九年级数学中位线

合集下载

九年级数学中位线知识点

九年级数学中位线知识点

九年级数学中位线知识点中位线是数学中一个重要的概念,它在统计学和几何学中都有广泛的应用。

本文将详细介绍九年级数学中位线的相关知识点,包括定义、性质和求解方法等方面。

一、定义中位线是指一条线段,它连接平面上一个三角形的一个顶点和对边中点的线段。

具体来说,对于三角形ABC,若D是边AB的中点,则CD被称为三角形ABC的中位线。

二、性质1. 中位线的长度:中位线的长度等于对边的一半。

即,在三角形ABC中,若D为边AB的中点,则CD = 1/2 AB。

2. 中位线的位置:三角形ABC的三条中位线所交于一点,我们称之为重心(G)。

重心是三角形的一个重要特殊点,它将三角形分成六个小三角形,每个小三角形的面积相等。

3. 中位线的关系:在三角形中,任意两条中位线的交点都在第三条中位线上。

这个交点将每条中位线分成两个部分,其中一个部分是另一条中位线的2倍。

三、求解方法1. 已知三角形的顶点坐标:若已知三角形的顶点坐标A(x1, y1)、B(x2, y2)、C(x3, y3),求中位线CD的方法如下:a) 计算边AB的中点坐标D,D的坐标为((x1+x2)/2,(y1+y2)/2);b) 通过点D和顶点C的坐标,可以得到中位线CD的方程;c) 求解中位线CD的相关参数,如长度、斜率等。

2. 已知三角形的边长:若已知三角形的边长a、b、c,求中位线CD的方法如下:a) 根据已知边长,利用海伦公式计算三角形的面积S;b) 根据面积S和三角形的高公式,计算三角形的高h;c) 通过三角形高的性质,计算出中位线CD的长度。

四、例题解析为了更好地理解中位线的概念和求解方法,我们将通过例题来进行解析:例题1:已知三角形ABC的坐标为A(2, 4)、B(6, 8)、C (8, 2),求中位线CD的长度。

解析:首先计算边AB的中点坐标D,D的坐标为((2+6)/2, (4+8)/2)= (4, 6)。

然后根据两点间的距离公式,计算出CD的长度:CD = √[(8-4)^2 + (2-6)^2] = √[(4^2) + (-4)^2] = √(16+16) = √32 = 4√2例题2:已知三角形的边长分别为a = 5 cm,b = 12 cm,c = 13 cm,求中位线CD的长度。

华师大版九年级数学上册授课课件:23.4 中位线

华师大版九年级数学上册授课课件:23.4  中位线

中点,AD、CE相交于点G.求证: GE GD 1 .
CE AD 3
证明:连结ED. ∵D、E分别是边BC、AB的中点,
∴DE//AC

DE AC
=
1 2
.
(三角形的中位线平行于第
三边,并且等于第三边的一半).
∴△ACG∽△DEG, ∴ GE = GD DE 1 .
GC GA AC 2
知1-讲
【例2】 求证:三角形的一条中位线与第三边上的中
线互相平分.
已知:如图,在 △ABC 中,AD =DB,BE=EC,
AF = FC. 求证:AE、DF互相平分.
证明:连结DE、EF.
∵AD = DB,BE = EC,
∴DE//AC(三角形的中位线平行于第
三边,并且 等于第三边的一半).
同理可得EF//BA.
猜想
如图23.4. 2,在△ABC中,点D、E分别 是AB与AC 的中点.根据画出的图形,可 以猜想: DE // BC,且DE = 1 BC.
2 对此,我们可以用演绎推理给出证明.
知1-导 (来自教材)
证明:在△ABC中,
∵点D、E分别是AB与AC的中点,
∴ AD AE 1 .
AB AC 2
(来自《典中点》)
知2-练
2 给出以下判断: (1) 线段的中点是线段的重心; (2) 三角形的三条中线交于一点,这一点就是三角 形的重心; (3) 平行四边形的重心是它的两条对角线的交点; (4) 三角形的重心是它的中线的一个三等分点. 那么以上判断中正确的有( ) A.一个 B.两个 C.三个 D.四个
∴ GE = GD 1 . CE AD 3
拓展
知2-导

华师大版九年级数学三角形的中位线教案精选全文

华师大版九年级数学三角形的中位线教案精选全文

可编辑修改精选全文完整版三角形的中位线教学目的:1. 使学生掌握三角形中位线概念与三角形中位线定理.2.使学生能熟练应用定理进行有关证明和计算,提高学生分析问题和解决问题的能力.重点难点:三角形中位线的概念和三角形中位线定理是本课的重点;三角形中位线定理的证明是本课的难点.教学过程:一、复习引入1. 复习平行线等分线段定理推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边.2. 如图:B、C两点被池塘隔开,在BC外选一点A,连结AB和AC,并分别找出AB和AC的中点D、E.如果测得DE =20m,那么B、C两点的距离是多少?二、新授1.三角形的中位线的概念:连结三角形两边中点的线段叫做三角形的中位线.2.三角形中位线定理如图,DE是ΔABC的一条中位线,如果过D作DE∥BC,交AC于E’,那么根据平行线等分线段定理推论2,得E’是AC的中点,可见DE’与DE重合,所以DE∥BC.由此得到:三角形中位线平行于第三边.同样,过D作DF∥BC,且DE∥FC,DE=1/2BC.因此,又得出:三角形中位线等于第三边的一半.以上两点就是三角形中位线定理.例1:已知:如图ΔABC中,D、E、F分别是AB、AC、BC的中点(1)指出图中有几个平行四边形(2)图中与ΔDEF全等的三角形有哪几个(3)若AB=10cm,AC=6cm,则四边形ADFE的周长为______cm(4)若ΔABC周长为6cm,面积为12cm2,则ΔDEF的周长是 _____cm,面积是_____cm例2:顺次连结四边形四条边的中点,所得的四边形是平行四边形师生共同写出已知求证,在分析的基础上写出证明过程.然后作适当的变式:(1)(1)若AC=BD,则四边形EFGH是什么图形?(2)(2)若AC⊥BD,则四边形EFGH是什么图形?(3)(3)若AC=BD,且AC⊥BD,则四边形EFGH是什么图形?例3:如图ΔABC的中线BE、CD相交于点O,F、G分别是BO、CO的中点,试猜想DF与GE有怎么的关系?并证明你的猜想.小结:(1)本课所授内容.(2)定理的特征与应用.。

九年级上册数学 23.4中位线

九年级上册数学 23.4中位线

∴ DE是△ABC的中位线
∴ DE∥BC DE = 1 BC
B
C
2
用 ① 证明线段的平行问题(位置关系)
② 证明一条线段是另一条线段的2倍 途 或1/2 (数量关系)
A
理解三角形的中位线
D
E
定义的两层含义:
B
C
① 如果D、E分别为AB、AC的中点,
那么DE为△ABC的中位线;
② 如果DE为△ABC的中位线,那么 D、E分别为AB、AC的 中点 。
同学们,中位线的知识掌握了 吗?我们一起去检验一下吧!
算一算
A
如图1:在△ABC中,DE是中位线
(1)若∠ADE=60°,
则∠B= 60 度,为什么?
D
E (2)若BC=10cm,
则DE= 4 cm,为什么?
B
图1
C
(3) S△ADE:S△ABC= 1:4 .
B
D 4F 53
A
E
图2
如图2:在△ABC中,D、E、F分别 是各边中点
D
E
连接三角形两边 中点的线段,叫做
三角形的中位线
B
F
C
AF是△ABC的中线
DE是△ABC的中位线
已知: △ABC 中,点D、E分别是AB、AC的中点。
求证: DE∥BC
DE = 1 BC 2
A
证明: ∵点D、E分别是AB、AC的中点。

AD = AE = 1 AB AC 2
D
∵∠A=∠A
∴△ADE∽△ABC
DE ∴∠ADE=∠B,BC
=
1 2
B
∴ DE∥BC DE = 1 BC 2
E C

中位线 定理2

中位线 定理2
证明:如图所示,连结AF并延长,交BC的延长线于G.
∵DF=FC. ∠AFD= ∠CFG. ∠D= ∠DCG.
A
D
∴ △ ADF≌ △ GCF
∴ AF=GF,AD=GC 又∵AE=EB
E
B
F
C G
∴EF是△ABG的中位线.
∴EF ∥BG ,EF= 1 BG(三角形的中位线定理 ) ∵BG=BC+CG=BC+AD
青岛版九年级数学(上)第一章Fra bibliotek特殊四边形
1.6 中位线
第二课时
冠县贾镇中学
韩新芳
青岛版九年级数学(上)
复习巩固
1、什么是三角形的中位线?
三角形两边中点的连线 叫做三角形的中位线。
B D
A
E C
2、什么是三角形中位线定理?
三角形的中位线平行于第三边, 并且等于第三边的一半。
青岛版九年级数学(上)
自主学习
青岛版九年级数学(上)
判断: 下列梯形中的线段EF是否是梯形中位线?
D
A
E
D
A
E
E
C F
A
B
F
C
B
D
B
F
C
1:E,F为AD, BC中点;
2:E,F为AC, CD中点;
3:E,F为AD, BC中点。
青岛版九年级数学(上)
做一做: 1.画一个梯形ABCD,使AD∥BC; 2.分别取AB、CD的中点E、F,连接EF; 3.沿AF将梯形分成两部分,并画出将△AFD 绕点F旋转1800后的图形.
阅读课本第36页至38页,完成以下内容: 1、什么叫梯形的中位线? 2、梯形中位线定理是什么? 3、如何证明梯形中位线定理?

23.4 中位线 (课件)2024-2025-华东师大版数学九年级上册

23.4 中位线 (课件)2024-2025-华东师大版数学九年级上册

长是对应中线长的13. 注意:经过三角形顶点和重心的直线必然平分这个
顶点的对边 .
课堂新授
知2-讲
特别解读 ●三角形的重心到顶点的距离等于它到对边中点距离的
2倍. ●三角形的重心是三角形中每条中线的一个三等分点 .
课堂新授
知2-练
例 4 如图23.4-5,延长△ABC的边BC到点D,使CD=BC,
知1-练
证明:延长 AE 交 BC 于点 H,∵CD 平分∠ACB,AE⊥CD,
∴∠ACE=∠HCE,∠AEC=∠HEC=90°,又∵CE=CE,
∴△ACE≌△HCE,∴AE=EH=12AH.∵EF∥BC, ∴△AEF∽△AHC,∴AAFC=AAHE=12,∴AC=2AF,∴F 是 AC 的中点.又∵G 是 BC 的中点,
课堂新授
知1-练
证明:连结EF.
由▱ABCD可得AD∥BC,AD=BC.
∵AE=BF,∴ED=FC.
∴四边形ABFE和四边形EFCD都是平行四边形.∴EG=
BG,EH=CH.
∴GH是△EBC的中位线.∴GH∥BC.
课堂新授
知1-练
例 3 如图23.4-4,在△中,中线BE,CD相交于点O,
∴四边形ABEC是平行四边形,∴点F是BC的中点.
又易知点O是AC的中点,
∴ OF是△ABC的中位线,∴ AB=2OF.
课堂新授
知1-练
1-1. 如图,在△ABC中,CD平分∠ACB,AE⊥CD,垂足
为E, 过点E作EF∥BC,交AC于点F,G为BC的中点,
连结FG.
求证:FG=12AB.
课堂新授
课堂新授
知2-练
5-1. 如图,在菱形ABCD中,E为AB的中点, 连结DE交对

九年级数学中位线定理1

九年级数学中位线定理1
九年级数学(上)第一章:特殊四边形
阅读课本第34至36页,回答以下问题: 1、什么叫三角形的中位线? 2、中位线有什么性质定理? 3、如何证明中位线的性质定理? 4、如何应用中位线的性质定理三角形的中位线。 B C D E
一个三角形有三条中位线.
4
③你能将任意一个三角形分成四个全等的三角形吗? • 已知:如图,D,E,F分别是△ABC各边的中点 求证: △ADE≌△DBF≌△EFC≌△FED 证明:
∵ D,E,F分别是△ABC各边的中点. B D F A E C
DE BF FC. EF AD DB. FD CE EA.
数十,似乎在搬运着什么."天赐良机,若是此时强攻,定能打夏侯渊壹个措手否及/"长飞心中顿时心花怒放,便急匆匆想要回去带兵攻城.然而刚起身他就改变咯念头."若是在我回营の时候,城门关咯岂否是白来壹趟."长飞顿时陷入咯苦思之中,正当此时,长飞突然有咯新の办法."若 是我强攻进城,点起烽火让子龙看见,如此壹来,岂否是里应外合/"长飞思酌着,便急匆匆朝建安郡飞奔而去.建安城下,数十个梁兵正在匆忙搬运着什么,忽然之间壹个黑大汉从山上狂奔而下,忙时提起枪戟直指长飞."什么人,胆敢叁更半夜来我城下/"只见壹个梁兵朝飞奔而来の长飞 大喝壹声,试图阻止长飞."您长爷爷来也/"长飞狂然咆哮,手中丈八蛇矛瞬间凝聚起周遭の冷气,形成壹个漩涡气流,猛烈壹枪直接贯穿咯当先那个梁兵の咽喉.腾飞の鲜血尚未落地,长飞手中の丈八蛇矛卷着横扫八荒之势,猛烈の将周遭数十个梁兵瞬间碾为两半.漫天の血块,飞落在 梁军士卒の身上,瞬间把他们吓到魂飞破散,尽皆丧胆,再也顾否得什么军令,尖叫着四散而退.通往城内の道路,再无人阻挡.长飞登时狂笑咯起来,也没想太多,遍当即狂冲进城,欲上

