE=DF.①四边形DECF的四个顶点是否在同一个圆上,并说明你的理由;②EF最小值为;四边形CEDF的面积是;(请直接写出答案)③点C到线段EF的最大距离为;(请直接写出答案)(2)若点D、E、F分别在AC,BC,AB边上(如图2),连接DE,DF,EF,且∠EDF =90°,DE=DF,求EF的最小值.9.已知,△ABC内接于⊙O,AD⊥BC于点G,连接AO.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,过点O作ON⊥BC于N,过点B作BH⊥AC于H,交AD于点E,交⊙O 于点F,求证:AE=2ON;(3)如图3,在(2)的条件下,直线OE交AB于点P,交AC于点Q,若HC:EF=:2,BP=11,CQ=2,求线段AD的长.10.(1)如图1,P是半径为5的⊙O上一点,直线l与⊙O交于A、B两点,AB=8,则点P到直线l的距离的最大值为.问题探究:(2)如图2,在等腰△ABC中,BA=BC,∠ABC=45°,F是高AD和高BE的交点,求S△ABF:S△BFD的值.问题解决:(3)如图3,四边形ABCD是某区的一处景观示意图,AD∥BC,∠ABC=60°,∠BCD =90°,AB=60m,BC=80m,M是AB上一点,且AM=20m.按设计师要求,需在四边形区域内确定一个点N,修建花坛△AMN和草坪△BCN,且需DN=25m.已知花坛的造价是每平米400元,草坪的造价是每平米200元,请帮设计师算算修好花坛和草坪预算最少需要多少元?11.如图,AB是⊙O的直径,P为AB上一点,弦CD与弦EF交于点P,PB平分∠DPF,连DF交AB于点G.(1)求证:CD=EF;(2)若∠DPF=60°,PE:PF=1:3,AB=2,求OG的长.12.已知⊙O是△ABC的外接圆,BC为⊙O的直径,弧AB上一点D满足DB=DA,连结CD交AB于点E.(1)求∠AED+∠ABC的值.(2)求证:AC•BC=CE•CD;(3)连接OE,若∠BOE=∠BEO,求△BEO与△BED的面积比.13.【基础巩固】(1)如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∼△BCF;【尝试应用】(2)如图2,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB上的一点,∠CFE=45°,若设AE=y,BF=x,求出y与x的函数关系及y的最大值.【拓展提高】(3)已知D是等边△ABC边AB上的一点,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上.如图3,如果AD:BD=1:2,求CE:CF的值.14.如图1,▱ABCD为⊙O的内接四边形,已知,以A为顶点作∠P AZ=45°,交BC于P,交CD于Z.(1)求证:四边形ABCD为正方形;(2)若BC=4BP,求DZ:CZ的值;(3)如图2,过P作PQ⊥AD于Q,过Z作ZX⊥AB于X,交PQ于Y.若,求四边形ZYPC的面积.15.如图1,在Rt△ABC中,∠C=90°,AC=16cm,AB=20cm,动点D由点C向点A 以每秒1cm速度在边AC上运动,动点E由点C向点B以每秒cm速度在边BC上运动,若点D、点E从点C同时出发,运动t秒(t>0),联结DE.(1)求证:△DCE∽△BCA;(2)如图2,设经过点D、C、E三点的圆为⊙P;①当⊙P与边AB相切时,求t的值;②在点D、点E运动过程中,若⊙P与边AB交于点F、G(点F在点G左侧,如图3),联结CP并延长交边AB于点M,连接PF,当△PFM与△CDE相似时,求CE的长.16.问题解决:(1)如图①,半圆O的直径AB=6,点P是半圆O上的一个动点,则△P AB的面积最大值是.(2)如图②,在扇形OAB中,∠AOB=90°,OA=6,点C、D分别在OA和OB上,且AC=2,D是OB的中点,点E在弧AB上.连接CE、DE,四边形CODE的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.17.给出定义:有两个内角分别是它们对角的两倍的四边形叫做倍对角四边形.(1)如图1,在倍对角四边形ABCD中,∠D=2∠B,∠A=2∠C,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA 的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是倍对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当4DH=3BG时,求△BGH与△ABC的面积之比.18.【概念提出】圆心到弦的距离叫作该弦的弦心距.【数学理解】如图①,在⊙O中,AB是弦,OP⊥AB,垂足为P,则OP的长是弦AB的弦心距.(1)若⊙O的半径为5,OP的长为3,则AB的长为.(2)若⊙O的半径确定,下列关于AB的长随着OP的长的变化而变化的结论:①AB的长随着OP的长的增大而增大;②AB的长随着OP的长的增大而减小;③AB的长随着OP的长的确定而确定;④AB的长与OP的长无关.其中所有正确结论的序号是.【问题解决】如图②,已知线段EF,MN,点Q是⊙O内一定点.(3)用直尺和圆规过点Q作弦AB,满足AB=EF;(保留作图痕迹,不写作法)(4)若弦AB,CD都过点Q,AB+CD=MN,且AB⊥CD.设⊙O的半径为r,OQ的长为d,MN的长为l.①求AB,CD的长(用含r,d,l的代数式表示);②写出作AB,CD的思路.19.阅读,然后解答问题:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)根据“奇异三角形”的定义,请你证明:“三边分别为3,,5的三角形是奇异三角形;(2)在Rt△ABC中,AB=c,AC=b,BC=1,且c>b>1,若Rt△ABC是奇异三角形,求b和c;(3)如图,AB是⊙的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.20.问题情境:如图1,P是⊙O外的一点,直线PO分别交⊙O于点A,B,则P A是点P 到⊙O上的点的最短距离.(1)探究证明:如图2,在⊙O上任取一点C(不与点A,B重合),连接PC,OC.求证:P A<PC.(2)直接应用:如图3,在Rt△ABC中,∠ACB=90°,AC=BC=3,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(3)构造运用:如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A1MN,连接A1B,则A1B 长度的最小值为.(4)综合应用:如图5,平面直角坐标系中,分别以点A(﹣2,3),B(4,5)为圆心,以1,2为半径作⊙A,⊙B,M,N分别是⊙A,⊙B上的动点,P为x轴上的动点,直接写出PM+PN的最小值为.参考答案1.(1)如图1,证明:∵点D是半圆的中点,∴∠ACD=∠ABD=∠BCD=∠DAB,∵DI=DB.∴∠DIB=∠DBI,∴∠DCB+∠CBI=∠ABD+∠ABI,∴∠CBI=∠ABI,∴点I是△ABC的内心;(2)如图2,作AE⊥CD于E,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∴∠ACD=∠ABD=∠BCD=∠DAB=45°,在Rt△ABC中,BC=6,AB=10,∴AC=8,在Rt△ACE中,AE=CE=AC=4,在Rt△ADE中,AE=4,BD=AD==5,∴DE=3,∴CD=CE+DE=7,∵DI=BI=5,∴CI=2,作IJ⊥BC于J,∴IJ=CI=2,∴S△BIC===6;(3)如图3,∵DI=BD=5,∴I在以D为圆心,5为半径的圆上一段弧上运动,作⊙O的直径DC′与⊙D交于点I′,当C与C′重合,I与I′重合时,IC最大,C′I′=10﹣5,∴0<CI≤10﹣52.(1)证明:连接OD,∵DH为⊙O的切线,D为切点,∴OD⊥DH,∵DH⊥AC,∴∠ODH=∠DHC=90°,∴OD∥AC,∴∠ODB=∠C,∵OB=OD,∴∠OBD=∠ODB,∴∠OBD=∠C,∴AB=AC;(2)解:①如图,连接AD、OD、EO,∵四边形EODA为菱形,∴AD=OD=AB=2,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,故答案为:2;②∵∠EGA=∠EAG,∴∠EAG=∠OGD,∵AE∥OD,∴∠CED=∠ODE,∠EAG=∠AOD,∴∠OGD=∠GOD,∴OD=DG,∵∠B=∠AED,∴∠ODE=∠B,又∵∠OGD=∠DGB,∴△OGD∽△DGB,设OG=x,∴,∴,∵x>0,∴x=﹣1,∴OG=﹣1,故答案为:﹣1.3.(1)证明:连接OD,∵AO=OD,∴∠OAD=∠ODA,∵AB=BC,∴∠OAD=∠C.∴OD∥BC,∵DF⊥BC,∴DF⊥OD,∵OD是⊙O的半径,∴直线DF是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴AD=DC=6,∵四边形ADEB是⊙O的内接四边形,∴∠ADE+∠ABE=180°,∵∠ADE+∠CDE=180°,∴∠CDE=∠ABC,∵∠C=∠C,∴△CDE∽△CBA,∴=,∴;(3)如图,过点Q作QG⊥AB于点G,∵sin∠ABD=,∴QG=BQ,∴PQ+BQ=PQ+QG,∴当P,Q,G三点共线时,PQ+BQ有最小值为PG,∵的弧长为π,∴,∴∠POB=60°,∴PG=OP•sin60°=,∴PQ+BQ的最小值为.4.解:(1)如图1,作DE⊥AC于E,作DF⊥AB于F,∵AD平分∠BAC,∴DE=DF,由S△ABC=S△ABD+S△ACD得,AB•AC=,∴4×3=4•DE+3DE,∴DE=,故答案是;(2)如图2,作CE⊥BD于E,作AF⊥BD于F,∵AC是直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠DBC=∠ABD=,∴=,∠ECB=90°﹣∠DBC=45°=∠DBC,∴AD=CD,BE=CE,∵点B是半圆AC的三等分点(弧AB<弧BC),∴的度数是60°,的度数是120°,∴∠ADB=30°,∠BDC=60°,∴∠ADB=∠DCE=30°,∴△ADF≌△DCE(AAS),∴AF=DE,∴AF+CE=DE+BE=8,∴S四边形ABCD=S△ABD=====32;(3)如图3连接AC,延长CD至E,使DE=AD,连接AE,∵AB=AD,∴=,∴∠ACB=∠ACE,∵四边形ABCD内接于⊙O,∴∠ADE=∠ABC=60°,∴△ADE是等边三角形,∴∠E=60°,∴∠B=∠E,又∵AC=AC,∴△ABC≌△AEC(AAS),∴BC=CE,∵CE=DE+CD=AD+CD=2,∴BC=2.∵⊙O的半径是1,∴BC是⊙O的直径,∴∠BAC=90°,∴AB=BC•cos60°=1.5.(1)证明:延长BO交⊙O于G,连接AG,如图:∵=,∴∠G=∠C,∵∠ABO=∠DAC,∴∠G+∠ABO=∠C+∠DAC,∵BG为⊙O直径,∴∠BAG=90°,∴∠G+∠ABO=∠C+∠DAC=90°,∴∠ADC=90°,∴AE⊥BC;(2)证明:设BF交AC于N,延长BO交⊙O于G,连接CG,BE,如图:∵BG为⊙O直径,∴∠BCG=90°,∴∠G+∠OBC=90°,∵∠G=∠BFC,∠OBC=∠ACF,∴∠BFC+∠ACF=90°,∴∠CNF=90°,∴∠NBC+∠NCB=90°,由(1)知:AE⊥BC有∠DAC+∠NCB=90°,∴∠NBC=∠DAC,∵=,∴∠DAC=∠DBE,∴∠NBC=∠DBE,又∠BDM=∠BDE=90°,BD=BD,∴△BDM≌△BDE(ASA),∴MD=ED;(3)解:连接AF、BE,如图:∵=,∴∠BFC=∠BAC,∵∠BFC=3∠EAC,∴∠BAC=3∠EAC,∴∠BAE=2∠EAC,由(2)知∠EAC=∠DBE=∠DBM,BE=BM=,∴∠EBM=2∠EAC,∴∠EBM=∠BAE,又∠BEM=∠AEB,∴△BEM∽△AEB,∴==,∵AM=3,∴==,解得:EM=2,AB=5,在Rt△AMN中,MN2+AN2=AM2=9(Ⅰ),在Rt△ABN中,(+MN)2+AN2=AB2=25(Ⅱ),由(Ⅰ)、(Ⅱ)可得:MN=,AN=,∵∠AMF=∠BME,∠AFM=∠BEM,∴△BEM∽△AFM,∴=,即=,∴MF=,∴NF=MF﹣MN=,∵cos∠BAC=cos∠BFC,∴=,即=,∴CF=.6.(1)如图1,证明:连接OA,OC,∴OB=OC,又AB=AC,OA=OA,∴△AOB≌△AOC(SSS),∴∠OAC=∠OAB,∴∠BAC=2∠OAB,∵OA=OB,∴∠ABD=∠OAB,∴∠BAC=2∠ABD;(2)如图2,证明:连接AG,OG,延长AO交BG于M,交BC于P,交⊙O于N,由(1)知,∠BAO=∠CAO,∴=,∵AB=AC,∴AP⊥BC,∵BH⊥AC,∠AMH=∠BMP,∴∠CBG=∠CAO,∵=,∴∠CAG=∠CBG,∴∠CAG=∠CAO,∴AM=AG,=,∴GM=2GH,∠BON=∠COG,∵OB=OG,∴∠OBG=∠OGB,∴△BOM≌△GOF(ASA),∴BM=GF,∴BM+MF=GF+MF,即BF=MG=2GH;(3)如图3,解:设∠ABD=α,由(1)(2)知,∠BAC=2∠ABD=2α,∠CAG=,连接AG,作DT⊥AB于T,截取TK=AT,∴AD=DK=2,∴∠DKA=∠DAK=2α,∵∠BDK=∠AKD﹣∠ABD=2α﹣α=α,∴BK=DK=2,∴AK=AB﹣BK=3,∴AT=KT==,∴DT===,∴cos2α===,tanα==,在Rt△ABH中,AH=AB•cos2α=5×=,在Rt△AHG中,GH=AH•tanα==,∴BF=2GH=.7.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴=,∴∠ADB=∠CDB;(2)证明:如图,作∠BCF的角平分线,交BD于点G,设∠ACD=α,∵=,∴∠ABD=∠ACD=α,∵∠BCF=2∠ABD,∴∠FCG=∠BCG=∠ACD=α,∵△ABC是等边三角形,∴BC=AC,∵=,∴∠DAC=∠DBC,在△ADC与△BGC中,,∴△ADC≌△BGC(SAS),∴BG=AD,DC=GC,∵=,∴∠BDC=∠BAC=60°,∴△DGC是等边三角形,∴∠FGC=∠EDC=60°,在△CED与△CFG中,,∴△CED≌△CFG(ASA),∴ED=FG,∴BF=BG+GF=AD+DE,即BF=DE+AD;(3)解:设∠ACD=α,则∠CAT=3∠ACD=3α,如图,延长CF交⊙O点P,交AM于N点,连接P A,过M点作MQ∥AP,交AR于Q 点,连接PM,∵CM是∠BCF的平分线,由(2)得∠FCG=∠BCG=∠ACD=α,∴∠ACP=∠ACB﹣∠BCF=60°﹣2α,∠BAT=∠BAC﹣∠CAT=60°﹣3α,∵=,=,∴∠MAB=∠BCG=α,∠MAP=∠FCG=α,∴∠MAC=∠BAC+∠BAM=60°+α,∴∠MAT=∠MAC﹣∠CAT=60°+α﹣3α=60°﹣2α,∠P AT=∠MAT+∠MAP=60°﹣2α+α=60°﹣α,∵=,∴∠AMP=∠ACP=60°﹣2α,∴∠AMP=∠MAT=60°﹣2α,∴MP∥AR,∴∠AMQ=∠MAP=α,∠MQT=∠P AR=60°﹣α,∵=,∴∠AMC=∠ABC=60°,∴∠QMR=∠AMC﹣∠AMQ=60°﹣α,∴∠QMR=∠MQR=60°﹣α,∴QR=MR=5,∵设MP=AQ=m,则QT=QR﹣TR=5﹣1=4,∴AT=QT+AQ=4+m,∵=,∴∠MPC=∠MAC=60°+α,又∵∠MNP=∠ANT=∠APC+∠P AM=60°+α,∠ATN=∠ACP+∠CAT=60°﹣2α+3α=60°+α,∴∠MNP=∠MPC=∠ANT=∠ATN=60°+α,∴MP=MN,AN=AT,∴AM=MN+AN=MP+AT=m+4+m=4+2m,在△AMR中,∠AMR=60°,AM=4+2m,MR=5,AR=5+m,如图,过R点作AM边的高HR,∴∠MRH=30°,∴MH=MR=,HR==MR=,∴AH=AM﹣MH=+2m,在Rt△AHR中,HR2+AH2=AR2,∴()2+(+2m)2=(5+m)2,解得:m=2或﹣(舍去),∴AT=4+m=6.8.