离散数学配套课件PPT(第5版)第一部分 数理逻辑1.5-6
离散数学第一章命题逻辑PPT课件
P
Q
0
0
0
1
1
0
1
1
P→Q 1 1 0 1
如: P:雪是黑的。
Q:太阳从东方升起 。
P → Q:如果雪是黑的,则太阳从东方升起 。
命题P→Q是假, 当且仅当P是真而Q是假。
11/20/2020
chapter1
14
1.2 联结词
条件与汉语中“如果…,就…”相类似,但有所区别: (1)自然语言中,“如果P则Q”,往往P和Q有一定的因果 关系,而条件复合命题P→Q中 P和Q 可以完全不相关。 (2)自然语言中,“如果P则Q”,当P为0、Q为1时,整个 句子真值难以确定;而条件复合命题P→Q中,当P为0时, 复合命题的真值为1。 P则Q的逻辑含义:P是Q的充分条件,的表示 命题变元——常用P、Q、R、S等大写字母或加下标的大 写字母P1, Q2, R10, ……表示来表示一个命题,称为命题 变元。 如: P:巴黎在法国。
Q:煤是白色的。
11/20/2020
chapter1
4
1.1 命题及其表示法
3、命题相关概念 简单命题(原子命题)——不能再分解的命题。 复合命题——由若干个简单命题复合而成的命题。 真值表——把组成复合命题的各命题变元的真值的所有 组合及其相对应的复合命题的真值列成表,称为真值表。
11/20/2020
chapter1
6
1.1 命题及其表示法
【例3 】求公式 (P→R)∨(Q→R)的真值表。 解:∵公式含有3个命题变元P、Q、R,
∴真值表有23=8行。其真值表如下表 所示:
11/20/2020
chapter1
7
1.2 联结词
命题和原子命题常可通过一些联结词构成新命题, 这
离散数学 ppt课件
▪ 对偶式与对偶原理 ▪ 析取范式与合取范式 ▪ 主析取范式与主合取范式
1
对偶式和对偶原理
定义 在仅含有联结词, ∧,∨的命题公式A 中,将∨换成∧, ∧换成∨,若A中含有0 或1,就将0换成1,1换成0,所得命题公 式称为A的对偶式,记为A*.
从定义不难看出,(A*)* 还原成A
5
析取范式与合取范式
文字:命题变项及其否定的总称 如 p, q 简单析取式:有限个文字构成的析取式 如 p, q, pq, pqr, … 简单合取式:有限个文字构成的合取式 如 p, q, pq, pqr, …
注意:一个命题变元或其否定既可以是简单合取 式,也可是简单析取式,如p,q等。
6
析取范式与合取范式
对偶式; (2)表明,命题变元否定的公式等价于对 偶式之否定。
3
对偶式和对偶原理
定理(对偶原理)设A,B为两个命题公式, 若A B,则A* B*. 有了等值式、代入规则、替换规则和对偶
定理,便可以得到更多的永真式,证明 更多的等值式,使化简命题公式更为方 便。
4
判定问题
真值表 等值演算 范式
极大项
公式
pqr p q r p q r p q r p q r p q r p q r p q r
显然,A也是A*的对偶式。可见A与A*互为 对偶式。
2
对偶式和对偶原理
定理 设A和A*互为对偶式,p1,p2,…,pn是出现在A和 A*中的全部命题变项,将A和A*写成n元函数形式, 则 (1) A(p1,p2,…,pn) A* ( p1, p2,…, pn)
(2) A( p1, p2,…, pn) A* (p1,p2,…,pn) (1)表明,公式A的否定等价于其命题变元否定的
中小学优质课件数理逻辑离散数学课件.ppt
本篇由命题逻辑、谓词逻辑、公理化理论及 非经典逻辑等四部分组成,其中命题逻辑以命 题为研究对象而谓词逻辑则以谓词为研究对象, 而公理化理论则是数理逻辑中演绎推理的形式 化思想的介绍,最后非经典逻辑则介绍若干种 计算机科学中常用的一些特殊形式逻辑,以上 四部分有机结合构成完整的整体。
(12)谓词逻辑的蕴含永真公式 xyP(x , y) yx(P(x , y)) xP(x) P(x) P(x)x P(x) xP(x)∨x Q(x)x(P(x)∨Q(x)) xP(x)∧x Q(x)x(P(x)∧Q(x)) x(P(x)x(P(x)) x(P(x)Q(x))x(P(x)x Q(x) x(P(x)Q(x))xP(x)x Q(x)
§1.4 命题逻辑基本等式
(6)命题逻辑42个基本等式。 交换律 P∨Q=Q∨P; P∧Q=Q∧P; PQ=QP. 结合律 (P∨Q)∨R=P∨(Q∨R); (P∧Q)∧R=P∧(Q∧R); (PQ)R=P(QR). 分配律 P∧(∨R)=(P∧Q)∨(P∧R); P∨(Q∧R)=(P∨Q)∧(P∨R);
(13)特异合取范式:该范式是一个合取 式,每个析取项是所有命题变元式其否定的析取 式。
§1.8 命题联结词的扩充与归约 (13)命题联结词的扩充——异或:、与非: 、或非:、蕴含否定:C (14)命题联结词的归约 命题联结词可归约为如下形式之一: • {, } • {, } • {} • {}
第二章 谓词逻辑
• 自由变元的代入规则——代入在公式的自由变 元出现的每一处进行且该代入变元不允许在式中以任 何约束形式出现。
§2.4 谓词逻辑永真公式 (9)谓词逻辑永真公式定义
(完整版)离散数学-数学逻辑(课件模板)
第一篇数理逻辑数理逻辑是应用数学方法引进一套符号系统来研究思维的形式结构和规律的学科,它起源于公元十七世纪。
十九世纪英国的德·摩根和乔治·布尔发展了逻辑代数,二十世纪三十年代数理逻辑进入了成熟时期,基本内容(命题逻辑和谓词逻辑)有了明确的理论基础,成为数学的一个重要分支,同时也是电子元件设计和性质分析的工具。
冯·诺意曼,图灵,克林,…等人研究了逻辑与计算的关系。
基于理论研究和实践,随着1946年第一台通用电子数字计算机的诞生和近代科学的发展,计算技术中提出了大量的逻辑问题,逻辑程序设计语言的研制,更促进了数理逻辑的发展。
除古典二值(真,假)逻辑外,还研究了多值逻辑、模态逻辑、概率逻辑、模糊逻辑、非单调逻辑等。
不仅有演绎逻辑,也还有归纳逻辑。
计算机科学中还专门研究计算逻辑、程序逻辑、时序逻辑等。
现代数理逻辑分为四论:证明论,递归论(它们与形式语言语法有关),模型论,公理化集合论(它们与形式语言的语义有关)。
第1-1章命题逻辑学习要求: 掌握命题,命题公式,重言式,等价式,蕴涵式等基本概念,能利用逻辑联结词或真值表,等价式与蕴涵式进行命题演算和推理;学习范式时与集合的范式进行对比。
表述客观世界的各种现象,表述人们的思想,表述各门学科的规则、理论等,除使用自然语言(这常常是上有歧异性的)外,还要使用一些特定的术语、符号、规律等“对象语言”,这些是所研究学科的一种特殊的形式化语言,研究思维结构与规律的逻辑学也有其对象语言。
本章就是讨论逻辑学中的对象语言—命题及其演算,它相当于自然语言中的语句。
§1-1-1 命题逻辑联结词与真值表一、命题的基本概念首先我们从下面的例子加以分析。
例1-1-1.1人总是要死的。
例1-1-1.2苏格拉底是人。
例1-1-1.3苏格拉底是要死的。
例1-1-1.4中国人民是勤劳和勇敢的。
例1-1-1.5鸵鸟是鸟。
例1-1-1.6 1是质(素)数。
离散数学教程PPT课件
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
离散数学PPT课件
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理
离散数学配套课件PPT(第5版)第一部分 数理逻辑联结词全功能集
复合联结词
与非式: pq(pq) 或非式: pq(pq)
和与, ∧,∨有下述关系: p(p∧p)pp p∧q( p∧q)(pq)(pq)(pq) p∨q(p∧q)(p)(q)(pp)(qq)
4
复合联结词(续)
ppp p∧q(pp)(qq) p∨q(pq)(pq)
13
例ቤተ መጻሕፍቲ ባይዱ续)
解 编号
极小项
角码 标记
1 x1∧x2∧x3∧x4 2 x1∧x2∧x3∧x4 3 x1∧x2∧x3∧x4
1110 * 1011 * 0111 *
4 x1∧x2∧x3∧x4 1010 * 5 x1∧x2∧x3∧x4 0101 * 6 x1∧x2∧x3∧x4 0011 *
1.5 联结词全功能集
联结词全功能集 与非联结词,或非联结词
1
联结词的全功能集
定义 设S是一个联结词集合,如果任何n(n1) 元 真值函数都可以由仅含S中的联结词构成的公式表 示,则称S是联结词全功能集.