九年级数学等腰梯形、三角形中位线、梯形中位线华东师大版知识精讲

九年级数学等腰梯形、三角形中位线、梯形中位线华东师大版知识精讲

九年级数学等腰梯形、三角形中位线、梯形中位线华东师大版【同步教育信息】一. 本周教学内容:等腰梯形、三角形中位线、梯形中位线1. 等腰梯形:性质:等腰梯形的同一底边上的两个内角相等。

等腰梯形的两条对角线相等。

判定:同一条底边上的两个内角相等的梯形是等腰梯形,两条对角线相等的梯形是等腰梯形。

2. 三角形的中位线定义:我们把连结三角形两边中点的线段叫做三角形的中位线。

定理:三角形的中位线平行于第三边,并且等于第三边的一半。

3. 梯形的中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。

定理:梯形的中位线平行于两底边,并且等于两底和的一半。

【典型例题】例1. 已知等腰梯形ABCD 中,AB=CD ,∠===B AD cm BC cm 601549°,,,求它的腰长。

A D分析:要求腰长,也就是求AB 的长,通过作辅助线将已知条件集中到一个三角形中,过A 作AE//CD 交BC 于E ,得到一个平行四边形AECD 和△ABE ,易知△ABE 是等边三角形,由BE=BC -AD ,这样问题就解决了。

解:过A 作AE//DC 交BC 于E∵四边形ABCD 是等腰梯形 ∴∠=∠=B C 60°又∵AD//BC ,AE//DC ∴四边形AECD 是平行四边形。

∴====∴=AD EC cm AE DCAB CD AB AE 15,,∴△ABE 是等边三角形。

又 BC cm =49∴=-=∴==BE cm AB BE cm49153434() A DC例2. 已知:如图所示,在等腰梯形ABCD 中,对角线AC=BC+AD ,求∠DBC 的度数。

分析:由等腰梯形的性质得AC=BD ,又题设与对角线有关,考虑平移对角线BD 到AE 的位置,则∠=∠DBC E ,需求∠E ,猜想△ACE 是等边三角形。

解:过A 作AE//BD 交CB 的延长线于E ,则四边形AEBD 是平行四边形。

∴==∴=+=+=AE DB AD BE CE BC BE BC AD AC, ∵梯形ABCD 是等腰梯形。

九年级数学上册邓发珍 梯形的中位线课件 华东师大版

九年级数学上册邓发珍 梯形的中位线课件 华东师大版
A D N H C
例如,梯形ABCD的中位 线MN=12 ㎝, 梯形的高 DH=10 ㎝,那么梯形面 120 积S=______ ㎝2 .
M B
①一个梯形的上底长4 cm,下底长6 cm,则其中位 线长为 5 cm;
②一个梯形的上底长10 cm,中位线长16 cm,则其 下底长为 22 cm; ③已知梯形的中位线长为6 cm,高为8 cm,则该梯 48 形的面积为________ cm2 ; ④已知等腰梯形的周长为80 cm,中位线与腰长相等, 20 则它的中位线长 cm;
1 2
(BC+CG)=
1 2
(BC+AD).
又EF=
1 2
(BC+AD),故EF=DH.
小结
1.从梯形中位线公式EF= (BC+AD)可以看 出,当AD变为一点时,其长度为0,这时公式变为 EF= 1 (BC+0)= 1 BC,这就是三角形中位线公 2 2 式,从这一点又体现了这两个定理的联系.
2.梯形中位线定理是梯形的一个重要性质,它 也象三角形中位线定理那样,在同一个题设中 有两个结论,应用时视具体要求选用结论.
1 2
问题:怎样证明呢?
梯形中位线定理的证明
已知:如图,梯形ABCD中,AD//BC,AE=EB,DF=FC. 求证:EF//BC,EF= 1 (BC+AD). 2
证明:如图所示,连结AF并延长,交BC的延长线于G.
∵DF=FC. ∠AFD= ∠CFG. ∠D= ∠DCG.
A
D
∴ △ ADF≌ △ GCF
② 如果DE为梯形ABCD的中位线, 那么 点D、E分别为AB、DC的 中点 。
猜想:
请同学们测量出∠AEF与∠B的度数, 并测量出线段AD、EF、BC的长度, 试猜测出EF与AD、BC之间存在什么 样的关系?

23.4 中位线++课件+++2024-2025学年华东师大版九年级数学上册

23.4 中位线++课件+++2024-2025学年华东师大版九年级数学上册
则 EF = 2 .

图2
典例导思
1. 如图,在菱形 ABCD 中,对角线 AC 、 BD 相交于点
O ,点 E 为 CD 的中点.若 OE =3,则菱形 ABCD 的周长
为( C )
A. 6
B. 12
(第1题)
C. 24
D. 48
典例导思
2. 如图,在Rt△ ABC 中,∠ ACB =90°,点 D 是 AC 延
பைடு நூலகம்

GF ∥ BC , GF = BC ,

∴ DE ∥ GF , DE = GF ,
∴四边形 DEFG 为平行四边形.
(第3题)
典例导思
(2)若 DG ⊥ BH , BD =3, EF =2,求线段 BG 的
长度.
(2)解:∵四边形 DEFG 为平行四边
形,∴ DG = EF =2.
∵ DG ⊥ BH ,∴∠ DGB =90°,
∴ AB = AF =6 cm,
BD = DF .
∴ CF = AC - AF =4 cm.
∵ BD = DF,点 E 为 BC 的中点,

∴ DE = CF =2 cm.

图1
典例导思
如图2,在四边形 ABCD 中,对角线 AC ⊥ BD 且
AC =4, BD =8,点 E 、 F 分别是边 AB 、 CD 的中点,
长线上一点, AD =24,点 E 是 BC 上一点,
BE =10,连结 DE , M 、 N 分别是 AB 、
DE 的中点,则 MN = 13 .

(第2题)
典例导思
3. (2023·株洲)如图所示,在△ ABC 中,点 D 、 E 分

23.4中位线-华东师大版九年级数学上册教案

23.4中位线-华东师大版九年级数学上册教案

23.4 中位线-华东师大版九年级数学上册教案一、学习目标1.了解中位数的概念和计算方法;2.掌握中位数的性质,能够运用中位数解决实际问题;3.能够分析中位线对数据的影响。

二、教学重难点1.中位数的性质及其运用;2.中位线的概念、意义与计算方法。

三、教学过程1.导入新知通过举例说明“计算一个班上数学成绩的中位数”,引导学生了解中位数及其概念,并引出教学重点——中位数的性质及运用。

2.学习新知(1) 中位数的定义通过举例,引导学生理解中位数的定义:当一组数据从小到大排列后,处于中间位置的那个数就是这组数据的中位数。

(2) 中位数的计算方法通过多组例题,引导学生掌握中位数的计算方法:当数据个数为奇数时,中位数就是这组数据从小到大排序后在中间的那个数;当数据个数为偶数时,中位数是这组数据排在最中间的两个数的平均数。

(3) 中位数的性质通过多组例题,引导学生掌握中位数的性质:(1)在等差数列中,中位数等于首项和末项的平均数;(2)在有序数列中,将最小值和最大值同时增、减相同值,中位数不变。

3. 拓展练习通过多组例题,让学生掌握中位数的运用,包括但不限于:求中位数,判断中位数在数据中的位置,运用中位数解决实际问题等。

4. 中位线(1) 中位线的定义通过举例,引导学生理解中位线的定义:将数据分别从小到大和从大到小排序,在两个排序后的数据中,对应位置数据的连线称为中位线。

(2) 中位线的计算方法通过多组例题,引导学生掌握中位线的计算方法:将数据从小到大排序,找到中间位置的数;将数据从大到小排序,找到中间位置的数;对应位置的两个数连成一条直线,就是中位线。

5. 拓展练习通过多组例题,让学生掌握分析中位线对数据的影响,包括但不限于:解释中位线对数据的平均值的影响,运用中位线判断数据分布情况等。

6. 总结归纳让学生对中位数、中位线的概念、计算方法及其应用进行总结归纳,并带领学生思考中位线与中位数的联系和区别。

四、作业布置1.完成课堂拓展练习;2.完成课后练习题。

23.4 中位线 华东师大版数学九年级上册教案

23.4 中位线 华东师大版数学九年级上册教案

23.4 中位线￿※教学目标※【知识与技能】￿1.掌握三角形的中位线的概念和定理.￿2.了解三角形重心及其性质.￿【过程与方法】￿灵活运用三角形中位线解决有关问题.￿【情感态度】￿结合实际问题,进一步理解三角形中位线的概念及性质,培养创造性思维.￿【教学重点】￿经历三角形中位线的性质定理的形成过程,并能利用它解决简单的问题.￿【教学难点】￿训练说理的能力.￿※教学过程※￿一、复习引入￿如图,在△ABC中,DE∥BC,则△ADE∽△ABC.￿1.如果D是AB的中点,那么E是AC的中点吗?DE与BC的比是多少?￿2.上述问题的逆命题是什么?￿￿二、探索新知￿1.逆命题:如果D、E分别是AB、AC边的中点,那么DE∥BC,DE=￿2.证明:∵在△ABC中,点D、E分别是AB、AC的中点,∵∠A=∠A,∴△ADE∽△ABC.￿∴∠ADE=∠ABC,∴DE∥BC且DE=￿思考:此命题还有其他证法吗?￿证法一:如图,延长DE到F,使EF=DE.在△ADE和△CEF中,￿∵AE=EC,DE=EF,￿∠AED=∠CEF,￿∴△ADE≌△CFE.￿∴AD=CF,∠A=∠ECF,￿∴AB∥CF.￿又∵AD=DB,￿∴CF=BD.￿∴四边形BCFD是平行四边形.￿∴DF∥BC,DF=BC.￿∴DE∥BC且DE=BC.￿￿3.归纳:￿(1)我们把连结三角形两边中点的线段叫做三角形的中位线.￿(2)三角形的中位线平行于第三边,并且等于第三边的一半.￿4.应用:￿【例1】求证:三角形的一条中位线与第三边上的中线互相平分.￿已知:如图,在△ABC中,AD=DB,BE=EC,AF=FC.求证:AE、DF互相平分.￿证明:连结DE、EF.∵AD=DB,BE=EC,∴DE∥AC(三角形的中位线平行于第三边,并且等于第三边的一半).￿同理可得EF∥BA.￿∴四边形ADEF是平行四边形.￿∴AE、DF互相平分.￿￿【例2】如图,在△ABC中,D、E分别是BC、AB的中点,AD、CE相交于点G.求证:证明:连结ED.￿∵D、E分别是边BC、AB的中点,￿∴DE∥AC,(三角形的中位线平行于第三边,并且等于第三边的一半),￿∴△ACG∽△DEG,￿￿三、巩固练习￿1.三角形的周长为56cm,则它的三条中位线组成的三角形的周长是cm.￿2.如图,在△ABC中,D、E、F分别为边BC、AC、AB的中点,AD、BE、CF相交于点O,AB=6,BC=10,AC=8.试求出线段DE、OA、OF的长及∠EDF的大小.(结果保留根号)￿￿￿3.求证:顺次连结四边形各边的中点所得的四边形是平行四边形.￿答案:1.28￿2.∵在△ABC中,AB=6,BC=10,AC=8,∴,∴△ABC为直角三角形.∵D为斜边BC的中点,∴AD=BC=5.∵D、E分别为BC、AC的中点,∴DE∥AB,且DE=AB=3.∵O为BE与AD的交点,∴O为△ABC的重心,∴OA=∵F 为AB的中点,∴AF=DE=3.∴CF==.∴∴四边形AFDE为平行四边形.∴∠EDF=∠BAC=90°.￿3.已知:如图所示,E、F、G、H分别是四边形ABCD各边的中点,连结EF、FG、GH、HE.求证:四边形EFGH是平行四边形.证明:如图所示,连结AC.￿∵E、H分别为AD、CD的中点,∴EH∥AC,且EH=AC.又∵F、G分别为AB、BC的中点,∴FG∥AC,且FG=AC,∴四边形EFGH为平行四边形.￿￿四、应用拓展￿在教材第78页【例2】中作另外两条三角形的中线,是否也有这个结论?￿学生讨论,总结如下:￿三角形三边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的连线的长是对应中线长的.五、归纳小结￿1.三角形中位线与中线的区别.￿2.中点四边形一定是平行四边形.判断它是不是某一特殊平行四边形,只需看原四边形对角线是否垂直或相等.￿※课后作业※￿教材第79页习题23.4的第2、3、4题.。

九年级数学中位线

九年级数学中位线

例2已知:如图,四边形ABCD中,E、 F、G、H分别是AB、BC、CD、DA 的中点. 求证(1)四边形EFGH是平行四边形。
(2)请增加一个条件使得四 边形ADFE为菱形。 (3) 请增加一个条件使得四 边形ADFE为矩形。
A
H D E G F C
B
(4)能不能只增加一个条件使得四边形 ADFE为正方形。
如图,因为AE=CE,BD=CD。 所以AD、BD为三角形的中位 线。
如图,因为AE=DE,DF=CF;所以 EF为三角形的中位线。
三角形的中位线平行于第三 边并且等于它的一半。
∵DE是△ABC的中位线
1 ∴DE∥BC,DE= BC 2
你还有别的证法吗?
已知:如果,点D、E、F分别是 △ABC的三边的中点.
练习4
• 已知: 在四边形ABCD中,AD=BC, P是对角线BD的中点,M是DC的中点,N 是AB的中点.求证∠PMN=∠PNM.
(第 4 题)
1、练习
第1题Biblioteka 2、习题24.4第1题
华师大九年级数学(上)
; / 快转微信营销软件 ;
烦の话,而鞠言还活着,那可就真の是捅破天了!……城主府!袁继虎,正在自身の房间内.呐壹段事间,袁继虎都没怎么离开城主府邸.他の心情,很不好.原本由于鞠言の背鞠关系,他打算巴结鞠言,甚至还送给鞠言壹枚道元果拉拢.可是现在,鞠言却死了,他の道元果也白白损失了.虽然知道鞠言确 实与慕连天总管关系匪浅,可那又怎样?鞠言人都死了,就算鞠言与慕连天关系再好,与郡尪大人关系再亲密,那又有哪个用处?而且,鞠言还是在浩风城遭到暗夜杀手狙杀,郡尪和慕总管,会不会因此怪罪他呐个城主没用?呐些念头,整日の在袁继虎心头萦绕挥之不去.“唉!”袁继虎摇摇头,在房间内 焦躁の踱步.袁继虎觉得,自身是有些倒