解:(1)①取EF中点P,连接CP,DP,∵点P为EF中点,∴PE=PF=EF.∵∠ACB=∠EDF=90°,∴CP=DP=AC,∴PE=PF=PC=PD,∴点E、D、F、C在以P为圆心,EF为半径的同一个圆上;②当DE⊥AC时,DE的长度最小,此时EF最短,∵∠A=45°,AD=,∴DE=1,∵DE=DF,∴EF==;∵D是AB的中点,∴AD=BD=CD=,CD⊥AB,∠BCD=45°,∵DE⊥DF,∴∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴S△ADE=S△CDF,∴S四边形DECF=S△DEC+S△DCF=S△DEC+S△ADE=S△ADC=××=1;故答案为;1.③由②可知当EF取最小值时,点C到线段EF的最大距离为EF=.故答案为.(2)过点F分别作FG⊥CA于点G,设DC=a,CE=b,∵∠CDE+∠GDF=∠GDF+∠DFG=90°,∴∠CDE=∠DFG,∵∠C=∠DGF,DE=DF,∴△DCE≌△FGD(AAS),∴FG=DC=a,GD=CE=b,则2a+b=2,a2+b2=DF2,∴DF2=a2+(2﹣2a)2,=5a2_8a+4=5,当a=时,DF2最小,此时EF2最小,∴EF的最小值为.9.(1)证:如图1,作直径AE,连接BE,∴∠ABE=90°,∴∠BAO=90°﹣∠E,∵=,∴∠E=∠C,∴∠BAO=90°﹣∠C,∵AD⊥BC,∴∠AGC=90°,∴∠CAD=90°﹣∠C,∴∠BAO=∠CAD;(2)证:如图2,∵ON⊥BC,∴BC=2CN,作直径CM,连接BM,AM,∴MB⊥BC,∵ON⊥BC,∴ON∥BM,∴△CON∽△CMB,∴==2,∴BM=2ON,∵=,∴∠BAM=∠BCM,∴∠BAM=∠BCM=90°﹣∠BMC,∵=,∴∠BMC=∠BAC,∴∠BAM=90°﹣∠BAC,∵∠AHB=90°,∴∠ABH=90°﹣∠BAC,∴∠BAM=∠ABH,∴BE∥AM,∴四边形AMBE是平行四边形,∴AE=BM,∴AE=2ON;(3)解:如图3,连接AF,CF,连接CE并延长交AB于I,连接OB、OC和BD,作OJ⊥AB于J,∵AG⊥BC,BH⊥AC,∴CI⊥AB,又∵∠AEH=∠BEG,∴∠GBE=∠EAH,∵=,∴∠F AC=∠GBE,∴∠F AC=∠EAH,∵∠AHF=∠AHE=90°,AH=AH,∴△AHE≌△AHF(ASA),∴EH=FH,∴FH=,同理可得:EG=DG=,∴tan∠BFC===,∴∠BFC=60°,∵=,∴∠BAC=∠BFC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,ON⊥BC,∴∠BON==60°,∴OA=OB=2ON,∵AE=2ON,∴AO=AE,∴∠AOE=∠AEO,∴∠AOP=∠AEQ,∵∠BAO=∠CAD,∵△AOP≌△AEQ(ASA),∴AP=AQ,∴△APQ是等边三角形,∴∠APQ=60°,∵∠AEH=90°﹣∠BAC=30°,∴∠AEH=∠ABH=30°,∴PE=PB=11,设AP=AQ=PQ=x∴OP=EQ=PQ﹣PE=x﹣11,AC=AQ+CQ=x+2,在Rt△AIC中,∠BAC=60°,AC=x+2,∴AI=AC=(x+2),CI=(x+2),∴BI=AB﹣AI=(x+11)﹣(x+2)=+10,在Rt△BIC中,BC2=BI2+CI2,=()2+[(x+2)]2,在Rt△POJ中,∠APH=60°,OP=x﹣11,∴PJ=(x﹣11),OJ=(x﹣11),∴AJ=AP﹣PJ=x﹣(x﹣11)=,在Rt△AOJ中,OA2=OJ2+AJ2=[(x﹣11)]2+()2,∴OB2=[(x﹣11)]2+()2,∵BN=OB,∴BC=2BN=OB,∴BC2=3OB2=3•[(x﹣11)]2+()2,∴3•[(x﹣11)]2+()2=()2+[(x+2)]2,化简,得,x2﹣23x+130=0,∴x1=13,x2=10(舍去),∴AB=x+11=24,AC=x+2=15,∴BH=AB=12,AH=12,∴CH=AC﹣AH=3,∴BC==21,∵∠CAD=∠CBH,∠AGC=∠BHC=90°,∴△ACG∽△BCH,△BGE∽△AGC,∴==,=∴===,∴AG=,CG=,∴BG=BC﹣CG,=21﹣=,∴=,∴DG=EG=,∴AD=AG+DG=+=.10.解:(1)点P到直线l距离的最大值,即过圆心O向直线l作垂线交圆O于点P,连接OA,∵AB=8,OC⊥AB,∴AC=4,由勾股定理得:OC=3,∴PC=8,故答案为:8;(2)过点F作FG⊥AB,∵∠ABC=45°,AD⊥BC,∴△ABD为等腰直角三角形,∴AB=BD,又∵△ABC为等腰三角形,且AB=BC,BE⊥AC,∴BE平分∠ABC,又∵FD⊥BC,FG⊥AB,∴FG=FD,∴S△ABF=×AB×FG,S△BDF=×BD×DF,∴;(3)连接MC,过点A作AP⊥BC于点P,∵∠ABC=60°,AB=60,∴BP=30,AP=30,∴CD=30,设总费用为W元,∴W=400S△AMN+200S△BNC,∴W=200(2S△AMN+S△BNC),∴当2S△AMN+S△BNC最小时,总费用最小,又∵AM=20米,BM=40米,∴2S△AMN=S△BMN,∴当S△BMN+S△BNC最小时,费用最小,即S四边形BMNC最小时,费用最小,又∵S四边形BMNC=S△BMC+S△CMN,过点M作MH⊥BC,垂足为H,∵∠ABC=60°,BM=40米,∴BH=20米,MH=20米,MC=40米,∴∠BCM=30°,∴∠DCM=60°,∴S△BMC==800(平方米),∴当S△CMN最小时,费用最小,∴S△CMN=×NQ=20NQ,∴当NQ最小时,费用最小,∵ND=25米,∴N点在以D为圆心,25为半径的圆上运动,过圆心D向MC作垂线交⊙D于N点,交MC于Q,即此时NQ最小,∵CQ=15米,DQ=45米,∴NQ=45﹣25=20(米),∴S△MNC最小值=×20=400(平方米),∴S四边形BMNC最小值=1200(平方米)∴W最小值=200×1200=240000(元),11.(1)证明:如图,过点O作OM⊥EF于点M,ON⊥CD于点N,连接OF、OD,则∠OMF=∠OND=90°,∵PB平分∠DPF,OM⊥EF,ON⊥CD,∴OM=ON,在Rt△OFM和Rt△ODN中,,∴Rt△OFM≌Rt△ODN(HL),∴FM=DN,∵OM⊥EF,ON⊥CD,∴EF=2FM,CD=2DN,∴CD=EF;(2)∵PE:PF=1:3,∴设PE=x,PF=3x,则EF=PE+PF=4x,∵OM⊥EF,∴EM=FM=EF=2x,∴PM=EM﹣PE=2x﹣x=x,∵PB平分∠DPF,∠DPF=60°,∴∠FPB=DPB=DPF=30°,∴OM=x,OP=x,在Rt△OPM和Rt△OPN中,,∴Rt△OPM≌Rt△OPN(HL),∴PM=PN,由(1)知:FM=DN,∴PM+FM=PN+DN,∴PF=PD,∵∠DPF=60°,∴△PDF是等边三角形,∵PB平分∠DPF,∴PB⊥DF,垂足为G,∴DF=PF=3x,FG=DF=,∴PG===,∴OG=PG﹣OP=﹣x=,∵AB=2,∴OF=AB=,在Rt△OFG中,根据勾股定理,得OG2+FG2=OF2,∴()2+()2=()2,整理,得x2=3,解得x=±(负值舍去),∴x=,∴OG===.12.(1)解:∵BC是直径,∴∠CAB=90°,∴∠ACB+∠ABC=90°,∴∠ACB+∠ABC=45°,∵BD=AD,∴=,∴∠ACD=∠BCD,∵∠AED=∠ACD+∠CAE,∴∠AED+∠ABC=90°+∠ACB+∠ABC=135°;(2)证明:∵=,∴∠ACD=∠BCE,∵∠CBE=∠ADC,∴△CBE∽△CDA,∴=,∴AC•BC=CE•CD;(3)解:如图,过点B作BT⊥OE交CD于点T,连接OT.∵BO=BE,∴BO垂直平分线段OE,TB平分∠ABC,∴TO=TE,∴TB平分∠OTE,∵CE平分∠ACB,∴∠BTD=∠TCB+∠TBC=(∠ACB+∠ABC)=45°,∴∠OTE=90°,∴OT⊥CD,∴CT=TD,∵BC是直径,∴∠BDT=90°,∴∠BTD=∠DBT=45°,∴BD=DT=CT,∵CO=OB,CT=TD,∴BD=2OT,∴DT=CT=2ET,∴CE=3DE,∴S△BEC=3S△ADE,∵BO=OC,∴S△BEC=2S△BEO,∴2S△BEO=3S△DEB,∴=.13.(1)证明:∵∠A=∠EFC,∴∠E+∠EF A=∠EF A+∠CFB,∴∠E=∠CFB,∵∠A=∠B,∴△AFE∽△BCF;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∴AB==8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴,即,∴y=﹣x2+x(0≤x≤8),∴当x=4时,y最大=2;(3)解:连接DE,DF,∵△EFC与△EFD关于EF对称,∴∠EDF=∠ECF=60°,EC=ED,FC=FD,∵∠BDF+∠EDF=∠BDE=∠A+∠DEA,∵∠EDF=∠A=60°,∴∠BDF=∠DEA,∴△ADE∽△BFD,设AD=x,CE=DE=a,CF=DF=b,∵AD:BD=1:2,∴DB=2x,∴AB=3x=AC=BC,∴AE=3x﹣a,BF=3x﹣b,∵△ADE∽△BFD,∴,∴,由前两项得,2ax=b(3x﹣a),由后两项得,(3x﹣a)(3x﹣b)=2x2,即:3x(3x﹣a)﹣b(3x﹣a)=2x2,∴3x(3x﹣a)﹣2ax=2x2,∴a=x,∴,∴CE:CF=4:5.14.(1)∵四边形ABCD为平行四边形,∴∠B=∠D.又∵∠B+∠D=180°,∴∠B=∠D=90°.∴四边形ABCD为矩形,∵,∴AB=AD.∴四边形ABCD为正方形.(2)延长CD至点Q,使得DQ=BP,连接AQ,如图,∵四边形ABCD为正方形,∴∠ABP=∠ADQ=90°.在△ABP和△ADQ中,,∴△ABP≌△ADQ(SAS),∴AP=AQ,∠BAP=∠DAQ.∵∠BAD=90°,∴∠DAP+∠BAD=90°.∴∠DAP+∠QAD=90°.∴∠QAP=90°.∵∠P AZ=45°,∴∠P AZ=∠QAZ=45°.在△APZ和△AQZ中,,∴△APZ≌△AQZ(SAS).∴PZ=QZ.设AB=4a,DZ=t,则BP=a,ZC=4a﹣t,ZP=t+a,在Rt△CPZ中,∵ZC2+CP2=ZP2,∴(4a﹣t)2+(3a)2=(t+a)2.解得:t=.∴DZ=a,CZ=a,∴DZ:CZ=3:2.(3)∵四边形ABCD为正方形,PQ⊥AD,ZX⊥AB,∴四边形AXYQ,AXZD,XBPY,XBCZ均为矩形.设AB=a,AX=m,AQ=n,则mn=.由(2)可知,PZ=DZ+BP=m+n,CZ=XB=a﹣m,CP=DQ=a﹣n.在Rt△CPZ中,∵ZC2+PC2=PZ2,∴(a﹣m)2+(a﹣n)2=(m+n)2.化简得:a2﹣(m+n)a=mn.∴S四边形ZYPC=(a﹣m)(a﹣n)=a2﹣(m+n)a+mn=2mn=2×=5.15.(1)证明:∵∠C=90°,AC=16,AB=20,∴BC==12,∴=,∵==,∴=,∵∠C=∠C,∴△DCE∽△BCA;(2)解:①如图1,作PG⊥AC于G,PF⊥BC于F,作PH⊥AB于H,设CD=3a,CE=4a,DE=5a,由题意得,PH=PC=DE=,PF=CG=CD=a,FG=2a,∵S△ABC=S△APB+S△PBC+S△P AC,∴BC•AC=AB•PH++,∴12×16=20×a+12×a+16×2a,∴a=,∴t=3a=;②如图2,设CD=3a,CE=4a,DE=5a,∴PF=DE=a,由(1)知,△DCE∽△BCA,当△PMF∽△DCE时,∴△PMF∽△BCA,==,∴PM=a,FM=2a,由S△ABC=得20•CM=12×16,∴CM=,∵CP+PM=CM,∴a+a=,∴4a=,即CE=,当△PMF∽△ECD时,类比上可得,a+2a=,∴4a=,∴CE=,综上所述:CE=或.16.解:(1)点P运动至半圆O的中点时,如图1:此时底边AB上的高最大,即P'O=r=3,△P AB的面积最大值,∴S△P'AB=×3×6=9,故答案为:9;(2)四边形CODE的面积存在最大值,作OG⊥CD,垂足为G,延长OG交弧AB于点E′,则此时△CDE'的面积最大,如图2:∵OA=OB=6,AC=2,点D为OB的中点,∴OC=4,OD=3,在Rt△COD中,CD=5,OG=2.4,∴GE′=6﹣2.4=3.6,∴四边形CODE'面积为S△CDO+S△CDE′=×3×4+×5×3.6=15,∴四边形CODE的面积的最大值为15;(3)四边形ABCD的面积存在最大值,连接BD,作△ABD的外接圆O,过A作AE⊥BD于E,如图3:∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,即C在⊙O上,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,有BD=AB=AD=6,在Rt△ABE中,BE=AB=3,AE=BE=3,∴S△ABD=BD•AE=×6×3=9,当C为中点,即A、E、C共线时,△BDC的面积最大,此时∠ACB=∠ADB=60°,AC为⊙O直径,∴∠CAB=30°,∴AC==4,∴CE=AC﹣AE=,∴S△BDC=BD•CE=×6×=3,∴S四边形ABCD=S△ABD+S△BDC=12,即四边形ABCD的面积的最大值是12.17.(1)解:在倍对角四边形ABCD中,∠D=2∠B,∠A=2∠C,∵∠A+∠B+∠C+∠D=360°,∴3∠B+∠3∠C=360°,∴∠B+∠C=120°,∴∠B与∠C的度数之和为120°;(2)证明:在△BED与△BEO中,,∴△BED≌△BEO(SAS),∴∠BDE=∠BEO,∵∠BOE=2∠BCF,∴∠BDE=2∠BCF连接OC,设∠EAF=α,则∠AFE=2α,∴∠EFC=180°﹣∠AFE=180°﹣2α,∵OA=OC,∴∠OAC=∠OCA=α,∴∠AOC=180°﹣∠OAC﹣∠OCA=180°﹣2α,∴∠EFC=∠AOC=2∠ABC,∴四边形DBCF是倍对角四边形;(3)解:过点O作OM⊥BC于M,∵四边形DBCF是倍对角四边形,∴∠ABC+∠ACB=120°,∴∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OBC=∠OCB=30°,∴BC=2BM=BO=BD,∵DG⊥OB,∴∠HGB=∠BAC=60°,∵∠DBG=∠CBA,∴△DBG∽△CBA,∴==,∵4DH=3BG,BG=2HG,∴DG=,∴==,∴=.18.解:(1)连接OA,∵OP⊥AB,∴AP=,∵OA=5,OP=3,∴AP==4,∴AB=2AP=8,故答案为:8;(2)设半径为r不变,∴AB=2AP=2,当r不变,OP的长增大时,AB减小;OP长确定时,AB也确定,故选:②③;(3)如图,利用△MPF和△OP'B全等,首先作EF的垂直平分线,再取FM=r,然后以点O为圆心,MP为半径画圆,再以OQ为直径画圆,两圆交点为P',从而画出线段AB,如图,线段AB即为所求;(4)①解:设AB=2m,CD=2n,如图,可得:,解得:,∴AB=,CD=,②作图思路:先作斜边为4r,一条直角边为2,另一条直角边为的直角三角形;再作斜边为,一条直角边为l,另一条直角边为的直角三角形;再在⊙O中作出长为的弦,再如(3)中作法,过点Q作弦AB;最后过点Q作AB的垂直弦CD.19.(1)证明:在△ABC中,三边长分别是3,和5,∵32+52=2()2,。