说明:若S是联结词全功能集,则任何命题公式都 可用S中的联结词表示.
设S1, S2是两个联结词集合,且S1 S2. 若S1是全
x y
x∧y x y
x∨y x
x
与门
或门
非门
8
组合电路的例子
(x∨y)∧x的组合电路
x y
x y
第一种画法
x 第二种画法
9
例
例 楼梯的灯由上下2个开关控制, 要求按动任何一个 开关都能打开或关闭灯. 试设计一个这样的线路. 解 x,y:开关的状态, F:灯的状态, 打开为1, 关闭为0. 不妨设当2个开关都为0时灯是打开的.
(5,7) x1∧x3∧x4 001 *
离散数学课件ppt课件
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑
离散数学第一章PPT课件
R 0 1 0 1 0 1 0 1
Assignments(作业)
第30页: 4
1.3 公式分类与等价式
1.3.1 公式分类 1.3.2 等价公式(等值演算) 1.3.3 基本等价式----命题定律 1.3.4 代入规则和替换规则 1.3.5 证明命题公式等价的方法
1.3.1 公式分类
定义1.13 设A是一个命题公式,对A所有可能的解释: (1)若A都为真,称A为永真式或重言式。
(2)若A都为假,称A为永假式或矛盾式。
(3)若至少存在一个解释使得A为真,称A为可满足式。
例1 从上一节真值表可知,命题公式(PQ)(P∨Q)为 重言式,(PQ)∧Q为矛盾式,PQ)∧R为可满足式。
注: 1、 永真式必为可满足式,反之则不然;永真式的否定是永 假式,反之亦然; 2、 决定一个公式是否是一个永真式、永假式或可满足式有 三种方法:真值表法(适用于变元少而简单的公式)、求主范
1.否定词(negation connective )﹁
定义1.4 复合命题“非P”称为命题P的否定,记作
P,读作非P。 P为真当且仅当P为假。
例3 设 P:离散数学是计算机专业的核心课程, 则 P:离散数学不是计算机专业的核心课 程。
2.合取词(conjunction connective )∧
命题符号化的目的在于用五个联结词将日 常语言中的命题转化为数理逻辑中的形式命题, 其关键在于对自然语言中语句之间的逻辑关系 以及命题联结词的含义要有正确的理解,使用 适当的联结词: (1)确定语句是否是一个命题;
(2)找出句中连词,用适当的命题联结词表
示。
Assignments(作业)
第30页: 3(偶数小题)
定义1.12 设A是含有n个命题变元的命题 公式,将命题公式A在所有赋值之下取值的情 况汇列成表,称为A的真值表( truth table )。 为列出一个公式的真值表,我们约定: ①命题变元按字典序排列;②对公式的每个 解释,以二进制从小到大列出;③当公式较 复杂时,可先列出子公式的真值,最后列出 所给公式的真值。
离散数学1-5,1-6教材
表 1-5.2 常用的蕴含式
P∧Q P(化简律) P∧Q Q P P∨Q(附加律) ┐P P→Q Q P→Q ┐(P→Q) P ┐(P→Q) ┐Q 1 2 3 4 5 6 7
P∧(P→Q) Q(假言律)
┐Q∧(P→Q) ┐P ┐P∧(P∨Q) Q
8
9 10
离散数学
4. 定理
证明 如果P ∨ Q R
则 PR PPQ F Q Q
QR QPQ F P P
PQR RR F
离散数学