九年级数学上册《中位线》优秀教学案例

九年级数学上册《中位线》优秀教学案例
九年级数学上册《中位线》优秀教学案例
一、案例背景
在我国初中数学教育中,九年级的学生已经具备了较为扎实的数学基础和逻辑思维能力。《中位线》作为九年级数学上册的教学内容,旨在帮助学生理解几何图形中的特殊线段——中位线,并运用中位线的性质解决实际问题。本案例以九年级数学上册《中位线》为背景,结合学生的实际水平和教学目标,设计了一系列具有实用性和启发性的教学活动。通过引导学生探索中位线的性质,培养他们的空间想象力和几何直观,进一步提高学生的数学素养和解决问题的能力。在教学过程中,教师将采用人性化的语言,激发学生的学习兴趣,营造轻松愉快的教学氛围,让九年级学生在掌握知识的同时,感受到数学学习的乐趣。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将通过一个简单的实际问题和一则相关的数学故事来吸引学生的注意力,为新课的学习做好铺垫。
1.实际问题:向学生展示一个关于土地划分的问题,提出如何公平地划分一块三角形的土地给三个人的问题。这个问题与学生的生活息息相关,可以激发他们的好奇心和探究欲望。
2.数学故事:讲述古希腊数学家欧几里得如何运用中位线原理解决土地划分问题的故事,以此来引出中位线的概念,让学生感受到数学的实用性和历史渊源。
-鼓励学生在学习过程中积极提问、勇于挑战,培养他们面对困难的勇气。
-对学生的每一次进步给予肯定和表扬,增强他们的自信心。
2.引导学生认识到数学学习的价值,激发他们的学习兴趣和动力。
-通过实例讲解,让学生感受到数学在生活中的重要作用。
-举办数学知识竞赛、讲座等活动,拓宽学生的知识视野,提高他们的学习兴趣。
1.创设生活情境:以学生熟悉的生活场景为例,如校园里的操场、家庭房间布局等,引导学生发现中位线在生活中的பைடு நூலகம்用,从而引出中位线的概念。

第12讲 中位线2021年新九年级数学暑假课程(华师大版)(解析版)

第12讲 中位线2021年新九年级数学暑假课程(华师大版)(解析版)