中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1.如图 O 是ABC 的外接圆 AB 是O 的直径 FH 是O 的切线 切点为F FH BC ∥ 连接AF 交BC 于E 连接BF .(1)证明:AF 平分BAC ∠(2)若ABC ∠的平分线BD 交AF 于点D 4EF = 6DE = 求tan EBF ∠的值.2.如图① OA 是O 的半径 点P 是OA 上一动点 过P 作弦BD ⊥弦AC 垂足为E连结AB BC CD DA .(1)求证:BAO CAD ∠=∠.(2)当OA CD ∥时 求证:AC BC =.(3)如图① 在(2)的条件下 连结OC .①若ABC 的面积为12 4cos 5ADB求APD △的面积. ①当P 是OA 的中点时 求BD AC 的值.3.如图 ABC 内接于O AB ,是①O 的直径 过点C 作O 的切线交AB 的延长线于点D BE CD ⊥ EB 的延长线交O 于F CF ,交AB 于点G BCF BCD ∠=∠.(1)求证:BE BG =(2)若1BE = 求O 的半径.4.如图 O 是ABC 的外接圆 AB 是O 的直径 BD 是O 的切线 连接AD 交O 于点E 交BC 边于点F 若点C 是AE 的中点.(1)求证:ACF BCA ∽△△(2)若1CF = 2BF = 求DB 的长.5.如图1 锐角ABC 内接于O 点E 是AB 的中点 连结EO 并延长交BC 于D 点F 在AC 上 连结AD DF BAD CDF ∠=∠.(1)求证:DF AB .(2)当9AB = 4AF FD ==时①求tan CDF ∠的值①求BC 的长.(3)如图2 延长AD 交O 于点G 若::1:4:3GC CA AB = 求BED DFC S S△△的值.6.如图 AB 为O 的直径 弦CD AB ⊥于点E 连接AC BC .(1)求证:CAB BCD ∠=∠(2)若4AB = 2BC = 求CD 的长.7.如图 四边形ABCD 内接于O BC 为O 的直径 O 的切线AP 与CB 的延长线交于点P .(1)求证:PAB ACB ∠=∠(2)若12AB = 4cos 5ADB求PB 的长.8.在Rt ABC 中 90BCA ∠=︒ CA CB = 点D 是ABC 外一动点(点B 点D 位于AC 两侧) 连接CD AD .(1)如图1 点O 是AB 的中点 连接OC OD 当AOD △为等边三角形时 ADC ∠的度数是______(2)如图2 连接BD 当135ADC ∠=︒时 探究线段BD CD DA 之间的数量关系 并说明理由(3)如图3 O 是ABC 的外接圆 点D 在AC 上 点E 为AB 上一点 连接CE DE 当1AE = 7BE =时 直接写出CDE 面积的最大值及此时线段BD 的长.9.如图 AB 为O 的直径 AB AC = BC 交O 于点DAC 交O 于点E 45BAC ∠=︒.(1)求EBC ∠的大小(2)若O 的半径为2 求图中阴影部分的面积.10.如图 点C 是弧AB 的中点 直线EF 与O 相切于点C 直线AO 与切线EF 相交于点E 与O 相交于另一点D 连接AB CD .(1)求证:AB EF ∥(2)若3DEF D ∠=∠ 求DAB ∠的度数.11.如图1 BC 是O 的直径 点A 在O 上 AD ①BC 垂足为D AE AC = CE 分别交AD AB 于点F G .(1)求证:FA FG =(2)如图2 若点E 与点A 在直径BC 的两侧 AB CE 的延长线交于点G AD 的延长线交CG 于点F .①问(1)中的结论还成立吗?如果成立 请证明 如果不成立 请说明理由①若2tan3BAD∠=求cos BCE∠.12.如图1四边形ABCD内接于O连结BD AC交于点G点E是AB上一点连结CE交BD于点F且满足ACD ACF∠=∠.(1)求证:ACE ABD∠=∠(2)若点C是BD的中点①求证:CE CD=②若34CFCD=3tan4BDC∠=时求EFFD的值.(3)如图2当点F是BG的中点时若2AB=3AC=求CG的值.13.如图 四边形OABC 中90OAB OCB ∠=∠=︒ BA BC =.以O 为圆心 以OA 为半径作O .(1)求证:BC 是O 的切线(2)连接BO 形延长交O 于点D 延长AO 交O 于点E 与BC 的延长线交于点F ①补全图形①若AD AC = 求证:OF OB =.14.如图 在ABC 中 AB AC = AO BC ⊥于点O OE AB ⊥于点E 以点O 为圆心 OE 为半径作圆O 交AO 于点F .(1)求证:AC 是O 的切线(2)若60AOE =︒∠ 3OE = 在BC 边上是否存在一点P 使PF PE +有最小值 如果存在请求出PF PE +的最小值.15.如图1 在O 中 P 是直径AB 上的动点 过点P 作弦CD (点C 在点D 的左边) 过点C 作弦CE AB ⊥ 垂足为点F 连接BC 已知BE ED =.(1)求证:FP FB =.(2)当点P 在半径OB 上时 且OP FB = 求FPFC 的值.(3)连接BD 若55OA OP ==. ①求BD 的长.①如图2 延长PC 至点G 使得CG CP = 连接BG 求BCG 的面积.参考答案:1.(1)解:连接OF 如图所示:FH 是O 的切线OF FH ∴⊥①FH BC ∥OF BC ∴⊥BF CF ∴=BAF CAF ∴∠=∠AF ∴平分BAC ∠(2)解:如图作出ABC ∠的平分线BD 交AF 于点DABD CBD ∠=∠ BAF CAF CBF ∠=∠=∠ 且FBD CBD CBF ∠=∠+∠ BDF ABD BAF ∠=∠+∠FBD BDF ∴∠=∠4610BF DF EF DE ∴==+=+= AB 是O 的直径90AFB ∴∠=42tan 105EF EBF BF ∴∠===.2.(1)解:延长AO 交圆O 与F 连接BF .①90ABF ∠=︒①BD AC ⊥与E①90AED ABF ∠=∠=︒又AOE AFB ∠=∠①ABF AED ∽①BAF EAD ∠=∠即BAO CAD ∠=∠.(2)连接CF①AF 是O 的直径①90ACF ∠=︒①90AFC FAC ∠+∠=︒①OA CD ∥①FAC ACD ∠=∠①BD AC ⊥与E①90AED ∠=︒①90CDE ACD ∠+∠=︒①AFC CDE ∠=∠又①AFC CBA ∠=∠ CDE CAB ∠=∠①CBA CAB ∠=∠①AC BC =.(3)①①4cos 5ADB①45DE AD = ①45DE AD =①2235AE AD DE AD =- ①ACB ADB①45CE BC = 设4CE a = 则5BC a AC == ①223BE BC CE a -①5BC AC a ==①AE AC EC a =-=①53AD a = 43DE a = ①OP CD ①14OE AE DE CE == ①13PE a = 53PD a = ①211552236APD SPD AE a a a =⋅=⨯⨯= ①11531222ABC S AC BE a a =⋅=⨯⨯= 解得:22415a = ①25524466153APD S a ==⨯=. ①过点O 作OH AC ⊥于H①22AC AH CH ==①PE AC ⊥①PE OH ∥①P 是OA 的中点①E 是AH 的中点设AE k = 则2AH k = 4AC k= 3CE k = 4BC AC k ==①BE①ADB ACB ∠=∠ AED BEC∠=∠①AED BEC ∽ ①AEDEBE CE =①AE CEDE BE ⋅===①BD =①74BD AC k ==故BDAC3.(1)证明:如图 连接OC①CD 是①O 的切线①OC CD ⊥①90OCB BCD ∠+∠=︒①OC OB =①OCB OBC ∠=∠①BCF BCD ∠=∠①90BCF OBC ∠+∠=︒①90BGC ∠=︒ 即BG CF ⊥①BCF BCD ∠=∠,BE CF ⊥①BE BG =(2)解:①AB 是O 的直径 CF AB ⊥①BC BF =①BC BF =①BCF F ∠=∠①BE CD ⊥ BCF BCD ∠=∠①30BCF BCD F ∠=∠=∠=︒①60OBC ∠=︒①1BE =①2BC =①60OB OC OBC =∠=︒,①OBC △为等边三角形①2OB BC ==即O 的半径为2.4.(1)解:①AB 是O 的直径①090ACB FCA ∠=∠=①点C 是AE 的中点①AC EC =①CAE CBA ∠=∠①ACF BCA ∽△△(2)ACF BCA ∵∽△△2AC CF CB =⋅∴1CF = 2BF =23AC CF CB =⋅=∴AC ∴090ACB ∠=AB ∴==1sin 2CA ABC AB ∴∠=== 30CAE CBA =︒∠=∠∴903060BAC ∴∠=︒-︒=︒603030BAD ∴∠=︒-︒=︒BD 是O 的切线 90ABD ∴∠=︒tan D B B BA D A ∠==∴2DB ∴=5.(1)证明:①点E 是AB 的中点 且DE 过圆心①AB DE ⊥①AD BD =①B BAD ∠=∠有①BAD CDF ∠=∠①B CDF ∠=∠①DF AB . (2)①DFAB ①CDF CBA △△∽①DF CF BA CA=即:494CF CF=+ 解得:165CF = 又①AF FD =①CAD FDA ∠=∠①DF AB①FDA BAD CDF ∠=∠=∠①CAD CDF ∠=∠又C C ∠=∠①CDF CAD ∽ ①=CD CA CF CD①2161657645525CD CF AC ⎛⎫=⋅=⨯+= ⎪⎝⎭ ①245CD = ①CDF CBA △△∽①DC DF BC BA= 即24459BC = ①545BC = ①5424655BD BC DC =-=-= ①1922AE AB == 在ADE 中222293762DE AD AE ⎛⎫=-=- ⎪⎝⎭①3772tan tan 92DE CDF EAD AE ∠=∠=== 综上 17tan CDF ∠ 545BC =. (3)①::1:4:3GC CA AB =①它们所对圆心角度数比为1:4:3.根据同弧所对圆周角为原心角的一半 可知它们所对的圆周角度数比为1:4:3 即1::1:4:3B C ∠∠∠=设1∠=α 则4B α∠= 3C α∠=则14ADB C α∠=∠+∠=①AD BD =①4BAD B α∠=∠=①4ADB BAD B α∠=∠=∠=①ADB 为等边三角形①460α=︒①15α=︒①345C α∠==︒过点E 作EM BC ⊥交BC 于M 过点A 作⊥AP BC 交BC 于P 过点F 作FN BC ⊥交BC 于N设2BD m =①=60B ∠︒ 90BED ∠=︒①1cos6022BE BD m m =⋅︒=⨯= sin sin 60EM BE B m m =⋅=⋅︒==①211222BED S EM BD m =⋅=⋅=同理sin 2sin 602AP AB B m m =⋅=⨯︒== ①45C PAC ∠=∠=︒①PC AP == ①12PD BD m ==①)1CD PC PD m =-=①45C NFC ∠=∠=︒设FN CN n ==①DF AB60FDN B ∠=∠=︒ ①3tan 60FN DN ==︒ 又①CD DN NC =+ 即)331m n =+ 解得:()233n m = ①)()211953313322DFC S DC FN m m -=⋅=⨯⨯= ①2253332953BED DFC S m S -+△△. 6.(1)证明:①直径AB CD ⊥①BC BD =.①A BCD ∠=∠(2)解:连接OC①直径AB CD ⊥①CE ED =.①直径4AB =①2CO OB ==①2BC =①OCB 是等边三角形①60COE ∠=︒①30OCE ∠=︒ ①112OE OC == 在Rt COE △中①CE①2CD CE ==7.(1)证明:如图 连接OA①AP 为O 的切线①OA AP ⊥①90OAP ∠=︒①90OAB PAB ∠+∠=︒①OA OB =①OAB OBA ∠=∠①90OBA PAB①BC 为O 的直径①90ACB OBA ∠+∠=︒①PAB ACB ∠=∠(2)由(1)知PAB ACB ∠=∠ 且ADB ACB ∠=∠ ①ACB PAB ADB ∠=∠=∠ ①4cos cos cos 5ACB PAB ADB ∠=∠=∠= 在Rt ABC 中 3tan 4AB ACB AC ∠== ①12AB =①16AC =①2220BC AB AC +=①10OB =过B 作BF AP ⊥于F①ADB FAB ∠=∠ 4cos 5ADB①4cos 5FAB ∠=①3sin 5FAB ∠= ①在Rt ABF 中 36sin 5BF AB FAB =⋅∠=①OA AP BF AP ⊥⊥,,①BF OA ∥ ①PBF POA ∽①BF PB OA PO ①3651010PB PB =+①1807PB = 故PB 的长为1807. 8.(1)解:90BCA ∠=︒ BC AC = 点O 是AB 的中点 90COA ︒∴∠= 12CO AB OA == AOD 是等边三角形OD OA ∴= 60ODA DOA ∠=∠=︒OC OD ∴= 906030COD COA DOA ∠=∠-∠=︒-︒=︒ ()()11180180307522ODC COD ∴∠=︒-∠=⨯︒-︒=︒ 7560135ADC ODC ODA ∴∠=∠+∠=︒+︒=︒故答案为:135︒(2)解:线段BD CD DA 之间的数量关系为:BD DA =+ 理由如下: 过点C 作CH CD ⊥交AD 的延长线于点H 如图2所示:则180********CDH ADC ∠=︒-∠=︒-︒=︒ DCH ∴△是等腰直角三角形CH CD ∴= HD90BCA ∠=︒ACH BCD ∴∠=∠()ACH BCD SAS ∴≌BD AH HD DA AD ∴==+=+ (3)解:连接OC 如图3所示:90BCA ∠=︒ BC AC =ACB ∴是等腰直角三角形45ABC ∴∠=︒ O 是ABC 的外接圆O ∴是AB 的中点OC AB ∴⊥ ()()111174222OC OA AB AE BE ===+=⨯+= 413OE OA AE ∴=-=-=在Rt COE △中 由勾股定理得:2222435CE OC OE ++ CE 是定值∴点D 到CE 的距离最大时 CDE 面积的面积最大 AB 是O 的直径过点O 作ON CE ⊥于N 延长ON 与O 的交点恰好是点D 时 点D 到CE 的距离最大 CDE 面积的面积最大1122OCE S OC OE CE ON =⋅=⋅431255OC OE ON CE ⋅⨯∴===4OD OC ==128455DN OD ON ∴=-=-=此时 在直角CNO 中 222212164()55CN OC ON =-=-=在直角CND △中 222216885()()55CD CN DN +=+=在直角ABD △中 222228BD AB AD AD =-=- 由(2)知 8581022BD CD AD AD AD =+==2228108()AD AD ∴-=+610AD ∴=8108106101410BD AD ∴+=即CDE 面积的面积最大值为4 此时 1410BD .9.(1)解:①AB 为O 的直径①90AEB ∠=︒又①45BAC ∠=︒①=45ABE ∠︒.又①AB AC =①67.5ABC C ∠=∠=︒①22.5EBC ∠=︒.(2)解:连接OE 如图所示:①45ABE BAE ∠=∠=︒①AE BE =①OA OB =①OE AB ⊥①2OA OB OE ===①OBE OBE S S S =-阴影扇形29021223602π⨯⨯=-⨯⨯2π=-.10.(1)证明:连接OC 如图①直线EF 与O 相切于点C①OC EF ⊥.①点C 是AB 的中点①OC AB ⊥.①AB EF ∥.(2)解:①OC EF ⊥①90OCE ∠=︒.①90DEF EOC ∠+∠=︒.①2EOC D ∠=∠ 3DEF D ∠=∠①590D ∠=︒.①18D ∠=︒.①331854DEF D ∠=∠=⨯︒=︒.①AB EF ∥①54DAB DEF ∠=∠=︒.11.(1)证明:BC 为直径90BAC ∴∠=︒90ACE AGC ∴∠+∠=︒AD BC ⊥90ADB ∴∠=︒90ABD DAB ∴∠+∠=︒①AE AC =ACE ABD ∴∠=∠DAB AGC ∴∠=∠FA FG ∴=(2)解:①(1)中的结论成立理由如下: BC 为直径90BAC ∴∠=︒即:=90GAC ∠︒90ACG AGC ∴∠+∠=︒AD BC ⊥90ADB ∴∠=︒90ABD DAB ∴∠+∠=︒①AE AC =ACG ABD ∴∠=∠DAB AGC ∴∠=∠FA FG ∴=①如图2 过点G 作GM BC ⊥交CB 的延长线于点M90GMB ADB ∴∠=∠=︒又ABD GBM ∠=∠GBM ABD ∴∽ ∴BMMGBD DA = ∴BM BDMG DA =90BAD ABD ∠+∠=︒90BAD DAC ∠+∠=︒ABD DAC ∴∠=∠ACE ABD ∠=∠DAC ACE ∴∠=∠AF CF ∴=又AF GF =CF GF ∴=∴点F 为CG 的中点2tan 3BD BAD AD ∠== ∴23BMBD MG DA ==90ADB ADC ∠=∠=︒ABD CAD ∴∽ ①23BDAD AD CD ==设2BD x = 则3AD x =①233x x x CD= 解得:92CD x =AD BC ⊥ GM BC ⊥AD GM ∴∥①点D 为CM 的中点29CM CD x ∴==92DM CD x ∴== BM DM BD ∴=-52x = ①23BM MG = 32MG BM ∴=154x = CG ∴22MG CM +()221594x x ⎛⎫+ ⎪⎝⎭394x = cos BCE ∴∠CM CG =. 9394xx = 1213=. 12.(1)①ACD ACF ∠=∠ ACD ABD ∠=∠ ①ACE ABD ∠=∠(2)①①点C 是BD 的中点①BAC DAC ∠=∠ BC DC =①BAC DAC DBC ∠=∠=∠①BEC BAC ACE ∠=∠+∠ ABC ABD DBC ∠=∠+∠ ①BEC ABC ∠=∠①CE BC =①CE CD =②延长CE 交O 于点P 连接PB 连接CO 交BD 于点M由①得BAC DAC DBC ∠=∠=∠ BC DC = ①CM BD ⊥ ①12DM BM BD ==①BAC BPC ∠=∠①DBC DPC ∠=∠①BCF PCB ∠=∠①CBF CPB ∽ ①CB CF CP CB = ①34CF CD = 设3CF k = 4DC CE CB k === 则EF k = ①434k k CP k= 则163PC k = ①43PE PC CF EF k =--=①在Rt CMD 中 3tan 4CM BDC DM ∠== 设BDC ∠的对边为3CM m = 则4DM m = ①由勾股定理得5CD m = ①44cos 55DM m BDC CD m ∠=== ①4cos 5DM BDC DC ∠==①165DM k = 由12DM BM BD == ①3225BD DM k ==①BPF CDF ∠=∠ PBF DCF ∠=∠ ①BPF CDF ∽ ①PF BF DF CF= 设DF y = 由4733PF PE EF k k k =+=+= 325BF BD DF k y =-=- ①732353k k y y k-= 解得15y k = 275y k = ①155EF k DF k ==或5775EF k DF k == 综上可知EF DF 的值为15或57(3)过F 作FH AB ∥ 交AC 于点H同理FHG CHF ∽ ①FH HC HG FH= ①点F 是BG 的中点则设AH HG a == ①FH HC HG FH = 即131a a -= 整理得2310a a -+= 解得:135a +=(舍去) 235a -=①325CG a =-13.(1)证明:如图 连接BO90OAB OCB ∠=∠=︒ BA BC = BO BO =①()Rt Rt HL ABO CBO ≌①AO CO =CO ∴是O 的半径又①90BCO ∠=︒①BC 是O 的切线(2)①解:依照题意画出图形 如图所示①证明:①Rt Rt ABO CBO ≌ ①AOB BOC ∠=∠①AOD COD ∠=∠①AD AC =①AOC AOD ∠=∠①120AOC AOD COD ∠=∠=∠=︒ ①60AOB BOC ∠=∠=︒①90BCO ∠=︒①30OBC ∠=︒①60AOB OBC F ∠=∠+∠=︒①30F OBC ∠=︒=∠①OB OF =.⊥与点D如图14.(1)证明:过点O作OD AC⊥=AO BCAB AC∠∴平分BACAO⊥OE AB⊥OD AC∴=OD OEOE是圆的半径OD∴是圆的半径这样AC经过半径OD的外端且垂直于半径OD∴是O的切线AC(2)解:在BC边上存在一点P使PF PE+有最小值.延长AO交O于点G连接EG交BC于点P连接PF则此时PF PE+最小连接EF过点E作EH AO⊥于点H如图∠=︒OE OFAOE60=∴为等边三角形OEF∴===3EF OE OF⊥EH OF1322OH HF OF ∴=== 39322GH OG OH ∴=+=+= 在Rt EHO 中sin EH AOE OE ∠=EH OE ∴=在Rt EHG △中EG BC FG ⊥ OG OF = PG PF ∴=PE PF PE PG EG ∴+=+==∴在BC 边上存在一点P 使PF PE +有最小值.PF PE +的最小值为 15.(1)①BE ED = ①BCE DCE ∠=①CE AB ⊥①90CFP CFB ∠=∠=︒ 在CPF 和CBF 中 DCE BCE CF CFCFP CFB ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ASA CPF CBF ≌ ①FP FB =.(2)由(1)得 FP FB = ①OP FB =①OP FB FP ==设3OA a =①OP FB FP a === ①2OF OP PF a =+= 连接OE①在Rt OFE △中 ()()225FE OE OF a - ①AB 为O 的直径 CE AB ⊥ ①5CF EF a == ①55FP FC a ==(3)①连接OE 如图①AB 为O 的直径 CE AB ⊥ ①CB BE =①BE ED =①BE ED CB == ①CB BE BE BD +=+ ①CE BD =①CE BD =①55OA OP == ①1OP =①FP FB = 5FP FB OP ++= ①2FP FB ==①3OF =在Rt OFE △中 FE =①4FE =①12CF FE CE == ①8CE = ①8BD = ①①CG CP = FP FB = ①点F 点C 是线段PB GO 的中点 ①CF 为PGB △的中位线 ①12CF GB = 12CF GB ∥ ①4CF = ①8GB = ①CF AB ⊥ ①BG AB ⊥ ①BCG 中BG 边上的高等于BF 的长①BCG 的面积为:1182822BG BF ⨯=⨯⨯=.。

中考数学圆的综合综合经典题含详细答案

中考数学圆的综合综合经典题含详细答案

中考数学圆的综合综合经典题含详细答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253 8.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC .设⊙O 的半径为r .在Rt △AHC 中,tan ∠ACH =tan ∠G =AH HC =34,∵AH =33,∴HC =43,在Rt △HOC 中,∵OC =r ,OH =r ﹣33,HC =43,∴222(33)(43)r r -+=,∴r =2536,∵GM ∥AC ,∴∠CAH =∠M ,∵∠OEM =∠AHC ,∴△AHC ∽△MEO ,∴AH HC EM OE =,∴33432536EM =,∴EM =2538. 点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.3.如图,AB 为O 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE ∽即可解决问题.【详解】()1解:结论:DE 是O 的切线.理由:连接OD .CDB ADE ∠=∠,ADC EDB ∴∠=∠,//CD AB ,CDA DAB ∴∠=∠,OA OD =,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠, AB 是直径,90ADB ∴∠=,90ADB ODE ∴∠=∠=,DE OD ∴⊥,DE ∴是O 的切线.()2//CD AB ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=,AC BD ∴=,DCB DAB ∠=∠,EDB DAB ∠=∠,EDB DCB ∴∠=∠,CDB ∴∽DBE ,CD DB BD BE∴=, 2BD CD BE ∴=⋅,2AC CD BE ∴=⋅.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.4.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.5.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).38313 24313n+ 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭. ∵h 32,∴1=32-1)2+14a 22, 解得a 283 . (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2,即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭ . ∵h =32 a n ,∴1=14a n 2+2312n na ⎛⎫- ⎪ ⎪⎝⎭, 解得a n =24331n n + .6.如图1,已知AB 是⊙O 的直径,AC 是⊙O 的弦,过O 点作OF ⊥AB 交⊙O 于点D ,交AC 于点E ,交BC 的延长线于点F ,点G 是EF 的中点,连接CG(1)判断CG 与⊙O 的位置关系,并说明理由;(2)求证:2OB 2=BC •BF ;(3)如图2,当∠DCE =2∠F ,CE =3,DG =2.5时,求DE 的长.【答案】(1)CG 与⊙O 相切,理由见解析;(2)见解析;(3)DE =2【解析】【分析】(1)连接CE ,由AB 是直径知△ECF 是直角三角形,结合G 为EF 中点知∠AEO =∠GEC =∠GCE ,再由OA =OC 知∠OCA =∠OAC ,根据OF ⊥AB 可得∠OCA +∠GCE =90°,即OC ⊥GC ,据此即可得证;(2)证△ABC ∽△FBO 得BC AB BO BF =,结合AB =2BO 即可得; (3)证ECD ∽△EGC 得EC ED EG EC =,根据CE =3,DG =2.5知32.53DE DE =+,解之可得.【详解】解:(1)CG 与⊙O 相切,理由如下:如图1,连接CE ,∵AB 是⊙O 的直径,∴∠ACB =∠ACF =90°,∵点G 是EF 的中点,∴GF =GE =GC ,∴∠AEO =∠GEC =∠GCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OF ⊥AB ,∴∠OAC +∠AEO =90°,∴∠OCA +∠GCE =90°,即OC ⊥GC ,∴CG 与⊙O 相切;(2)∵∠AOE =∠FCE =90°,∠AEO =∠FEC ,∴∠OAE =∠F ,又∵∠B =∠B ,∴△ABC ∽△FBO , ∴BC AB BO BF=,即BO •AB =BC •BF , ∵AB =2BO ,∴2OB 2=BC •BF ;(3)由(1)知GC =GE =GF ,∴∠F =∠GCF ,∴∠EGC =2∠F ,又∵∠DCE =2∠F ,∴∠EGC =∠DCE ,∵∠DEC =∠CEG ,∴△ECD ∽△EGC , ∴EC ED EG EC=, ∵CE =3,DG =2.5, ∴32.53DE DE =+,整理,得:DE2+2.5DE﹣9=0,解得:DE=2或DE=﹣4.5(舍),故DE=2.【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.7.