例题1 证明((P∨S)∧R)V┐((P∨S)∧R)为重言式。 证明 因为PV┐PT, 如以((P∨S)∧R)置换P即得 ((P∨S)∧R)V┐((P∨S)∧R) T
离散数学
重点将研究重言式,因为重言式的否定是矛盾式, 矛盾式的否定是重言式,这样只研究其一就可以了。 重言式最有用,它有以下特点: ①两重言式的合取式、析取式、条件式和双条件式等 都仍是重言式。于是,由简单的重言式可构造出复 杂的重言式。 ②由重言式使用公认的规则可以产生许多有用等价式 和蕴涵式。
5
6 7 8 9 10
离散数学
化简如下语句: “情况并非如此:若他不来,则我不去”。
离散数学
解:首先符号化上述语句。 设P:他来。Q:我去 则原句:┐(┐P→┐Q) 然后化简上述命题公式 ┐(┐P→┐Q) <=>┐( P ∨ ┐ Q ) <=> ┐ P ∧ Q 即:我去了,但他未来。
离散数学
P12:(7)a)
P:上午下雨,Q:我去看电影,R:我在家看书; S:我在家看报。
(┐P → Q) (P →(R ∨ S ))
离散数学
1-5 重言式与蕴含式 1-6 其他联结词
数理逻辑简介.ppt课件
14、等价否定等值式 A B A B
15、归谬论 (A B) (A B) A
三、等值演算。
置换定理:如果 A B,则 ( A) (B)。
例2、验证下列等值式。
(1) p (q r) ( p q) r
(2) p (q r) p (q r) q r (3) q (p q) p 1
q (q p)
q (q p)
(q q) p
1 p 1
分配律 矛盾律 同一律 德摩根律 结合律 排中律 零律
考虑问题:能否利用等值式来化简,或判断 公式的类型(重言,矛盾,可满足)。
判断一个公式是否重言式,矛盾式,可满足 式,或者判断两个命题公式是否等值。有两种方 法,即真值表法和等值演算法。
内容:等值关系,24个重要等值式,等值演算。 重点:(1) 掌握两公式等值的定义。
(2) 掌握24个重要等值式,并能利用 其进行等值演算。
一、两命题公式间的等值关系。
1、定义:设 A, B为两命题公式,若等价式 A B 是重言式,则称 A与B是等值的,记作 A B 。
2、判定 。
判断两公式 A, B是否等值,即判断 A B
例2、 p p q r p r
为_5__层公式。
3、真值表。
公式 A 的解释或赋值
赋值
成真赋值 成假赋值
(使A为真的赋值) (使A为假的赋值)
如公式 A ( p q) r ,110( p 1, q 1, r 0 ,
按字典序)为 A 的成假赋值,111,011,010……
等是 A 的成真赋值。
2、结合律 (A B) C A (B C), (A B) C A (B C)
3、分配律 A (B C) (A B) (A C) , A (B C) (A B) (A C)
《离散数学》完整课件
第三节 复合关系与逆关系
本节讨论关系的复合运算与逆运算极其 性质;主要考虑了下列问题:
1.关系的复合是否满足交换律、结合律、 关系的复合对于集合的并(交)是否有分 配律;
2.关系的复合运算与逆运算在关系图和 关系矩阵上的反应;
3.关系的复合运算与关系的逆运算之间 的运算规律.
返回本章首页
11 2021/6/7
|A|<|B|三条中有且仅有一条成立;
2.Bernstein定理:设A,B是两个集合,若|A|≥|B| 且|A| ≤ |B|,则集合A,B等势;
3.设A是任意集合,P(A)为A的幂集,则P(A)的基 数大于A的基数.
返回本章首页
23 2021/6/7
本章小结
本章的主要内容有:集合的等势、有限 集与无限集、可数集与不可数集、较为 常见的集合的基数等.集合的基数反映了 集合的元素的多少,它是集合的一种性 质,一种与该集合等势的集合构成的集 合族的共同性质.
返回本章首页
17 2021/6/7
第九节 复合映射与逆映射
映射的复合就是关系的复合,须注意的是 复合的次序,主要内容有:
1.映射的复合具有结合律,但不符合交换律; 2.区分了左逆与右逆;给出里左逆、右逆
与单射、满射之间的关系; 3.可逆与左、右逆之间的关系.
返回本章首页
18 2021/6/7
本章小结
1.本节首先给出了公式的蕴涵关系的三个等价定 义,及蕴涵关系具有的性质,给出了15个基本蕴 涵式;
2.把蕴涵概念推广,得到公式的逻辑结果的定义;
3.为了研究推理,还引进演绎的概念;
4.用实例说明推理方法.
返回本章首页
30 2021/6/7
第六节 形式演绎
教学课件:《离散数学导论(第5版)》徐洁磐
•
从图中可以看出,函数g使得
不但X中的每一个元素xi唯一对应一 个Y中的一个元素yj,而且也只有一 个xi对应yj,也就是说一个像只有
28
§3.2 复合函数、反函数、多
元• 函数
•
(3)两种运算:
•
• 复合运算(复合函数)设函
数f:XY,g:YZ则复合函数h=gf:
XZ 是一个新的函数。
•
定 义 : 设 函 数 f : XY , g :
• • 自反闭包 r (R)
• • 对称闭包 s (R)
•
•
传递闭包
t
(R)
• (2)闭i=1 包的公式:
19
§2.6 次序关系
• (7)次序关系
• • 四个定义:
•
偏序关系:X上自反、反对称与
传递的关系称偏序关系
• 并用‘≤ ’表示。
• 拟序关系:反自反、传递的关系 称拟序关系并用‘< ’表示。
• 2)交换律:a + b=b + a
• 3)分配律:a + (b×c)=(a + b) ×(a+ c)
• 4)单位元:a + e=a
• 5)逆元:a + a-1= e
• 6)零元:a + Θ=Θ
39
§5.3 同构与同态
• (4)同构:(X, )与(Y,)
存在一一对应函数g : XY使 得如
x1 , x2X,则有 :g(x1 x2)=g (x1)g(x2)此时则 称(X, )与
• • 关系的自反性 • • 关系的反自反性 • • 关系的对称性 • • 关系的反对称性 • • 关系的传递性
17
• (6)六种常用关系
• • 次序关系之一:偏 序关系
• • 次序关系之二:拟 序关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F=m0∧m3= (x∧y)∨(x∧y)
x y F(x,y) 00 1 01 0 10 0 11 1
10
例(续)
x y x y
x∧y (x∧y)∨(x∧y)
x∧y
11
设计组合电路
步骤: 1.构造输入输出表(问题的真值函数), 2. 写出主析取范式, 3. 化简.
最简展开式: 包含最少运算的公式
例 当且仅当 x=y=z=1 或 x=y=1且 z=0 时输出1. F= m6∨m7 = (x∧y∧z)∨(x∧y∧z) 4个与门,1个或门和一个非门 Fx∧y 一个与门
功能集,则S2也是全功能集. 反之,若S2不是全功能 集,则S1也不是全功能集.
2
联结词全功能集实例
定理 {, ∧,∨}、{, ∧}、{, ∨}、{, →}都是 联结词全功能集. 证明 每一个真值函数都可以用一个主析取范式表示, 故{, ∧,∨}是联结词全功能集.
p∨q(p∧q),故{, ∧}是全功能集. p∧q(p∨q),故{, ∨}是全功能集. p→qp∨q, 故{, →}也是全功能集.
可以证明: {∧,∨}不是全功能集, 从而{∧}, {∨}也 不是全功能集.
5
例
例 将公式p∧q化成只含下列各联结词集中的联结 词的等值的公式.
(1) {,∨};(2) {,→};(3) {↑};(4) {↓}. 解 (1) p∧q(p∨q). (2) p∧q(p∨q)(p→q). (3) p∧q p∧(q↑q)((p∧(q↑q)))
12
奎因-莫可拉斯基方法
1. 合并简单合取式生成所有可能出现在最简展开式 中的项.
2. 确定最简展开式中的项.
例 求下述公式的最简展开式: F=(x1∧x2∧x3∧x4)∨(x1∧x2∧x3∧x4) ∨(x1∧x2∧x3∧x4)∨(x1∧x2∧x3∧x4) ∨(x1∧x2∧x3∧x4)∨(x1∧x2∧x3∧x4) ∨(x1∧x2∧x3∧x4)
(p↑(q↑q))(p↑(q↑q))↑(p↑(q↑q)). (4) p∧q(p∨q) (p)↓q(p↓p)↓q.
6
1.6 组合电路
组合电路 逻辑门
与门, 或门, 非门, 与非门, 或非门 奎因-莫可拉斯基方法
7
组合电路
逻辑门: 实现逻辑运算的电子元件. 与门, 或门, 非门. 组合电路:实现命题公式的由电子元件组成的电路.
第二批
项
x1∧x4
表示串
0 1
标记*表示该项已被合并
15
例(续)
项 x1∧x3∧x4 x1∧x2∧x3 x2∧x3∧x4
x1∧x4
覆盖 (1,4) (2,4) (2,6) (3,5,6,7)
运算符数 3 3 3 2
选择(1,4), (2,4)和(3,5,6,7), 或者(1,4), (2,6)和(3,5,6,7). 最简展开式为
13
例(续)
解 编号
极小项
角码 标记
1 x1∧x2∧x3∧x4 2 x1∧x2∧x3∧x4 3 x1∧x2∧x3∧x4
1110 * 1011 * 0111 *
4 x1∧x2∧x3∧x4 1010 * 5 x1∧x2∧x3∧x4 0101 * 6 x1∧x2∧x3∧x4 0011 *
7 x1∧x2∧x3∧x4 0001 *
x y
x∧y x y
x∨y x
x
与门
或门
非门
8
组合电路的例子
(x∨y)∧x的组合电路
x y
x y
第一种画法
x 第二种画法
9
例
例 楼梯的灯由上下2个开关控制, 要求按动任何一个 开关都能打开或关闭灯. 试设计一个这样的线路. 解 x,y:开关的状态, F:灯的状态, 打开为1, 关闭为0. 不妨设当2个开关都为0时灯是打开的.
3
复合联结词
与非式: pq(pq) 或非式: pq(pq)
和与, ∧,∨有下述关系: p(p∧p)pp p∧q( p∧q)(pq)(pq)(pq) p∨q(p∧q)(p)(q)(pp)(qq)
4
复合联结词(续)
ppp p∧q(pp)ห้องสมุดไป่ตู้qq) p∨q(pq)(pq)
定理 {}, {}是联结词全功能集.
14
例(续)
第一批
合并项
项
表示串 标记 合并项
(1,4) x1∧x3∧x4 110
(3,5,6,7)
(2,4) x1∧x2∧x3 101
(2,6) x2∧x3∧x4 011
(3,5) x1∧x2∧x4 011 *
(3,6) x1∧x3∧x4 011 *
(5,7) x1∧x3∧x4 001 *
(6,7) x1∧x2∧x4 001 *
F(x1∧x3∧x4)∨(x1∧x2∧x3)∨(x1∧x4) 或
F(x1∧x3∧x4)∨(x2∧x3∧x4)∨(x1∧x4)
16
1.5 联结词全功能集
▪ 联结词全功能集 ▪ 与非联结词,或非联结词
1
联结词的全功能集
定义 设S是一个联结词集合,如果任何n(n1) 元 真值函数都可以由仅含S中的联结词构成的公式表 示,则称S是联结词全功能集.
说明:若S是联结词全功能集,则任何命题公式都 可用S中的联结词表示.
设S1, S2是两个联结词集合,且S1 S2. 若S1是全