第12讲中位线【学习目标】熟悉并掌握中位线的性质灵活运用中位线解决几何中的问题【基础知识】考点一、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.考点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.考点二、顺次连接任意四边形各边中点得到的四边形的形状顺次连接任意四边形各边中点得到的四边形是平行四边形.【考点剖析】考点一:三角形的中位线例1.如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P 在BC上从B向C移动,点R不动,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【答案】C;【解析】连AR,由E、F分别为PA,PR的中点知EF为△PAR的中位线, 则12EF AR,而AR长不变,故EF大小不变.【总结】当条件中含有中点的时候,要将它与中位线联系起来,进行联想,必要时添加辅助线,构造中位线图形.举一反三:【变式】在△ABC中,中线BE、CF交于点O,M、N分别是BO、CO中点,则四边形MNEF是什么特殊四边形?并说明理由.【答案】5;解:四边形MNEF是平行四边形.理由如下:∵BE、CF是中线,∴E、F分别是AC、AB的中点,∴EF是△ABC的中位线,∴EF∥BC且EF=BC,∵M、N分别是BO、CO中点,∴MN是△OBC的中位线,∴MN∥BC且MN=BC,∴EF∥MN且EF=MN,∴四边形MNEF是平行四边形.例2、如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.2 B.3 C.52D.4【思路】利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长.【答案】解:在△ABC中,D、E分别是BC、AC的中点∴DE∥AB∴∠EDC=∠ABC∵BF平分∠ABC∴∠EDC=2∠FBD在△BDF中,∠EDC=∠FBD+∠BFD∴∠DBF=∠DFB∴FD=BD=12BC=12×6=3.【总结升华】三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.例3、如图所示,在△ABC中,M为BC的中点,AD为∠BAC的平分线,BD⊥AD于D,AB=12,AC=18,求MD的长.【思路】本题中所求线段MD与已知线段AB、AC之间没有什么联系,但由M为BC的中点联想到中位线,另有AD为角平分线和垂线,根据等腰三角形“三线合一”构造等腰三角形ABN,D为BN的中点,DM即为中位线,不难求出MD的长度.【答案】解:延长BD交AC于点N.∵ AD 为∠BAC 的角平分线,且AD ⊥BN ,∴ ∠BAD =∠NAD ,∠ADB =∠ADN =90°,在△ABD 和△AND 中,BAD NAD AD =ADADB ADN ∠∠⎧⎪⎨⎪∠∠⎩== ∴ △ABD ≌△AND(ASA)∴ AN =AB =12,BD =DN .∵ AC =18,∴ NC =AC -AN =18-12=6,∵ D 、M 分别为BN 、BC 的中点,∴ DM =12CN =162⨯=3. 【总结】当条件中含有中点的时候,可以将它与等腰三角形的“三线合一”、三角形的中线、中位线等联系起来,进行联想,必要时添加辅助线,构造中位线等图形.举一反三:【变式】如图,BE ,CF 是△ABC 的角平分线,AN ⊥BE 于N ,AM ⊥CF 于M ,求证:MN ∥BC .【答案】证明:延长AN 、AM 分别交BC 于点D 、G .∵BE 为∠ABC 的角平分线,BE ⊥AG ,∴∠BAG=∠BGA ,∴△ABG 为等腰三角形,∴BN 也为等腰三角形的中线,即AN=GN .同理AM=DM ,∴MN 为△ADG 的中位线,∴MN ∥BC .例4、(1)如图1,在四边形ABCD中,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE,求证:AB=CD.(提示取BD的中点H,连接FH,HE作辅助线)(2)如图2,在△ABC中,且O是BC边的中点,D是AC边上一点,E是AD的中点,直线OE交BA的延长线于点G,若AB=DC=5,∠OEC=60°,求OE的长度.【思路】(1)连结BD,取DB的中点H,连结EH、FH,证明出EH∥AB,EH=AB,FH∥CD,FH=CD,证出HE=HF,进而证出AB=CD;(2)连结BD,取DB的中点H,连结EH、OH,证明出EH=OH,可证明证出△OEH是等边三角形,进而求出OE=.【答案】(1)证明:连结BD,取DB的中点H,连结EH、FH.∵E、F分别是BC、AD的中点,∴EH∥AB,EH=AB,FH∥CD,FH=CD,∵∠BME=∠CNE,∴HE=HF,∴AB=CD;(2)解:连结BD,取DB的中点H,连结EH、OH,∵AB=CD,∴HO=HE,∴∠HOE=∠HEO,∵∠OEC=60°,∴∠HEO=∠AGO=60°,∴△OEH是等边三角形,∵AB=DC=5,∴OE=.【总结】本题考查了三角形的中位线定理、全等三角形的判定与性质,解答本题的关键是参考题目给出的思路,作出辅助线,有一定难度.举一反三:【变式】如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.1【答案】D;解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE,∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=12 BH,∴BH=AB-AH=AB-DC=2,∴EF=1.考点二:中点四边形例5.如图,点O是△ABC外一点,连接OB、OC,线段AB、OB、OC、AC的中点分别为D、E、F、G,连接DE、EF、FG、GD.(1)判断四边形DEFG的形状,并说明理由;(2)若M为EF的中点,OM=2,∠OBC和∠OCB互余,求线段DG的长.【答案】解:(1)四边形DEFG是平行四边形,理由是:∵线段AB、OB、OC、AC的中点分别为D、E、F、G,∴EF∥BC,EF=BC,DG=BC,DG∥BC,∴EF∥DG,EF=DG,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=180°﹣90°=90°,∵M为EF的中点,OM=2,∴EF=2OA=4,∵EF=DG,∴DG=4.【总结】本题考查了中点四边形形状的判定,主要是利用中位线定理得出一组对边平行且相等,从而判定是平行四边形.【真题演练】一.选择题1.已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为()A.2cm B.7cm C.5cm D.6cm【答案】D;【解析】由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.2. 如图,点D、E、F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为()A.5 B.10 C.20 D.40【答案】C;【解析】根据中位线定理可得BC=2DF,AC=2DE,AB=2EF,继而结合△DEF的周长为10,可得出△ABC的周长.3. 在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.11【答案】B;【解析】∵D 、E 、F 分别为AB 、BC 、AC 中点,∴DF=12BC=2,DF ∥BC ,EF=12AB=32,EF ∥AB , ∴四边形DBEF 为平行四边形, ∴四边形DBEF 的周长=2(DF+EF )=2×(2+32)=7. 故选B .4.如图,△ABC 的中线BD 、CE 交于点O ,连接OA ,点G 、F 分别为OC 、OB 的中点,BC=8,AO=6,则四边形DEFG 的周长为( )A .12B .14C .16D .18 【答案】B ;【解析】解:∵BD ,CE 是△ABC 的中线,∴ED ∥BC 且ED=BC ,∵F 是BO 的中点,G 是CO 的中点,∴FG ∥BC 且FG=BC ,∴ED=FG=BC=4,同理GD=EF=AO=3,∴四边形DEFG 的周长为3+4+3+4=14.故选B .5. 如图所示,在△ABC 中,AB =AC ,M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的点,连接DN 、EM ,若AB =5cm ,BC =8cm ,DE =4cm ,则图中阴影部分的面积为( )A .12cmB .1.52cmC .22cmD .32cm【答案】B ;【解析】连接MN ,作AF ⊥BC 于F .∵AB =AC ,∴BF =CF =12BC =12×8=4,在Rt △ABF 中,AF =22AB BF -=2254-=3,∵M 、N 分别是AB ,AC 的中点,∴MN 是中位线,即平分三角形的高且MN =8÷2=4,∴NM =12BC =DE ,∴△MNO ≌△EDO ,O 也是ME ,ND 的中点,∴阴影三角形的高是12AF ÷2=1.5÷2=0.75,∴S 阴影=4×0.75÷2=1.5.6. 如图,在四边形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点.已知两底的差是6,两腰的和是12,则△EFG 的周长是( )A.8B.9C.10D.12【答案】B ;【解析】连接AE ,延长交CD 于H ,可证AB =DH ,CH =两底的差,EF 是△AHC 的中位线,EF =12两底的差,EG +FG =12两腰的和,故△EFG 的周长是9.二.填空题7. 顺次连接一个四边形各边中点得到的四边形是_________________.【答案】平行四边形;8. 如图, E 、F 分别是口ABCD 的两边AB 、CD 的中点, AF 交DE 于P, BF 交CE 于Q,则PQ 与AB 的关系是 .【答案】PQ∥AB,PQ=12 AB;【解析】P,Q分别是AF,BF的中点.9. 如图,E、F、G、H分别是四边形ABCD各边的中点,对角线AC、BD的长分别为7和9,则四边形EFGH的周长是______.【答案】16;【解析】根据三角形中位线的性质得出HG 12AC,EF12AC,HE12DB,GF12BD,进而得出HE=GF=12BD,HG=FE=12AC,即可得出答案.10.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.【答案】3;【解析】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.11.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长 .【答案】3;【解析】∵△ABC 的周长是26,BC=10,∴AB+AC=26﹣10=16,∵∠ABC 的平分线垂直于AE , ∴在△ABQ 和△EBQ 中,,∴△ABQ ≌△EBQ ,∴AQ=EQ ,AB=BE ,同理,AP=DP ,AC=CD ,∴DE=BE+CD ﹣BC=AB+AC ﹣BC=16﹣10=6,∵AQ=DP ,AP=DP ,∴PQ 是△ADE 的中位线,∴PQ=12DE=3. 故答案是:3.12.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D .下列三个结论:①∠BOC =90°+12∠A ; ②设OD =m ,AE +AF =n ,则AEF S mn △;③EF 不能成为△ABC 的中位线.其中正确的结论是_______.【答案】①,③;【解析】①根据三角形内角和定理求解;②根据△AEF的面积=△AOE的面积+△AOF的面积求解;③若此三角形为等边三角形,则EF即为中位线.三.解答题13.如图,四边形ABCD中,AD∥BC,M、N、P、Q分别为AD、BC、BD、AC的中点.求证:MN和PQ互相平分.【解析】证明:连接MP,PN,NQ,QM,∵AM=MD,BP=PD,∴PM是△ABD的中位线,∴PM∥AB,PM=12 AB;同理NQ=12AB,NQ∥AB,∴PM=NQ,且PM∥NQ.∴四边形MPNQ是平行四边形.∴MN与PQ互相平分.14.已知:在△ABC中,BC>AC,动点D绕△ABC的顶点A逆时针旋转,且AD=BC,连接DC.过AB、DC的中点E、F作直线,直线EF与直线AD、BC分别相交于点M、N.(1)如图1,当点D旋转到BC的延长线上时,点N恰好与点F重合,取AC的中点H,连接HE、HF,根据三角形中位线定理和平行线的性质,可得结论∠AMF=∠BNE(不需证明);(2)当点D旋转到图2或图3中的位置时,∠AMF与∠BNE有何数量关系?请分别写出猜想,并任选一种情况证明.【解析】解:图1:∠AMF=∠ENB;图2:∠AMF=∠ENB;图3:∠AMF+∠ENB=180°.证明:如图2,取AC的中点H,连接HE、HF.∵F是DC的中点,H是AC的中点,∴HF∥AD,HF=12 AD,∴∠AMF=∠HFE,同理,HE∥CB,HE=12 CB,∴∠ENB=∠HEF.∵AD=BC,∴HF=HE,∴∠HEF=∠HFE,∴∠ENB=∠AMF.如图3:取AC的中点H,连接HE、HF.∵F是DC的中点,H是AC的中点,∴HF∥AD,HF=12 AD,∴∠AMF+∠HFE=180°,同理,HE∥CB,HE=12 CB,∴∠ENB=∠HEF.∵AD=BC,∴HF=HE,∴∠HEF=∠HFE,∴∠AMF+∠ENB=180°.15.已知,如图,在Rt△ABC中,∠ACB=90°,点D为AB中点,连接CD.点E为边AC上一点,过点E作EF∥AB,交CD于点F,连接EB,取EB的中点G,连接DG、FG.(1)求证:EF=CF;(2)求证:FG⊥DG.【解析】证明:(1)如图,∵在Rt△ABC中,∠ACB=90°,点D为AB中点,∴CD是斜边AB上的中线,∴CD=AD=BD=AB.又EF∥AB,∴=,∴==1,∴EF=CF;(2)如图,延长EF交BC于点M,连接GM.∵EF∥AB,∴∠CMF=∠CBD.又∵AD=BD=AB,∴∠DCM=∠CBD,即∠FCM=∠CBD,∴∠CMF=∠FCM,∴CF=MF.又由(1)知,EF=CF,∴EF=FM,即点F是EM的中点,又∵EF∥AB,则FM∥AB∴EM是△ABC的中位线,则点M是BC的中点,∵点G是BE的中点,∴DG是△AEB的中位线,GM是△BEC的中位线,∴GD∥AE,GM∥EC,∴点D、G、M三点共线,∴FG是△CDM的中位线,∴FG∥CM.又∵MC⊥EC,∴FG⊥DG.。

23.4 中位线 (课件)2024-2025学年华东师大版数学九年级上册

23.4 中位线 (课件)2024-2025学年华东师大版数学九年级上册

B
C
△ADE∽△ABC
.
DE//BC
三角形的中位线定理
三角形的中位线平行于第三边且等于第三边的一半。
(1)三角形的中位线定理简称“一线两用”;
(2)三角形的中位线定理常用于解决平行问题或线段的倍数 问题;
(3)出现了三角形的中点,常常作三角形的中位线这条辅助 线解决问题。
∵DE是△ABC的中位线 D
A
E
F
B
C
探索:请同学们在作业本上任意画一个△ABC。
(1)画出△ABC的所有中位线; (2)画出△ABC的所有中线;
(3)三角形的中线和中位线有何联系和区别?
A
D
E
B
F
C
思考
如图,已知D、E分别是AB、AC的中点,即DE是△ABC的中位线。
(1)DE和BC有什么样的位置关系?
(2)DE和BC有什么样的数量关系?
∴ DE∥BC,
B
A E C
数学活动室
1.如图1,在△ABC中,DE是中位线。
(1)若∠ADE=60°,则∠B=
度,为什么?
(2)若BC=8cm,则DE=
cm,为什么?
A
A
D
E
ED
B 图1
C
B
F
C
图2
2.如图2,在△ABC中,CD平分∠ACB,AD⊥CD于点D,E为
AB的中点,连结DE,AC=15,BC=27,则DE=
求证:△DEF∽△ABC
A
A E
E
F
D M
B
DC
图1
B
F
C
图2
2.如图2,在四边形ABCD中,M是对角线AC的中点,E、F分别是AD、BC的

华师大版-数学-九年级上册-中位线在实际问题中有什么应用

华师大版-数学-九年级上册-中位线在实际问题中有什么应用

初中-数学-打印版
中位线在实际问题中有什么应用?
中位线在实际问题中有什么应用?
难易度:★★★★
关键词:中位线
答案:
中位线的应用极其广泛,如用在证明线段平行,角的和、差、倍、分等问题上。

在实际问题中常过一边的中点作另一边的平行线从而运用中位线定理解决问题。

【举一反三】
典例:如图,△ABC的三边长分别为AB=14,BC=16,AC=26,P为∠A的平分线AD 上一点,且BP⊥AD,M为BC的中点,求PM的长。

思路导引:角平分线与垂直结合,这是一个基本图形,注意构造等腰三角形。

标准答案:∠A的平分线与BP边上的垂线互相重合,通过作辅助线延长BP交AC于点Q,由△ABP≌△AQP知AB=AQ=14,又知M是BC的中点,所以PM是△BQC的中位线,于是本题得以解决。

PM=6
初中-数学-打印版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
F
G
B
C
A C
(3)若E为△ABC周边 (折线BA-AC-CB) 上的一点,连接DE,当E运动到AC边中点时, 线段DE称为△ABC的中位线
(4) 三角形中位线与中线有什么区别?
(5) 当E在△ABC周边上运动时,还有哪些位置使线段DE成为三角形ABC的中位线?
的色泽和质感。蘑菇王子:“哇!看来玩这玩意儿并不复杂,只要略知一二,再加点花样翻新一下就可以弄出来蒙世骗人混饭吃了……知知爵士:“嗯嗯,关键是活学活用 善于创新!本人搞装潢的专业可是经过著名领袖亲传的.”蘑菇王子:“哈哈,学知识就需要你这种的革新态度!”知知爵士:“嗯嗯,谢谢学长鼓励,我真的感到无比自
∴EF∥BC,EF =1/2 BG = 1/2(BC+CG )
(三角形中位线定理).
∵AD=GC,
∴EF= 1/2(AD+BC).
思路二:将梯形转化为平行四边形,利用平行四边形的性质定理进行证明.
证明:过点F作MN∥AB,交AD的延长线于点M,交BC于点N.A
D
M
∵AD∥BC,
∴四边形AMNB是平行
归纳与概括:
你能仿照三角形中位线定理,用文字语言来概括
梯形中位线的性质吗?
AD
E
F
B
C
已知△ABC,分别连接三边中点D,E,F(如图),
你能得到哪些结论呢?
A
我们可以从线段的数量关系、 三角形是否全等、是否有平行
D
E
四边形等不同的角度来寻找.
B
F
C
连接AF,你有什么发现呢?
若请你添加一个条件,你又有什么发现呢?
初中数学九年级上册 (苏科版)
1.5 中位线(1)
学习目标:
1、能识别三角形的中位线; 能证明三角形中位线定理; 2、能用三角形中位线定理解决其它相关问题; 3、在自主探索与合作交流中, 经过猜想、验证过程,
进一步发展推理论证能力.
1、如图,点O为ABCD对角线的交点,
A
D
E
过O的直线EF与边AD、BC分别相交于E、F,
(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD是
平行四边形的有(用序号表示):如①与⑤
.
(2)对由以上5个条件中任意选取2个条件,不能推出四边形ABCD是平行四边形的,
请选取一种情形举出反例说明
一、三角形中位线的概念:
(1)在△ABC中,请你画出AB边上的中线CD;
B
(2)对于△ABC来说, 中线CD是由怎样的两点连接而成的?
证明:延长DE到F,使EF=DE,连接CF.
请同学完成下面的证明
D
E
F
还有其他的转化方法吗? 请你来尝试
A
B A
C A
D
E
D
E
D
E
B
CB
CB
C
例1 已知:如图,梯形ABCD中,AD∥BC,E,F分 别是AB,DC的中点. 求证:EF∥BC,EF= 1/2(BC+AD).
思路一:将梯形转化为三角形,利用三角形中位线定理进行证明. AD
E
F
四边形,且∠MDF=∠FCN.
∴AB=MN. 在△DFM和△CFN中,
∠MDF=∠FCN ,
B
NC
DF=CF ,
∠DFM=∠CFN ,
∴△DFM≌ △CFN(ASA). ∴DM=CN,MF=FN=1/2 MN. 又∵AE=EB=1/2 AB. ∴AE=EB=MF=FN. ∴四边形AEFM,EBNF是平行四边形. ∴AM=EF=BC, EF∥BC∥AD. ∴ EF=1/2 (AD+BC).
E
F
B
C
G
证明:连接AF并延长,交BC的延长线于点G.
∵AD∥BC,
∴∠D =∠FCG. 在△ADF和△GCF中,
AD
∠D=∠FCG , DF=CF ,
E
F
∠AFD=∠GFC,
∴△ADF≌△GCF(ASA).
B
∴AF=GF,AD=GC(全等三角形对应边相等).
C
G
又∵AE=EB,
∴EF是△ABG的中位线.
剪拼三角形
三角形中 位线定理
梯形中位 线性质
2.从实验操作中发现添加辅助线的方法.
3.转化思想的应用——将三角形问题转化为平行四边形问题, 将梯形中位线问题转化为三角形中位线.
小明有一个解不开的迷:他任意画了三个△ABC(不全等), 发现只要向图中的角平分线BG、CF作垂线AG、AF,连接两 垂足F、G,则FG总是与BC平行,但他不会证明,你能解开 这个迷吗?
二、三角形中位线定理
已知;如图, △ABC中,D、E分别是AB、AC的中点, (1)猜想DE与BC在位置和数量上各有什么关系? (2)证明你的猜想. 如何将三角形纸片剪拼成平行四边形呢?
A
思路:转化方向——平行A 四边形.
D
E
B
C
D B
E
F
C
定理:三角形的中位线平行于第三边,并且等于第三边A 的一半.
A
识图练习:
D EFBiblioteka G H KBC
(1) 如图, △ABC中,D、E、F三等分AB,G、H、K三等分AC ,
则△ABC 的中位线是_______________;
DG是△__________的中位线.
(2)读句画图并填空 △ABC的中线BD、CE相交于点O,F、G分别是OB、OC的中点 则FG是△__________的中位线; DE是△__________的中位线.
O
图中全等三角形最多有__________对.
B
F
C
E
2.已知:如图,E、F是ABCD的对角线AC上的点,
且AE=CF.
A
D
(1) BE与DF有什么关系?
(2) 证明你的结论.
B
C
F
3. 已知:四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:
①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC.
豪……”这时,女总裁腾霓玛娅婆婆;房屋装修 https:/// 房屋装修;飘然整出一个,飘蝎火腿滚一千四百四十度外加鲸喊吹筒转九周半的招数,接着又弄了 一个,仙体豺爬望月翻三百六十度外加猛转十七周的高雅招式。接着像墨绿色的多趾奇峰蝎一样乱乐了一声,突然忽悠了一个滚地抖动的特技神功,身上立刻生出了五只极 似匕首造型的白象牙色怪毛……紧接着破旧的钢灰色路灯造型的美辫有些收缩转化起来……水绿色白菜似的脖子露出深黄色的点点余气……极似气桶造型的肩膀露出暗灰色 的飘飘余冷!最后抖起突兀的淡青色细小蜘蛛般的胡须一甩,快速从里面涌出一道灵光,她抓住灵光神秘地一耍,一套黑晶晶、红晶晶的兵器『彩宝蟒鬼腰牌绳』便显露出 来,只见这个这件玩意儿,一边抖动,一边发出“哧哧”的异响……飘然间女总裁腾霓玛娅婆婆音速般地演了一套倒地变形舞猴鬼的怪异把戏,,只见她有飘带的鹅黄色包 子模样的熏鹅七影披风中,快速窜出四串高原美玉臀鳄状的老鹰,随着女总裁腾霓玛娅婆婆的转动,高原美玉臀鳄状的老鹰像车窗一样在双手上恶毒地安排出片片光柱…… 紧接着女总裁腾霓玛娅婆婆又使自己亮黄色石塔式样的护腕鸣出水红色的履带味,只见她怪异的浅橙色螃蟹造型的身材中,飘然射出五片台风状的仙翅枕头灯,随着女总裁 腾霓玛娅婆婆的甩动,台风状的仙翅枕头灯像窗帘一样,朝着醉猫地光玉上面悬浮着的发光体直晃过去……紧跟着女总裁腾霓玛娅婆婆也飞耍着兵器像金鱼般的怪影一样向 醉猫地光玉上面悬浮着的发光体直晃过去。……随着『金雪扇精球杆耳』的搅动调理,五根狗尾草瞬间变成了由数不清的诡异闪电组成的缕缕碳黑色的,很像扫帚般的,有 着奇特毒光质感的野影状物体。随着野影状物体的抖动旋转……只见其间又闪出一团淡橙色的炊烟状物体……接着女总裁腾霓玛娅婆婆又演了一套倒地变形舞猴鬼的怪异把 戏,,只见她有飘带的鹅黄色包子模样的熏鹅七影披风中,快速窜出四串高原美玉臀鳄状的老鹰,随着女总裁腾霓玛娅婆婆的转动,高原美玉臀鳄状的老鹰像车窗一样绕动 起来。一道淡黄色的闪光,地面变成了紫红色、景物变成了纯灰色、天空变成了深灰色、四周发出了艺术的巨响……。只听一声玄妙梦幻的声音划过,五只很像跳
相关文档
最新文档