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)32π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,3PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴BD CD,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD 平分∠BAC ,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,3 ,∴∠BDF=30°,∵BC ∥DF ,∴∠DBP=30°,在Rt △DBP 中,PD=123 ,3, 在Rt △DEP 中,∵37∴22(7)(3)- =2,∵OP ⊥BC ,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE ,∠BED=∠AEC ,∴△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=17 ,∴AE=577∵BE ∥DF , ∴△ABE ∽△AFD , ∴BE AE DF AD= ,即5757125DF = , 解得DF=12,在Rt △BDH 中,BH=123, ∴阴影部分的面积=△BDF 的面积﹣弓形BD 的面积=△BDF 的面积﹣(扇形BOD 的面积﹣△BOD 的面积)=22160(23)3123(23)23604π⨯⨯-3﹣2π.【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.8.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)【答案】(1)证明见解析 (2)233π- 【解析】【分析】 (1)连接OD ,只要证明OD ∥AC 即可解决问题;(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题.【详解】(1)连接OD .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∴BC 是⊙O 的切线.(2)连接OE ,OE 交AD 于K .∵AE DE =,∴OE ⊥AD .∵∠OAK =∠EAK ,AK =AK ,∠AKO =∠AKE =90°,∴△AKO ≌△AKE ,∴AO =AE =OE ,∴△AOE是等边三角形,∴∠AOE =60°,∴S 阴=S 扇形OAE ﹣S △AOE 260233604π⋅⋅=-⨯22233π=. 【点睛】本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.9.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积.【答案】(1)详见解析;(2)6334π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC,∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC ;(2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B,∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形,∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º,∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA,同理,CF =FM,∴AM =2CF=23,Rt △ACM 中,易得AC=23×32=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =3∵△CDO ≌△EDO(AAS),∴332 ∴1332ABM S AB MO ∆=⨯= 同样,易求93AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形933633332ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.10.如图1,等腰直角△ABC 中,∠ACB=90°,AC=BC ,过点A ,C 的圆交AB 于点D ,交BC于点E ,连结DE(1)若AD=7,BD=1,分别求DE ,CE 的长(2)如图2,连结CD ,若CE=3,△ACD 的面积为10,求tan ∠BCD(3)如图3,在圆上取点P 使得∠PCD=∠BCD (点P 与点E 不重合),连结PD ,且点D 是△CPF 的内心①请你画出△CPF ,说明画图过程并求∠CDF 的度数②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.【答案】(1)DE=1,CE=32;(2)tan ∠BCD=14;(3)①135°;②2. 【解析】【分析】 (1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(a-2c )(b-2c )=8,消去字母a ,b 求出c 值,即求出△CPF 的内切圆半径长为22c . 【详解】(1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得:AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1,∴x 2+x 2=82,解得:x=42. ∵⊙O 内接四边形,∠ACD=90°,∴∠ADE=90°,∴∠EDB=90°,∵∠B=45°,∴△BDE 是等腰直角三形.∴DE=DB ,又∵DB=1,∴DE=1,又∵CE=BC-BE ,∴CE=42232-=.(2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y ,∵S △ACB =S ACD +S DCB , ∴()1114242103y y 222⨯=+⨯+⨯, 解得:y=2或y=-11(舍去).∴EM=1,CM=CE+ME=1+3=4,又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D 切线PF 交CB的延长线于点F .∵∠CAD=45°,∴∠CPD=∠CAD=45°,又∵点D 是CPF ∆的内心,∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD∴∠CPF=90°∴∠PCF+∠PFC=90° ∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°,即∠CDF 的度数为135°.②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心,∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°,∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线,∴∠PCF=2∠DCF ,∠PFC=2∠DFC ,∴∠PCF+∠PFC=90°,∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°,∴四边形PKDN 是矩形,又∵KD=ND ,∴四边形PKDN 是正方形.又∵∠MBD=∠BDM=45°,∠BDM=∠KDP ,∴∠KDP=45°.∵PC=a ,PF=b ,PD=c ,∴PN=PK=C 2,∴NF=b c 2-,CK=a c 2-, 又∵CK=CM ,FM=FN ,CF=CM+FM ,∴CF=a b +,又∵S △PCF =S △PDF +S △PDC +S △DCF ,∴1111ab a c b c (a b 222222=⨯+⨯++-)×c 2,化简得:)2a b c c +-------(Ⅰ),又∵若(c )(c )=8化简得:()2ab a b 2c 8++=------(Ⅱ), 将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c =c =-∴2==, 即△CPF 的内切圆半径长为2.【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.11.如图,已知AB 是⊙O 的直径,BC 是弦,弦BD 平分∠ABC 交AC 于F ,弦DE ⊥AB 于H ,交AC 于G .①求证:AG =GD ;②当∠ABC 满足什么条件时,△DFG 是等边三角形?③若AB=10,sin∠ABD=35,求BC的长.【答案】(1)证明见解析;(2)当∠ABC=60°时,△DFG是等边三角形.理由见解析;(3)BC的长为145.【解析】【分析】(1)首先连接AD,由DE⊥AB,AB是O的直径,根据垂径定理,即可得到AD AE=,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE=∠ABD,又由弦BD平分∠ABC,可得∠DBC=∠ABD,根据等角对等边的性质,即可证得AG=GD;(2)当∠ABC=60°时,△DFG是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;(3)利用三角函数先求出tan∠ABD34=,cos∠ABD=45,再求出DF、BF,然后即可求出BC.【详解】(1)证明:连接AD,∵DE⊥AB,AB是⊙O的直径,∴AD AE=,∴∠ADE=∠ABD,∵弦BD平分∠ABC,∴∠DBC=∠ABD,∵∠DBC=∠DAC,∴∠ADE=∠DAC,∴AG=GD;(2)解:当∠ABC=60°时,△DFG是等边三角形.理由:∵弦BD平分∠ABC,∴∠DBC=∠ABD=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=30°,∴∠DFG=∠FAB+∠DBA=60°,∵DE⊥AB,∴∠DGF=∠AGH=90°﹣∠CAB=60°,∴△DGF 是等边三角形;(3)解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵∠DAC =∠DBC =∠ABD ,∵AB =10,sin ∠ABD =35, ∴在Rt △ABD 中,AD =AB•sin ∠ABD =6,∴BD =22AB BD -=8,∴tan ∠ABD =34AD BD =,cos ∠ABD =4=5BD AB , 在Rt △ADF 中,DF =AD•tan ∠DAF =AD•tan ∠ABD =6×34=92, ∴BF =BD ﹣DF =8﹣92=72, ∴在Rt △BCF 中,BC =BF•cos ∠DBC =BF•cos ∠ABD =72×45=145. ∴BC 的长为:145.【点睛】此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.12.如图,AB 是O 的直径,弦CD AB ⊥于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .(1)求证:DF 是O 的切线;(2)连接BC ,若30BCF ∠=︒,2BF =,求CD 的长.【答案】(1)见解析;(2)3【解析】【分析】(1) 连接OD,由垂径定理证OF为CD的垂直平分线,得CF=DF,∠CDF=∠DCF,由∠CDO=∠OCD,再证∠CDO +∠CDB=∠OCD+∠DCF=90°,可得OD⊥DF,结论成立.(2) 由∠OCF=90°, ∠BCF=30°,得∠OCB=60°,再证ΔOCB为等边三角形,得∠COB=60°,可得∠CFO=30°,所以FO=2OC=2OB,FB=OB= OC =2,在直角三角形OCE中,解直角三角形可得CE,再推出CD=2CE.【详解】(1)证明:连接OD∵CF是⊙O的切线∴∠OCF=90°∴∠OCD+∠DCF=90°∵直径AB⊥弦CD∴CE=ED,即OF为CD的垂直平分线∴CF=DF∴∠CDF=∠DCF∵OC=OD,∴∠CDO=∠OCD∴∠CDO +∠CDB=∠OCD+∠DCF=90°∴OD⊥DF∴DF是⊙O的切线(2)解:连接OD∵∠OCF=90°, ∠BCF=30°∴∠OCB=60°∵OC=OB∴ΔOCB为等边三角形,∴∠COB=60°∴∠CFO=30°∴FO=2OC=2OB∴FB=OB= OC =2在直角三角形OCE中,∠CEO=90°∠COE=60°CE3∠==sin COEOC2∴CF3==∴CD=2 CF23【点睛】本题考核知识点:垂径定理,切线,解直角三角形. 解题关键点:熟记切线的判定定理,灵活运用含有30°角的直角三角形性质,巧解直角三角形.13.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE=36.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA=2∠ABC.②如图2﹣1中,连接AG,作FH⊥AG于H.∵BD=OE,∠CDB=∠AEO=90°,∠B=∠AOE,∴△CDB≌△AEO(AAS),∴CD=AE,∵EC=EA,∴AC=2CD.∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 22221AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=, ∴PE 3. 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.14.设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形,以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD .求证:(1)AD 是⊙B 的切线;(2)AD =AQ ;(3)BC 2=CF×EG .【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=;()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52G CDG BDG BCD ∠=∠=∠=∠=,继而求得67.5ADQ AQD ∠=∠=,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠,90DCF E ∠=∠=,即可证得Rt DCF ∽Rt GED ,根据相似三角形的对应边成比例,即可证得结论.【详解】证明:()1连接BD ,四边形BCDE 是正方形,45DBA ∴∠=,90DCB ∠=,即DC AB ⊥,C 为AB 的中点,CD ∴是线段AB 的垂直平分线,AD BD ∴=,45DAB DBA ∴∠=∠=,90ADB ∴∠=,即BD AD ⊥,BD 为半径,AD ∴是B 的切线;()2BD BG =,BDG G ∴∠=∠,//CD BE ,CDG G ∴∠=∠,122.52G CDG BDG BCD ∴∠=∠=∠=∠=, 9067.5ADQ BDG ∴∠=-∠=,9067.5AQB BQG G ∠=∠=-∠=, ADQ AQD ∴∠=∠,AD AQ ∴=;()3连接DF ,在BDF 中,BD BF =,BFD BDF ∴∠=∠,又45DBF ∠=,67.5BFD BDF ∴∠=∠=,22.5GDB ∠=, 在Rt DEF 与Rt GCD 中,67.5GDE GDB BDE DFE ∠=∠+∠==∠,90DCF E ∠=∠=,Rt DCF ∴∽Rt GED ,CF CD ED EG∴=, 又CD DE BC ==,2BC CF EG ∴=⋅.【点睛】本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.15.如图1,D 是⊙O 的直径BC 上的一点,过D 作DE ⊥BC 交⊙O 于E 、N ,F 是⊙O 上的一点,过F 的直线分别与CB 、DE 的延长线相交于A 、P ,连结CF 交PD 于M ,∠C =12∠P . (1)求证:PA 是⊙O 的切线;(2)若∠A =30°,⊙O 的半径为4,DM =1,求PM 的长;(3)如图2,在(2)的条件下,连结BF 、BM ;在线段DN 上有一点H ,并且以H 、D 、C 为顶点的三角形与△BFM 相似,求DH 的长度.【答案】(1)证明见解析;(2)PM =43﹣2;(3)满足条件的DH 的值为632- 或122311+. 【解析】【分析】(1)如图1中,作PH ⊥FM 于H .想办法证明∠PFH=∠PMH ,∠C=∠OFC ,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD ,PD 即可解决问题;(3)分两种情形①当△CDH ∽△BFM 时,DH CD FM BF =. ②当△CDH ∽△MFB 时,DH CD FB MF=,分别构建方程即可解决问题; 【详解】(1)证明:如图1中,作PH ⊥FM 于H .∵PD ⊥AC ,∴∠PHM =∠CDM =90°,∵∠PMH =∠DMC ,∴∠C =∠MPH ,∵∠C =12∠FPM ,∴∠HPF =∠HPM , ∵∠HFP+∠HPF =90°,∠HMP+∠HPM =90°,∴∠PFH =∠PMH ,∵OF =OC ,∴∠C =∠OFC ,∵∠C+∠CMD =∠C+∠PMF =∠C+∠PFH =90°,∴∠OFC+∠PFC =90°,∴∠OFP =90°,∴直线PA 是⊙O 的切线.(2)解:如图1中,∵∠A =30°,∠AFO =90°,∴∠AOF =60°,∵∠AOF =∠OFC+∠OCF ,∠OFC =∠OCF ,∴∠C =30°,∵⊙O 的半径为4,DM =1,∴OA =2OF =8,CD =3DM =3 ,∴OD =OC ﹣CD =4﹣3 ,∴AD =OA+OD =8+4﹣3 =12﹣3 ,在Rt △ADP 中,DP =AD•tan30°=(12﹣3 )×33 =43 ﹣1, ∴PM =PD ﹣DM =4 3﹣2.(3)如图2中,由(2)可知:BF =12BC =4,FM 3BF =3,CM =2DM =2,CD 3 , ∴FM =FC ﹣CM =3﹣2, ①当△CDH ∽△BFM 时,DH CD FM BF = , ∴34432=- ,∴DH =632 ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =-,∴DH 1223+ , ∵DN ()22443833--=-,∴DH <DN ,符合题意,综上所述,满足条件的DH 的值为62- 或1211+. 【点睛】 本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.。

2023年中考数学专题专练--圆的综合题

2023年中考数学专题专练--圆的综合题

2023年中考数学专题专练--圆的综合题1.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图所示).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长2.如图,⊙O的两条弦AB、CD交于点E,OE平分⊙BED.(1)求证:AB=CD;(2)若⊙BED=60°,EO=2,求DE﹣AE的值.3.如图,AC是O的直径,PA切O于点A,点B是O上的一点,且30APB∠=︒.BAC∠=︒,60(1)求证:PB是O的切线;(2)若O的半径为2,求弦AB及PA,PB的长.4.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC⊙BD,交AD于点E,连结BC.(1)求证:AE=ED ;(2)若AB=8,⊙CBD=30°,求图中阴影部分的面积.5.如图,四边形ABCD 中,AB⊙CD ,点O 在BD 上,以O 为圆心的圆恰好经过A 、B 、C 三点,⊙O 交BD 于E ,交AD 于F ,且弧AE=弧CE ,连接OA 、OF.(1)求证:四边形ABCD 是菱形; (2)若⊙AOF =3⊙FOE ,求⊙ABC 的度数.6.如图,ABC 中, AB AC = ,以 AB直径作O ,交 BC 于点D ,交 AC 于点E.(1)求证: BD DE = .(2)若 50BAC ∠=︒ ,求 AE 的度数.7.如图,在⊙ABC 中,AB=BC ,⊙ABC=90°,D 是AB 上一动点,连接CD ,以CD 为直径的⊙M交AC 于点E ,连接BM 并延长交AC 于点F ,交⊙M 于点G,连接BE .(1)求证:点B在⊙M上.(2)当点D移动到使CD⊙BE时,求BC:BD的值.(3)当点D到移动到使0CG=时,求证:AE²+CF²=EF².308.如图,已知O是等腰⊙ABC的外接圆,且AB=AC,点D是AB上一点,连结BD并延长至点E,连结AD,CD.(1)求证:DA平分⊙EDC.(2)若⊙EDA=72°,求BC的度数.9.如图,⊙ABC内接于⊙O,⊙B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若AB=4+ 3,BC=2 3,求⊙O的半径.10.如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作⊥交AE的延长线于点C.DC AE(1)求证:CD是⊙O的切线.AC ,求阴影部分的面积.(2)若911.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且⊙ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE·CP的值.12.如图,⊙ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且⊙DBC=⊙A=60°,连接OE并延长与⊙O相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.13.如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且⊙CAD=60°,DC=DE.求证:(1)A B=AF;(2)A为⊙BEF的外心(即⊙BEF外接圆的圆心).14.如图,在平行四边形ABCD中,⊙D=60°,对角线AC⊙BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2 3,求AM的长(结果保留π).15.如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE⊙CO.(1)求证:BC是⊙ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.16.如图,PA、PB是⊙O的切线,CD切⊙O于点E,⊙PCD的周长为12,⊙APB=60°.求:(1)PA的长;(2)⊙COD的度数.17.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB ;(2)若AB=10,BC=6,求CD 的长.18.已知:如图,⊙O 是⊙ABC 的外接圆, AB AC ∧∧= ,点D 在边BC 上,AE⊙BC ,AE=BD .(1)求证:AD=CE ;(2)如果点G 在线段DC 上(不与点D 重合),且AG=AD ,求证:四边形AGCE 是平行四边形.19.如图,在Rt⊙ABC 中,⊙ACB=90°,以AC 为直径作⊙O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F .(1)求证:DE 是⊙O 的切线;(2)若CF=2,DF=4,求⊙O 直径的长.20.如图,以⊙ABC 的边AB 为直径画⊙O ,交AC 于点D ,半径OE⊙BD ,连接BE ,DE ,BD ,设BE 交AC 于点F ,若⊙DEB=⊙DBC .(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.答案解析部分1.【答案】(1)证明:过点O作OE⊙AB于E,则CE=DE,AE=BE.∴AE-CE=BE-DE即AC=BD(2)解:连接OC,OA由(1)可知,OE⊙AB且OE⊙CD,∴OE=6∴CE=22228627OC OE--=22221068OA OE-=-=∴AC=AE-CE=8-2 72.【答案】(1)证明:过点O作AB、CD的垂线,垂足为M、N,如图1,∵OE平分⊙BED,且OM⊙AB,ON⊙CD,∴OM=ON,∴AB=CD(2)解:如图2所示,由(1)知,OM=ON,AB=CD,OM⊙AB,ON⊙CD,∴DN=CN=AM=BM,在Rt⊙EON与Rt⊙EOM中,∵OE OE OM ON=⎧⎨=⎩,∴Rt⊙EON⊙Rt⊙EOM(HL),∴NE=ME,∴CD﹣DN﹣NE=AB﹣BM﹣ME,即AE=CE,∴DE﹣AE=DE﹣CE=DN+NE﹣CE=CN+NE﹣CE=2NE,∵⊙BED=60°,OE平分⊙BED,∴⊙NEO= 12⊙BED=30°,∴ON=12OE=1,在Rt⊙EON中,由勾股定理得:NE= 223OE ON-=,∴DE﹣AE=2NE=2 3 3.【答案】(1)证明:连接OB.∵OA=OB,∴⊙OBA=⊙BAC=30°.∴⊙AOB=180°-30°-30°=120°.∵PA切⊙O于点A,∴OA⊙PA,∴⊙OAP=90°.∵四边形的内角和为360°,∴⊙OBP=360°-90°-60°-120°=90°.∴OB⊙PB.又∵点B是⊙O上的一点,∴PB是⊙O的切线.(2)解:连接OP;∵PA、PB是⊙O的切线,∴PA=PB,⊙OPA=⊙OPB= 12⊙APB=30°.在Rt⊙OAP中,⊙OAP=90°,⊙OPA=30°,∴OP=2OA=2×2=4,∴PA= 22OP OA-=2242-=2 3.∵PA=PB,⊙APB=60°,∴PA=PB=AB=2 3.4.【答案】(1)证明:∵AB是圆O的直径,∴⊙ADB=90°,∵OC⊙BD,∴⊙AEO=⊙ADB=90°,即OC⊙AD,∴AE=ED(2)解:连接AC、OD由(1)得OC⊙AD,∴AC CD=∴AC=CD∵⊙CBD=30°∴⊙COD=60°∴⊙AOC=⊙COD=60°∴⊙AOD=120°∵AB=8∴OA=OD=4∴BD=4∴OE=12OC=2∴21204163603 AODSππ︒⨯⨯==︒扇形∴22228443 AD AB BD=--=∵OC⊙AD∴1432432AODS∆=⨯=∴16-433S=阴影.5.【答案】(1)证明:∵AE EC=, ∴⊙CBD=⊙ABD,∵CD⊙AB,∴⊙ABD=⊙CDB,∴⊙CBD=⊙CDB,∴CB=CD,∵BE是⊙O的直径,∴AB AE BC CE+=+,∴AB BC=,∴AB=BC=CD,∵CD⊙AB,∴四边形ABCD是菱形;(2)解:∵⊙AOF=3⊙FOE,设⊙FOE=x,则⊙AOF=3x,⊙AOD=⊙FOE+⊙AOF=4x,∵OA=OF,∴⊙OAF=⊙OFA= 12(180-3x)°,∵OA=OB,∴⊙OAB=⊙OBA=2x,∴⊙ABC=4x,∵BC⊙AD,∴⊙ABC+⊙BAD=180°,∴4x+2x+ 12(180-3x)=180,x=20°,∴⊙ABC=80°.6.【答案】(1)证明:连接AD、DE,∵AB为直径,∴AD⊙BC,∵AB=AC,∴⊙ABC为等腰三角形,∴⊙BAD=⊙DAE,∴BD DE=;(2)解:⊙BAC=50°,∴⊙B=(180°-⊙A)÷2=65°,∴AD弧所对的圆周角为65°,∵⊙DAE=12⊙A=25°,∴⊙ADE=65°-⊙DAE=40°,∵⊙ADE为圆周角,∴ ⊙ADE所对的弧AE的度数为80°. 7.【答案】(1)证明:∵CD为⊙M的直径∴CM=DM= 12CD∵⊙ABC=90°∴BM=CM=DM= 12CD∴点B在⊙M上(2)解:如图,连接DE,∵CD为⊙M的直径,CD⊙BE ∴⊙DEC=90°, BD DE=,∴⊙DEA=90°, BD=DE ,∵AB=BC,⊙ABC=90°,∴⊙A=⊙ACB=45° ,∴⊙ADE=180°-⊙A-⊙AED=45°,∴⊙ADE=⊙A=45°,∴AE=DE ,∴AE=DE=DB,∴AD= 222+=,AE DE BD∴AB=AD+BD= 21)BD,∴BC=AB= 21)BD∴BC:BD= 21(3)证明:如图,连接EM,∵⊙EMB=2⊙ECB,由(2)知⊙ECB=45°,∴ ⊙EMB=90°,∴ ⊙EMF=90°,∴ EM²+MF²=EF² ,∵0CG=,30∴⊙CMG=30°,∴⊙DME=60°,∵DM=EM,∴⊙DME是等边三角形.∴DE=EM,⊙CDE=60°,由(2)知AE=DE,∴AE=ME ,∵⊙AEC=90°,⊙CDE=60°,∴⊙DCE=30°,∴⊙DCE=⊙CMG=30°∴CF=MF , ∵ EM²+MF²=EF² ∴ AE²+CF²=EF².8.【答案】(1)解:∵四边形ABCD 内接于O ,∴⊙ADB+⊙ACB =180° ∵⊙ADB+⊙ADE =180°, ∴⊙ACB =⊙ADE. ∵AB =AC , ∴⊙ABC =⊙ACB. 又∵⊙ABC =⊙ADC ,∴⊙ADC =⊙ADE ,即DA 平分⊙EDC ;(2)解:由(1)得⊙ADE =⊙ACB =⊙ABC =72°, ∴18036BAC ACB ABC ∠=︒-∠-∠=︒, ∴272BOC BAC ∠=∠=︒, ∴BC 的度数为72°.9.【答案】(1)证明:连接OA ,∵⊙B=60°,∴⊙AOC=2⊙B=120°, 又∵OA=OC ,∴⊙OAC=⊙OCA=30°, 又∵AP=AC , ∴⊙P=⊙ACP=30°,∴⊙OAP=⊙AOC ﹣⊙P=90°, ∴OA⊙PA , ∴PA 是⊙O 的切线;(2)解:过点C 作CE⊙AB 于点E . 在Rt⊙BCE 中,⊙B=60°,BC=2 3,∴BE=12BC= 3,CE=3,∵AB=4+3,∴AE=AB ﹣BE=4, ∴在Rt⊙ACE 中,AC= 22AE CE + =5,∴AP=AC=5. ∴在Rt⊙PAO 中,OA=33, ∴⊙O 的半径为33. 10.