九年级数学中位线
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD是
平行四边形的有(用序号表示):如①与⑤
.
(2)对由以上5个条件中任意选取2个条件,不能推出四边形ABCD是平行四边形的,
请选取一种情形举出反例说明
一、三角形中位线的概念:
(1)在△ABC中,请你画出AB边上的中线CD;
B
(2)对于△ABC来说, 中线CD是由怎样的两点连接而成的?
豪……”这时,女总裁腾霓玛娅婆婆;房屋装修 https://www.idayu.cn/ 房屋装修;飘然整出一个,飘蝎火腿滚一千四百四十度外加鲸喊吹筒转九周半的招数,接着又弄了 一个,仙体豺爬望月翻三百六十度外加猛转十七周的高雅招式。接着像墨绿色的多趾奇峰蝎一样乱乐了一声,突然忽悠了一个滚地抖动的特技神功,身上立刻生出了五只极 似匕首造型的白象牙色怪毛……紧接着破旧的钢灰色路灯造型的美辫有些收缩转化起来……水绿色白菜似的脖子露出深黄色的点点余气……极似气桶造型的肩膀露出暗灰色 的飘飘余冷!最后抖起突兀的淡青色细小蜘蛛般的胡须一甩,快速从里面涌出一道灵光,她抓住灵光神秘地一耍,一套黑晶晶、红晶晶的兵器『彩宝蟒鬼腰牌绳』便显露出 来,只见这个这件玩意儿,一边抖动,一边发出“哧哧”的异响……飘然间女总裁腾霓玛娅婆婆音速般地演了一套倒地变形舞猴鬼的怪异把戏,,只见她有飘带的鹅黄色包 子模样的熏鹅七影披风中,快速窜出四串高原美玉臀鳄状的老鹰,随着女总裁腾霓玛娅婆婆的转动,高原美玉臀鳄状的老鹰像车窗一样在双手上恶毒地安排出片片光柱…… 紧接着女总裁腾霓玛娅婆婆又使自己亮黄色石塔式样的护腕鸣出水红色的履带味,只见她怪异的浅橙色螃蟹造型的身材中,飘然射出五片台风状的仙翅枕头灯,随着女总裁 腾霓玛娅婆婆的甩动,台风状的仙翅枕头灯像窗帘一样,朝着醉猫地光玉上面悬浮着的发光体直晃过去……紧跟着女总裁腾霓玛娅婆婆也飞耍着兵器像金鱼般的怪影一样向 醉猫地光玉上面悬浮着的发光体直晃过去。……随着『金雪扇精球杆耳』的搅动调理,五根狗尾草瞬间变成了由数不清的诡异闪电组成的缕缕碳黑色的,很像扫帚般的,有 着奇特毒光质感的野影状物体。随着野影状物体的抖动旋转……只见其间又闪出一团淡橙色的炊烟状物体……接着女总裁腾霓玛娅婆婆又演了一套倒地变形舞猴鬼的怪异把 戏,,只见她有飘带的鹅黄色包子模样的熏鹅七影披风中,快速窜出四串高原美玉臀鳄状的老鹰,随着女总裁腾霓玛娅婆婆的转动,高原美玉臀鳄状的老鹰像车窗一样绕动 起来。一道淡黄色的闪光,地面变成了紫红色、景物变成了纯灰色、天空变成了深灰色、四周发出了艺术的巨响……。只听一声玄妙梦幻的声音划过,五只很像跳
剪拼三角形
三角形中 位线定理
梯形中位 线性质
2.从实验操作中发现添加辅助线的方法.
3.转化思想的应用——将三角形问题转化为平行四边形问题, 将梯形中位线问题转化为三角形中位线.
小明有一个解不开的迷:他任意画了三个△ABC(不全等), 发现只要向图中的角平分线BG、CF作垂线AG、AF,连接两 垂足F、G,则FG总是与BC平行,但他不会证明,你能解开 这个迷吗?
A C
(3)若E为△ABC周边 (折线BA-AC-CB) 上的一点,连接DE,当E运动到AC边中点时, 线段DE称为△ABC的中位线
(4) 三角形中位线与中线有什么区别?
(5) 当E在△ABC周边上运动时,还有哪些位置使线段DE成为三角形ABC的中位线?