【答案】(1)证明:连接OD ,如图所示:∵四边形BDEO 是平行四边形, ∴//OE BD OE BD OD OB ===, , ∴⊙ODB 是等边三角形, ∴⊙OBD=⊙BOD=60°, ∴⊙AOE=⊙OBD=60°, ∵OE=OA ,∴⊙AEO 也为等边三角形, ∴⊙EAO=⊙DOB=60°, ∴AE⊙OD , ∴⊙ODC+⊙C=180°, ∵CD⊙AE ,∴⊙C=90°, ∴⊙ODC=90°, ∵OD 是圆O 的半径, ∴CD 是⊙O 的切线.(2)解:由(1)得⊙EAO=⊙AOE=⊙OBD=⊙BOD=60°,ED⊙AB , ∴⊙EAO=⊙CED=60°,∵⊙AOE+⊙EOD+⊙BOD=180°, ∴⊙EOD=60°,∴⊙DEO 为等边三角形, ∴ED=OE=AE ,∵CD⊙AE ,⊙CED=60°, ∴⊙CDE=30°, ∴2ED CE AE == , ∵9AC = ,∴36CE AE OE ED ====, , ∴2233CD ED CE =-=, 设⊙OED 的高为h , ∴sin 6033h OE =⋅︒=, ∴21=6933602OEDED OED n r S S SED h ππ-=-⋅=-弓形扇形, ∴(1273=693622CED EDS SS CE CD ππ-=⋅--=-阴影弓形 . 11.【答案】(1)证明:如图, PD 是⊙ O 的切线.证明如下:连结 OP ,60ACP ∠=∴120AOP ∠= ,OA OP = ,∴30OAP OPA ∠=∠= , PA PD = ,∴30PAO D ∠=∠= , ∴90OPD ∠= , ∴PD 是⊙ O 的切线. (2)证明:连结 BC ,AB 是⊙ O 的直径,∴90ACB ∠= , 又C 为弧 AB 的中点,∴45CAB ABC APC ∠=∠=∠=4AB = ,∴sin 4522AC AB ==,C C CAB APC ∠=∠∠=∠∴CAE ∆ ⊙ CPA ∆ , ∴CA CECP CA= , ∴22(22)8CP CE CA ⋅===12.【答案】(1)证明:连接OB ,如图所示:∵E 是弦BD 的中点, ∴BE =DE ,OE⊙BD , 12BF BD =,∴⊙BOE=⊙A,⊙OBE+⊙BOE=90°,∵⊙DBC=⊙A,∴⊙BOE=⊙DBC,∴⊙OBE+⊙DBC=90°,∴⊙OBC=90°,即BC⊙OB,∴BC是⊙O的切线;(2)解:∵OB=6,⊙DBC=⊙A=60°,BC⊙OB,∴OC=12,∵⊙OBC的面积=12OC•BE=12OB•BC,∴BE=633312OB BCOC⨯⨯==,∴BD=2BE=6 3,即弦BD的长为6 3.13.【答案】(1)证明:⊙ABF=⊙ADC=120°﹣⊙ACD=120°﹣⊙DEC =120°﹣(60°+⊙ADE)=60°﹣⊙ADE,而⊙F=60°﹣⊙ACF,因为⊙ACF=⊙ADE,所以⊙ABF=⊙F,所以AB=AF.(2)证明:四边形ABCD内接于圆,所以⊙ABD=⊙ACD,又DE=DC,所以⊙DCE=⊙DEC=⊙AEB,所以⊙ABD=⊙AEB,所以AB=AE.∵AB=AF,∴AB=AF=AE,即A是三角形BEF的外心.14.【答案】(1)证明:连接OB,∵四边形ABCD 是平行四边形, ∴⊙ABC =⊙D =60°, ∵AC⊙BC , ∴⊙ACB =90°, ∴⊙BAC =30°, ∵BE =AB , ∴⊙E =⊙BAE ,∵⊙ABC =⊙E+⊙BAE =60°, ∴⊙E =⊙BAE =30°, ∵OA =OB ,∴⊙ABO =⊙OAB =30°, ∴⊙OBC =30°+60°=90°, ∴OB⊙CE ,∴EC 是⊙O 的切线;(2)解:∵四边形ABCD 是平行四边形, ∴BC =AD =23,过O 作OH⊙AM 于H ,则四边形OBCH 是矩形, ∴OH =BC =2 3,∴OA =sin 60OH=4,⊙AOM =2⊙AOH =60°,∴AM的长度=604180π⋅⨯=43π.15.【答案】(1)证明:∵DE是切线,∴OC⊙DE,∵BE⊙CO,∴⊙OCB=⊙CBE,∵OC=OB,∴⊙OCB=⊙OBC,∴⊙CBE=⊙CBO,∴BC平分⊙ABE.(2)在Rt⊙CDO中,∵DC=8,OC=0A=6,∴OD= 22CD OC+=10,∵OC⊙BE,∴DCCE=DOOB,∴8CE=106,∴EC=4.8.16.【答案】(1)解:∵CA,CE都是圆O的切线,∴CA=CE,同理DE=DB,PA=PB,∴三角形PDE的周长=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,即PA的长为6.(2)解:∵⊙P=60°,∴⊙PCE+⊙PDE=120°,∴⊙ACD+⊙CDB=360°﹣120°=240°,∵CA,CE是圆O的切线,∴⊙OCE=⊙OCA=12⊙ACD;同理:⊙ODE=12⊙CDB,∴⊙OCE+⊙ODE=12(⊙ACD+⊙CDB)=120°,∴⊙COD=180﹣120°=60°. 17.【答案】(1)证明:连接OC∵CD与⊙O相切于C点∴OC⊙CD又∵CD⊙AE∴OC//AE∴⊙OCB=⊙E∵OC=OB∴⊙ABE=⊙OCB∴⊙ABE=⊙E∴AE=AB(2)连接AC∵AB为⊙O的直径∴⊙ACB=90°∴221068 AC=-=∵AB=AE,AC⊙BE∴EC=BC=6∵⊙DEC =⊙CEA, ⊙EDC =⊙ECA ∴⊙EDC⊙⊙ECA∴DC EC AC EA= ∴6248105EC CD AC EA =⋅=⨯= . 18.【答案】(1)证明:在⊙O 中,∵AB AC ∧∧=∴AB=AC ,∴⊙B=⊙ACB ,∵AE⊙BC ,∴⊙EAC=⊙ACB ,∴⊙B=⊙EAC ,在⊙ABD 和⊙CAE 中, AB CA B EAC BD AE =⎧⎪∠=∠⎨⎪=⎩,∴⊙ABD⊙⊙CAE (SAS ),∴AD=CE ;(2)解:连接AO 并延长,交边BC 于点H ,∵AB AC ∧∧= ,OA 为半径,∴AH⊙BC ,∴BH=CH ,∵AD=AG ,∴DH=HG ,∴BH ﹣DH=CH ﹣GH ,即BD=CG ,∵BD=AE ,∴CG=AE ,∵CG⊙AE ,∴四边形AGCE 是平行四边形.19.【答案】(1)解:如图,连接OD 、CD ,∵AC 为⊙O 的直径,∴⊙BCD 是直角三角形,∵E 为BC 的中点,∴BE=CE=DE ,∴⊙CDE=⊙DCE ,∵OD=OC,∴⊙ODC=⊙OCD,∵⊙ACB=90°,∴⊙OCD+⊙DCE=90°,∴⊙ODC+⊙CDE=90°,即OD⊙DE,∴DE是⊙O的切线(2)解:设⊙O的半径为r,∵⊙ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为620.【答案】(1)证明:∵AB是⊙O的直径,∴⊙ADB=90°,∴⊙A+⊙ABD=90°,∵⊙A=⊙DEB,⊙DEB=⊙DBC,∴⊙A=⊙DBC,∵⊙DBC+⊙ABD=90°,∴BC是⊙O的切线(2)证明:连接OD,∵BF=BC=2,且⊙ADB=90°,∴⊙CBD=⊙FBD,∵OE⊙BD,∴⊙FBD=⊙OEB,∵OE=OB,∴⊙OEB=⊙OBE,∴⊙CBD=⊙OEB=⊙OBE= 13⊙ADB=1390°=30°,∴⊙C=60°,∴AB= 3BC=2 3,∴⊙O的半径为3,∴阴影部分的面积=扇形DOB的面积﹣三角形DOB的面积= 1333 3362ππ⨯-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的综合(一)例题精讲【例1】 如图,在O 中,弦AE BC ⊥于D ,6745BC AD BAC ==∠=︒,,(1)求O 的半径, (2)求DE 的长.【难度】3星【解析】第一问利用的是圆周角的度数为圆心角的一半,第二问利用的是垂径定理【答案】(1)连接BO CO 、,作OF BC ⊥、OG AE ⊥,∵OB OC =,290BOC BAC ∠=∠=︒,又∵6BC =,∴OB =,∴OB = (2)∵132OF BC ==,又∵90OGF OFB GDF ∠=∠=∠=︒,∴四边形OGDF 是矩形,∴3GD OF ==,∴734AG AD DG =-=-=, ∴14312DE GE GD AE GD =-=-=-=【巩固】(2010•珠海)如图,ABC △内接于O ,AB =6,AC =4,D 是AB 边上一点,P 是优弧BAC 的中点,连接PA PB PC PD 、、、.(1)当BD 的长度为多少时,PAD △是以AD 为底边的等腰三角形?并证明;(2)去BC 的中点E,连接PE ,若CE PC =PA 的长.【难度】3星 【解析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)根据相似三角形的知识和垂径定理进行求解.【答案】(1)当4BD AC ==时,PAD △是以AD 为底边的等腰三角形.∵P 是优弧BAC 的中点, ∴PB =PC . ∴PB PC =.∴当4BD AC PBD PCA PBD PCA ==∠=∠,,≌△△.∴PA PD =,即PAD △是以AD 为底边的等腰三角形.(2)由(1)可知,当4BD =时,PD PA =,642AD AB BD =-=-=,过点P 作PE AD ⊥于E ,则112AE AD ==.∵PCB PAD ∠=∠,90PFA PEC ∠=∠=︒∴PAF PCE △∽△,CE AFPCPA=,又∵CE PC =∴PA【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.【例2】 (2005•内江)如图所示,O 半径为2,弦BD =,A 为BD 的中点,E 为弦AC 的中点,且在BD 上,求四边形ABCD 的面积.B【难度】3星【解析】由A 是BD 的中点,根据垂径定理,可知OF BD ⊥,且12BF DFBD ==在Rt BOF△中,利用勾股定理,可求出OF =1,即1AF =,那么,12ABD S DB AF =⨯⨯△E 是AC 中点,会出现等底同高的三角形,因而有=2ABDS S =四边形△【答案】连接OA 交BD 于点F ,连接OB ,B∵OA 在直径上且点A 是BD 中点 ∴OA BD ⊥,BF DF ==在Rt BOF △中由勾股定理得222OF OB BF =-OF1∵2OA = ∴1AF =∴ABD S △∵点E 是AC 中点 ∴AE CE =又∵ADE △和CDE △同高 ∴CDE ADE S S =△△同理CBE ABE S S =△∴BCD CDE CBE ADE ABE ABD S S S S S S =+=+==△△△△△△∴ABD BCD ABCD S S S =+=四边形△△.【点评】本题利用了垂径定理、勾股定理,还有等底同高的三角形面积相等等知识.【巩固】(2010•南平)如图所示,O 的直径AB 长为6,弦AC 长为2,ACB ∠的平分线交O 于点D ,求四边形ABCD 的面积.【难度】3星【解析】四边形ADBC 可分作两部分:①ABC △,由圆周角定理知90ACB ∠=︒,Rt ACB △中,根据勾股定理即可求得直角边BC 的长,进而可根据直角三角形的面积计算方法求出ABC △的面积; ②ABD △,由于CD 平分ACB ∠,则AD BD =,由此可证得ABD △是等腰直角三角形,即可根据斜边的长求出两条直角边的长,进而可得到ABD △的面积; 上述两个三角形的面积和即为四边形ADBC 的面积,由此得解.【答案】∵AB 是直径,∴90ACB ADB ∠=∠=︒,在Rt ABC △中,6AB =,2AC=,∴BC =; ∵ACB ∠的平分线交O 于点D ,∴DCA BCD ∠=∠; ∴AD DB =,∴AD BD =;∴在Rt ABD△中,AD BD ==, ∴四边形ADBC 的面积=1122ABC ABD S S AC BC AD BD +=⋅+⋅△△(2112922=⨯⨯=+. 【点评】此题主要考查了圆周角定理,圆心角、弧、弦的关系,直角三角形的性质,勾股定理等知识的综合应用能力.【例3】 (2011•肇庆)己知:如图,ABC △内接于O ,AB 为直径,CBA ∠的平分线交AC 干点F ,交O 于点D ,DF AB ⊥于点E ,且交AC 于点P ,连接AD . (1)求证:DAC DBA ∠=∠(2)求证:点P 是线段AF 的中点(3)若O 的半径为5,152AF =,求DEBE的值.BA【难度】3星【解析】(1)根据圆周角定理得出DAC CBD ∠=∠,以及CBD DBA ∠=∠得出答案即可;(2)首先得出90ADB ∠=︒,再根据90DFA DAC ADE PDF ∠+∠=∠+∠=︒,且90ADB ∠=︒得出 PDF PFD ∠=∠,从而得出PA PF =;(3)利用相似三角形的判定得出FDA ADB △∽△即可得出答案.【答案】(1)∵BD 平分CBA ∠,∴CBD DBA ∠=∠,∵DAC ∠与CBD ∠都是CD 所对的圆周角,∴DAC CBD ∠=∠, ∴DAC DBA ∠=∠;BA(2)∵AB 为直径,∴90ADB ∠=︒, ∵DE AB ⊥于E , ∴90DEB ∠=︒,∴90ADE EDB ABD EDB ∠+∠=∠+∠=︒, ∴ADE ABD DAP ∠=∠=∠, ∴PD PA =,∵90DFA DAC ADE PDF ∠+∠=∠+∠=︒,且90ADB ∠=︒, ∴PDF PFD ∠=∠, ∴PD PF =, ∴PA PF =,即:P 是AF 的中点;(3)∵DAF DBA ∠=∠,90ADB FDA ∠=∠=︒, ∴FDA ADB △∽△, ∴AD AF DB AB=, ∴在Rt ABD △中,153tan 1024ABD ∠=÷=,即:3tan 4ABF ∠=.【点评】此题主要考查了相似三角形的判定以及圆周角定理和等腰三角形的性质,根据证明PD PA =以及PD PF =,得出答案是解决问题的关键.【巩固】(2011•宜宾)已知:在△ABC 中,以AC 边为直径的O 交BC 于点D ,在劣弧AD 上取一点E 使EBC DEC ∠=∠,延长BE 依次交AC 于点G =,交O 于H . (1)求证:AC BH ⊥;(2)若45ABC ∠=︒,O ⊙O 的直径等于10,BD=8,求CE 的长.【难度】3星 【解析】(1)连接AD ,由圆周角定理即可得出DAC DEC ∠=∠,90ADC ∠=︒,再根据直角三角形的性质即可得出结论; (2)由18090BDA ADC ∠=︒-∠=︒,45ABC ∠=︒可求出45BAD ∠=︒,利用勾股定理即可得出DC 的长,再由相似三角形的判定定理与性质可求出CG 的长,连接AE 由圆周角定理可得出EG AC ⊥,进而得出CEG CAE △∽△,由相似三角形的性质即可得出结论.【答案】(1)连接AD ,∵DAC DEC EBC DEC ∠=∠∠=∠,,∴DAC EBC ∠=∠, ∵AC 是O 的直径, ∴90ADC ∠=︒,∴90DCA DAC ∠+∠=︒, ∴90EBC DCA ∠+∠=︒,∴()1801809090BGC EBC DCA ∠=︒-∠+∠=︒-︒=︒, ∴AC BH ⊥;(2)∵18090BDA ADC ∠=︒-∠=︒,45ABC ∠=︒, ∴45BAD ∠=︒, ∴BD AD =, ∵8BD =, ∴8AD =,∵9010ADC AC ∠=︒=,,∴6DC , ∴8614BC BD DC =+=+=,∵90BGC ADC ∠=∠=︒,BCG ACD ∠=∠, ∴∠45BAD ∠=︒, ∴CG BC DC AC =, ∴14610CG =,∴425CG =,连接AE ,∵AC 是直径, ∴90AEC ∠=︒, ∵EG AC ⊥,∴CEG CAE △∽△, ∴CE CGAC CE=, ∴24210845EC AC CG =⋅=⨯=,∴CE .【点评】本题考查的是圆周角定理,相似三角形的判定与性质及勾股定理,根据题意作出辅助线是解答此题的关键.【例4】 (2011•孝感)如图,等边△ABC 内接于O ,P 是AB 上任一点(点P 不与点A B 、重合),连AP 、BP ,过点C 作CM BP ∥交PA 的延长线于点M .(1)填空:APC ∠= 度,BPC ∠= 度;(2)求证:ACM △BCP ≌△; (3)若12PA PB ==,,求梯形PBCM 的面积.【难度】3星【解析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等即可;(3)利用上题证得的两三角形全等判定PCM △为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【答案】(1)60APC ∠=︒,60BPC ∠=︒;(2)∵CM BP ∥,∴180BPM M ∠+∠=︒, 60PCM BPC ∠=∠=︒,∴()180********M BPM APC BPC ∠=︒-∠-∠+∠=︒-︒=︒,∴60M BPC ∠=∠=︒; (3)∵ACM BCP ≌△△, ∴CM CP AM BP ==, 又60M ∠=︒,∴PCM △为等边三角形, ∴123CM CP PM ===+=, 作PH CM ⊥于H ,在Rt PMH △中,30MPH ∠=︒,∴PH∴梯形PBCM 的面积为:()()112322PB CM PH +⨯=+【点评】本题考查了圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.【巩固】(2011•桂林)如图,在锐角ABC △中,AC 是最短边;以AC 中点O 为圆心,AC 长为直径作O ,交BC 于E ,过O 作OD BC ∥交O 于D ,连接AE 、AD 、DC .(1)求证:D 是AE 的中点;(2)求证:DAO B BAD ∠=∠+∠;(3)若12CEF OCD S S =△△,且4AC =,求CF 的长.【难度】3星 【解析】(1)由AC 是O 的直径,即可求得OD BC ∥,又由AE OD ⊥,即可证得D 是AE 的中点;(2)首先延长OD 交AB 于G ,则OG BC ∥,可得OA OD =,根据等腰三角形的性质,即可求得DAO B BAD ∠=∠+∠;(3)由AO OC =,12OCD ACD S S =△△,即可得14CEF ACDS S =△△,又由ACD FCE △∽△,根据相似三角形的面积比等于相似比的平方,即可求得CF 的长.【答案】(1)∵AC 是O 的直径,∴AE BC ⊥, ∵OD BC ∥, ∴AE OD ⊥,∴D 是AE 的中点;(2)方法一:如图,延长OD 交AB 于G ,则OG BC ∥, ∴AGD B ∠=∠,∵ADO BAD AGD ∠=∠+∠, 又∵OA OD =, ∴DAO ADO ∠=∠,∴DAO B BAD ∠=∠+∠; 方法二:如图,延长AD 交BC BC 于H , 则ADO AHC ∠=∠,∵AHC B BAD ∠=∠+∠, ∴ADO B BAD ∠=∠+∠, 又∵OA OD =,∴DAO B BAD ∠=∠+∠;(3)∵AO OC =,∴12OCD ACD S S =△△,∵12CEF OCD S S =△△, ∴14CEF ACD S S =△△, ∵ACD FCE ∠=∠,90ADC FEC ∠=∠=︒, ∴ACD FCE △∽△,∴2CEF ACD S CF S AC ⎛⎫= ⎪⎝⎭△△, 即:2144CF ⎛⎫= ⎪⎝⎭,∴2CF =.【点评】此题考查了垂径定理,平行线的性质以及相似三角形的判定与性质等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.【例5】 (2011•广州)如图1,O 中AB 是直径,C 是O 上一点,45ABC ∠=︒,等腰直角三角形DCE中DCE ∠是直角,点D 在线段AC 上. (1)证明:B C E 、、三点共线;(2)若M 是线段BE的中点,N 是线段AD 的中点,证明: MN =; (3)将DCE △绕点C 逆时针旋转α(090α︒<<︒)后,记为11D CE △(图2),若1M 是线段1BE 的中点,1N 是线段1AD 的中点,111M N 是否成立?若是,请证明;若不是,说明理由.1【难度】4星【解析】(1)根据直径所对的圆周角为直角得到90BCA ∠=︒,DCE ∠是直角,即可得到9090180BCA DCE ∠+∠=︒+︒=︒;(2)连接BD AE ON ,,,延长BD 交AE 于F ,先证明Rt BCD Rt ACE ≌△△,得到BD AE =,EBD CAE ∠=∠,则90CAE ADF CBD BDC ∠+∠=∠+∠=︒,即BD AE ⊥,再利用三角形的中位线的性质得到12ON BD =,12OM AE =,ON BD ∥,AE OM ∥,于是有ON OM =,ON OM ⊥,即ONM △为等腰直角三角形,即可得到结论; (3)证明的方法和(2)一样.【答案】(1)证明:∵AB 是直径,∴90BCA ∠=︒,而等腰直角三角形DCE 中DCE ∠是直角, ∴9090180BCA DCE ∠+∠=︒+︒=︒,∴B C E 、、三点共线; (2)连接BD ,AE ,ON ,延长BD 交AE 于F ,如图,1∵CB CA CD CE ==,∴Rt BCD Rt ACE ≌△△,∴BD AE =,EBD CAE ∠=∠,∴90CAE ADF CBD BDC ∠+∠=∠+∠=︒,即BD AE ⊥,又∵M 是线段BE 的中点,N 是线段AD 的中点,而O 为AB 的中点,∴1122ON BD OM AE ON BD AE OM ==,,∥,∥; ∴ON OM ON OM=⊥,,即ONM △为等腰直角三角形, ∴MN ;(3)成立.理由如下:和(2)一样,易证得11Rt BCD Rt ACE ≌△△,同里可证11BD AE⊥,11ON M △为等腰直角三角形,从而有111M N =.【点评】本题考查了直径所对的圆周角为直角和三角形中位线的性质;也考查了三角形全等的判定与性质、等腰直角三角形的性质以及旋转的性质.【巩固】(2010•三明)正方形ABCD 的四个顶点都在O 上,E 是O 上的一点.(1)如图①,若点E 在AB 上,F 是DE 上的一点,DF BE =.求证:ADF ABE ≌△△; (2)在(1)的条件下,小明还发现线段DE BE AE 、、之间满足等量关系:DE BE -.请你说明理由;(3)如图②,若点E 在AD 上.写出线段DE BE AE 、、之间的等量关系.(不必证明)图1 图2【难度】3星 【解析】(1)中易证AD AB =,EB DF =,所以只需证明ADF ABE ∠=∠,利用同弧所对的圆周角相等不难得出,从而证明全等;(2)中易证AEF △是等腰直角三角形,所以EF =,所以只需证明DE BE EF -=即可,由BE DF =不难证明此问题;(3)类比(2)不难得出(3)的结论.【答案】(1)在正方形ABCD 中,AB AD =∵12DF BE =∠=∠,, ∴ADF ABE ≌△△.(2)由(1)有ADF ABE ≌△△,∴34AF AE =∠=∠,. 在正方形ABCD 中,90BAD ∠=︒. ∴390BAF ∠+∠=︒. ∴490BAF ∠+∠=︒. ∴90EAF ∠=︒.∴EAF △是等腰直角三角形. ∴222EF AE AF =+. ∴22EF .∴EF . 即DEDF -. ∴DE BE -.(3)BE DE -=.理由如下:在BE 上取点F ,使BF DE =,连接AF . 易证ADE ABF ≌△△,∴AF AE DAE BAF =∠=∠,, 在正方形ABCD 中,90BAD ∠=︒. ∴90BAF DAF ∠+∠=︒. ∴∠DAE+∠DAF=90°. ∴90EAF ∠=︒.∴EAF △是等腰直角三角形. ∴222EF AE AF =+. ∴22EF .∴EF . 即BE BF -. ∴BE DE -.【点评】本题主要考查圆周角定理,全等三角形的判定及勾股定理,难度适中.【例6】 (2010•日照)如图,在ABC △中,AB AC =,以AB 为直径的O 交AC 与E ,交BC 与D .求证:(1)D 是BC 的中点;(2)BEC ADC △∽△;(3)22BC AB CE =⋅.【难度】3星 【解析】(1)要证D 是BC 的中点,已知AB AC =,即证AD BC ⊥即可,根据圆周角定理,AB 是直径,所以90ADB ∠=︒,即可得证.(2)欲证BEC ADC △∽△,通过观察发现两个三角形已经具备一组角对应相等,即90AEB ADC ∠=∠=︒,此时,再求另一角对应相等即可.(3)由BEC ADC △∽△可证CD BC AC CE ⋅=⋅,又D 是BC 的中点,AB AC =,即可证22BC AB CE =⋅.【答案】(1)∵AB 是O 的直径,∴90ADB ∠=︒,即AD 是底边BC 上的高, 又∵AB AC =,∴ABC △是等腰三角形, ∴D 是BC 的中点;(2)∵CBE ∠与CAD ∠是同弧所对的圆周角, ∴CBE CAD ∠=∠, 又∵BCE ACD ∠=∠, ∴BEC ADC △∽△;(3)由BEC ADC △∽△,知CD ACCE BC=, 即CD BC AC CE ⋅=⋅, ∵D 是BC 的中点,∴12CD BC =,又∵AB AC =,∴12CD BC AC CE BC BC AB CE ⋅=⋅=⋅=⋅,即22BC AB CE =⋅.【点评】本题考查相似三角形的判定和性质.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边成比例、对应角相等.【巩固】(2009•内江)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E ,F 在AC 上,AB AD =,2BFC BAD DFC ∠=∠=∠.求证:(1)CD ⊥DF ;(2)BC=2CD . FEDCBA【难度】3星【解析】(1)利用在同圆中所对的弧相等,弦相等,所对的圆周角相等,三角形内角和可证得90CDF ∠=︒,则CD DF ⊥;(2)应先找到BC 的一半,证明BC 的一半和CD 相等即可.【答案】(1)∵AB AD =,∴AB AD =,ADB ABD ∠=∠.∵ACB ADB ACD ABD ∠=∠∠=∠,, ∴ACB ADB ABD ACD ∠=∠=∠=∠.∴()180290ADB BAD DFC ∠=︒-∠÷=︒-∠. ∴90ADB DFC ∠+∠=︒即90ACD DFC ∠+∠=︒, ∴CD DF ⊥.GFEDCBA(2)过F 作FG BC ⊥, ∵ACB ADB ∠=∠, 又BFC BAD ∠=∠,∴FBC ABD ADB ACB ∠=∠=∠=∠. ∴FB FC =.∴FG 平分BC ,G 为BC 中点,12GFC BAD DFC ∠=∠=∠.∵GFC DFC FC FC ACB ACD ∠=∠=∠=∠,, ∴FGC DFC ≌△△). ∴12CD GC BC ==.∴2BC DC =.【点评】本题用到的知识点为:同圆中,相等的弧所对的弦相等,所对的圆周角相等,注意把所求角的度数进行合理分割;证两条线段相等,应证这两条线段所在的三角形全等.课堂检测【巩固】如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点P ,AB BD =,且0.6PC =,求四边形ABCD 的周长.CC【考点】圆内接四边形, 【难度】4星 【题型】解答 【关键词】【解析】连BO 并延长交AD 于H ,则BH AD ⊥,∴CD BH ∥,CD CPBO PO=,得1CD AD ==,122AH OH BH AB BC ====,,,,1+【答案】1+课后作业1. 圆内接四边形ABCD ,AC BD ⊥,AC 交BD 于E ,EG CD ⊥于G ,交AB 于F .求证:AF BF =.GEFABC DDCBAFEG HG EABCD【难度】3星【解析】证法一:如图,∵90CDB GCE ∠+∠=︒,90CEG GCE ∠+∠=︒,∴CDB CEG ∠=∠.又EAF CDB ∠=∠,AEF CEG ∠=∠,∴EAF AEF ∠=∠, ∴AF EF =,同理BF EF =.∴AF BF =.证法二:如图,过F 作FH AE ⊥于H . ∵GDE HAF ∠=∠,GEC HEF ∠=∠, ∴Rt Rt GEC HAF ∆∆∽, Rt Rt GEC HEF ∆∆∽. ∴AH HF DG GE =,HE HF GE GC=, 两式相除得:2AH DG GCHE GE ⋅=. 而GE 是Rt DEC ∆斜边上的高,∴2GE DG GC =⋅. ∴1AH HE=,即AH HE =. 又∵BE AE ⊥,FH AE ⊥, ∴FH BE ∥.∴AF BF =.证法三:如图,过A 作AH AE ⊥交EF 的延长线于H ,连接BH .∵Rt Rt AEH GEC ∆∆∽,∴EH AEEC GE=, ∴AE ECEH GE⋅=,又∵BE ED AE EC ⋅=⋅,∴AE EC ED BE ⋅=,∴EH BEED GE=. ∵HEB DEG ∠=∠, ∴BEH GED ∆∆∽,∴90EBH EGD ∠=∠=︒,∴AHBE 是矩形.∴AF BF =.【答案】见解析2. 已知A D 、是一段圆弧上的两点,且在直线l 的同侧,分别过这两点作l 的垂线,垂足为B C 、,E 是BC上一动点,连结AD AE DE 、、,且90AED ∠=︒.⑴如图⑴,如果616AB BC ==,,且:1:3BE CE =,求AD 的长;⑵如图⑵,若点E 恰为这段圆弧的圆心,则线段AB BC CD 、、之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当A D 、分别在直线l 两侧且AB CD ≠,而其余条件不变时,线段AB BC CD 、、之间又有怎样的等量关系?请直接写出结论,不必证明.图(2)lE DCBA图(1)lEDC B A【难度】3星【答案】⑴ ABE ECD ∆∆∽,∴AB BE AEEC CD DE==∵16:1:3BC BE CE ==,,∴412BE CE ==,,∴1AB BE AEEC CD DE ===在Rt ABE ∆中,AE == ∴2DE AE ==在RtAED ∆中,90AED ∠=︒, ∴AD ⑵ (i)猜想AB CD BC +=.∵E 是AD 的圆心,∴AE DE =,∵90AED ∠=︒,∴90AEB CED ∠+∠=︒, ∵CD BC ⊥,∴90CDE CED ∠+∠=︒, ∴AEB CDE ∠=∠,∵AB BC ⊥,∴ABE ECD ∆∆≌, ∴AB CE BE CD ==,,∴AB CD CE BE BC +=+=. (ii)BC AB CD =-。

相关文档
最新文档