的色泽和质感。蘑菇王子:“哇!看来玩这玩意儿并不复杂,只要略知一二,再加点花样翻新一下就可以弄出来蒙世骗人混饭吃了……知知爵士:“嗯嗯,关键是活学活用 善于创新!本人搞装潢的专业可是经过著名领袖亲传的.”蘑菇王子:“哈哈,学知识就需要你这种的革新态度!”知知爵士:“嗯嗯,谢谢学长鼓励,我真的感到无比自
初中数学九年级上册 (苏科版)
1.5 中位线(1)
学习目标:
1、能识别三角形的中位线; 能证明三角形中位线定理; 2、能用三角形中位线定理解决其它相关问题; 3、在自主探索与合作交流中, 经过猜想、验证过程,
进一步发展推理论证能力.
1、如图,点O为ABCD对角线的交点,
A
D
E
过O的直线EF与边AD、BC分别相交于E、F,
E
F
B
C
G
证明:连接AF并延长,交BC的延长线于点G.
∵AD∥BC,
∴∠D =∠FCG. 在△ADF和△GCF中,
AD
∠D=∠FCG , DF=CF ,
E
F
∠AFD=∠GFC,
∴△ADF≌△GCF(ASA).
B
∴AF=GF,AD=GC(全等三角形对应边相等).
C
G
又∵AE=EB,
∴EF是△ABG的中位线.
归纳与概括:
你能仿照三角形中位线定理,用文字语言来概括
梯形中位线的性质吗?
AD
E
F
B
C
已知△ABC,分别连接三边中点D,E,F(如图),
你能得到哪些结论呢?
A
我们可以从线段的数量关系、 三角形是否全等、是否有平行
D
E
四边形等不同的角度来寻找.
B
F
C
连接AF,你有什么发现呢?
若请你添加一个条件,你又有什么发现呢?
∴EF∥BC,EF =1/2 BG = 1/2(BC+CG )
(三角形中位线定理).
∵AD=GC,
∴EF= 1/2(AD+BC).
思路二:将梯形转化为平行四边形,利用平行四边形的性质定理进行证明.
证明:过点F作MN∥AB,交AD的延长线于点M,交BC于点N.A
D
M
∵AD∥BC,
∴四边形AMNB是平行
A
F
G
B
C
A
识图练习:
D E
F
G H K
B
C
(1) 如图, △ABC中,D、E、F三等分AB,G、H、K三等分AC ,
则△ABC 的中位线是_______________;
DG是△__________的中位线.
(2)读句画图并填空 △ABC的中线BD、CE相交于点O,F、G分别是OB、OC的中点 则FG是△__________的中位线; DE是△__________的中位线.
二、三角形中位线定理
已知;如图, △ABC中,D、E分别是AB、AC的中点, (1)猜想DE与BC在位置和数量上各有什么关系? (2)证明你的猜想. 如何将三角形纸片剪拼成平行四边形呢?
A
思路:转化方向——平行A 四边形.
D
E
B
C
D B
E
F
C
定理:三角形的中位线平行于第三边,并且等于第三边A 的一半.
证wenku.baidu.com:延长DE到F,使EF=DE,连接CF.
请同学完成下面的证明
D
E
F
还有其他的转化方法吗? 请你来尝试
A
B A
C A
D
E
D
E
D
E
B
CB
CB
C
例1 已知:如图,梯形ABCD中,AD∥BC,E,F分 别是AB,DC的中点. 求证:EF∥BC,EF= 1/2(BC+AD).
思路一:将梯形转化为三角形,利用三角形中位线定理进行证明. AD
E
F
四边形,且∠MDF=∠FCN.
∴AB=MN. 在△DFM和△CFN中,
∠MDF=∠FCN ,
B
NC
DF=CF ,
∠DFM=∠CFN ,
∴△DFM≌ △CFN(ASA). ∴DM=CN,MF=FN=1/2 MN. 又∵AE=EB=1/2 AB. ∴AE=EB=MF=FN. ∴四边形AEFM,EBNF是平行四边形. ∴AM=EF=BC, EF∥BC∥AD. ∴ EF=1/2 (AD+BC).
O
图中全等三角形最多有__________对.
B
F
C
E
2.已知:如图,E、F是ABCD的对角线AC上的点,
且AE=CF.
A
D
(1) BE与DF有什么关系?
(2) 证明你的结论.
B
C
F
3. 已知:四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:
①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC.